Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Regulation of the \u3cem\u3eEscherichia coli\u3c/em\u3e Tryptophan Operon by Early Reactions in the Aromatic Pathway

Abstract

7-Methyltryptophan (7MT) or compounds which can be metabolized to 7MT, 3-methylanthranilic acid (3MA) and 7-methylindole, cause derepression of the trp operon through feedback inhibition of anthranilate synthetase. Tyrosine reverses 3MA or 7-methylindole derepression, apparently by increasing the amount of chorismic acid available to the tryptophan pathway. A mutant isolated on the basis of 3MA resistance (MAR 13) was found to excrete small amounts of chorismic acid and to have a feedback-resistant phenylalanine 3-deoxy-d-arabinoheptulosonic acid-7-phosphate (DAHP) synthetase. Genetic evidence indicates that the mutation conferring 3MA resistance and feedback resistance is very closely linked to aroG, the structural gene for the DAHP synthetase (phe). Since feedback inhibition of anthranilate synthetase by l-tryptophan (or 7MT) is competitive with chorismic acid, alterations in growth conditions (added tyrosine) or in a mutant (MAR 13) which increase the amount of chorismic acid available to the tryptophan pathway result in resistance to 7MT derepression. Owing to this competitive nature of tryptophan feedback inhibition of anthranilate synthetase by chorismic acid, the early pathway apparently serves to exert a regulatory influence on tryptophan biosynthesis

Similar works

This paper was published in epublications@Marquette.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.