Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Improving Storage Performance with Non-Volatile Memory-based Caching Systems


University of Minnesota Ph.D. dissertation. April 2017. Major: Computer Science. Advisor: David Du. 1 computer file (PDF); ix, 104 pages.With the rapid development of new types of non-volatile memory (NVRAM), e.g., 3D Xpoint, NVDIMM, and STT-MRAM, these technologies have been or will be integrated into current computer systems to work together with traditional DRAM. Compared with DRAM, which can cause data loss when the power fails or the system crashes, NVRAM's non-volatile nature makes it a better candidate as caching material. In the meantime, storage performance needs to keep up to process and accommodate the rapidly generated amounts of data around the world (a.k.a the big data problem). Throughout my Ph.D. research, I have been focusing on building novel NVRAM-based caching systems to provide cost-effective ways to improve storage system performance. To show the benefits of designing novel NVRAM-based caching systems, I target four representative storage devices and systems: solid state drives (SSDs), hard disk drives (HDDs), disk arrays, and high-performance computing (HPC) parallel file systems (PFSs). For SSDs, to mitigate their wear out problem and extend their lifespan, we propose two NVRAM-based buffer cache policies which can work together in different layers to maximally reduce SSD write traffic: a main memory buffer cache design named Hierarchical Adaptive Replacement Cache (H-ARC) and an internal SSD write buffer design named Write Traffic Reduction Buffer (WRB). H-ARC considers four factors (dirty, clean, recency, and frequency) to reduce write traffic and improve cache hit ratios in the host. WRB reduces block erasures and write traffic further inside an SSD by effectively exploiting temporal and spatial localities. For HDDs, to exploit their fast sequential access speed to improve I/O throughput, we propose a buffer cache policy, named I/O-Cache, that regroups and synchronizes long sets of consecutive dirty pages to take advantage of HDDs' fast sequential access speed and the non-volatile property of NVRAM. In addition, our new policy can dynamically separate the whole cache into a dirty cache and a clean cache, according to the characteristics of the workload, to decrease storage writes. For disk arrays, although numerous cache policies have been proposed, most are either targeted at main memory buffer caches or manage NVRAM as write buffers and separately manage DRAM as read caches. To the best of our knowledge, cooperative hybrid volatile and non-volatile memory buffer cache policies specifically designed for storage systems using newer NVRAM technologies have not been well studied. Based on our elaborate study of storage server block I/O traces, we propose a novel cooperative HybrId NVRAM and DRAM Buffer cACHe polIcy for storage arrays, named Hibachi. Hibachi treats read cache hits and write cache hits differently to maximize cache hit rates and judiciously adjusts the clean and the dirty cache sizes to capture workloads' tendencies. In addition, it converts random writes to sequential writes for high disk write throughput and further exploits storage server I/O workload characteristics to improve read performance. For modern complex HPC systems (e.g., supercomputers), data generated during checkpointing are bursty and so dominate HPC I/O traffic that relying solely on PFSs will slow down the whole HPC system. In order to increase HPC checkpointing speed, we propose an NVRAM-based burst buffer coordination system for PFSs, named collaborative distributed burst buffer (CDBB). Inspired by our observations of HPC application execution patterns and experimentations on HPC clusters, we design CDBB to coordinate all the available burst buffers, based on their priorities and states, to help overburdened burst buffers and maximize resource utilization

Similar works

This paper was published in University of Minnesota Digital Conservancy.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.