Behaviour of chemical solutes during a storm in a rainforested headwater catchment

Abstract

International audienceThe aim of this study is to identify, in a small catchment area located within a tropical forest, the pedological compartments in which the export of nutrients and chemical erosion of solutes occur during a stormflow event. The catchment area displays two types of lateral flow: (i) overland flow at the surface of the soil in the litter and root mat and (ii) groundwater flow in a macroporous subsurface horizon. We interpret the variations of stream-water chemistry during a storm-flow event using the separation of storm-flow hydrograph data between overland and groundwater flow, and (Cl as a chemical parameter characterizing the residence time of water in the soil. It appears that K+ especially was released into the throughfall, whereas Ca++, Mg++ and Na+ were clearly released from the litter. K+ disappeared rapidly from soil solution, whereas Ca++ and Mg++ were more progressively absorbed by the vegetation. The Ca++ and Mg++ contents in groundwater increased with increasing residence time owing to the transpiration of trees. The export of H4SiO4 in the overland flow was moderate, i.e. 24% of total H4SiO4 export in the stream flow, as overland flow represented 39% of total runoff. The subsurface horizon—where active groundwater flow occurs—was successively affected by chemical erosion during the storm-flow peak, and then by neoformation of kaolinite favoured by increasing water residence time

Similar works

Full text

thumbnail-image

HAL - UPEC / UPEM

redirect
Last time updated on 07/05/2019

This paper was published in HAL - UPEC / UPEM.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.