Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Magnetite Triggering Enhanced Direct Interspecies Electron Transfer: A Scavenger for the Blockage of Electron Transfer in Anaerobic Digestion of High-Solids Sewage Sludge

Abstract

At present, high-solids anaerobic digestion of sewage sludge has drawn great attention due to the superiority of its small land area footprint and low energy consumption. However, a high organic loading rate may cause acids accumulation and ammonia inhibition, thus leading to an inhibited pseudo-steady state in which electron transfer through interspecies hydrogen transfer (IHT) between acetogens and methanogens is blocked. In this study, adding 50 mg/g TS (total solid) magnetite clearly reduced the accumulation of short-chain fatty acids and accelerated methane production by 26.6%. As demonstrated, the individual processes of anaerobic digestion could not be improved by magnetite when methanogenesis was interrupted. Analyzing stable carbon isotopes and investigating the methanogenesis pathways using acetate and H<sub>2</sub>/CO<sub>2</sub> as substrates together proved that direct interspecies electron transfer (DIET) was enhanced by magnetite. Metatranscriptomic analysis and determination of key enzymes showed that IHT could be partially substituted by enhanced DIET, and acetate-dependent methanogenesis was improved after the blockage of electron transfer was scavenged. Additionally, the expression of both pili and c-type cytochromes was found to decrease, indicating that magnetite could replace their roles for efficient electron transfer between acetogens and methanogens; thus, a robust chain of electron transfer was established

Similar works

Full text

thumbnail-image

The Francis Crick Institute

redirect
Last time updated on 13/08/2018

This paper was published in The Francis Crick Institute.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.