Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Abstract

Cold, semidilute, aqueous solutions of methylcellulose (MC) are known to undergo thermoreversible gelation when warmed. This study focuses on two MC materials with much different gelation performance (gel temperature and hot gel modulus) even though they have similar metrics of their coarse-grained chemical structure (degree-of-methylether substitution and molecular weight distribution). Small-angle neutron scattering (SANS) experiments were conducted to probe the structure of the aqueous MC materials at pre- and postgel temperatures. One material (MC1, higher gel temperature) exhibited a single <i>almost</i> temperature-insensitive gel characteristic length scale (ζ<sub>c</sub> = 1090 ± 50 Å) at postgelation temperatures. This length scale is thought to be the gel blob size between network junctions. It also coincides with the length scale between entanglement sites measured with rheology studies at pregel temperatures. The other material (MC2, lower gel temperature) exhibited two distinct length scales at all temperatures. The larger length scale decreased as temperature increased. Its value (ζ<sub>c1</sub> = 1046 ± 19 Å) at the lowest pregel temperature was indistinguishable from that measured for MC1, and reached a limiting value (ζ<sub>c1</sub> = 450 ± 19 Å) at high temperature. The smaller length scale (ζ<sub>c2</sub> = 120 to 240 Å) increased slightly as temperature increased, but remained on the order of the chain persistence length (130 Å) measured at pregel temperatures. The smaller blob size (ζ<sub>c1</sub>) of MC2 suggests a higher bond energy or a stiffer connectivity between network junctions. Moreover, the number density of these blobs, at the same reduced temperature with respect to the gel temperature, is orders of magnitude higher for the MC2 gels. Presumably, the smaller gel length scale and higher number density lead to higher hot gel modulus for the low gel temperature material

Similar works

Full text

thumbnail-image

FigShare

redirect
Last time updated on 16/03/2018

This paper was published in FigShare.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.