unknown10.14311/AP.2017.57.0404

THE ANALYSIS OF IMAGES IN NPOINT GRAVITATIONAL LENS BY METHODS OF ALGEBRAIC GEOMETRY

Abstract

This paper is devoted to the study of images in N-point gravitational lenses by methods of algebraic geometry. In the beginning, we carefully define images in algebraic terms. Based on the definition, we show that in this model of gravitational lenses (for a point source), the dimensions of the images can be only 0 and 1. We reduce it to the fundamental problem of classical algebraic geometry - the study of solutions of a polynomial system of equations. Further, we use well-known concepts and theorems. We adapt known or prove new assertions. Sometimes, these statements have a fairly general form and can be applied to other problems of algebraic geometry. In this paper: the criterion for irreducibility of polynomials in several variables over the field of complex numbers is effectively used. In this paper, an algebraic version of the Bezout theorem and some other statements are formulated and proved. We have applied the theorems proved by us to study the imaging of dimensions 1 and 0

Similar works

Full text

thumbnail-image

Digital Library of the Czech Technical University in Prague

Provided a free PDF
oai:dspace.cvut.cz:10467/73725Last time updated on 2/12/2018View original full text link

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.