Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Hypothetical explanation of the experimental data showing differences in taurine and glutamate release <i>in vivo</i>.

Abstract

<p>A reduction in medium osmolarity (↓[osm]<sub>e</sub>) in the rat cortex causes an increase in the extracellular levels of the excitatory amino acids glutamate and aspartate and the sulfonic acid taurine via a mechanism sensitive to the anion channel blocker DNDS. Despite these similarities, the excitatory amino acid and taurine release demonstrate different kinetics and are likely mediated by different transport pathways (1 and 2) and/or originate from different cellular sources. The taurine pathway (1) but not the excitatory amino acid pathway (2) is activated by isoosmotic lowering of [NaCl]<sub>e</sub>. Conversely, the swelling-activated excitatory amino acid release pathway (2) but not the taurine pathway (1) is potentiated by H<sub>2</sub>O<sub>2</sub>. Alternative transport pathways that were considered in this study include: [Na<sup>+</sup>]<sub>e</sub>-dependent taurine transporters (3), [Na<sup>+</sup>]<sub>e</sub>/[K<sup>+</sup>]<sub>i</sub>-dependent glutamate transporters in neurons (4), and in astrocytes (5), which are sensitive to TBOA; and vesicular glutamate release (6), which is sensitive to the voltage-gated Ca<sup>2+</sup> channel blocker Cd<sup>2+</sup>. Based on the similarities of excitatory amino acid release <i>in vivo</i> and in cultured astrocytes, we speculate that glutamate release <i>in vivo</i> largely originates from glial cells. Similarities between taurine release <i>in vivo</i> and in synaptosomes suggest that taurine release may be of a neuronal origin.</p

Similar works

Full text

thumbnail-image

The Francis Crick Institute

redirect
Last time updated on 12/02/2018

This paper was published in The Francis Crick Institute.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.