Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Pt@Nb-TiO<sub>2</sub> Catalyst Membranes Fabricated by Electrospinning and Atomic Layer Deposition

Abstract

A facile method was developed to fabricate fibrous membranes of niobium-doped titania-supported platinum catalysts (Pt@Nb-TiO<sub>2</sub>) by a two-step approach. The process started with generating niobium-doped titania (Nb-TiO<sub>2</sub>) fibrous membranes by electrospinning, followed by the deposition of Pt nanoparticles (NPs) using an atomic layer deposition (ALD) technique. The area-specific oxygen reduction reaction (ORR) activity of Pt@TiO<sub>2</sub> catalyst membrane was increased by ∼20 folds if 10 at.% of Nb was incorporated into the ceramic fibers. The area-specific activity also increased with the number of ALD cycles, because of the increase of the Pt loading in the catalysts. After post-treatment of the catalyst membrane at high temperature in H<sub>2</sub>-containing atmosphere, the ORR activity became 0.28 mA/cm<sup>2</sup><sub>Pt</sub> at 0.9 V (vs RHE), because of the improvement in conductivity of Nb-TiO<sub>2</sub> fibers and better crystalinity of Pt NPs. The results of accelerated-stability test showed that the Pt@Nb-TiO<sub>2</sub> catalyst membrane was highly stable and lost only 10% of its initial activity after 30 000 potential cycles (0.6 to 1.0 V vs RHE) under a strong acidic condition

Similar works

Full text

thumbnail-image

The Francis Crick Institute

redirect
Last time updated on 12/02/2018

This paper was published in The Francis Crick Institute.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.