Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Noncontact Free-Rotating Disk Triboelectric Nanogenerator as a Sustainable Energy Harvester and Self-Powered Mechanical Sensor

Abstract

In this work, we introduced an innovative noncontact, free-rotating disk triboelectric nanogenerator (FRD-TENG) for sustainably scavenging the mechanical energy from rotary motions. Its working principle was clarified through numerical calculations of the relative-rotation-induced potential difference, which serves as the driving force for the electricity generation. The unique characteristic of the FRD-TENG enables its high output performance compared to its working at the contact mode, with an effective output power density of 1.22 W/m2 for continuously driving 100 light-emitting diodes. Ultrahigh stability of the output and exceptional durability of the device structure were achieved, and the reliable output was utilized for fast/effective charging of a lithium ion battery. Based on the relationship between its output performance and the parameters of the mechanical stimuli, the FRD-TENG could be employed as a self-powered mechanical sensor, for simultaneously detecting the vertical displacement and rotation speed. The FRD-TENG has superior advantages over the existing disk triboelectric nanogenerator, and exhibits significant progress toward practical applications of nanogenerators for both energy harvesting and self-powered sensor networks

Similar works

Full text

thumbnail-image

The Francis Crick Institute

redirect
Last time updated on 12/02/2018

This paper was published in The Francis Crick Institute.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.

Licence: CC BY-NC 4.0