Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Multiple Pathways in the Oxidation of a NADH Analogue

Abstract

Oxidation of the NADH analogue, <i>N</i>-benzyl-1,4-dihydronicotinamide (BNAH), by the 1e<sup>–</sup> acceptor, [Os­(dmb)<sub>3</sub>]<sup>3+</sup>, and 2e<sup>–</sup>/2H<sup>+</sup> acceptor, benzoquinone (Q), has been investigated in aqueous solutions over extended pH and buffer concentration ranges by application of a double-mixing stopped-flow technique in order to explore the redox pathways available to this important redox cofactor. Our results indicate that oxidation by quinone is dominated by hydride transfer, and a pathway appears with added acids involving concerted hydride-proton transfer (HPT) in which synchronous transfer of hydride to one O-atom at Q and proton transfer to the second occurs driven by the formation of the stable H<sub>2</sub>Q product. Oxidation by [Os­(dmb)<sub>3</sub>]<sup>3+</sup> occurs by outer-sphere electron transfer including a pathway involving ion-pair preassociation of HPO<sub>4</sub><sup>2–</sup> with the complex that may also involve a concerted proton transfer

Similar works

Full text

thumbnail-image

The Francis Crick Institute

redirect
Last time updated on 12/02/2018

This paper was published in The Francis Crick Institute.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.