Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Plant Sunscreens in the UV-B: Ultraviolet Spectroscopy of Jet-Cooled Sinapoyl Malate, Sinapic Acid, and Sinapate Ester Derivatives

Abstract

Ultraviolet spectroscopy of sinapoyl malate, an essential UV-B screening agent in plants, was carried out in the cold, isolated environment of a supersonic expansion to explore its intrinsic UV spectral properties in detail. Despite these conditions, sinapoyl malate displays anomalous spectral broadening extending well over 1000 cm<sup>–1</sup> in the UV-B region, presenting the tantalizing prospect that nature’s selection of UV-B sunscreen is based in part on the inherent quantum mechanical features of its excited states. Jet-cooling provides an ideal setting in which to explore this topic, where complications from intermolecular interactions are eliminated. In order to better understand the structural causes of this behavior, the UV spectroscopy of a series of sinapate esters was undertaken and compared with <i>ab initio</i> calculations, starting with the simplest sinapate chromophore sinapic acid, and building up the ester side chain to sinapoyl malate. This “deconstruction” approach provided insight into the active mechanism intrinsic to sinapoyl malate, which is tentatively attributed to mixing of the bright V (<sup>1</sup>ππ*) state with an adiabatically lower <sup>1</sup>nπ* state which, according to calculations, shows unique charge-transfer characteristics brought on by the electron-rich malate side chain. All members of the series absorb strongly in the UV-B region, but significant differences emerge in the appearance of the spectrum among the series, with derivatives most closely associated with sinapoyl malate showing characteristic broadening even under jet-cooled conditions. The long vibronic progressions, conformational distribution, and large oscillator strength of the V (ππ*) transition in sinapates makes them ideal candidates for their role as UV-B screening agents in plants

Similar works

Full text

thumbnail-image

The Francis Crick Institute

redirect
Last time updated on 12/02/2018

This paper was published in The Francis Crick Institute.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.