Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Abstract

Here we demonstrate, via a modified transfer-printing technique, that electrochemically fabricated porous silicon (PSi) distributed Bragg reflectors (DBRs) can serve as the basis of high-quality hybrid microcavities compatible with most forms of photoemitters. Vertical microcavities consisting of an emitter layer sandwiched between 11- and 15-period PSi DBRs were constructed. The emitter layer included a polymer doped with PbS quantum dots, as well as a heterogeneous GaAs thin film. In this structure, the PbS emission was significantly redistributed to a 2.1 nm full-width at half-maximum around 1198 nm, while the PSi/GaAs hybrid microcavity emitted at 902 nm with a sub-nanometer full-width at half-maximum and quality-factor of 1058. Modification of PSi DBRs to include a PSi cavity coupling layer enabled tuning of the total cavity optical thickness. Infiltration of the PSi with Al<sub>2</sub>O<sub>3</sub> by atomic layer deposition globally red-shifted the emission peak of PbS quantum dots up to ∼18 nm (∼0.9 nm per cycle), while introducing a cavity coupling layer with a gradient optical thickness spatially modulated the cavity resonance of the PSi/GaAs hybrid such that there was an ∼30 nm spectral variation in the emission of separate GaAs modules printed ∼3 mm apart

Similar works

Full text

thumbnail-image

FigShare

redirect
Last time updated on 12/02/2018

This paper was published in FigShare.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.