Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Ideotype Population Exploration: Growth, Photosynthesis, and Yield Components at Different Planting Densities in Winter Oilseed Rape (<i>Brassica napus</i> L.)

Abstract

<div><p>Rapeseed is one of the most important edible oil crops in the world and the seed yield has lagged behind the increasing demand driven by population growth. Winter oilseed rape (<i>Brassica napus</i> L.) is widely cultivated with relatively low yield in China, so it is necessary to find the strategies to improve the expression of yield potential. Planting density has great effects on seed yield of crops. Hence, field experiments were conducted in Wuhan in the Yangtze River basin with one conventional variety (Zhongshuang 11, ZS11) and one hybrid variety (Huayouza 9, HYZ9) at five planting densities (27.0×10<sup>4</sup>, 37.5×10<sup>4</sup>, 48.0×10<sup>4</sup>, 58.5×10<sup>4</sup>, 69.0×10<sup>4</sup> plants ha<sup>–1</sup>) during 2010–2012 to investigate the yield components. The physiological traits for high-yield and normal-yield populations were measured during 2011–2013. Our results indicated that planting densities of 58.5×10<sup>4</sup> plants ha<sup>–1</sup> in ZS11 and 48.0×10<sup>4</sup> plants ha<sup>–1</sup> in HYZ9 have significantly higher yield compared with the density of 27.0×10<sup>4</sup> plants ha<sup>–1</sup>for both varieties. The ideal silique numbers for ZS11 and HYZ9 were ∼0.9×10<sup>4</sup> (n m<sup>–2</sup>) and ∼1×10<sup>4</sup> (n m<sup>-2</sup>), respectively, and ideal primary branches for ZS11 and HYZ9 were ∼250 (n m<sup>–2</sup>) and ∼300 (n m<sup>–2</sup>), respectively. The highest leaf area index (LAI) and silique wall area index (SAI) was ∼5.0 and 7.0, respectively. Moreover, higher leaf net photosynthetic rate (Pn) and water use efficiency (WUE) were observed in the high-yield populations. A significantly higher level of silique wall photosynthesis and rapid dry matter accumulation were supposed to result in the maximum seed yield. Our results suggest that increasing the planting density within certain range is a feasible approach for higher seed yield in winter rapeseed in China.</p></div

Similar works

Full text

thumbnail-image

The Francis Crick Institute

redirect
Last time updated on 12/02/2018

This paper was published in The Francis Crick Institute.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.