Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Highly Functional Bioinspired Fe/N/C Oxygen Reduction Reaction Catalysts: Structure-Regulating Oxygen Sorption

Abstract

Tuna is one of the most rapid and distant swimmers. Its unique gill structure with the porous lamellae promotes fast oxygen exchange that guarantees tuna’s high metabolic and athletic demands. Inspired by this specific structure, we designed and fabricated microporous graphene nanoplatelets (GNPs)-based Fe/N/C electrocatalysts for oxygen reduction reaction (ORR). Careful control of GNP structure leads to the increment of microporosity, which influences the O<sub>2</sub> adsorption positively and desorption oppositely, resulting in enhanced O<sub>2</sub> diffusion, while experiencing reduced ORR kinetics. Working in the cathode of proton-exchange membrane fuel cells, the GNP catalysts require a compromise between adsorption/desorption for effective O<sub>2</sub> exchange, and as a result, appropriate microporosity is needed. In this work, the highest power density, 521 mW·cm<sup>–2</sup>, at zero back pressure is achieved

Similar works

Full text

thumbnail-image

The Francis Crick Institute

redirect
Last time updated on 12/02/2018

This paper was published in The Francis Crick Institute.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.