Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Reversible Gelation Model Predictions of the Linear Viscoelasticity of Oligomeric Sulfonated Polystyrene Ionomer Blends

Abstract

The linear viscoelastic (LVE) behavior of oligomeric sulfonated polystyrene ionomers (SPS) and binary blends of two SPS ionomers with different sulfonation levels and cations was compared to the predictions of the reversible gelation model for the rheology of ionomers [Macromolecules 2015, 48, 1221−1230]. Binary blends had the same gel point as the neat ionomer components if a linear mixing rule was used to calculate an average sulfonation level for the blend. The binary blends, however, exhibited a broader relaxation time distribution than the neat ionomers having the same number density of ions. A linear mixing rule for the ionic dissociation frequency of the blend was proposed, and when incorporated into the reversible gelation model, reasonable predictions of the terminal relaxation time of the blends were achieved

Similar works

Full text

thumbnail-image

The Francis Crick Institute

redirect
Last time updated on 12/02/2018

This paper was published in The Francis Crick Institute.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.