Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Abstract

The high capacity of primary lithium-ion cathode Ag<sub>2</sub>VO<sub>2</sub>PO<sub>4</sub> is facilitated by both displacement and insertion reaction mechanisms. Whether the Ag extrusion (specifically, Ag reduction with Ag metal displaced from the host crystal) and V reduction are sequential or concurrent remains unclear. A microscopic description of the reaction mechanism is required for developing design rules for new multimechanism cathodes, combining both displacement and insertion reactions. However, the amorphization of Ag<sub>2</sub>VO<sub>2</sub>PO<sub>4</sub> during lithiation makes the investigation of the electrode reaction mechanism difficult with conventional characterization tools. For addressing this issue, a combination of local probes of pair-distribution function and X-ray spectroscopy were used to obtain a description of the discharge reaction. We determine that the initial reaction is dominated by silver extrusion with vanadium playing a supporting role. Once sufficient Ag has been displaced, the residual Ag<sup>+</sup> in the host can no longer stabilize the host structure and V–O environment (i.e., onset of amorphization). After amorphization, silver extrusion continues but the vanadium reduction dominates the reaction. As a result, the crossover from primarily silver reduction displacement to vanadium reduction is facilitated by the amorphization that makes vanadium reduction increasingly more favorable

Similar works

Full text

thumbnail-image

FigShare

redirect
Last time updated on 12/02/2018

This paper was published in FigShare.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.