Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Electrocatalytic Efficiency Analysis of Catechol Molecules for NADH Oxidation during Nanoparticle Collision

Abstract

Electrocatalysis of molecules is a hot research topic in biological and energy-related chemistry. Here, we develop a new system to study the electrocatalytic efficiency of a single catechol molecule for NADH oxidation by single functionalized nanoparticle collision at ultramicroelectrodes (UMEs). The proposed system is composed of gold nanoparticles (AuNPs) functionalized with catechol molecules and a carbon-fiber ultramicroelectrode. In the absence of NADH, when a functionalized AuNP collides with an UME at a suitable voltage, a small current spike is generated due to the oxidation of catechol molecules modified on the surface of AuNP. In the presence of NADH, the current spike is significantly amplified by the combined effects of the oxidation and electrocatalysis for NADH of catechol molecules. By analyzing the variations of the average peak charges and durations without or with NADH, we calculate that around five thousands NADH molecules could be catalyzed per second by a single catechol molecule, suggesting the successful establishment of this novel catalytic system. Thus, the proposed strategy could be used as a promising platform for research of other molecular electrocatalytic systems

Similar works

Full text

thumbnail-image

The Francis Crick Institute

redirect
Last time updated on 12/02/2018

This paper was published in The Francis Crick Institute.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.