Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Surface-Based Control of Oxygen Interstitial Injection into ZnO via Submonolayer Sulfur Adsorption

Abstract

Semiconductor surfaces offer efficient pathways for injecting native point defects into the underlying bulk. Adsorption of a suitably chosen foreign element serves to modulate the injection rate, even at small percentages of a monolayer. Through self-diffusion experiments using isotopic exchange with labeled oxygen, the present work demonstrates such behavior in the case of sulfur adsorption on <i>c</i>-axis Zn-terminated ZnO(0001), wherein the clean surface injects with exceptional efficiency. The experiments provide strong evidence that the injection sites comprise only a small fraction of the total surface atom density and that sulfur adsorption merely blocks those sites. Comparison with related systems shows this simple mechanism is surprisingly uncommon

Similar works

Full text

thumbnail-image

The Francis Crick Institute

redirect
Last time updated on 12/02/2018

This paper was published in The Francis Crick Institute.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.