Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Photoredox/Brønsted Acid Co-Catalysis Enabling Decarboxylative Coupling of Amino Acid and Peptide Redox-Active Esters with N‑Heteroarenes

Abstract

An iridium photoredox catalyst in combination with a phosphoric acid catalyzes the decarboxylative α-aminoalkylation of natural and unnatural α-amino acid-derived redox-active esters (<i>N</i>-hydroxyphthalimide esters) with a broad substrate scope of N-heteroarenes at room temperature under irradiation. Dipeptide- and tripeptide-derived redox-active esters are also amenable substrates to achieve decarboxylative insertion of a N-heterocycle at the C-terminal of peptides, yielding molecules that have potential medicinal applications. The key factors for the success of this reaction are the following: use of a photoredox catalyst of suitable redox potential to controllably generate α-aminoalkyl radicals, without overoxidation, and an acid cocatalyst to increase the electron deficiency of N-heteroarenes

Similar works

Full text

thumbnail-image

FigShare

redirect
Last time updated on 12/02/2018

This paper was published in FigShare.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.