Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Surface Forces and Interaction Mechanisms of Emulsion Drops and Gas Bubbles in Complex Fluids

Abstract

The interactions of emulsion drops and gas bubbles in complex fluids play important roles in a wide range of biological and technological applications, such as programmable drug and gene delivery, emulsion and foam formation, and froth flotation of mineral particles. In this feature article, we have reviewed our recent progress on the quantification of surface forces and interaction mechanisms of gas bubbles and emulsion drops in different material systems by using several complementary techniques, including the drop/bubble probe atomic force microscope (AFM), surface forces apparatus (SFA), and four-roll mill fluidic device. These material systems include the bubble–self-assembled monolayer (SAM), bubble–polymer, bubble–superhydrophobic surface, bubble–mineral, water-in-oil and oil-in-water emulsions with interface-active components in oil production, and oil/water wetting on polyelectrolyte surfaces. The bubble probe AFM combined with reflection interference contrast microscopy (RICM) was applied for the first time to simultaneously quantify the interaction forces and spatiotemporal evolution of a confined thin liquid film between gas bubbles and solid surfaces with varying hydrophobicity. The nanomechanical results have provided useful insights into the fundamental interaction mechanisms (e.g., hydrophobic interaction in aqueous media) at gas/water/solid interfaces, the stabilization/destabilization mechanisms of emulsion drops, and oil/water wetting mechanisms on solid surfaces. A long-range hydrophilic attraction was found between water and polyelectrolyte surfaces in oil, with the strongest attraction for polyzwitterions, contributing to their superior water wettability in oil and self-cleaning capability of oil contamination. Some remaining challenges and future research directions are discussed and provided

Similar works

Full text

thumbnail-image

The Francis Crick Institute

redirect
Last time updated on 12/02/2018

This paper was published in The Francis Crick Institute.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.