Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

<i>In Situ</i> Atomic-Scale Observation of Droplet Coalescence Driven Nucleation and Growth at Liquid/Solid Interfaces

Abstract

Unraveling dynamical processes of liquid droplets at liquid/solid interfaces and the interfacial ordering is critical to understanding solidification, liquid-phase epitaxial growth, wetting, liquid-phase joining, crystal growth, and lubrication processes, all of which are linked to different important applications in material science. In this work, we observe direct <i>in situ</i> atomic-scale behavior of Bi droplets segregated on SrBi<sub>2</sub>Ta<sub>2</sub>O<sub>9</sub> by using aberration-corrected transmission electron microscopy and demonstrate ordered interface and surface structures for the droplets on the oxide at the atomic scale and unravel a nucleation mechanism involving droplet coalescence at the liquid/solid interface. We identify a critical diameter of the formed nanocrystal in stabilizing the crystalline phase and reveal lattice-induced fast crystallization of the droplet at the initial stage of the coalescence of the nanocrystal with the droplet. Further sequential observations show the stepped coalescence and growth mechanism of the nanocrystals at the atomic scale. These results offer insights into the dynamic process at liquid/solid interfaces, which may have implications for many functionalities of materials and their applications

Similar works

Full text

thumbnail-image

FigShare

redirect
Last time updated on 12/02/2018

This paper was published in FigShare.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.