Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Deformation and faulting of subduction overriding plate caused by a subducted seamount

Abstract

We conducted numerical experiments to simulate elastoplastic deformation of the overriding plate caused by a subducted seamount. Calculations revealed development of a distinct pair of fault-like shear zones, including a landward dipping forethrust fault initiated from the seamount top and a seaward dipping backthrust fault from the landward base of the seamount. Significant dome-shaped surface uplift was predicted above the thrust faults. Lesser-developed seaward dipping backthrust faults were calculated to develop under certain conditions. The overriding plate was calculated to deform in two stages: In Stage I, elastic deformation leads to the formation of fault-like shear zones. After major faults have cut through the entire plate, plastic deformation on faults dominates Stage II. On the subduction interface, compressional normal stress was calculated to increase on the landward leading flank of the seamount and decrease on the seaward trailing flank. These changes, together with associated stress singularities at seamount edges, could affect earthquake processes

Similar works

Full text

thumbnail-image

Institutional Repository of South China Sea Institute of Oceanology, CAS

redirect
Last time updated on 18/12/2017

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.