Optimal boundary geometry in an elasticity problem: a systematic adjoint approach

Abstract

p. 509-524In different problems of Elasticity the definition of the optimal geometry of the boundary, according to a given objective function, is an issue of great interest. Finding the shape of a hole in the middle of a plate subjected to an arbitrary loading such that the stresses along the hole minimizes some functional or the optimal middle curved concrete vault for a tunnel along which a uniform minimum compression are two typical examples. In these two examples the objective functional depends on the geometry of the boundary that can be either a curve (in case of 2D problems) or a surface boundary (in 3D problems). Typically, optimization is achieved by means of an iterative process which requires the computation of gradients of the objective function with respect to design variables. Gradients can by computed in a variety of ways, although adjoint methods either continuous or discrete ones are the more efficient ones when they are applied in different technical branches. In this paper the adjoint continuous method is introduced in a systematic way to this type of problems and an illustrative simple example, namely the finding of an optimal shape tunnel vault immersed in a linearly elastic terrain, is presented.Garcia-Palacios, J.; Castro, C.; Samartin, A. (2009). Optimal boundary geometry in an elasticity problem: a systematic adjoint approach. Editorial Universitat Politècnica de València. http://hdl.handle.net/10251/654

Similar works

Full text

thumbnail-image

This paper was published in RiuNet.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.