Energy detection based spectrum sensing over two-wave and diffuse power fading channels

Abstract

(c) 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.One of the most important factors that affects the performance of energy detection (ED) is the fading channel between the wireless nodes. This paper investigates the performance of ED-based spectrum sensing, for cognitive radio (CR), over two-wave with diffuse power (TWDP) fading channels. The TWDP fading model characterizes a variety of fading channels, including well-known canonical fading distributions, such as Rayleigh and Rician, as well as worse-than-Rayleigh fading conditions modeled by the two-ray fading model. Novel analytic expressions for the average probability of detection over TWDP fading that account for single-user and cooperative spectrum sensing and square law selection diversity reception are derived. These expressions are used to analyze the behavior of ED-based spectrum sensing over moderate, severe, and extreme fading conditions and to investigate the use of cooperation and diversity as a means of mitigating the fading effects. The obtained results indicate that TWDP fading conditions can significantly degrade sensing performance; however, it is shown that detection performance can be improved when cooperation and diversity are employed. The presented outcomes enable identifying the limits of ED-based spectrum sensing and quantifying the tradeoffs between detection performance and energy efficiency for CR systems deployed within confined environments, such as in-vehicular wireless networks

Similar works

Full text

thumbnail-image

University of Bedfordshire Repository

Provided a free PDF

This paper was published in University of Bedfordshire Repository.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.