Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

The Investigation of Cold-mix Asphalt Creep Stiffness Testing Using Multiple Test Apparatuses and Gradations

Abstract

Many current methods of designing and testing Cold In-Place Recycled (CIR) asphalt are undesirable because they require large amounts of material and significant preparation. In an effort to lessen the cost and time of materials testing, this research utilizes several different methods of small scale testing of creep stiffness. These methods include using a Discovery Hybrid Rheometer (DHR) and a three point bending test to find the creep stiffness of emulsion based CIR. The new testing methods utilized samples on the scale of up to a hundredth the size of what the traditional methods of testing require. The two smaller scale tests were compared to the traditional Indirect Tension Test (IDT) testing. In order to fully evaluate the two reduced sample size test methods, this research observed the effect of gradation, temperature, emulsifier type, and Recycled Asphalt Pavement (RAP) content on creep stiffness. If successful, the use of these new test methods could significantly decrease the damage done to roads, and reduce the cost of material management incurred through the quality control testing methods for pavement. Results showed very good correlation between DHR and IDT testing with a proportional difference between the samples. The standard deviations between the DHR and IDT testing were 18.6% and 19.2% of the mean values respectively, indicating similar accuracies of tests. The tests were also able to distinguish between types of material. The proportional difference between the IDT and DHR is expected and is due to the difference of sample and loading configuration. This research begins the validation of using smaller scale DHR tests for CIR stiffness testing

Similar works

This paper was published in ScholarWorks@UARK.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.