
PhD 
2010 

 
 

THE EFFECT OF ACUTE MILK- 

BASED CARBOHYDRATE/PROTEIN 

SUPPLEMENTATION ON THE 

ATTENUATION OF EXERCISE- 

INDUCED MUSCLE DAMAGE 

EMMA COCKBURN 
  



 

July 2010 

THE EFFECT OF ACUTE MILK-BASED 

CARBOHYDRATE/PROTEIN 

SUPPLEMENTATION ON THE 

ATTENUATION OF EXERCISE-INDUCED 

MUSCLE DAMAGE 

EMMA COCKBURN 

A thesis submitted in partial fulfilment of 

the requirements of the University of 

Northumbria for the degree of Doctor of 

Philosophy 

Research undertaken in the School of 

Psychology and Sports Sciences, 

Northumbria University



i 
 

Abstract 

Eccentric exercise can be beneficial for both clinical and healthy populations.  

However, a common phenomenon associated with eccentric exercise is muscle 

damage, which leads to the disruption of the structures within the muscle.  Exercise 

induced muscle damage (EIMD) is associated with reduced functional capacity and the 

delayed-onset of muscle soreness (DOMS).  Therefore, research has 

investigated interventions to alleviate these symptoms.  One such intervention that has 

received attention in the academic literature is the use of acute protein-carbohydrate 

supplementation.  However, the results are equivocal, and the majority of studies 

reporting benefits have based their conclusions on measures of intramuscular 

proteins in serum.  Furthermore, the variety of protein-carbohdrate 

supplements investigated makes it difficult to compare results and these 

supplements may not be accessible to athletes.  Milk, which is convenient and 

accessible, contains carbohydrate in similar concentrations to many sports drinks, 

and protein.  Therefore, the purpose of this thesis is to provide novel data to 

expand the existing body of knowledge and investigate the effect of acute milk 

ingestion on the attenuation of EIMD.  This research focuses on the impact of milk 

in limiting decrements in muscle function. 

 

Study 1: The aim of the first study was to investigate the effect of milk and milk- 

based drinks on the attenuation of EIMD.  Twenty-four healthy male participants 

were divided into 4 equally matched independent groups, based on concentric 

knee flexion peak torque.  Each group was provided with 1000 mL of their allocated 

supplement immediately following muscle damaging exercise: (i) milk, (ii) milk-based 

protein-carbohydrate, (iii) carbohydrate sports drink, or (iv) water.  Passive muscle 

soreness, creatine kinase (CK), myoglobin (Mb), and peak torque and set total work 

of the hamstrings during concentric knee flexions were assessed immediately prior to 

muscle damaging exercise, and 24 and 48 h post.  The primary finding of this study 

was that milk and milk-based protein-carbohydrate limited decrements in peak torque 

and total work of the set, and increases in CK and Mb 48 h after muscle damaging 

exercise. 

 

Study 2: The aim of this study was to examine the optimal timing of milk -based 

protein-carbohydrate supplementation.  Thirty-two healthy male participants were 
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divided into 4 equally matched independent groups: (i) milk-based protein-

carbohydrate consumed pre-muscle damaging exercise, water consumed at all other 

time points, (ii) milk-based protein-carbohydrate consumed immediately post muscle 

damaging exercise, water consumed at all other time points, (iii) milk-based protein-

carbohydrate consumed 24 h post muscle damaging exercise, water consumed at all 

other time points, or (iv) water consumed at all time points.  Passive and active muscle 

soreness, CK, peak torque of the hamstrings during concentric knee flexions and 

reactive strength index (RSI) were assessed immediately prior to muscle 

damaging exercise, and 24, 48 and 72 h after.  The primary finding of this study was 

that the consumption of milk-based protein-carbohydrate following muscle damaging 

exercise was beneficial for blunting increases in active muscle soreness and decreases in 

muscle function over 48 h in comparison to pre-exercise supplementation. 

 

Study 3: The previous studies provided participants with 1000 mL of their allocated 

supplement. The aim of this study was to determine if the consumption of milk in 

smaller doses lead to the alleviation of EIMD.  Twenty-four healthy male 

participants were divided into 3 equally matched independent groups: (i) 500 mL milk, 

(ii) 1000 mL milk, or (iii) water.  Passive and active muscle soreness, CK, Mb, markers of 

inflammation (interleukin-6 and C-reactive protein), peak torque of the hamstrings and 

reactive strength index were assessed immediately prior to muscle damaging 

exercise, and 24, 48 and 72 h after.  The primary finding of this study was that 

decrements in isokinetic muscle function could be reduced with the intake of less milk. 

 

Study 4: The final study aimed to investigate the effect of milk supplementation 

following muscle damaging exercise on performance tests specific to field-based team 

sports.  Fourteen healthy male footballers were divided equally into 2 independent 

groups: (i) milk, or (ii) water.  Participants were provided with 500 mL of their 

allocated supplement immediately following muscle damaging exercise.  Prior to 

muscle damaging exercise, and 24, 48 and 72 h after participants were assessed for 

speed (15 m), change of direction speed, countermovement jump (CMJ) height and 

reactive strength index.  In addition, participants were required to complete the 

Loughborough Intermittent Shuttle Test (LIST) prior and 48 h following muscle 

damaging exercise.  The findings of this study demonstrated that milk consumed 

immediately following muscle damaging exercise limited decrements in performance 

tests specific to field-based team sports. 



 

iii 
 

 

These studies provide additional novel data regarding the impact of acute protein-

carbohydrate ingestion on EIMD.  Specifically, 500 mL of milk consumed 

immediately following muscle damaging exercise alleviates decrements in many 

facets of muscle function, such as sprinting and isokinetic muscle function.  

There is a possible benefit of milk for reducing increases in muscle soreness 

experienced during activity and intramuscular proteins measured in the serum.  

Future research is warranted to elucidate the underlying mechanisms responsible 

for these findings. 
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1.1 Introduction 

Eccentric muscle actions are defined as a lengthening of the muscle while tension is 

generated (Nosaka, Newton & Sacco, 2002).  These types of muscle action occur 

frequently in daily activities, exercise and sport performance (Enoka, 1996).  For 

example, walking down stairs requires the use of eccentric actions of the 

quadriceps, and during running and jumping lower limb muscles lengthen to 

provide deceleration of the body segments (Child, Saxton & Donnelly, 1998).  In 

1882, Fick observed that eccentric muscle actions could generate greater forces 

compared to concentric actions (Lindstedt, LaStayo & Reich, 2001).  Many years later 

it was observed that eccentric muscle actions had another unique feature; a lower 

energy cost for the same amount of work completed (Abbott, Bigland & Ritchie, 

1952).  Bigland-Ritchie & Woods (1976) later reported that the oxygen requirement of 

submaximal eccentric cycling was 1/6 - 1/7 of that for concentric cycling at the same 

workload.  Therefore, eccentric exercise can produce high forces with reduced strain 

on the cardiovascular system.  This makes it a suitable form of exercise for both 

clinical and healthy populations.  Eccentric exercise could be used for elderly and 

clinical populations with impaired lung function (Rooyackers, Berkeljen & 

Folgering, 2003) and mitochondrial disease (Taivassalo et al., 1999) to increase their 

ability to function and improve their standard of living (Trenell et al., 2006).  Within 

healthy populations, eccentric exercise is commonly used to improve muscle strength 

and size, and alterations in the spring properties of the muscle (Lindstedt, LaStayo & 

Reich, 2001) used during stretch-shortening cycle exercise.  Eccentric muscle actions 

lead to greater improvements in eccentric and isometric strength than concentric actions 

(Hortobagyi et al., 1996a; Hortobagyi et al., 1996b).  This, therefore, makes eccentric 

exercise a desirable muscle action to use during training for sports performance and 

rehabilitation. 

 

Eccentric exercise clearly has an important role in health, exercise and sport for a 

variety of populations.  However, a common phenomenon associated with eccentric 

exercise is muscle damage.  Exercise induced muscle damage (EIMD) occurs when 

the nature or magnitude of eccentric force production significantly changes (Lindstedt, 

LaStayo & Reich, 2001), such as a novel exercise stress.  EIMD is ultimately the 

disruption of muscle structures and is associated with a number of symptoms.  The 

delayed-onset of muscle soreness (DOMS) is commonly reported (Semark et al., 1999; 

MacIntyre et al., 2001) and functionally there is a decreased ability to produce force 

(Byrne & Eston, 2002a; b; Harrison & Gaffney, 2004; Twist & Eston, 2005).  These 
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changes are also associated with an increase in intramuscular proteins measured 

in the plasma (Sorichter et al., 2001; Seifert et al., 2005). DOMS and reduced 

functional capacity can limit a person‟s ability to conduct everyday tasks, exercise 

and perform.  Therefore, interventions to alleviate these symptoms have received a great 

deal of attention.  Interventions are primarily focused around pharmaceutical, therapeutic 

and nutritional methods, which have been extensively reviewed elsewhere (Howatson 

& Van Someren, 2008). 

 

The ingestion of a combination of carbohydrate (CHO) and protein alters protein 

metabolism (Borsheim, Aarsland & Wolfe, 2004; Tang et al., 2007), which may limit the 

breakdown or increase repair of muscle protein structures.  Therefore, this area of 

research has begun to receive a great deal of attention in the last few years (Wojcik 

et al., 2001; Saunders, Kane & Todd, 2004; Seifert et al., 2005; Baty et al., 2007; 

Saunders, Luden & Herrick, 2007; Green et al., 2008; Valentine et al., 2008; White et al., 

2008; Betts et al., 2009).  The results are equivocal with some studies reporting no benefit 

of acute protein-CHO consumption (Green, 1997; Wojcik et al., 2001; White et al., 

2008; Betts et al., 2009), whilst others have demonstrated significant reductions in 

markers of muscle damage (Saunders, Kane & Todd, 2004; Seifert et al., 2005; Baty 

et al., 2007; Saunders, Luden & Herrick, 2007; Valentine et al., 2008).  Many 

researchers reporting benefits of acute protein-CHO supplementation have primarily 

based their conclusions on measures of intramuscular proteins.  However, 

changes in DOMS and muscle function are of greater importance to clinical and healthy 

populations.  Therefore, investigation into acute protein-CHO ingestion and its effect 

on DOMS and muscle function is required. 

 

Previous studies have used a variety of protein-CHO supplements which makes it 

difficult to compare results and provide definitive advice for the population 

regarding choice of supplement.  Milk has recently gained increasing interest as an 

exercise supplement (Roy, 2008).  It is well known that milk has many health 

benefits, which have been reviewed elsewhere (Haug, Hostmark & Harstad, 2007).  

Milk is potentially a good choice to consume as a sports drink as it contains 

carbohydrates in amounts similar to many commercially available sports drinks, 

contains casein and whey proteins in a ratio of 3:1, and has a naturally high 

concentration of electrolytes (Roy, 2008).  Milk has been shown to be a beneficial 

drink for hydration (Shirreffs, Watson & Maughan, 2007), recovery from glycogen 

depleting exercise (Thomas, Morris & Stevenson, 2009) and for enhancing protein 
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metabolism following resistance exercise (Elliot et al., 2006).  Milk also has the 

added benefit of providing additional nutrients and vitamins that are not present in 

commercial sport drinks (Roy, 2008), such as calcium, and vitamins A and E.  Milk 

may be a viable supplement to ingest for the alleviation of EIMD, and from a 

practical perspective it is a supplement that is convenient, accessible and 

inexpensive.  Finally, the research conducted on the use of protein-CHO 

supplements for attenuating EIMD have been extremely varied in the volume and 

timing of intake.  Similar to the type of supplement this makes it increasingly difficult for 

athletes to apply these findings to their own practice.  Therefore, from an applied 

perspective, milk is provided in volumes that are representative of standard servings, and 

that could be realistically consumed by athletes post exercise.   

 

In light of all this information, the purpose of this thesis is to expand the current body 

of knowledge by investigating the effect of acute milk supplementation on alleviating 

symptoms of EIMD, with a specific focus on muscle function.  This is conducted over 

four sequential investigations. 

 

The first study investigates the effect of acute milk supplementation in attenuating the 

symptoms of EIMD.  This study compares the ingestion of milk, a commercially available 

milk-based protein-CHO sports drink, a CHO sports drink or a control following 

resistance-based eccentric exercise on subsequent muscle function, DOMS and 

intramuscular proteins measured in the plasma over 48 h. 

 

The first study provides participants with their allocated supplement immediately 

following muscle damaging exercise.  Therefore, the second study investigates the 

optimal timing of acute milk ingestion in reducing the symptoms of EIMD.  The 

study compares supplementation immediately prior, immediately following and 24 h 

following muscle damaging exercise.  Changes in muscle function, DOMS and 

intramuscular proteins are assessed over 72 h. 

 

The initial two studies provide participants with 1000 mL of milk.  The third study 

investigates the optimal volume of milk ingestion to determine if the consumption of milk 

in smaller doses leads to the alleviation of EIMD.  This study compares 500 mL and 

1000 mL of milk, and EIMD is assessed by measuring muscle function, DOMS and 

intramuscular proteins over 72 h. 
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The final study applies the findings of the first three studies to a sporting situation by 

investigating the effect of acute milk supplementation on performance tests specific to 

field-based team sports.  Participants either consume milk or a control following muscle 

damaging exercise, and performance tests of field-based team sports, DOMS and 

intramuscular proteins are assessed over 72 h. 
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2. LITERATURE REVIEW 
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2.1 Literature Review 

This review of literature discusses muscle structure, action and maintenance, 

followed by the process of exercise induced muscle damage (EIMD) specifically 

highlighting mechanisms and markers.  The review then focuses on the changes in 

protein metabolism following muscle damaging exercise with discussions based 

around acute protein-carbohydrate (CHO) supplementation for stimulating protein 

metabolism. 

 

2.2 Anatomy, Architecture and Regulation of Skeletal Muscle 

Skeletal muscle represents approximately 40 - 45% of total body mass (Snow, 2003), 

and it is skeletal muscle that produces joint movement and exerts force.  In order to 

understand how muscles function and how that function can be disrupted, it is 

important to examine the structure of human muscle.  Skeletal muscle is made up of a 

highly organised structure of proteins.  It is this which permits the controlled generation of 

force.  Figure 2.1 illustrates the structure of skeletal muscle from the gross to molecular 

level, as it is currently accepted. 
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2.2.1 Whole Muscle to Myofibril 

Skeletal muscle is a discrete organ made up of hundreds of muscle fibres.  They are 

grouped together in bundles termed fascicles (Jones, Round & de Haan, 2004).  The 

fascicles are enveloped by connective tissue, which directly attaches to each muscle 

fibre and to all other fascicles within the muscle.  All internal and external muscle 

connective tissue is continuous with tendons that are continuous with the external 

membrane of the skeleton, allowing force generated in the fibres to be transferred to 

the bones.  Muscle fibres are surrounded by the sarcoplasm, which is the water based 

internal environment of the muscle cell containing ions, enzymes, fuels and molecular 

gases (Woledge, Curtin & Homsher, 1985).  Each muscle fibre is separately enclosed 

by a plasma membrane (Widmaier, Raff & Strang, 2004) termed the sarcolemma, 

which is approximately 8 nm (Wilkie, 1985).  The sarcolemma consists of a 

double layer of lipid molecules, the majority being phospholipids, and has proteins, 

referred to as membrane proteins, embedded within it.  The sarcolemma provides a 

selectively permeable barrier between the fibre and extracellular fluid.  It also plays a 

vital role in the transmission of the action potential to generate force.  Each muscle fibre 

contains multiple nuclei, which store and transmit genetic information used to 

synthesise proteins determining the structure and function of the fibre.  Thousands of 

myofibrils make up each muscle. These are 1 - 2 µm in diameter, and cause the 

contractile behaviour of the muscle (Woledge, Curtin & Homsher, 1985). 

 

Surrounding each myofibril is the internal membrane system of the sarcoplasmic 

reticulum.  The sarcoplasmic reticulum forms a sleeve like segment around each 

myofibril (Widmaier, Raff & Strang, 2004), with lateral sacs containing Ca 2+.  

The concentration of Ca2+ is around 10 000 times greater than the rest of the fibre 

(McComas, 1996).  The main function of the sarcoplasmic reticulum is to release (via 

the ryanodine receptor) and re-sequester (via the Ca2+-ATPase pump) Ca2+ during 

muscle actions.  The transverse-tubules (t-tubules) pass between adjacent lateral 

sacs and their role is to conduct electrical changes (Huxley, 1971) by propagating 

action potentials into the interior of the muscle fibre to signal the release of Ca2+. 

 

2.2.1.1 Myofibril 

Myofibrils contain a regular arrangement of hundreds of filaments in repeating units 

(Widmaier, Raff & Strang, 2004).  The filaments are classed as thick (or 

anisotropic) or thin (or isotropic), which partially overlap, and one unit of these is 
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termed a sarcomere (Huxley, 1957).  The arrangement of the thick and thin 

filaments within a sarcomere is shown in Figure 2.1.  The I band (thin) is made up of 

actin, tropomyosin and troponin (Woledge, Curtin & Homsher, 1985).   

Tropomyosin is arranged along the surface of the actin filament, and troponin is a 

complex of three polypeptides (TnC, TnI and TnT) (Jones, Round & de Haan, 

2004).  Individual thin filaments are situated at either end of the sarcomere and are 

fixed in the centre of the I band.  They are joined by α-actinin at each end of the 

sarcomere to the Z-line with the opposite end extending towards the centre of the 

sarcomere terminating just before the H zone.  Thick filaments are primarily 

composed of myosin and are situated in the middle of each sarcomere.  Thick 

filaments are joined at the M line, which is a transverse connective tissue filament in 

the centre of the sarcomere, and by titin filaments to the Z-line (McComas, 1996).  

Actin and myosin are the two principle protein molecules constituting approximately 

80 % of total muscle protein mass (Jones, Round & de Haan, 2004).  Actin and myosin 

interact to provide sliding of the filaments with troponin and tropomyosin having a 

control function (Woledge, Curtin & Homsher, 1985).  TnT attaches to tropomyosin, 

and this troponin-tropomysosin (Tn-Tm) complex inhibits the binding sites on actin, 

therefore, preventing crossbridge attachment for muscle action (Jones, Round & de 

Haan, 2004).  Ca2+ release from lateral sacs is required to remove this inhibitory effect 

and allow muscle action, which is discussed in section 2.2.1.2. 

 

As well as contractile proteins, there are a number of structural proteins that play 

distinct physiological roles.  There are two large proteins, titin and nebulin, that act to 

stabilise the highly ordered structure of the sarcomere, and are involved in the 

production of active and passive tension in the muscle (Horowits et al., 1986).  Titin 

connects the Z-line to the myosin filaments, plays a role in locating thick filaments in 

the centre of the sarcomere (Morgan & Allen, 1999) and is responsible for the majority 

of the resting tension in stretched fibres (Magid & Law, 1985).  Nebulin is associated 

with actin near the Z-line and may act to strengthen the thin filaments (Jones, Round & 

de Haan, 2004).  Cytoskeleton proteins form a bi-dimensional lattice of the 

cytoplasmic side of the sarcolemma (attach sarcolemma and contractile proteins) 

and they include spectin, vinculin and talin (Small, Furst & Thornell, 1992).  Transverse 

connections of this lattice exist between the myofibrils and the sarcolemma (Pardo, 

Siliciano & Craig, 1983), termed the costameres, which is partly made up of dystrophin.  

Finally, intermediate filaments provide a link between Z-lines and the sarcolemma.  They 

act as an extrasarcomeric mechanical stabiliser of myofibrillar regularity and integrity 
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(Lazarides, 1980) that possibly may be important in limiting extreme sarcomere 

lengths (Wang & Ramirez-Mitchell, 1983).  Intermediate filaments are composed 

mainly of desmin, along with vimentin and synemin.  There are a number of other 

proteins present in skeletal muscle; however, to describe them all is beyond the scope 

of this thesis. 

 

The thick and thin filaments and specific contractile proteins form the cytoskeleton which 

reinforces the muscle membrane, preventing it from tearing during muscle action.  

Therefore, damage or absence of structural proteins can signify structural damage to 

the muscle or membrane instability and, therefore, lead to the degradation of the 

muscle as is seen during EIMD. 

 

2.2.1.2 Sliding Filament Theory 

In the early 1950‟s the sliding filament theory was developed by Huxley A.F. and 

Huxley H.E.  Using light (Huxley & Niedergerke, 1954; Huxley & Hanson, 1954) and 

electron (Page & Huxley, 1963) microscopy it was established that filament length 

remained constant during lengthening and shortening muscle actions.  From this it was 

postulated that changes in muscle length to produce force occurred by relative lengthening 

of thick and thin filaments sliding past each other.  The sliding of the filaments is widely 

accepted to occur by the attachment between the myosin head and actin, referred to as 

a crossbridge (Woledge, Curtin & Homsher, 1985).  The details of crossbridge kinetics 

are beyond the scope of this thesis but in summary the interaction of actin, myosin 

and adenosine triphosphate (ATP) lead to crossbridge movement, stretch of the 

compliant portion of the crossbridge and subsequent force production.  This was 

derived from proposals by Huxley (1957) and Huxley & Simmons (1971), and 

involves the requirement of ATP for detachment of the crossbridge.  However, 

during lengthening actions very low heat values are measured (Fenn, 1923), there are 

low rates of ATP hydrolysis (Curtin & Davies, 1973), and there is a lower energy cost 

compared to shortening actions for the same amount of work completed (Abbott, 

Bigland & Ritchie, 1952).  Therefore, during lengthening actions force production does 

not require as much ATP and thus does not fit with the original proposal.  During 

lengthening actions, the detachment of the crossbridge would occur mechanically with 

forcible detachment, with ATP required for only some crossbridges. 

 

Ca2+ is required to remove the inhibitory effect of the Tn-Tm complex and allow the 
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attachment of actin and myosin to create a crossbridge.  Ca2+ release is stimulated via a 

sequence of events termed excitation-contraction (E-C) coupling.  The details of this 

process are not within the scope of this thesis but briefly it involves a signal from the 

central nervous system to the muscle.  At the muscle an action potential is propagated 

along the sarcolemma and through the t-tubules to release Ca2+ into the sarcoplasm, 

increasing cytosolic Ca2+ concentration (Widmaier, Raff & Strang, 2004).  Troponin 

sensitises the thin filament to Ca2+ (Ebashi & Endo, 1968), removing the inhibitory 

effect, ultimately leading to sliding of the filaments and thus force production. 

 

2.2.1.3 Length-Tension Relationship 

The sliding filament theory suggests that the development of tension is dependent on 

the overlap of thick and thin filaments.  Gordon, Huxley & Julian (1966) varied the 

stretch of a marked area of a fibre (assumed to represent one sarcomere) and measured 

the tension developed under tetanus.  Figure 2.2 demonstrates the observed 

relationship between length and tension.  At point C the greatest tension is 

developed, which relates to the greatest level of actin and myosin overlap allowing 

the maximum number of formed crossbridges.  There is a plateau between points B and 

C as no new crossbridge sites are added.  At lengths beyond point B (lengthening 

actions), tension declines linearly.  It is now thought that at this point there is an 

increase in passive tension due to the elongation of titin filaments rather than active 

crossbridge cycling (Widmaier, Raff & Strang, 2004).  Shortening of the fibre also 

reduces tension as the actin filaments interfere with each other.  At point D the thick 

filaments collide with the Z-lines and tension drops to zero as no further sarcomere 

shortening is possible (Gordon, Huxley & Julian, 1966). 

 

The length-tension relationship is an important concept within this thesis as it is the 

underlying theory of EIMD.  It is acknowledged that tension produced can be 

influenced by a variety of other factors; intracellular Ca2+ concentration, crossbridge 

phosphorlylation, muscle cross-sectional area, number and size of active motor units, 

velocity of muscle action and fibre type (Snow, 2003).  However, these mechanisms are 

not central to this thesis. 
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Force generation occurs by interaction of the thick and thin filaments and ATP, with a 

number of other muscle proteins providing functional and structural roles.  Although 

during lengthening actions, ATP is not hydrolysed to as great an extent as shortening 

actions, it is important to understand how ATP is generated. 

 

2.2.1.4 ATP Generation 

Muscle actions require ATP for crossbridge cycling (attach and detach).  ATP is the only 

energy source that can be used directly for contractile activities, however, intracellular 

concentrations of ATP are relatively low (2 - 8 mmol.L-1) (Jones, Round & de Haan, 

2004).  Therefore, there is a need to generate ATP to allow for extended supply and thus 

continuous muscle activity.  There are three main ATP generating pathways: ATP re-

synthesis can occur locally on myofibrils and biomembranes due to activity of 

creatine kinase (ATP-PC) and glycolytic enzymes (glycolysis) (Korge, Byrd & 

Campbell, 1993); ATP can also be formed in the mitochondria (aerobic) and then 

diffuse to myofibrils.  These pathways differ in two primary features; the maximum 

rate of ATP re-synthesis (power) and the maximum amount of ATP that can be 

produced by that system (capacity).  The ATP-PC system is characterised by its 

high power but very low capacity of phosphocreatine (PCr) hydrolysis.  The aerobic 

system is characterised by its low power but very high oxidative capacity of CHO and 

triacylclycerols.  An important concept in this thesis is the re-synthesis of ATP via 
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glycolysis as EIMD has been shown to detrimentally affect this pathway.  This process 

provides an intermediate pathway for ATP generation in terms of power and capacity. 

 

In order for ATP re-synthesis to take place via glycolysis, glucose and/or glycogen are 

required.  Glucose is the primary substrate and it can be formed via a number of 

processes, which are not within the scope of this thesis.  However, exogenous CHO 

does increase blood glucose concentrations.  Glycolytic ATP production requires 

the uptake of glucose into the muscle cell.  There are currently five established 

glucose transporter isoforms (GLUT-1 to 4 and GLUTX1) (Watson & Pessin, 2001).  

GLUT4 is the major insulin responsive transporter that is predominantly 

restricted to striated muscle and adipose tissue (Watson & Pessin, 2001).  The majority 

of GLUT4 resides within the cell interior, and the activation of insulin receptors, 

phosphatidylinositol 3-kinase (PI3K), triggers a large increase in the rate of GLUT4 

vesicle exocytosis (Watson & Pessin, 2001).  This leads to the translocation of GLUT4 

storage compartments to the plasma membrane increasing levels on the cell surface, 

thereby, increasing the rate of glucose uptake (Watson & Pessin, 2001).  Within the 

muscle cell, CHO (glucose/glycogen) is broken down via anaerobic processes to lactate 

and associated protons, providing ATP for muscle activity. 

 

2.2.1.5 Fibre Type 

An important factor in determining the muscles tension-producing ability is fibre type.  

Human skeletal muscle is composed of three main fibre types: type I (slow 

oxidative fibres), type IIA and type IIB/X (fast glycolytic fibres).  These fibres differ 

substantially in their functional and metabolic characteristics (Table 2.1).  Different 

fibre types are an important factor in this thesis as there is evidence of preferential 

damage to certain fibre types, which will be discussed in section 2.3.1.3. 
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This section has discussed the structure of skeletal muscle and how muscle force is 

produced.  These concepts are pertinent to this thesis due to the focus of the 

investigation, which is primarily the impact on muscle function.  Force generated by the 

muscle can be affected by many variables, which have been previously stated.  However, 

central to this thesis is the concept that the proteins within the muscle can be altered 

by muscle damaging exercise due to changes in protein metabolism, and that nutritional 

supplements can alter this impact. 

 

2.2.2 Regulation of Skeletal Muscle 

Protein metabolism is a continuous process regulating the protein structures within 

skeletal muscle.  The object of protein turnover is to eliminate excess proteins and 

those that have been structurally or functionally altered (Andreu & Schwartz, 1995).  

Protein turnover involves continual synthesis and degradation, which are 

intrinsically linked.  A relationship between fractional synthetic rate and fractional 

breakdown rate has been demonstrated in the fasted state (Phillips et al., 1997).  The 

primary link between synthesis and degradation is likely to be amino acid (AA) 

availability as it is the substrate for one process and the product of the other (Waterlow, 
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2006).  Within the muscle there are intracellular pools of amino acids.  Elevating muscle 

protein synthesis will reduce the amino acids within this pool, promoting inward amino 

acid transport and/or protein degradation with inhibition of amino acid oxidation 

(Wolfe & Miller, 1999).  To maintain protein balance, synthesis and degradation must 

be equal; however, if one process is greater than the other then balance will become 

either negative or positive.  This section outlines the processes of synthesis and 

degradation.  Future sections discuss the impact of EIMD and protein-CHO 

supplements on these processes and thus protein balance. 

 

2.2.2.1 Protein Synthesis 

Muscle fibres contain multiple nuclei with each nucleus containing deoxyribonucleic acid 

(DNA).  The information coded in the molecules of DNA is used to synthesise proteins 

from amino acids.  This is a complex process and it would appear that protein 

synthesis and its regulation involves an array of proteins that undergo turnover, which 

is presumably regulated by other proteins, and the process continues (Waterlow, 

2006).  Therefore, protein synthesis is a continual process. It involves a number of 

processes; transcription, translation and initiation. 

 

Transcription occurs primarily and involves the transfer of genetic information from DNA 

to ribonucleic acid (RNA) (Widmaier, Raff & Strang, 2004).  Following this, RNA is 

modified to messenger RNA (mRNA), which holds the base sequence specifying the 

sequence of amino acids in the protein (Houston, 1995).  Translation is the process of 

forming proteins using mRNA as a template (Waterlow, 2006), which involves three 

stages; initiation, elongation and termination.  Initiation and elongation factor 

activity can be influenced by signals from hormone and nutrient receptors (Waterlow, 

2006).  Specifically, mRNA translation, thus protein synthesis, is regulated by p70 

S6kinase (p70S6K) which results in the capacity of the cell to synthesise protein (Ivy et 

al., 2008).  P70S6K is an important factor of the hormone/nutrient sensing and 

signalling pathway that influences translation (Rennie & Tipton, 2000).  Finally, 

initiation involves transfer RNA (tRNA) which attaches to specific amino acids and 

transfers them to the complex of mRNA and the ribosome on which the protein is 

formed (Houston, 1995).  This is a process that continues until the ribosome reaches 

the termination sequence in mRNA, signalling the formation of the protein 

(Widmaier, Raff & Strang, 2004).  This continual process of protein synthesis 

involving a multitude of different proteins aids in the regulation of structures within 

skeletal muscle.  Protein degradation must also occur to regulate the protein structures 
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within the muscle. 

 

2.2.2.2 Protein Breakdown 

There are three main pathways of protein degradation; Ca2+ activated proteinases 

(calpain), lysosomes and the ubiquitin-proteasome (Ub-P) pathway.  Protein 

degradation occurs via all three pathways but the contribution of each will be 

dependent on the type of tissue and stage of processing (Waterlow, 2006).   All three 

pathways have been implicated in EIMD. 

 

Increases in intracellular Ca2+ concentration will activate calcium activated 

proteinases.  One of these is calpain, which is activated in the cytosol when bound to 

a cell membrane or to an activator associated with the cytoskeleton (Doherty & Mayer, 

1992).  In skeletal muscle, calpain will only play a minor part in protein degradation, 

but may still be important in the degradation of minor myofibrillar protein 

components such as nebulin, titin, tropinin and tropomysosin (Goll et al., 1992; Attaix 

& Taillandier, 1998).  Calpain will also degrade intermediate filament cytoskeleton 

proteins such as vimentin and desmin (Doherty & Mayer, 1992).  Calpain has been 

implicated in the first step of myofibrillar degradation (Reddy et al., 1975), as it is not 

a digestive process.  Rather it proceeds in a limited manner and results in alteration 

rather than simple destruction of the substrate proteins (Saido, Sorimachi & Suzuki, 

1994).  This limited proteolysis is likely to cause destabilisation of structural rigidity, 

making it more sensitive to attacks by cellular proteases facilitating further degradation 

of the substrate protein (Saido, Sorimachi & Suzuki, 1994). 

 

Protein degradation via the lysosomal pathway involves autophagy (Doherty & 

Mayer, 1992), which is the degradation of the cells own components.  Protein 

substrates are sequestered into the vacuolar system, followed by lysosomal 

hydrolysis (Bechet et al., 2005).  The lysosomal pathway is involved in the 

degradation of non-myofibrillar proteins such as membrane associated proteins (Biolo 

et al., 2000), and in the breakdown of cytoplasmic soluble constituents and cellular 

organelles (Bechet et al., 2005) including the mitochondria (Doherty & Mayer, 

1992).  Skeletal muscle contains few lysosomes, only degrading sarcoplasmic 

proteins (Waterlow, 2006), and they do not significantly contribute to overall protein 

breakdown in muscles incubated under optimal conditions (tension, presence of insulin 

and amino acids) (Attaix & Taillandier, 1998).  In the catabolic state, lysosomal 
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proteolysis is not quantitatively important in increased protein degradation (Mitch 

& Goldberg, 1996). 

 

The Ub-P pathway involves the activation of ubiquitin by cytokines (Tumor Necrosis 

Factor (TNF) and interleukins (IL)) from activated macrophages (Mitch & Goldberg, 

1996).  Proteins targeted for degradation are covalently attached to multiple 

ubiquitin molecules (Attaix & Taillandier, 1998).  The proteolysis of proteins 

involves 20S protesome (Attaix & Taillandier, 1998), and following proteolysis the 

ubiquitins are released and re-used (Waterlow, 2006).  This pathway is responsible for 

the breakdown of a wide range of proteins in a variety of tissues (Herschko & 

Ciechanover, 1992).  In the cytoplasm, this system degrades the majority of 

myofibrillar proteins (Biolo et al., 2000).  Actin and myosin light chains can be 

ubiquitylated (Attaix & Taillandier, 1998).  However, these proteins must be 

destabilised to be ubiquitylated as this system does not degrade intact proteins.  

Therefore, calpain activation may render substrate proteins vulnerable to complete 

degradation via the Ub-P system.  Both of these systems play a role during EIMD. 

 

The processes of muscle protein synthesis and degradation are complex and are 

controlled by many factors including exercise, hormones and nutrition.  Central to this 

thesis is the role of eccentric exercise, insulin from CHO intake and increased amino 

acid availability from protein intake in altering these processes.  These factors will be 

discussed in section 2.5 and 2.6.  The following section outlines the physiology of 

protein intake to increase amino acid availability. 

 

2.2.2.3 Protein Digestion, Absorption and Uptake at the Muscle 

Protein digestion breaks down proteins into tripeptides, dipeptides and simple amino 

acids within the stomach and small intestine, and these are then released into the blood 

stream.  The digestion of protein begins in the stomach (Erickson & Kim, 1990).  In the 

stomach, pepsin, which is activated by hydrochloric acid, breaks down proteins into 

large polypeptides, smaller oligopeptides and some free amino acids (Erickson & Kim, 

1990).  The pancreas synthesises and releases proteolytic enzymes that are 

important in converting ingested protein into a mixture of small oligopeptides and free 

amino acids (Erickson & Kim, 1990).  The final stage in the digestion of peptides is 

associated with the small intestine (Erickson & Kim, 1990).  Within the small 

intestine, proteins and polypeptides are broken down by trypsin and chymotrypsin 
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(Widmaier, Raff & Strang, 2004).  Cells of the small intestine contain a brush 

border membrane that has a number of peptidases (Erickson & Kim, 1990).  The result 

of gastric, pancreatic and brush border membrane proteases is to reduce dietary 

protein to a mixture of free amino acids, dipeptides and tripeptides (Erickson & Kim, 

1990), which are then available for transport around the body.  Amino acids are 

transferred from the enterocyte to the blood by the basolateral membrane and this 

occurs primarily via facilitated and simple diffusion (Erickson & Kim, 1990).  Amino acids 

are then actively transported around the body by carrier mediated transports 

systems coupled to sodium transport (Erickson & Kim, 1990).  Amino acids are 

delivered to the liver were they can be either converted to glucose or fats, or can be 

directly released into the bloodstream as plasma protein albumin or as free amino 

acids. 

 

Direct release of free amino acids into the bloodstream allows amino acid uptake at the 

muscle.  The transport of amino acids into the muscle cell takes place via diffusion 

across the capillary wall into the interstitial fluid by secondary active transport and 

then amino acids gain entry into the muscle cell.  This process of amino acid transport 

is governed by a variety of amino acid transporters (Miller et al., 2004), and operates at 

rates directly proportional to amino acid concentrations inside and outside of the 

sarcoplasmic reticulum (Rennie & Tipton, 2000).  Protein synthesis rates are directly 

affected by intracellular amino acid availability, therefore, the transporters have an 

important physiological role (Miller et al., 2004).  Transport through the interstitial fluid is 

an important process governing the rate of amino acid uptake by the muscle (Miller et 

al., 2004).  Amino acids can be transported out of the muscle cell also via secondary 

active transport.  The size and composition of the muscle free amino acid pool will 

depend on the bodies nutritional state, plasma amino acid availability and hormonal 

milieu (Rennie & Tipton, 2000). 

 

Muscle structure and regulation has been discussed.  These processes are central to 

this thesis as following muscle damaging exercise the structure of the muscle is 

disrupted and changes in protein metabolism occur.  The following section 

discusses the mechanisms underlying the disruption of the muscle with future 

sections discussing the impact on protein metabolism. 
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2.3 Mechanisms of Exercise Induced Muscle Damage 

A vast amount of research has been conducted investigating the mechanisms 

underlying EIMD.  Despite this, the findings remain inconclusive, and the exact 

sequence of events remains to be elucidated (MacKey et al., 2008).  Many 

researchers have reviewed the mechanisms of EIMD (Armstrong, 1990; Armstrong, 

Warren & Warren, 1991; Clarkson & Sayers, 1999; Lieber & Friden, 1999; Proske & 

Morgan, 2001).  Armstrong (1990) proposed an integrated model of EIMD which 

included four stages: initial; autogenic; phagocytic; and regenerative.  For the 

purposes of this review these stages are simplified into primary and secondary 

phases. The primary phase is characterised by direct damage to the muscle during the 

exercise bout with the secondary phase exacerbating damage via increased protein 

degradation or change in myofibrillar protein metabolism rate (Trappe et al., 2002a).  

Figure 2.3 outlines the postulated processes and demonstrates their interaction as 

well as the effects they may have on the muscle.  These processes are discussed in 

the following sections. 

 

 



Chapter 2  Literature Review 
 

20 
 

2.3.1 Primary Event 

EIMD is common following muscle activity with a high degree of eccentric actions such 

as resistance exercise, plyometrics, downhill running and prolonged intermittent 

shuttle running (Eston et al., 1996; Thompson, Nicholas & Williams, 1999; Byrne & 

Eston, 2002b; a; Twist & Eston, 2005; Nosaka et al., 2006; Twist & Eston, 2009).  Other 

forms of exercise without a high degree of eccentric muscle actions, such as 

endurance cycling, can also cause EIMD (Saunders, Kane & Todd, 2004; Saunders, 

Luden & Herrick, 2007; Valentine et al., 2008).  There are two main competing 

hypotheses for the primary event, which are summarised as mechanical stress or 

metabolic stress.  This section will review literature for both proposals. 

 

2.3.1.1 Mechanical Damage 

Mechanical stress is the most widely accepted proposal (Tee, Bosch & Lambert,  

2007), and relates to the damage caused by direct mechanical loading on the 

muscle fibre.  This model focuses on the distinguishing aspects of eccentric muscle 

actions compared to concentric and isometric muscle actions (Armstrong, Warren & 

Warren, 1991). 

 

During eccentric muscle actions excessive strain may be placed on the sarcomere due 

to the existence of sarcomere length inhomogeneties (Julian & Morgan, 1979).  On the 

descending limb of the length-tension curve (Figure 2.2) some sarcomeres are 

unstable, and during an eccentric action some will undergo rapid lengthening becoming 

weaker until the point of no myofilament overlap (Armstrong, Warren & Warren, 1991; 

Proske & Allen, 2005).  Beyond the point of no myofilament overlap, the passive 

structures compensate for falling active tension (Morgan & Proske, 2004) and 

undergo „popping‟ (Morgan, 1990).  This process may be progressive with more 

sarcomeres becoming overstretched during a number of eccentric muscle actions.  

Upon relaxation, overstretched sarcomeres may not be able to reinterdigitate and 

become disrupted (Talbot & Morgan, 1996).  Disruption of the sarcomere may 

involve the non-contractile and intermediate filaments, and sufficient disruption 

may lead to sarcolemma or sarcoplasmic reticulum damage through tearing 

(Morgan, 1990).  Damage to the sarcolemma or sarcoplasmic reticulum may lead 

to increases in intracellular Ca2+ concentration and as a consequence initiate a 

number of degradative pathways, which will be discussed in section 2.3.2.  

There is ultrastructural evidence of disrupted sarcomeres with other sarcomeres 
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remaining intact (Friden, Sjostrom & Ekblom, 1981; Newham et al., 1983; Nurenberg 

et al., 1992) distributed throughout the muscle (Talbot & Morgan, 1996).  Newham et 

al (1983) compared muscle biopsy samples of the quadriceps following concentric 

and eccentric actions during bench stepping.  They observed no abnormalities in 

samples from the concentrically exercised leg but observed many disrupted 

sarcomeres (disorganised myofilaments, Z-line streaming) immediately after 

eccentric exercise. 

 

Eccentric muscle actions do not have to be maximal to elicit damage.  Lieber & 

Friden (1993) found that contractile and morphological measures were altered with 

differences in magnitude of strain but not with large changes in force.  Similarly, 

Talbot & Morgan (1998) demonstrated that the shift in optimum length (marker of 

EIMD) of toad muscle was not related to the magnitude of tension developed or 

velocity of lengthening. Other research is in agreement that the velocity of 

lengthening is not a major determinant of muscle damage (McCully & Faulkner,  

1986; Talbot & Morgan, 1998).  Talbot & Morgan (1998) attributed the shift in 

optimum length to the range of sarcomere lengths involved in muscle lengthening. 

Furthermore, other research provides evidence that a greater degree of damage may 

be induced by eccentric actions at long rather than short muscle lengths (Newham 

et al., 1988; Child, Saxton & Donnelly, 1998).  Based on the evidence, it would appear 

that the nature of eccentric actions induces sarcomere disruption due to excessive 

strain during lengthening on the descending limb of the length-tension curve leading to 

myofibrillar disruption. 

 

Alternatively, rather than damage to the sarcomere occurring through mechanical 

stress, it has been suggested that the primary event is due to E-C coupling failure 

(Warren et al., 2001).  Evidence for this hypothesis comes from measures of 

intracellular Ca2+ (Warren et al., 1993; Balnave & Allen, 1995; Ingalls et al., 1998).  

Evidence of abnormal t-tubular arrangement after eccentric exercise may also 

provide the basis for this hypothesis (Takekura et al., 2001).  However, the 

evidence presented does not provide support for E-C coupling as the primary event.  

Firstly, it is difficult to envisage as it is hard to account for t-tubule disruption as the 

primary event, and why damage only occurs beyond optimum length (Proske & 

Morgan, 2001).  Damage to the t-tubules and increases in intracellular Ca2+ could be 

secondary to sarcomere damage.  Secondly, Proske and Allen (2005) stated that 

this theory cannot explain the shift in the length-tension relationship of the muscle 
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that is observed following eccentric muscle actions.  The more likely explanation is 

that membrane damage occurs due to sarcomere disruption, which then leads to 

damage of the E-C coupling system (Proske & Morgan, 2001). 

 

2.3.1.2 Metabolic Damage 

The model of metabolic damage proposes that the primary event in the process of EIMD 

is caused by metabolic deficiencies in the working muscle (Tee, Bosch & Lambert, 

2007).  There are a number of theories within this model which have been extensively 

reviewed (Armstrong, Warren & Warren, 1991): insufficient mitochondria 

respiration, the production of free radicals and high temperatures. These processes 

are out of the scope of this thesis. 

 

There is little experimental and scientific evidence in support of metabolic damage. This 

is mainly because eccentric muscle actions have a lower metabolic cost than both 

concentric (Asmussen, 1952; Bigland-Ritchie & Woods, 1976) and isometric muscle 

actions when working at the same absolute loads, yet concentric actions do not induce 

EIMD (Newham et al., 1983).  Offering further support against this theory was 

research by Armstrong, Ogilvie & Schwane (1983).  They demonstrated an increased 

metabolic cost of uphill running compared to downhill running in rats; however, downhill 

running was associated with a higher incidence of damage.  More, recently, Beltman 

et al (2004) demonstrated a lower metabolic energy cost per force time integral for 

electrically stimulated lengthening actions in rats, compared to electrically 

stimulated concentric and isometric actions.  However research utilising endurance 

cycling, which is predominantly concentric in nature, has demonstrated increases in 

intramuscular proteins measured in the plasma (Saunders, Kane & Todd, 2004; 

Saunders, Luden & Herrick, 2007; Rowlands et al., 2008; Valentine et al., 2008).  This is 

indicative of damage to the sarcolemma likely initiated by metabolic stress due to the low 

eccentric involvement.  Therefore, it is unlikely that metabolic factors play a role in EIMD 

occurring from eccentric biased exercise, but it may underlie damage occurring from 

high intensity, long duration exercise of a concentric nature. 

 

2.3.1.3 Preferential Damage of Fast Twitch Fibres 

There is a primary event that may be mechanical or metabolic in nature and this 

initiates a process whereby the muscle fibre becomes damaged.  There has been 

evidence that the damage to the muscle preferentially occurs in the fast twitch fibres, 
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specifically type IIB/X.  A number of studies have demonstrated 

ultrastructural changes indicative of the fast contracting fibres being selectively 

damaged (Friden, Seger & Ekblom, 1981; Friden, Sjostrom & Ekblom, 1983; Lieber, 

Woodburn & Friden, 1991; Vijayan et al., 2001).  More recent observations demonstrate 

that the largest diameter fibres had the greatest intracellular [Ca2+], consistent with 

preferential damage to fast twitch fibres (Sanobe et al., 2008).   

 

Theories exist as to why fast twitch fibres may be more vulnerable to damage.  

Friden & Lieber (Friden & Lieber, 1992; 1998; Lieber & Friden, 1999) have mainly 

implicated the low oxidative capacity of fast twitch fibres that renders them 

vulnerable to damage.  They hypothesise that there is a significant metabolic demand 

on fast twitch fibres early in an exercise bout so that they become stiff (Friden & 

Lieber, 1992).  On subsequent eccentric actions these fibres become mechanically 

disrupted (Friden & Lieber, 1992).  There are a number of other factors that may 

render fast twitch fibres more vulnerable: higher tensions generated (Appell, Soares & 

Duarte, 1992); and narrower Z-lines, which means there will be less thick and thin 

filament attachments and, therefore, weaker sarcomere connections (Friden, Sjostrom & 

Ekblom, 1983; Friden & Lieber, 1992).  It is likely, however that selective damage of 

fast twtich fibres will only occur when those fibres are lengthened and stressed by the 

exercise bout. 

 

In summary, there are a number of theories relating to the primary event and the exact 

mechanisms remain inconclusive, although there is stronger support for mechanical 

stress.  However, it is unlikely that either type of stress to the muscle occurs in 

isolation since all forms of exercise will incorporate a degree of both components 

(Tee, Bosch & Lambert, 2007).  The contribution of each will be dependent upon 

the exercise bout used to induce EIMD (Tee, Bosch & Lambert, 2007). 

 

2.3.2 Secondary Event 

Following the primary event there appears to be mechanisms occurring in the 

muscle that exacerbate the evidence of damage over time.  The most commonly 

accepted event is the disturbance of Ca2+ homeostasis, which consequently initiates 

a number of proteolytic and lipolytic pathways.  These pathways include the non-

lysosomal protease calpain, phospholipases stimulating prostaglandins and 

leukotrienes, free radicals and the Ub-P pathway.  This section will review these 
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processes.  A number of cytokines are also involved in signalling some of these 

events. 

 

2.3.2.1 Disturbance of Ca2+ Homeostasis 

The disturbance of Ca2+ homeostasis is viewed as the likely intermediate event 

between early mechanical processes and inflammation (Balnave & Allen, 1995).  

During muscle actions the intracellular Ca2+ concentration is high enough to 

stimulate damage (Armstrong, Warren & Warren, 1991).  However, as Ca2+ is 

rapidly bound to tropinin and other calcium binding proteins, or is removed by Ca2+ 

stimulated ATPase pumps of the sarcoplasmic reticulum during muscle relaxation 

(Byrd, 1992) this transient change may not be sufficient to cause damage (Gissel & 

Clausen, 2001).  Following eccentric exercise there may be prolonged increases in 

intracellular Ca2+ concentration at the site of the lesion (Armstrong, Warren & Warren, 

1991) due to membrane (sarcoplasmic reticulum and/or sarcolemma) damage, failure of 

the sarcoplasmic reticulum to resequester Ca2+ and/or Ca2+ uptake via stretch 

activated channels.  An increase in intracellular Ca2+ concentration, from intra- or 

extra-cellular sources, may activate a number of degradative pathways. It is likely that 

the duration and magnitude of Ca2+ movement across key membranes is more 

important than the concentration of Ca2+ (Duncan, 1987). 

 

Evidence implicating increased Ca2+ concentration in the damage process comes from 

a wide range of studies (Publicover, Duncan & Smith, 1978; Jackson, Jones & Edwards, 

1984; Jones et al., 1984; Duncan & Jackson, 1987; Duan et al., 1990; Warren et al., 

1995; Lynch, Fary & Williams, 1997; Zhang et al., 2008).  However, most are 

conducted using animals and this hypothesis has rarely been examined in humans.  

Overgaard and colleagues (Overgaard et al., 2002; Overgaard et al., 2004) have 

demonstrated an increase in cellular Ca2+ accumulation following long distance running.  

Beaton, Tarnapolsky & Phillips (2002a) reported reduced disruption of desmin and 

Z-band streaming with the use of a calcium channel blocker, implicating a role of 

calcium in the damage process.  However, other studies have reported no change 

in total Ca2+ content (Fredsted, Clausen & Overgaard, 2008; Vissing et al., 2008; 

Raastad et al., 2010) following maximal voluntary eccentric muscle actions or 

eccentric bench stepping.  However, it was stated that there may have been a change 

in cytostolic Ca2+, which could not be measured (Vissing et al., 2008; Raastad et al., 

2010).  The difference in findings may be due to the duration of exercise (Fredsted, 

Clausen & Overgaard, 2008). During running a significant increase in Ca2+ was not 
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observed until 20 km (Overgaard et al., 2004).  It is unlikely that voluntary eccentric 

muscle actions or eccentric bench stepping would be of such duration. 

 

The proposed theories regarding an increase in intracellular Ca2+ concentration 

include damage to the sarcoplasmic reticulum, failure of the sarcoplasmic reticulum to 

resequester Ca2+, Ca2+ uptake via stretch activated channels and/or diffusion of 

extracellular Ca2+ through the damaged sarcolemma (Evans & Cannon, 1991; 

Clarkson & Sayers, 1999; Yeung & Allen, 2004; Allen, Whitehead & Yeung, 2005), as 

previously discussed.  Damage to the sarcolemma would increase its permeability 

thus allowing the influx of extracellular Ca2+ (Armstrong, Warren & Warren, 1991; 

Allen, Whitehead & Yeung, 2005).  Studies have provided evidence of membrane 

permeability soon after exercise in mice (Straub et al., 1997; Hamer et al., 2002), 

however, permeability was not changed via mechanical tears, and this may not be 

applicable to humans.  Damage to the sarcoplasmic reticulum, specifically the 

membranes, may lead to Ca2+ leakage from the sarcoplasmic reticulum lumen 

(Yasuda et al., 1997).  Both types of damage may increase Ca2+ concentration in the 

compartments of degradative enzymes, which would allow Ca2+ to contact the binding 

sites (Armstrong, Warren & Warren, 1991).  Another mechanism related to 

sarcoplasmic reticulum damage, for which there is evidence, may be that the 

sarcoplasmic reticulum fails to resequester Ca2+ (Duncan & Smith, 1978; Duncan, 

Greenaway & Smith, 1980), exposing fibres to intracellular Ca2+ for prolonged periods 

of time (Byrd, 1992).  Duncan & Smith (1980) provided evidence demonstrating that the 

Ca2+ initiating muscle breakdown, originates in the sarcoplasmic reticulum.  

Mammalian muscle was exposed to caffeine, which stimulates Ca2+ release from 

the sarcoplasmic reticulum (Sorensen, Coelho & Reuben, 1986), and this was involved 

in the breakdown of the muscle.  Finally, it is postulated that an increase in strain 

on the fibres would trigger stretch activated channels in the membrane allowing 

increased Ca2+ influx into the muscle cell (Lieber, Thornell & Friden, 1996).  Studies that 

have used blockers of stretch activated channels in mdx mice in vitro (Yeung, Head & 

Allen, 2003; Yeung et al., 2005) or made measures of membrane potential in rat muscles 

in vivo (McBride et al., 2000) provide evidence for a role of stretch activated 

channels following eccentric exercise.  More recently, research under in vivo 

conditions in rats, demonstrated reduced intracellular Ca2+ accumulation with stretch 

activated channel blockers, suggesting stretch activated channels are largely 

responsible for eccentric action induced intracellular Ca2+ concentration elevations 

(Sanobe et al., 2008).  However, McBride et al (2000) demonstrated that stretch 
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activated channels did not contribute to the force deficit observed. 

 

This process is viewed as the intermediate event.  However, a viscous cycle has 

been proposed (Gissel & Clausen, 2001; Allen, Whitehead & Yeung, 2005; Gissel, 

2005).  It is hypothesised that the first increase in Ca2+ concentration results from 

stretch activated channels, which then activates a number of degradative 

pathways including phospholipases and proteases (calpain), resulting in membrane 

and/or sarcoplasmic reticulum damage allowing further influx of Ca2+ (Gissel, 2000; 

Yeung & Allen, 2004; Gissel, 2005).  Further influx of Ca2+ may lead to the 

accumulation of Ca2+ in the mitochondria (Gissel & Clausen, 2001), of which there has 

been some evidence (Duncan, 1987; Duan et al., 1990).  Duan et al (1990) found a 3-

fold increase in mitochondrial Ca2+ in rats exposed to 2 h of downhill walking, which 

further increased 2 days post.  Accumulation of mitochondrial Ca2+ could contribute to 

further muscle damage via the activation of reactive oxygen species. 

 

Following increases in intracellular and mitochondrial Ca 2+, a number of 

degradative pathways are activated (Figure 2.3).  The activation of these pathways 

would lead to the degeneration of the muscle fibre possibly through an increase in 

protein turnover rate (Rodemann & Goldberg, 1982; Byrd, 1992).  The following 

sections will outline these processes leading to damage of the muscle fibre and the 

evidence for their occurrence. 

 

2.3.2.2 Calpain 

Calpain is the next sequential pathway in the process of EIMD, stimulated by 

increased intracellular Ca2+.  Calpain is located at the I and Z regions of the skeletal 

muscle (Belcastro, Shewchuk & Raj, 1998), and there are three types in the 

muscle: the ubiquitous calpains 1 (µ-calpain) and 2 (m-calpain), and muscle 

specific calpain 3 (p94) (Gissel, 2005).  Calpain activation would lead to the initial 

proteolytic dismantling of the sarcomere before major degradation by the Ub-P 

pathway (Goll et al., 2003).  Therefore, the activation of calpain is likely necessary for 

the release of disrupted filaments so that complete degradation by the Ub-P system 

can occur (Raastad et al., 2010).  The Ub-P system will be discussed in section 

2.3.2.6. 

 

Damage to the Z-disks is the most commonly observed ultrastructural damage in 
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human muscle (Friden, Sjostrom & Ekblom, 1981; Newham et al., 1983; Nurenberg et 

al., 1992; Fielding et al., 1993; Crenshaw, Thornell & Friden, 1994; Gibala et al., 1995; 

Gibala et al., 2000).  Calpain has been implicated in this damage (Belcastro, 1993; 

Verburg et al., 2005; Zhang et al., 2008; Salazar, Michele & Brooks, 2010); however, 

this evidence comes from animal muscle.  Specifically, Salazar, Michele & Brooks 

(2010) demonstrated maintenance of force production and sarcomere ultrastructure 

when calpain was inhibited (via over-expression of calpastatin) in mice exposed to 

hindlimb suspension.  Recently studies have measured calpain activity after eccentric 

exercise in humans.  Raastad et al (2010) demonstrated a significant increase in total 

calpain activity in the exercised leg, relative to the control leg, 30 min after isokinetic 

eccentric exercise.  Total calpain activity in the exercised leg remained increased for 7 

days (Raastad et al., 2010).  Other studies have observed an increase in activated 

calpain-3 24 h following isokinetic eccentric exercise (Murphy et al., 2007), and an 

increase in mRNA levels of calpain 2 following eccentric stepping exercise (Vissing 

et al., 2008).  The difference in the time responses observed may be due to the 

measurement of total calpain rather than specific calpains, and the measurement 

technique (western blotting and colorimetric assay) used.  Although the studies 

exhibit different time responses, they do suggest an involvement of calpain in 

EIMD.  However, the lack of correlations between it and the degree of fibre 

disruption make it difficult to draw definitive conclusions on the importance of this 

protease for the observed ultrastructural damage in humans (Raastad et al., 2010). 

 

If calpain is involved in sarcomere damage, specifically the Z-disk, then the most 

common proposed mechanism for this involves the cleaving of desmin.  However, 

again this evidence comes from animal studies.  Loss of desmin staining has been 

observed in animal muscle (Lieber et al., 1994; Lieber, Thornell & Friden, 1996; 

Friden & Lieber, 1998; 2001; Zhang et al., 2008).  Desmin attaches adjacent 

myofibrils at Z-disks (Patel & Lieber, 1997) and so loss of desmin would render the Z-

disks vulnerable to damage.  Studies of human muscle have shown that there is no 

loss of desmin staining although the desmin cytoskeleton was altered (Yu, Malm & 

Thornell, 2002; Yu & Thornell, 2002).  This was proposed to be related to an 

increased synthesis of desmin and remodelling of myofibrils rather than 

degeneration of the desmin cytoskeleton (Yu & Thornell, 2001; 2002; Yu, Furst & 

Thornell, 2003).  It was proposed by Yu and colleagues that the sequence of 

events involved in muscle damage in animal models is not representative of 

occurrence‟s in humans, and this may possibly contribute to the differences 
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observed.  However, the protocol used in these studies did not include maximal or near 

maximal eccentric actions over a large range of movement (Lauritzen et al., 2009), 

which may have impacted on the observations that damage, per se, did not occur.  

Therefore, the vast amount of literature conducted on animals should still be 

accounted for in attempting to understand the human response to novel eccentric 

exercise (Lauritzen et al., 2009). 

 

The loss of desmin may not be implicated in ultrastructural damage observed 

following eccentric exercise in humans.  Titin is a known substrate of calpain (Goll et 

al., 2008) and cleavage of it would lead to sarcomere disruption.  Yu, Furst & Thornell 

(2003) observed a lack of staining for α-actinin, titin and nebulin in muscle biopsies taken 

2 - 3 and 7 - 8 days post eccentric exercise in humans.  Similarly, Trappe et al (2002a) 

found decreased titin and nebulin contents of 30% and 15%, respectively, 24h following 

eccentric exercise.  Although these studies provide evidence of ultrastructural damage 

it is unknown whether this loss is due to direct damage, degradation or changes in 

myofibrillar protein rate (Trappe et al., 2002a). 

 

Calpain may not only be implicated in damage to the sarcomere directly but it may also 

be involved in inducing further degradation of the muscle.  Calpain may act as a 

chemotactic signal that attracts neutrophils, via cytokines, to the site of damage 

immediately following exercise (Belcastro, Shewchuk & Raj, 1998; Raj, Booker & 

Belcastro, 1998).  Therefore, calpain may initially be activated, subsequently 

leading to further muscle protein degradation via activation of different degradative 

pathways, initiated by cytokines. 

 

2.3.2.3 Cytokines 

Cytokines may be activated by calpain, as previously discussed, or by increases in Ca2+ 

concentration, the perturbation of the muscle fibre or sensing of damage by resident 

macrophages (Butterfield, Best & Merrick, 2006).  The main cytokines thought to be 

involved in EIMD are tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and 

interleukin-6 (IL-6), with the early release of TNF-α and IL-1β stimulating the 

inflammatory response and the production of IL-6 (Miles et al., 2008).  TNF-α and IL-

1β are thought to represent the most pro-inflammatory combination of all cytokines 

(Pyne, 1994).  It is thought that IL-6 is the main systemic mediate of the acute phase 

response following exercise (Pyne, 1994). 
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All three of these cytokines have been shown to significantly increase 48 h 

following downhill running in rats (Davis et al., 2007).  Similarly, Liao et al (2010) 

observed significant increases in TNF-α mRNA, protein content and serum 

concentration 6 and 24 h following 2 h of downhill running in rats.  In humans, in vitro 

TNF-α and IL-1β have been shown to significantly increase 24 h following downhill 

running, with no significant increase in IL-6 although it was increased above baseline 

(Cannon et al., 1991).  Buford et al (2009) found no significant up-regulation of TNF-α 

and IL-1β following downhill running.  Differences in these studies may be due to the 

measurement of mRNA content in Buford et al (2009) study compared to protein 

content; the intensity of downhill running with participants in Cannon et al (1991) 

study running at a greater intensity; and the use of in vitro versus plasma 

analysis.  In humans, IL-6 has been shown to significantly increase in the hours 

(Rohde et al., 1997; Dousset et al., 2007; Miles et al., 2008; Buford et al., 2009), 24 h 

(Buford et al., 2009) and 48 h (Philippou et al., 2009) post.  Hirose et al (2004) utilised 

eccentric actions of the elbow flexors and found a significant decrease in TNF-α but 

no change in IL-1 β.  Different findings may be attributed to the mode of exercise. 

 

The up-regulation of both TNF-α and IL-1 β may be implicated in the breakdown of the 

muscle proteins.  Muscle protein wasting was reduced when animals were treated 

with a TNF-α antibody (Costelli et al., 1993), implicating TNF-α as a mediator of 

proteolytic pathways.  TNF-α has also been shown to inhibit basal protein synthesis 

and the ability of insulin-like growth factor-I to stimulate protein synthesis in vitro (Frost, 

Lang & Gelato, 1997).  Frost, Lang & Gelato (1997) also found that TNF-α acts rapidly 

with impaired protein synthesis for 48 h after transient exposure.  It may also increase 

protein degradation in vivo and in vitro (Andreu & Schwartz, 1995).  Similarly, IL-1β 

may increase protein turnover by inhibiting the secretion of insulin-like growth factor-I. 

 

IL-6 can act as both a pro and anti-inflammatory cytokine. Its up-regulation may result 

in the loss of myofibrillar protein by suppressing the effects of IGF (Caiozzo et al., 

1996) and the production of C-reactive protein (CRP) (Peterson & Pederson, 2005).  

CRP has been shown to significantly increase 48 h post eccentric exercise (Dousset et 

al., 2007) and this has been associated with increases in IL-6 (Miles et al., 2008).  IL-6 

has also been associated with TNF-α production in humans (Starkie et al., 2003), 

which potentially creates a viscous cycle (Liao et al., 2010).  However, branched chain 

amino acid supplementation has been shown to limit muscle proteolysis, which was 

independent of the cytokine response demonstrating that IL-6 does not play a role in 
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protein degradation during EIMD in humans (Rohde et al., 1997). 

 

Cytokines regulate the phagocytic phase which is the process of acute 

inflammation, characterised by the infiltration of neutrophils and macrophages.  

Following muscle damaging exercise increases in circulating neutrophils have been 

found between 2h and 12h (Pizza et al., 1995; Malm, Lenkei & Sjodin, 1999; 

MacIntyre et al., 2001), 24 h (McLoughlin et al., 2003; Tsivitse et al., 2003; Milias et al., 

2005), 48 h (Milias et al., 2005) and at 3 days (Pizza et al., 2002) post exercise.  The 

majority of studies showing an early response (2 - 12 h) are studies using humans 

whereas those with a delayed response are those conducted with rats or mice.  Results 

from animals may not apply to voluntary exercise in humans (Malm, 2001).  This may 

impact on results as firstly voluntary muscle actions can be highly variable in 

inexperienced participants (Brown et al., 1997).  Secondly, exercise in animals is not 

voluntary exertion.  Studies using electrical stimulation can result in higher force 

production causing changes in muscle that would not happen with voluntary exercise 

(Malm, 2001).  However, Rohde et al (1997) found no change in circulating neutrophils 

following prolonged eccentric actions of the quadriceps.  Similarly, Lapointe, Frenette 

& Cote (2002) found no evidence of neutrophils in the muscle.  It appears that the role 

of neutrophils in exercise and eccentric muscle actions is not clear (St. Pierre 

Schneider & Tiidus, 2007). 

 

Following neutrophil invasion it is thought that the invasion of macrophages is the next 

phase in the inflammatory response.  Specifically, ED1+ macrophages may be responsible 

for further damage in the muscle.  These are the first macrophages to accumulate in 

skeletal muscle following damage induced by hindlimb suspension reloading (Tidball, 

Berchenko & Frenette, 1999; Frenette et al., 2002).  These macrophages appear as 

early as 1 day after neutrophil invasion (McLennan, 1996), with their highest activity 

observed between 24 and 72 h (Marsolais, Cote & Frenette, 2001; Pizza et al., 2002; 

McLoughlin et al., 2003; Tsivitse et al., 2003).  However, St. Pierre Schneider, Find 

& Tiidus (2005) found no evidence of macrophage infiltration 1 day following 

hindlimb reloading in mice.  These studies have been conducted using animals and 

induced damage in different ways including electrical stimulation and hindlimb 

unloading. Therefore, it is unknown whether these same changes occur in humans 

following voluntary eccentric exercise. 
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In summary, the cytokines, specifically TNF-α may initiate a number of degradative 

pathways.  Its proteolytic function may be attributed to reactive oxygen species 

generation (Li et al., 1999), which can activate the NF-κB pathway (Liao et al., 2010).  

TNF-α may also play a role in initiating the cyclooxygenase-2 (COX-2) pathway.  

Cytokines may also regulate the infiltration of neutrophils and macrophages.  

Neutrophils can induce a respiratory or oxidative burst, and secrete proteolytic 

enzymes (Rossi, 1986; Smith et al., 2008).  Macrophages may activate 

prostaglandin E2 (PGE2) (Scott et al., 2004).  The activation of reactive oxygen 

species, NF-κB, COX-2 and PGE2 can lead to further damage in the muscle.  These 

processes will be discussed in the following sections. 

 

2.3.2.4 Reactive Oxygen Species 

Reactive oxygen species produced during the respiratory burst may be activated 

by increases in intracellular Ca2+ concentration, TNF-α and/or neutrophils.  The 

respiratory burst involves an increase in non-mitochondrial oxidative metabolism which 

results in the production of superoxide anion (O2
-) and associated reactive oxygen 

species (Halliwell & Gutteridge, 1986).  This respiratory burst has been shown to 

occur 3 days post eccentric muscle actions directly using mouse models (Zerba, 

Komorowski & Faulkner, 1990; McArdle et al., 1999).  Specifically, superoxide anion 

has been shown to be generated during 2 h of downhill running in rats (Liao et al., 

2010).  Superoxide is converted to hydrogen peroxide, which can peroxidise lipids 

and damage cell membranes (Hampton, Kettle & Winterbourn, 1998).  Liao et al 

(2010) also demonstrated an increase in hydrogen peroxide 24 h post downhill 

running compared to rest.  Hydrogen peroxide can also form hypochloride acid, which 

can damage cell membranes (Tidball, 2005).  It is, therefore, feasible that reactive 

oxygen species may cause lipid oxidation and exacerbate damage in the days 

following eccentric exercise (Close et al., 2005b).  Serum thiobarbitoric acid (TBARS) 

concentration, which is a marker of lipid oxidation, was increased immediately, 6 and 

24 h post exercise in rats following 2 h of downhill running (Liao et al., 2010), which may 

have been linked to the activation of reactive oxygen species.  In humans, there 

is evidence of lipid oxidation. Following muscle damaging exercise, serum 

malondialdehyde (MDA) is increased immediately (Sacheck et al., 2003), 48 h 

(Goldfarb, Bloomer & McKenzie, 2005), 72 h (Close et al., 2004; Close et al., 2005a; 

Close et al., 2006) and 96 h (Close et al., 2005a; Close et al., 2006) post.  

Furthermore, F2α-isoprostanes are increased up to 72 h following muscle 

damaging exercise (Sacheck et al., 2003), and serum TBARS are significantly 
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increased from 48 to 96 h (Nikolaidis et al., 2007). 

 

Proteins can also be oxidised, which is indicated by the presence of carbonyl 

groups.  Following isokinetic lengthening muscle actions, plasma protein carbonyls are 

increased from 48 to 96 h post in females (Nikolaidis et al., 2007), and at 24 and 48 h 

in males (Goldfarb, Bloomer & McKenzie, 2005).  Differences in time lines may be 

attributed to gender or the muscle group used during the damaging protocol.  It is 

difficult to identify which proteins are being oxidised as different proteins may differ 

greatly in their susceptibility to oxidative damage (Nikolaidis et al., 2008). 

 

In summary, the activation of reactive oxygen species may lead to lipid and protein 

oxidation, causing further damage to the muscle.  They may also activate the signalling 

pathway, NF-κB, which may up-regulate the Ub-P pathway. 

 

2.3.2.5 Phospholipases 

The activation of phospholipases (PLA), specifically, PLA2 can be stimulated by 

increased intracellular Ca2+ concentration (Chang, Musser & McGregor, 1987; Duncan, 

1988), as it contains a Ca2+ binding site (Armstrong, 1990).  PLA2 can use membrane 

phospholipids as substrates for the production of arachidonic acid (Trappe et al., 

2001) and subsequent to this production of prostaglandins and leukotrienes 

(Duncan, 1988; Armstrong, Warren & Warren, 1991).  The activation of PLA2 may 

lead to the degradation of membrane phospholipids (Jackson, Jones & Edwards, 

1984), which may lead to increased permeability of the sarcolemma (Gissel & 

Clausen, 2001).  This may allow the efflux of intracellular proteins and allow further 

Ca2+ to enter the cell (Armstrong, 1990) giving rise to more degradation, leading 

to a secondary increase in Ca2+ that may accumulate in the mitochondria.  Duncan & 

Jackson (1987) demonstrated, in vitro, that PLA2 inhibiting agents protected against 

intracellular enzyme efflux.  Ultrastructural damage was still present indicating different 

degradative pathways play a role in membrane and myofibrillar damage.  The 

production of prostaglandins and leukotrienes in the context of EIMD will be 

discussed. 

 

Prostaglandins 

Prostaglandins can be generated from PLA2, as previously stated.  Prostaglandins 

play a central role in inflammation.  COX-2 catalyses the reaction of arachidonic acid to 
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PGH2, which is subsequently converted to a variety of prostaglandins (Dubois et al., 

1998).  COX-2 can be induced by inflammatory factors and cytokines.  Specifically, 

TNF-α has been shown to induce COX-2 expression (Dubois et al., 1998).  

Following eccentric exercise, COX-2 mRNA expression was significantly increased 4 

and 24 h post, with no change in COX-2 protein (Weinheimer et al., 2007).  Although 

there was no change in protein content of COX-2, it was concluded that it was still 

available for the production of prostaglandins.  Similarly, Buford et al (2009) 

found a significant up-regulation of COX-2 mRNA 3 h following downhill running.  

The formation of prostaglandins via COX-2 activity may be both detrimental (Buford et 

al., 2009) and vital (Bondesen et al., 2004) for muscle structures. 

 

The two prostaglandins researched in the context of EIMD have been PGF2α and 

PGE2, which are involved in protein synthesis and degradation, respectively (Rodemann & 

Goldberg, 1982). PGF2α has been shown to significantly increase 24 h following 

eccentric resistance exercise (Trappe et al., 2001).  The role of PGE2 has attracted 

more attention due to its potential involvement in the breakdown of the muscle.  In 

humans, PGE2 has been shown to significantly increase 2 h post sledge drop 

jumping exercise (Dousset et al., 2007), and 24 and 48 h following downhill running 

(Cannon et al., 1991).  The fact that these studies did not utilise a concentric 

control group may limit findings.  Peake et al (2005) found that downhill running 

significantly increased PGE2 immediately post but that this was no different to a high-

intensity level running group.  However, measures were not taken past 1 h in this 

study and differences may have been apparent at later time points.  Increases in 

PGE2 may increase protein turnover (Evans & Cannon, 1991).  Rodemann & 

Goldberg (1982) observed increased PGE2 synthesis and in turn increased protein 

degradation rates when rat muscles were incubated in vitro with arachidonic acid. 

 

It is thought that increased protein degradation may be via lysosomal proteases, 

however, Furano & Goldberg (1986) demonstrated that the effect of Ca2+ on muscle 

protein does not involve a lysosomal enzyme.  Other studies have found no 

significant changes in PGE2 up to 96 h post eccentric exercise (Croisier et al., 1996; 

Trappe et al., 2001).  Differences in these studies may be attributed to the mode of 

exercise with these studies utilising local eccentric exercise.  Therefore, PGE2 

increase may be in response to whole body exercise.  However, Trappe et al (2001) did 

induce a 60 % increase in PGE2, and Croisier et al (1996) measured plasma levels of 

PGE2 in blood samples from a forearm vein which may not have reflected local 
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production at the active muscle. 

 

In summary, there is a potential role of PGE2 in the breakdown of the muscle during 

EIMD, but its role may be dependent on the mode of exercise.  Its increased 

activation may lead to lysosomal degradation, which would lead to non-myofibrillar 

protein breakdown and damage to the sarcolemma. 

 

Leukotrienes 

Leukotrienes are also derived from PLA2, and the key enzyme regulating this 

process is lipoxygenase (Armstrong, 1990).  The activation of leukotrienes may also 

lead to damage of the sarcolemma, increasing its permeability.  There has been little 

research conducted on leukotriene activation following muscle damaging exercise.  

Peake et al (2005) demonstrated that following downhill running there was no 

change in leukotriene B4 concentration.  However, measures were only made 

immediately and 1 h post exercise.  Changes may have been observed if it was 

measured at  future t ime points.   Leukotr ienes can a lso act  as 

chemoattractants to amplify phagocyte numbers at cells (Pyne, 1994), indicating a role 

in the stimulation of the inflammatory response (Peake et al., 2005). 

 

2.3.2.6 Ubiquitin-proteosome Pathway 

The signal for initiating the ubiquitin-proteosome (Ub-P) system following eccentric 

exercise is unknown but cytokines have attracted a lot of attention, specifically 

TNF-α (Murton, Constantin & Greenhaff, 2008).  TNF-α has been shown to activate 

NF-κB pathway in a variety of cells, including muscle cells (Ghosh & May, 1998), 

which in turn activates the Ub-P system (Jackman & Kandarian, 2004).  NF-κB can 

also be stimulated by increased intracellular Ca2+ concentration (Hughes, Antonsson & 

Grundstrom, 1998) and reactive oxygen species accumulation (Muller, Rupec & 

Baeuerle, 1997).  NF-κB is a major regulator of gene transcription and metabolism 

in response to oxidative, energetic and mechanical stress in skeletal muscle (Kramer & 

Goodyear, 2007), and it up-regulates expression of genes for ubiquitin (Reid, 2005).  

Research has demonstrated an increase in NF-κB activation (Garcia-Lopez et al., 

2007; Liao et al., 2010).  However, Buford et al (2009) found no statistically significant 

changes in the transcription of NF-κB 24 h following downhill running.  However, it was 

not measured at 48 and 72 h post exercise, and it could have potentially been 

significantly increased at these time points as there was a marked increase at 24 h 
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(Buford et al., 2009).  There is evidence for increased NF-κB activation during 

EIMD.  If unrestrained then this increased signalling may perpetuate insulin 

resistance and protein catabolism (Wellen & Hotamisligil, 2005; Shoelson, Lee & 

Goldfine, 2006). 

 

Further support for TNF-α and reactive oxygen species stimulating the Ub-P pathway 

comes from research demonstrating that both hydrogen peroxide and TNF-α 

induced the expression of MAFbx/atrogin-1 and MuRF1 (Li et al., 2003; Li et al., 2005).  

These ubiquitin-ligases are required for ubiquitin proteolysis, and this research 

demonstrates that they are sensitive to inflammatory mediators and reactive oxygen 

species. 

 

The pathway for stimulating the Ub-P system is activated during EIMD.  There is also 

evidence of Ub-P activation.  A number of studies in humans have 

demonstrated an increase in mRNA and protein expression of free ubiquitin, 

components of the 20S protesome and ubiquitin conjugated protein levels in 

skeletal muscle between 24 and 48 h following eccentric exercise (Thompson & 

Scordilis, 1994; Stupka et al., 2001; Willoughby, Rosene & Myers, 2003; 

Willoughby, Taylor & Taylor, 2003), which may be indicative of Ub-P activation.  The 

activation of the Ub-P system will degrade myofibrillar proteins in skeletal muscle 

(Jagoe & Goldberg, 2001).  In Willoughby‟s studies (Willoughby, Rosene & Myers, 

2003; Willoughby, Taylor & Taylor, 2003) when increases in mRNA and protein 

levels of ubiquitin and 20S proteasome were observed at 24 – 48 h, myofibrillar 

protein content was significant less than a control group, which may have been due 

to ubiquitin-mediated proteolysis. This system is unable to degrade intact myofibrils 

(Solomon & Goldberg, 1996), suggesting that an alternative system is responsible for 

initial myofibril disruption (Murton, Constantin & Greenhaff, 2008).  The suggested 

process is the activation of calpain, which will degrade and release proteins from 

myofibrillar structures, rendering them more vulnerable to damage.  Degradation is then 

completed by the Ub-P system. 

 

Summarising the process of EIMD, there is strong evidence that increases in 

intracellular Ca2+ concentration provide an intermediate event that stimulates a 

number of other degradative pathways, either directly or indirectly (Figure 2.3).  

Calpain may lead to early disruption of the muscle fibre, which is then further 
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degraded via other processes.  Cytokines, especially TNF-α appear to play a 

significant role in stimulating reactive oxygen species, which may then initiate the NF-

κB pathway that up-regulates the Ub-P system leading to myofibrillar degradation.  TNF-

α may also stimulate COX-2, which is the key regulating enzyme of prostaglandin 

production.  Prostaglandin and leukotriene generation may also be due to the 

activation of PLA2 directly stimulated by increased intracellular Ca2+ concentration.  

These pathways may lead to sarcolemma damage, which may further initiate 

influx of extracellular Ca2+.  Although muscle damage can be divided into separate 

processes, it is clear that they overlap and the exact mechanisms responsible and 

processes involved are not fully understood (Kendall & Eston, 2002).  It is difficult to 

fully understand the processes as studies in the area of EIMD differ greatly in their 

methodological approaches.  For example, the mode of exercise, muscle(s) used, 

timing of measurement, age, training status of participants, and the use of animals 

or humans. 

 

 

2.4 Markers of EIMD 

The process of EIMD involves a number of pathways with research suggesting it is bi-

phasic.  The primary event may cause direct damage with the secondary phase 

exacerbating it via increased protein degradation or change in myofibrillar protein 

metabolism rate (Trappe et al., 2002a).  The extent to which each is involved in the 

process remains to be determined.  What is agreed upon is the structural damage 

observed in the muscle.  Direct measures of muscle damage can be expensive and 

difficult to measure, therefore, many researchers use indirect markers of EIMD. 

 

2.4.1 Direct Markers 

To measure damage to the muscle structures, electron and/or light microscopy and 

histological techniques provide the only direct measures of changes.   

Histochemical abnormality has been shown to occur early post exercise (12 h) with 

peak damage at 48 h (Yasuda et al., 1997); evidence of processes exacerbating the 

damage.  Through these methods, two main signs of EIMD have been 

observed; presence of disrupted sarcomeres and damage to the E-C coupling 

system (Proske & Morgan, 2001).  Recently, Lauritzen et al (2009) demonstrated in 

humans, that following eccentric exercise of the elbow flexors 85 %, 65 % and 38 % 

of fibres contained focal, moderate and extreme disruptions, respectively. 
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Sarcomere disruption is observed in humans following bench stepping exercise 

immediately post eccentric exercise, with the damage focal and only involving one or 

two adjacent sarcomeres and myofibrils (Newham et al., 1983).  This study 

demonstrated development of sarcomere disruption to involve more sarcomeres and 

widespread areas in the 24 - 48 h following EIMD (Newham et al., 1983).  One of the 

main signs of sarcomere disruption involves damage to the Z-disk.  A study utilising 

voluntary eccentric actions of the elbow flexors demonstrated that the exercised arm 

contained significantly more Z-disks that could be classified as disrupted or 

destroyed (Lauritzen et al., 2009).  Similarly, Hansen et al (2009) observed 

significant increases in disrupted Z-lines 5 and 24 h following maximal isokinetic 

eccentric actions, and small but significant increases in destroyed Z-lines at 24 h.  

Damage to the Z-disk may initially involve Z-disk streaming (Friden & Lieber, 2001) 

but progresses to the extension of the Z-band into the A-band and the loss of Z-disk 

material (Friden, Sjostrom & Ekblom, 1983; Newham et al., 1983; Nurenberg et al., 

1992; Friden & Lieber, 1996; 1998; Beaton, Tarnapolsky & Phillips, 2002b; Hansen 

et al., 2009).  The most common change at the level of the Z-disk is the loss of 

desmin.  Desmin loss has been shown to occur rapidly (within 5 - 15 min) following 

eccentric exercise (Lieber, Thornell & Friden, 1996), which is the earliest documented 

change.  The loss of desmin is also observed 1 - 3 days post EIMD (Friden & Lieber, 

1998), indicative of damage occurring and/or progressing over a number of days 

following the primary event.  Sarcomere disruption is also evident as disorganisation of 

the thick and thin filaments, loss of myofibrillar band registry (A-band distorted/sliding) 

and disturbances of the regular titin lattice (Friden, Sjostrom & Ekblom, 1983; 

Newham et al., 1983; Friden & Lieber, 1996; 1998).  Titin and nebulin have been 

shown to be significantly reduced 24 h following eccentric exercise (Trappe et al., 

2002a), indicative of myofibrillar damage.  In this study it was suggested that the 

decrease of these proteins may have been via direct damage (primary event), 

degradation following the exercise (secondary event) or decrease in synthesis 

relative to other muscle proteins (Trappe et al., 2002a).  These different studies 

have utilised animals, electrical stimulation and voluntary muscle actions in humans, 

providing evidence that muscle damage occurs following a range of modes. 

 

Damage to the E-C coupling system is evident as structural changes involving the t- 

tubules, abnormal membrane systems involved in the process (Takekura et al., 

2001), and rounded sarcoplasmic reticulum and t-tubules (Friden & Lieber, 

1996).  Similarly to sarcomere disruption, the amount of damage to the t-tubules 
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increased in the 2 - 3 days following eccentric muscle actions (Takekura et al., 

2001).  These studies have both involved the use of animals and this damage may 

not be evident in humans.  However, similar sarcomere damage is observed in human 

and animal studies and, therefore, this damage may be evident in humans following 

muscle damaging exercise. 

 

It is clear that there are early signs of damage to the muscle structures, which are likely 

due to the primary and some of the secondary phase.  A common observation is that 

the damage to the muscle structures progresses over a number of days.  This is 

indicative of a secondary phase during EIMD that further degrades the muscle 

following the primary event. 

 

2.4.2 Indirect Markers 

Indirect markers of EIMD provide researchers with the ability to draw conclusions 

about damage to the muscle.  The main markers used are measures of 

intramuscular proteins in serum, muscle soreness and muscle function.  This 

section will review literature on each of these three measures. 

 

2.4.2.1 Intramuscular Proteins in Serum 

There is a number of blood serum markers used to identify muscle damage.  The most 

common muscle proteins used as an indication of EIMD are the cytosolic enzymes; 

creatine kinase (CK), myoglobin (Mb) and lactate dehydrogenase (LDH). 

 

CK is found in skeletal muscle but also in the brain, mitochondria and cardiac 

muscle.  It is the most commonly measured intramuscular protein in serum to 

examine damage.  CK does not typically leak out of undamaged cells (Lee et al., 

2002), therefore an increase is primarily interpreted as an increased permeability or 

breakdown of the muscle cell membrane (Friden & Lieber, 2001).  Further to this, it is 

often assumed to indicate the magnitude of damage (Friden & Lieber, 2001).  

However, concentrations of CK also reflect clearance by the reticuloendothelial 

system (Clarkson, Nosaka & Braun, 1992), therefore, its use as a measure of 

magnitude should be used cautiously. 

 

Increases in CK following exercise with a high component of eccentric muscle 
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actions are common but the response is variable, which may partly depend on the 

mode of exercise and muscle group damaged.  Following downhill running 

(Sorichter et al., 2001), squats (Garcia-Lopez et al., 2006; Davies, Rowlands & 

Eston, 2009), and eccentric actions of the elbow extensors (Shahbazpour et al., 

2004) and knee extensors (Eston et al., 1996) CK levels are low (<1000 IU).  

Following vertical jumps (drop and countermovement) CK levels are varied between 

332 IU and 1400 IU (Harrison & Gaffney, 2004; Skurvydas et al., 2006a; Marcora & 

Bosio, 2007).  Higher CK levels are observed following eccentric actions of elbow 

flexors and have been shown to be anything from 1600 IU (Lee et al., 2002) to 4000 IU 

(Sayers, Clarkson & Lee, 2000b).  Protocols using electrical stimulation induce 

higher responses with Brown et al (1996) observing peaks of 12540 IU.  These 

peaks are shown to occur between 24 and 72 h.  CK also has high intersubject 

variability in comparison to other enzymes and Mb (Nosaka & Clarkson, 1996).  

Explanations for this high variability include the concept of individuals being high or low 

responders, which may be related to training level, muscle size, fibre type and/or 

genetics but this requires further investigation (Brancaccio, Maffuli & Limongelli, 

2007).  Activity level following muscle damaging exercise has also been shown to 

play a role in creatine kinase variability (Sayers, Clarkson & Lee, 2000a).  This study 

compared CK levels in a group which had their eccentrically exercised arm immobilised, 

a control group and a light exercise group (50 bicep curls daily) for 4 days post.  

The immobilisation group had significantly lower CK levels than the other two groups, 

with no significant differences observed between the control and light exercise 

group.  Therefore, the use of CK to compare between studies and individuals 

should be used with caution as a number of factors appear to affect its variability.   

 

Mb increases following eccentric exercise are common.   Studies have 

demonstrated peaks of Mb at 48 h (Lowe et al., 1995; Childs et al., 2001), 72 h 

(Childs et al., 2001) and 96 h (Childs et al., 2001; Lee & Clarkson, 2003).  Assays 

used to determine Mb concentrations cannot, however, determine between Mb 

release from the heart or skeletal muscle (Sorichter, Puschendorf & Mair, 1999), and 

therefore researchers must use it with caution. 

 

LDH is another intramuscular protein measured in the serum, however, it is not as 

commonly used in muscle damage studies as creatine kinase and myoglobin.  LDH in 

serum increases in the 6 – 12 h following muscle damaging exercise with a return to 

baseline within 8 – 14 days due to its slow catabolization (Sorichter, Puschendorf & 



Chapter 2  Literature Review 
 

40 
 

Mair, 1999).  LDH is suggested to be a sign that the muscle cell is no longer temporally 

damaged but irreversibly (Gissel & Clausen, 2001). 

 

The increases in intramuscular proteins observed may be due to a number of 

processes that disrupt the sarcolemma and increase its permeability: TNF-α, reactive 

oxygen species, COX-2, PGE2 and leukotrienes have all been implicated as 

discussed in section 2.3.  Reactive oxygen species can increase lipid oxidation (Close 

et al., 2005b).  Sacheck et al (2003) demonstrated correlations between a marker of 

lipid oxidation (iPF2α) at 72 h and CK values at both 24 and 72 h (R2 = 0.44 and 0.51). 

This may provide evidence that changes in lipid oxidation leads to increases in CK 

measured in the plasma, although there is a large amount of unexplained variance.  

Reactive oxygen species production may be due to cytokines, especially TNF-α (Li et al., 

1999).  Cytokines may also lead to the production of COX-2 (Dubois et al., 1998), which 

is the key enzyme regulating prostaglandin production.  However, cytokines may 

not be an underlying mechanism in the increase in intramuscular proteins measured 

in the plasma.  Both Miles et al (2008) and Buford et al (2009) observed no 

association between cytokines (IL-6, IL-1β, TNF-α) and CK.  Buford et al (2009) 

also found no relationship between COX-2 and CK, which may imply that changes in 

CK cannot be attributed to cytokines and increased prostaglandin production.  Early 

studies did demonstrate that inhibiting PLA2 protected against intracellular enzyme 

efflux (Duncan & Jackson, 1987).  More recently, Milias et al (2005) demonstrated a 

positive correlation between platelet activating factor at 96 h, and CK and LDH at 48 

and 72 h.  Platelet activating factor can be synthesised from PLA2 activation (Milias et 

al., 2005).  This may provide further evidence for a role of PLA2 in increases in 

intramuscular proteins in the plasma, however, PLA2 was not measured in this study.  

Therefore, reactive oxygen species and/or PLA2, from increases in intracellular Ca2+ 

concentration, may be the underlying mechanism(s) contributing to the release of 

intramuscular proteins. 

 

Although these proteins can be measured as an indirect marker of EIMD, many 

researchers only analyse one.  Measures of intramuscular proteins in the serum must 

be analysed in parallel with other indirect markers to provide a complete overview of 

EIMD as there is little relationship between CK and maximal isometric force (Nosaka 

& Clarkson, 1996).  There is also a lack of correlation between CK and direct markers 

of EIMD (Fielding et al., 1993; Malm et al., 2000; Beaton, Tarnapolsky & Phillips, 

2002b).  However, it should be noted that a lack of correlation may be due to other 
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factors: CK data is obtained from venous blood were as muscle histology such as Z-

band streaming is assessed by muscle biopsies and there is high interindividual 

variability of CK, both of which may reduce correlations (Saunders, 2005). 

 

2.4.2.2 Delayed-Onset of Muscle Soreness 

Following exercise involving eccentric muscle actions, muscle soreness is evident.  

Muscle soreness is evident as a dull aching pain (Armstrong, 1984) combined with 

tenderness and stiffness (Gulick & Kimura, 1996; Lieber & Friden, 2002).  Following 

muscle damaging exercise, significant increases in soreness from 24h to 96 h, with 

peaks between 24 and 48 h (Semark et al., 1999; Lee et al., 2002; Harrison & 

Gaffney, 2004; Marginson et al., 2005; Twist & Eston, 2005; Garcia-Lopez et al., 

2006; Twist, Gleeson & Eston, 2008; Davies, Rowlands & Eston, 2009), and a 

return to baseline within 5 - 7 days (Ebbeling & Clarkson, 1989) have been 

observed.  It is possible that muscle soreness is initially concentrated in the distal 

portions of the muscle and diffuses to the centre over time (MacIntyre, Reid & 

McKenzie, 1995; Cheung, Hume & Maxwell, 2003).  However, this has not been 

investigated in all muscle groups and should, therefore, not be generalised 

(MacIntyre, Reid & McKenzie, 1995). 

 

It is generally accepted that the delayed-onset of muscle soreness (DOMS) is a 

consequence of eccentric muscle actions, however, it should be used with caution to 

reflect the magnitude of muscle damage (Nosaka, Newton & Sacco, 2002).  Nurenberg 

et al (1992) demonstrated weak correlations between DOMS and the degree of 

ultrastructural damage.  Although DOMS may be viewed as a negative consequence of 

EIMD, it could function as a protective mechanism to allow adequate time for muscle 

recovery and regeneration as it may decrease the likelihood of a person undertaking 

physical exercise (Malm, 2001).  However, poor non-significant correlations (r = 0.07 

to 0.47) have been observed between DOMS and functional performance following 

downhill running when all time points are combined (isometric strength and peak 

power) (Nottle & Nosaka, 2007).  In part agreement, Cleak & Eston (1992) found no 

relationship between soreness and strength 24 h following eccentric actions of the 

biceps.  However, there was a significant relationship (r = -0.60) at 72 h when soreness 

was at its peak.  Similarly, peak palpatation and extension soreness were significantly 

correlated (r = -0.26 to -0.56) with maximum voluntary isometric action immediately, 24 

and 96 h following eccentric actions of the elbow flexors (Nosaka et al., 2006).  These 

studies differ in terms of significant and non-significant findings which may be 
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attributed to different participant numbers.  However, all correlations would be classified 

as weak to moderate with R2 values below 36 %, demonstrating high amounts of 

unexplained variance.  Therefore, DOMS is unlikely to provide an indication of 

exercise readiness.  A possible reason for the low shared variance is the subjective 

nature of DOMS, which makes it difficult to compare independent participants.  

Although DOMS may not indicate exercise readiness, athletes‟ perception of muscle 

soreness is important as it can impact on their decision to exercise.  Therefore, the 

measurement of DOMS and the investigation of interventions to alleviate it is important. 

 

2.4.2.3 Theories of Muscle Soreness 

There are a number of theories to explain muscle soreness, which have 

previously been reviewed (Cheung, Hume & Maxwell, 2003).  MacIntyre, Reid & 

McKenzie (1995) reviewed two of the main mechanisms underlying DOMS: tissue 

oedema and inflammation.  Tissue oedema may lead to muscle stiffness that 

increases the mechanical sensitivity of the muscle receptors.  Soreness is then 

experienced when activated by pressure or stretching (Jones, Newham & Clarkson, 

1987).  Weerakkody et al (2001) have shown that muscle mechanoreceptors, 

including muscle spindles, contribute to muscle soreness.  However, Nosaka, 

Newton & Sacco (2002) stated that oedema could not be one of the main 

mechanisms underlying DOMS as when upper arm circumference peaks, DOMS is 

subsiding. 

 

The inflammatory response is a common mechanism to explain DOMS (MacIntyre, Reid 

& McKenzie, 1995).  Increased COX at the site of damage is thought to be 

hyperalgesic (Dubois et al., 1998), and subsequent PGE2 production may sensitise 

type III and IV afferent receptors to mechanical, chemical or thermal stimuli 

(Armstrong, 1984; Smith, 1991) experienced during movement, thereby inducing 

soreness.  Providing participants with a COX inhibiting agent (Flurbiprofen) did not 

influence muscle soreness following eccentric cycling (Kuipers et al., 1985).  

Furthermore, there was no evidence of an inflammatory response using histological 

investigation.  More recently, following isokinetic eccentric actions, muscle 

soreness peaked at 48 h, however, PGE2 remained unchanged (Croisier et al., 

1996).  This may provide evidence that PGE2 is not involved in pain.  Similarly, 

Buford et al (2009) found no significant correlations between muscle soreness and COX-

2, TNF-α, IL-1β and IL-6 following downhill running.  In support of this, other studies 

have found no evidence of a relationship between markers of inflammation and DOMS 
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(Malm et al., 2000; Miles et al., 2008; Paulsen et al., 2010).  Milias et al (2005) did 

observe significant correlations between neutrophils at 2 and 24 h and muscle 

soreness at 48 h, however, the strength of the relationship was not stated.  There 

appears to be a lack of evidence in favour of inflammation as the underlying cause of 

DOMS; it may be that DOMS is related to inflammation of the connective tissue around 

the muscle (Jones & Round, 1990). 

 

Although these are the two most common mechanisms reviewed in the literature, it still 

remains controversial whether oedema formation as well as inflammatory cell infiltration 

is the mechanism responsible for DOMS. 

 

2.4.2.4 Muscle Function 

The measurement of muscle performance is commonly used as an indirect marker of 

EIMD.  Maximum voluntary contractions (MVC) are one of the most widely used 

measures.  MVCs can take the form of isometric, concentric and/or eccentric 

actions.  Isometric muscle actions appear to be routinely used and following 

eccentric muscle actions they have been shown to significantly decrease 

immediately, 24, 48 and 72 h (Cleak & Eston, 1992; Behm et al., 2001; Harrison & 

Gaffney, 2004; Shahbazpour et al., 2004; Marginson et al., 2005; Skurvydas et al., 

2006a) and remain decreased for as long 11 days (Cleak & Eston, 1992), with peak 

decrements occurring between 24 and 72 h.  Concentric and eccentric MVCs are less 

used, which is surprising as these muscle actions are commonly used during exercise.  

The studies conducted demonstrate that EIMD leads to a decrease in these 

measures that is similar to the loss occurring during isometric actions (Byrne & Eston, 

2002a).  Peak torque has been shown to be significantly reduced from 30 min to 48 h 

following eccentric muscle actions, with largest decrements observed between 24 and 48 

h (Eston et al., 1996; Behm et al., 2001; Twist, Gleeson & Eston, 2008).  MVCs can 

be measured via isokinetic dynamometry which has limited ecological validity when 

extrapolating to a sporting context, as exercise very rarely involves these isolated 

muscle actions (Komi, 2000).  Those experiencing EIMD need to be able to optimally 

function in the days post muscle damaging exercise to continue training and/or 

competing. With this in mind researchers have examined the effect of eccentric 

muscle actions on dynamic measures of muscle function.  The stretch-shortening 

cycle provides a good model to investigate normal and damaged muscle (Komi, 2000) as 

it is involved in many sporting movements, including running and jumping. 
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Vertical Jumps are commonly measured with researchers examining squat, 

countermovement and drop jumps.  The use of these different vertical jumps allows 

researchers to examine the effect of EIMD on stretch-shortening cycle exercise.  Byrne & 

Eston (2002a) have observed decrements in all forms of vertical jumps from 1 h to 72h 

following muscle damaging exercise.  This is in agreement with other studies (Horita et 

al., 1999; Harrison & Gaffney, 2004; Marginson et al., 2005; Garcia-Lopez et al., 

2006; Skurvydas et al., 2006a; Skurvydas et al., 2006b).  Studies examining all three 

vertical jumps have found that squat jumps are affected to a greater extent than 

either countermovement and/or drop jumps (Byrne & Eston, 2002a; Harrison & 

Gaffney, 2004).  It has been proposed that the stretch shortening cycle used during 

countermovement and drop jumps may provide potentiating mechanisms that 

attenuate the detrimental effects of EIMD (Byrne & Eston, 2002a), therefore, 

decrements in performance are attenuated. 

 

Other facets of high intensity muscle function have also been shown to be 

detrimentally affected following muscle damaging exercise.  Peak power measured 

during a Wingate test or repeated cycle sprints decreases from 30 min through to 72 

h with largest decrements observed between 24 and 48 h following squats and 

countermovement jumps (Byrne & Eston, 2002b; Twist & Eston, 2005).  However, 

Nottle & Nosaka (2007) did not observe any prolonged reductions in peak power 

measured during a 30 sec Wingate test following downhill running.  Sprint times 

have also been evaluated with significant reductions in 10 m sprint time from 30 min to 

48 h being found (Twist & Eston, 2005).  However, Semark et al (1999) did not find a 

reduction in 30 m sprint times.  Although muscle soreness increased in this study, 

there was no change in CK possibly indicating a lack of structural muscle damage.  

Fatigue during repeated cycle sprints has also been evaluated (Byrne & Eston, 

2002b; Twist & Eston, 2005).  Both of these studies demonstrate a significant reduction 

in fatigue index from 24 – 48 h following muscle-damaging exercise, which may be 

due to an inability to generate high force and power at the start of exercise (Byrne 

& Eston, 2002b).  Therefore, the power produced at the start of the exercise bout 

would be lower than that prior to muscle damage.  During the exercise bout following 

muscle-damaging exercise the change in power output from the start to the end 

would be smaller, which would subsequently translate into a reduced fatigue index. 

 

Most of the research in the area of EIMD and muscle performance has focused on high 

intensity exercise (MVCs, peak power, vertical jumps).  Central to this thesis is the 
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effect of EIMD on high intensity exercise and the role of milk in altering this response.  

However, the effect of EIMD on endurance exercise is also of primary importance.  

Many sports, especially team sports, require the athlete to be able to perform both high 

intensity and endurance exercise for optimal performance.  Therefore, it is important 

to understand the effect of EIMD on endurance exercise.  Overall, EIMD has a negative 

impact on endurance performance 48 h following muscle damaging exercise 

(Marcora & Bosio, 2007; Davies, Rowlands & Eston, 2009; Twist & Eston, 2009).  In 

terms of performance, distance covered during a time trial (Marcora & Bosio, 2007; 

Twist & Eston, 2009) and time to exhaustion is reduced (Davies, Rowlands & Eston, 

2009).  During these performance tests (Davies, Rowlands & Eston, 2009) and 

moderate intensity exercise (Twist & Eston, 2009) ratings of perceived exertion 

(RPE) increase. The change in RPE may contribute to reduced performance as 

participants perceive a higher level of effort for lower metabolic cost and work (Twist 

& Eston, 2009).  In line with this, the ventilatory response has been shown to 

increase during moderate intensity exercise (Davies, Rowlands & Eston, 2009; Twist 

& Eston, 2009). 

 

It is clear that EIMD reduces many aspects of muscle performance.  The underlying 

mechanisms remain unclear, however, the following section will discuss some 

factors contributing to reduced performance. 

 

2.4.2.5 Theories of Reduced Muscle Function 

There are a number of theories regarding mechanisms underlying reduced 

performance.  These include central, peripheral, impaired metabolism and selective 

fibre damage.  Reduced performance is a result of a complex interaction of a 

number of mechanisms (Warren et al., 2002).  Peripheral damage is the most 

common theory, widely researched and reviewed in the literature.  It must be noted that 

most of the evidence is taken from animal models, therefore, caution must be taken 

when generalising to humans (Warren et al., 2002). 

 

Peripheral damage includes a failure in the E-C coupling system or structural 

damage, which have been previously reviewed in this chapter.  Warren et al (1993) 

suggested that a failure to activate intact contractile proteins may contribute to 

immediate decrements in power output.  From their study it appeared that the loss was 

not due to depolarization of the sarcolemma or to sarcoplasmic reticulum dysfunction 
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and more likely lay in the E-C coupling process.  E-C coupling may contribute to 

decreased muscle performance via reduced Ca2+ release per action potential (Warren 

et al., 1993; Balnave & Allen, 1995).  These findings were taken from mouse 

muscle, where as studies in amphibian muscle have found that reduced force could not 

be accounted for by changes in Ca2+ release (Morgan, Claflin & Julian, 1996).  

Reduced Ca2+ release may occur due to damage to the triads (connections 

between the sarcoplasmic reticulum and t-tubules), sarcoplasmic reticulum (Clarkson, 

Nosaka & Braun, 1992; Allen, 2001) and/or t-tubule voltage sensor.  Indirect support for 

reduced Ca2+ may come from the finding that using the stretch shortening cycle 

blunts decreases in vertical jump performance (Byrne & Eston, 2002a; Harrison & 

Gaffney, 2004).  Pre-activation during the stretch shortening cycle may counter the 

reduced availability of Ca2+ to the myofibrils by increasing the intensity or duration of 

the active state (Byrne, Twist & Eston, 2004). 

 

Damage to the sarcomere (contractile, regulatory and structural proteins) via the 

secondary phase would limit the muscles ability to produce and transmit force.  

There is a progressive loss of contractile protein, with actin and myosin found to be 

reduced by 20% 5 days after muscle damaging exercise (Ingalls, Warren & 

Armstrong, 1998), which may limit the muscles ability to function optimally.  A 

number of studies have observed relationships between muscle performance and 

sarcomere disruption.  Raastad et al (2010) demonstrated significantly strong 

correlations (r = 0.89) between myofibrillar disruption and decrements in peak 

torque throughout all time points following eccentric actions of the knee extensors.  

Similarly, Lauritzen et al (2009) demonstrated that the reduction in force generating 

capacity at 2 and 48 h post eccentric actions of the elbow flexors correlated with the 

percentage of fibres with moderate (r = 0.93) and extreme (r = 0.94) myofibrillar disruption.  

These studies indicate a role of structural damage in the ability of the muscle to 

produce force.  Disrupted fibres may include the loss of or damage to the force 

transmitting and generating structures via the Ub-P pathway, which is responsible 

for myofibrillar degradation as discussed in section 2.3.  The Ub-P pathway may be 

stimulated by increases in intracellular Ca2+ concentration, reactive oxygen species 

and/or TNF-α, as discussed in section 2.3.  Paulsen et al (2010) observed strong 

significant correlations between leukocytes and muscle weakness, which may 

indicate a role of the inflammatory response.  However, Miles et al (2008) found that 

changes in IL-6 and CRP were independent of the magnitude of strength loss.  

Differences may be attributed to the different measures of inflammation used and how 
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they were measured (biopsy v blood samples).  Neither of these studies assessed 

TNF-α, which appears to be the key cytokine for exacerbating damage.  They also did 

not measure any factors linked to myofibrillar protein degradation. 

 

Warren et al (2002) concluded that the majority of strength loss (~75 %) in the first 3 

days following muscle damaging exercise could be ascribed to E-C coupling failure.  

Furthermore, for at least the first 2 days decrements unaccounted for by this could 

be attributed to damage of the force generating and transmitting structures.  By 

the third day, the loss unaccounted for by E-C coupling would be due to decreased 

contractile protein content most likely due to the removal of damaged force generating 

structures (Warren et al., 2002), and prolonged recovery could be explained by a 

significant loss of contractile protein (Ingalls, Warren & Armstrong, 1998).  More recent 

evidence supports this.  Reduced 20:50 Hz force ratio has been found immediately 

after exercise (Raastad et al., 2010), demonstrating that disrupted E-C coupling function 

contributed to reduced force generating capacity.  However, by 2 days this was no 

longer significantly reduced from baseline, whilst decrements in force generating 

capacity reached a peak, indicating that the role of E-C coupling in decrements in 

muscle performance was reduced in the days following muscle damaging exercise. 

 

Changes in the central nervous system may be one of the underlying mechanisms of 

reduced muscle function.  Evidence for this comes from electromyogram (EMG) 

measures.  Changes may occur in neural activation patterns that would „bypass‟ the 

severely damaged fibres (Clarkson, Nosaka & Braun, 1992).  Research has 

demonstrated a change in EMG pattern up to 24 h (Dartnell et al., 2009) and 48 h after 

muscle damaging exercise (Komi & Viitasalo, 1977).  Behm et al (2001) concluded 

that neuromuscular inactivation was not a significant contributor to EIMD.  It is also 

suggested that centrally mediated pain or soreness (Twist & Eston, 2009) 

experienced during EIMD reduces the ability to voluntary produce maximum force.  

However, it has been concluded that the data available do not support the notion of 

soreness causing decreased force production (Cleak & Eston, 1992).  The time 

course of muscle soreness and decreased force production are different (Clarkson, 

Nosaka & Braun, 1992) and force produced during electrically stimulated muscle 

actions leads to decreased force (Newham, Jones & Clarkson, 1987). 

 

Another postulated theory of reduced muscle performance relates to impaired 
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metabolism, as previously stated.  Decreased glycogen re-synthesis following 

muscle damaging exercise has been well documented (O'Reilly et al., 1987; Costill et 

al., 1990; Asp, Daugaard & Richter, 1995; Asp, Rohde & Richter, 1997; Asp et al., 

1998; Zehender et al., 2004).  Performance that relies on muscle glycogen, such as 

high intensity, endurance and/or intermittent sports, will be affected by impaired re-

synthesis of glycogen (Byrne, Twist & Eston, 2004).  Reduced glycogen re-

synthesis has been observed in males 48 h post maximal voluntary eccentric actions of 

the quadriceps (Doyle, Sherman & Strauss, 1993; Asp et al., 1998), with glycogen 

content of type II fibres being particularly affected, which may be associated with 

reduced exercise capacity (Asp et al., 1998).   When measurement points are 

extended beyond 48 h, glycogen re-synthesis remains reduced for up to 10 days 

(O'Reilly et al., 1987).  By increasing CHO intake, Costill et al (1990) found that 

glycogen storage increased indicating that EIMD does not completely inhibit glycogen re-

synthesis.  However, 24 h post eccentric exercise, a 35 % reduction from pre-exercise 

levels in glycogen content was observed, despite a high CHO intake (Zehender et al., 

2004). 

 

Reduced glycogen re-synthesis is assumed to be related to decreased glucose uptake 

into the cell (Tee, Bosch & Lambert, 2007).  Inflammatory cells are known to increase 

glucose utilisation via oxidation (Bergstrom & Hultman, 1966; Jansson, Hjemdahl & 

Kaijser, 1986), therefore, reduced glycogen re-synthesis may be a result of the 

competition between the inflammatory and glycogen depleted muscle cells for 

available glucose (Costill et al., 1990).  Disruption of the muscle cell membrane 

may also reduce insulin-stimulated glucose transport (Doyle, Sherman & Strauss, 

1993).  Decreased insulin sensitivity may be due to TNF-α (Kirwan & Del Aguila, 2003). 

However, it is possible that glucose transport into the muscle cell is the rate-limiting 

step (O'Reilly et al., 1987).  GLUT4 is one of the major glucose transporter proteins 

(Tee, Bosch & Lambert, 2007) and the muscle content of GLUT4 has shown to be 

decreased 48 h following eccentric exercise in both rats (Asp, Kristiansen & Richter, 

1995; Kristiansen, Asp & Richter, 1996; Kristiansen et al., 1997) and humans (Asp, 

Daugaard & Richter, 1995).  However, Asp et al (1998) found no difference in 

glucose uptake between eccentric exercise and control groups.  Differences in 

findings may be due to methodological reasons (Byrne, Twist & Eston, 2004), with 

decreases in GLUT4 content being reduced to a greater extent in rat muscle after 

electrically induced eccentric in situ muscle actions (Asp, Kristiansen & Richter, 1995) 

than in vivo human muscle actions (Asp, Daugaard & Richter, 1995).  If GLUT4 is 
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reduced then this may be linked to the inflammatory response with TNF-α (Stephens 

& Pekala, 1991) being shown to cause transcriptional repression of the GLUT4 gene 

(Stephens & Pekala, 1991). 

 

Lastly, if type II fibres are selectively damaged then their contribution during 

maximal intensity activities will be reduced (Byrne, Twist & Eston, 2004), either via 

reduced glycogen concentration or an inability to generate and transmit force.  The 

findings of muscles being less fatigable (Byrne & Eston, 2002b; Twist & Eston, 2005) 

may link to selective type II fibre damage.  Type II fibres are associated with high 

activation and rapid fatigue, therefore, if they are selectively damaged then this 

response may not be apparent and it will appear as if muscles are less fatigable 

(Byrne, Twist & Eston, 2004). 

 

In conclusion, EIMD directly affects the structure of the muscle and has a number of 

indirect consequences.  Indirect markers of EIMD are commonly measured and muscle 

function is of primary importance as losses of it will affect a person‟s ability to not only 

exercise, but may impact on their general daily activities.  The processes 

underlying each of these measures are unknown but it appears that different 

mechanisms contribute to the different indirect markers.  Therefore, interventions to 

alleviate decrements in muscle function are likely to be different from those that 

attenuate increases in DOMS, for example. 

 

2.5 Effect of Eccentric Exercise on Protein Metabolism 

It is evident from the observed ultrastructural changes that there is a breakdown of 

protein structures in the muscle, and there is evidence of processes occurring in the 

muscle that can affect protein metabolism.  Furthermore, the structures that produce 

and transmit force are proteins; therefore, it is reasonable to predict that changes in 

protein metabolism may be related to decrements in muscle function.  However, it is not 

known if there is an association between the processes that lead to myofibrillar damage 

and the breakdown of muscle proteins (Phillips et al., 1997).  Following maximal eccentric 

exercise of the elbow flexors, increases in 3 protein bands of 40 - 80 % have been 

observed at 48 h (Reichsman et al., 1991).  It was suggested that these proteins could 

be myofibrillar related to protein degradation, such as heat shock, stress proteins or 

ubiquitin (Reichsman et al., 1991).  The increase in protein may have indicated an 

increase in intracellular concentrations suggesting a change in synthesis and 
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degradation.  This section will discuss the changes in protein metabolism following 

muscle damaging exercise, as these changes may have an impact on direct and 

indirect markers of EIMD. 

 

2.5.1 Protein Synthesis 

Research examining the influence of eccentric exercise on protein synthesis has on 

the whole demonstrated an increase.  Trappe et al (2002b) reported a significant 

increase in mixed muscle protein fractional synthetic rate measured via a stable 

isotope infusion of phenylalanine 24 h following eccentric exercise.  Similarly, 

Phillips et al (1997) demonstrated a significant increase in mixed muscle fractional 

synthetic rate, measured via phenylalanine infusion, 3, 24 and 48 h following 

eccentric resistance exercise.  Lowe et al (1995) found a decrease in mixed 

muscle protein synthesis, using phenylalanine incorporation, immediately post in vivo 

electrically stimulated eccentric muscle actions in mouse EDL muscles.  However, 

this increased over time crossing baseline levels between 6 and 24 h post and was 

still rising 5 days later.  Although muscle protein synthesis increased in this study, 

muscle protein content was significantly reduced 14 days later (Lowe et al., 1995).  

Myofibrillar protein synthesis has been shown to increase at 4.5 and 8.5 h following 

maximal eccentric actions of the knee extensors in a fed state (Moore et al., 2005).  

However, one study has demonstrated that muscle protein synthesis in fast twitch fibres 

is depressed 24 and 48 h following electrically stimulated eccentric actions in rats 

(Fluckey et al., 2001).  The difference between this study and other studies is likely to 

be due to the use of electrical stimulation versus voluntary high intensity eccentric 

actions, and possibly the time points used to measure changes (Fluckey et al., 2001). 

 

Research has compared eccentric and concentric actions effects on muscle protein 

synthesis.  It was found that in recreational body builders mixed muscle protein 

synthesis, measured via leucine infusion, 24 h following eccentric exercise was no 

different to that after concentric exercise even though significant myofibrillar 

disruption was only observed following eccentric exercise (Gibala et al., 2000).  

However, this study did not measure baseline muscle protein synthesis and it differs 

too many of the other studies in this area by its use of trained participants.  Phillips et 

al (1997) demonstrated no difference between concentric and eccentric actions in 

muscle protein synthesis rate in untrained participants.  However, the bout of 

eccentric exercise used in this study may not have been severe enough to induce 

damage as there was no change in CK or myofibrillar damage (Phillips et al., 1997).  
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These studies would appear to suggest that the response of protein synthesis is similar 

between muscle action modes.  However, at 4.5 h following eccentric actions, 

myofibrillar protein synthesis was significantly greater than concentric actions when both 

bouts of exercise were matched for total work (Moore et al., 2005).  In this study 

moderate Z-band streaming following eccentric actions was significantly greater than 

rest and concentric actions.  The difference in results between this study and others 

(Phillips et al., 1997; Gibala et al., 2000) may be due to the measurement of 

myofibrillar versus mixed muscle protein synthesis, matching muscle action modes for 

total work, the recruitment of greater amounts of active muscle (Moore et al., 2005), 

time points of measurement, and fasted versus fed states. 

 

Muscle protein synthesis increases following eccentric muscle actions even when there 

is evidence of myofibrillar disruption.  Therefore, myofibrillar disruption may be due to 

enhanced rates of protein breakdown. 

 

2.5.2 Protein Breakdown 

Protein degradation rates have been shown to increase following muscle damaging 

exercise.  Lowe et al (1995) measured protein degradation in mice via tyrosine 

release and found increases at 24 h, which reached a plateau of a 60 % increase by 

48 h and remained at this level for a further 3 days.  In humans, Phillips et al (1997) 

demonstrated a significant increase in mixed muscle fractional breakdown rate 3 

and 24 h following eccentric exercise, and by 48 h it had returned to resting levels.  

Lastly, Fielding et al (1991) demonstrated an increase in leucine release from protein 

breakdown immediately post exercise and remaining increased for 10 days 

following eccentric cycling.  These studies have used isotopes for measuring 

muscle protein breakdown.  Changes in 3-methylhistadine (3-MH) have also been used 

as a measure of myofibrillar protein breakdown, with 24 h urine collections the most 

commonly used method. 

 

Measurements of 3-MH are based on the assumption that its rate of production is 

proportional to the rate at which actin and myosin are broken down and excreted from 

the muscle (Hansen et al., 2009).  Results from studies utilising 3-MH are equivocal.  

In rats, 3-MH excretion was increased following downhill running with peak excretion 

occurring 2 days after (Kasperek & Snider, 1985).  This change was greater and longer 

lasting than rats completing level running (Kasperek & Snider, 1985).  However, in a 
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later study 3-MH release following downhill running in rats was no different to rats that 

had completed level running (Kasperek et al., 1992).  Differences were likely due to 

the protocols used; the recent investigation had control rats which were pair fed 

with the older study using exercised rats that served as their own control (Kasperek 

et al., 1992).  However, this study did observe an increase in the rate of non-

myofibrillar protein degradation during exercise as measured by tyrosine release 

(Kasperek et al., 1992).  In young untrained men, urinary 3-MH has been found to 

significantly increase 10 days post eccentric cycling, demonstrating a prolonged change 

in protein degradation.  The findings of Fielding et al (1991) demonstrate longer 

alterations with the differences possibly attributed to the use of human participants versus 

mice and the method to measure protein degradation.  When using labelled isotopes, 

Fielding et al (1991) found immediate increases in protein degradation.  In opposition to 

these findings, Plante & Houston (1984) found no change in 3-MH excretion following 

eccentric cycling in young untrained males.  Furthermore, in untrained males, 3-MH in 

the interstitial space of skeletal muscle measured via microdialysis did not change over 

96 h following voluntary maximal eccentric actions even though there were 

significant increases in disrupted Z-lines 5 and 24 h after (Hansen et al., 2009).  

These results are surprising considering that protein degradation measured via 

isotopes has been shown to increase following resistance exercise (Biolo  et al., 1995; 

Phillips et al., 1997).  Specifically, in Hansen et al (2009) study there were significant 

increases in disrupted Z-lines 5 and 24 h after, which may indicate increased protein 

breakdown.  However, there were no gross morphology changes as indicated by no 

differences in desmin, dystrophin and vimentin, which may be indicative of severe 

myofibril damage not being caused.  Therefore, the method of 3-MH quantification 

may not have been sensitive enough to detect small local increases (Hansen et al., 

2009).  The study by Phillips et al (1997) also provides evidence against the use of 3-

MH.  They demonstrated significant increases in protein breakdown using isotopes 

but no significant increases in 3-MH and cited that 24 h urine collections for 3-MH 

determination may be an insensitive marker of myofibrillar degradation.  It has been 

stated that without measures of tracer dilution, muscle blood flow and muscle 

microvascular blood flow this method is unreliable (Kumar et al., 2009).  It has been 

stated that 3-MH is a poor indicator of muscle protein breakdown since small rapidly 

turned over pools of 3-MH substantially contribute to its excretion (Rennie & Millward, 

1983).  However, this method may still provide a useful non-invasive indication of 

protein degradation (Ballard & Tomas, 1983).  The use of 3-MH for quantification of 

myofibrillar protein breakdown may be limited and the controversy surrounding its use 

may help explain the equivocal results. 
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Studies measuring whole body protein breakdown following eccentric exercise have 

found no change when measured via the rate of phenylalanine appearance 24 h post 

(Phillips et al., 1997; Trappe et al., 2002b).  However, muscle protein metabolism 

reflects only a third of whole body metabolism (Nair, 1995), therefore, using whole 

body measures may not identify local muscle changes.  Furthermore, in the study by 

Phillips et al (1997) muscle protein breakdown was significantly increased. 

 

The majority of evidence seems to support an increase in  muscle protein 

breakdown occurring after eccentric actions.  It may be that myofibrillar damage is due 

to a greater increase in protein breakdown during eccentric compared to concentric 

actions, leading to a net negative muscle protein balance.  Very few studies have 

researched this.  In untrained participants, muscle protein breakdown was not different 

between eccentric and concentric actions (Phillips et al., 1997).  However, the exercise 

bout utilised in this study may not have been severe enough to induce muscle damage 

as evidenced by no increase in creatine kinase and no significant differences in 

myofibrillar damage (Phillips et al., 1997).  More research is required in this area. 

 

2.5.3 Theories of Change in Protein Metabolism 

Changes in protein metabolism may be due to a number of processes that have been 

previously discussed in section 2.3.  Changes in protein synthesis may be regulated by 

PGF2α as it has been demonstrated that by providing participants with COX inhibiting 

drugs, fractional synthetic rate and PGF2α were inhibited (Trappe et al., 2002b).  

Therefore, interventions to alleviate the negative aspects of EIMD should possibly 

avoid those that may inhibit the COX pathway. Protein synthesis may be increased by 

the phosphorylation of p70S6K .  One of the only studies to investigate the effect of 

maximal eccentric muscle actions on the phosphorlyation of this pathway in humans 

without nutritional supply demonstrated a fourfold increase in p70S6K phosphorylation 

for 2 h (Eliasson et al., 2006).  Both maximal concentric and submaximal eccentric 

actions did not increase the phosphorylation of p70S6K (Eliasson et al., 2006).  An 

increase in p70S6K would stimulate translation initiation.  Akt phosphorylation was not 

affected by concentric or eccentric muscle actions, therefore p70S6K is phosphorylated 

via another signalling pathway (Eliasson et al., 2006).  The increase from eccentric 

actions may have been due to greater force production and stretching of the muscle 

(Eliasson et al., 2006).  It is postulated that the increase in synthesis may be due to an 

increase in the intracellular availability of amino acids (Phillips et al., 1997) due to 

increases in protein degradation.  A strong significant correlation between fractional 
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synthesis and breakdown rate (r = 0.88) has been found, indicating the two processes 

are tightly related and one may drive the other (Phillips et al., 1997). 

 

PGE2 has been found to be significantly correlated (r = 0.742) with 3-MH 12 days 

following downhill running (Cannon et al., 1991), which may implicate PGE2 in 

myofibrillar breakdown rather than non-myofibrillar.  This may imply that the COX 

pathway does need to be inhibited to prevent damage.  However, this finding must be 

viewed with caution as although 3-MH peaked at 12 days, there was no significant 

change in this variable at any time point.  Kasperek & Snider (1985) suggested that 

lysosomal enzymes were involved in increases in muscle protein degradation, which 

may have been activated by macrophage infiltration.  Cytokine production may impact on 

protein degradation, with specific roles of IL-1β and TNF-α.  Significant longitudinal and 

cross-sectional relationships at 12 days between 3-MH and IL-1β have been observed 

following downhill running, however, there was no significant correlation between 3-

MH and TNF-α (Cannon et al., 1991).  However, the significant correlations in the 

study by Cannon et al (1991) study were low to moderate (0.257 and 0.479) indicative of 

a relatively high percentage of unexplained variance.  Cytokines are mediators of the 

inflammatory response, and Lowe et al (1995) provided further evidence of 

inflammation playing a role in changes in muscle protein degradation.  They observed 

a significant correlation (r = 0.75) between muscle protein degradation and 

myeloperoxidase activity, which is a marker of phagocytic infiltration. 

 

Most of these studies implicate processes occurring during the secondary phase of 

EIMD, specifically those activated by cytokines, which can activate the Ub-P 

pathway and elevate myofibrillar protein synthesis. The interesting finding of Lowe et 

al (1995) study was that protein degradation was not changed immediately (0 – 6 h) 

following exercise suggesting that the intrinsic proteases such as calpain have no role 

in changes in protein metabolism following eccentric exercise.  However, even though 

changes in protein degradation were not detected total protein content was still 12% 

lower at this time point (Lowe et al., 1995).  Phillips et al (1997) did find an early 

increase in protein degradation following eccentric exercise suggesting a rapid 

activation of a mechanism, which may have involved calpain. 

 

Changes in protein degradation may be a cause of the microscopic injury observed as 

these have been shown to follow similar time courses (Lowe et al., 1995).  However, 
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Lowe et al (1995) stated that altered protein metabolism does not exacerbate 

damage.  Furthermore, it has been suggested that the losses of titin and nebulin may 

be due to degradation following eccentric exercise (Trappe et al., 2002a).  If the 

changes in protein degradation are a causative factor of ultrastructural 

damage then it is likely that decrements in muscle function and increases in 

intramuscular proteins in serum are a consequence of it.  However, Lowe et al (1995) 

found no significant correlation between mean muscle protein degradation and power 

output over time (r = -0.73). 

 

There is little research regarding what state of balance the muscle is in following 

eccentric exercise.  However, following resistance exercise, protein balance 

remains negative in the absence of nutrient ingestion (Biolo et al., 1995), and 

Phillips et al (1997) demonstrated a negative balance following concentric or 

eccentric exercise.  It is, therefore, assumed that following eccentric exercise the 

muscle is in a catabolic state.  Therefore, nutritional interventions that increase 

muscle protein balance to an anabolic state may be beneficial for attenuating EIMD. 

 

2.6 Acute Protein-CHO Supplementation 

Quantity, quality and timing of dietary intake around exercise will influence nutrient and 

hormone availability at specific receptors on target tissues (Chandler et al., 1994; 

Tipton et al., 2001).  This in turn may influence muscle protein metabolism.  This 

section will focus on the impact of acute dietary supplementation (amino acids, protein, 

CHO and a combination) on protein metabolism following resistance exercise, with 

reference to the impact of timing and dosage, and muscle damaging exercise.  Studies 

utilising resistance exercise will only be referred to as this thesis utilised eccentric 

resistance exercise to induce muscle damage.  Lastly, although many studies have 

infused amino acids or insulin these studies will not be discussed as the interest is 

nutrient ingestion. 

 

2.6.1 Effect of Amino Acid/Protein on Protein Metabolism 

The ingestion of essential amino acids or mixed amino acids following leg resistance 

exercise has been shown to lead to a positive net muscle protein balance, primarily 

through increases in muscle protein synthesis (Tipton et al., 1 999a; Borsheim et al., 

2002; Tipton et al., 2003).  There does not appear to be any effect of amino acid 

ingestion on muscle protein breakdown (Borsheim et al., 2002).  Muscle protein 
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synthesis is greater during the 2 - 3 h following resistance exercise (Borsheim et al., 

2002; Tipton et al., 2003) and this is reflective of changes occurring over 24 h (Tipton 

et al., 2003).  This stimulation of muscle protein synthesis does not require 

nonessential amino acids (Tipton et al., 1 999a; Tipton et al., 2003). 

 

Ingesting amino acids or protein may stimulate muscle protein synthesis by increasing 

the availability of intracellular amino acids (Tipton et al., 1999a).  The pathway by 

which muscle protein synthesis may be stimulated is via the increased phosphorylation 

of p70S6K.  The ingestion of branched chain amino acids following a leg 

resistance exercise bout lead to a significantly greater phosphorylation of p70S6K 

1 and 2 h post compared to a placebo group (Karlsson et al., 2004).  However, this 

study did not measure muscle protein synthesis, making it difficult to conclude if this 

change lead to increased protein synthesis.  However, p70S6K is an important factor of 

the hormone/nutrient sensing and signalling pathway that influences translation (Rennie 

& Tipton, 2000). 

 

2.6.2 Effect of Carbohydrate (insulin) on Protein Metabolism 

CHO ingestion can influence muscle protein metabolism.  Providing CHO in the 

hours following leg resistance exercise has been shown to improve muscle net 

protein balance, likely due to a progressive reduction of muscle protein breakdown 

(Miller et al., 2003; Borsheim et al., 2004).  However, although net muscle protein 

balance was significantly greater than a placebo in the 3rd hour following exercise, it did 

not reach positive values (Borsheim et al., 2004).  Although, Miller et al (2003) did 

indicate moderate anabolism in the 3 h post-exercise period.  Similarly, Roy et al 

(1997) demonstrated significantly lower myofibrillar protein degradation following 

ingestion of a glucose supplement immediately and 1 h following resistance leg 

exercise.  Significantly lower urea nitrogen excretion was also observed with 

glucose ingestion, indicative of enhanced muscle protein balance (Roy  et al., 1997).  

In these studies increase in net muscle protein balance was likely due to changes in 

protein breakdown as CHO did not influence muscle protein synthesis (Roy et al., 1997; 

Miller et al., 2003; Borsheim et al., 2004).  However, Thyfault et al (2004) observed no 

influence of CHO ingestion 10 minutes before and after a whole body resistance 

exercise session on protein degradation measured by urinary nitrogen excretion 

even though insulin concentrations were increased.  Differences between this study 

and the others may have due to the measure of protein degradation, which may have 

been insensitive (Thyfault et al., 2004) or the timing of supplementation. 
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It is apparent that CHO ingestion following resistance exercise lowers muscle 

protein degradation with no effect on muscle protein synthesis.  This leads to an 

improvement in muscle protein balance that does not reach positive values.   

Protein degradation may be decreased via increased plasma insulin concentration, 

which may possibly decrease the proteolytic activity of lysosomes (Mortimore, Ward 

& Schworer, 1978), with the Ub-P system insensitive to insulin (Kettlehut, Wing & 

Goldberg, 1988).  Changes in protein breakdown may be attenuated as insulin may 

decrease plasma amino acid concentration by increasing amino acid uptake from the 

plasma (Borsheim, Aarsland & Wolfe, 2004).  This is why sufficient amino acids 

are required for increased insulin to be reflected in elevated synthesis (Biolo  et al., 

1999; Borsheim, Aarsland & Wolfe, 2004; Volek, 2004).  If there were sufficient amino 

acids, it is likely that insulin would exert its effect on translation through the mammalian 

target of rapamycin (mTOR) via the activation of PI3-kinase and Akt (Kimball, 

Farrell & Jefferson, 2002).  Lastly, studies (Miller et al., 2003; Borsheim et al., 

2004) have demonstrated a delayed effect of CHO ingestion, therefore, insulin 

possibly causes a delayed effect on protein metabolism. 

 

2.6.3 Effect of Amino Acid/Protein-CHO on Protein Metabolism 

Independent ingestion of either amino acids or CHO influences protein 

metabolism, therefore, a combination may amplify the response following resistance 

exercise. Miller et al (2003) demonstrated that a combination of CHO and amino 

acid ingestedfollowing a bout of leg resistance exercise stimulated muscle protein 

synthesis that was approximately equivalent to the sum of the independent effect of 

either ingested alone.  Bird, Tarpenning & Marino (2006) demonstrated significant 

reductions in myofibrillar protein degradation 48 h following a bout of whole body 

resistance exercise in comparison to a placebo. Although both CHO and essential 

amino acids attenuated the increase in myofibrillar protein degradation compared to a 

placebo, the combination lead to significant reductions (Bird, Tarpenning & Marino, 

2006).  These findings demonstrate a greater influence of CHO-amino acid compared 

to either nutrient alone on protein metabolism.  In comparison to a placebo, 

Rasmussen et al (2000) demonstrated muscle anabolism resulting from increased 

muscle protein synthesis in the hours following resistance exercise when CHO-amino 

acids were ingested 1 and 3 h post.  This study did not observe any changes in 

muscle protein degradation.  Differences in findings may be attributed to the use of 

mixed muscle versus myofibrillar protein measurements, methodology (isotopes 

versus 3-MH excretion) and/or muscle mass utilised during the exercise bout. 
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It is questionable whether results from studies using amino acids are translatable to 

intact proteins.  This is because differences in amino acid uptake have been reported 

with either pre or post exercise ingestion of amino acids (Tipton et al., 2001) versus 

whey protein (Tipton et al., 2007).  This is important as studies using intact proteins 

are likely to be more relevant to the exercising individual (Tang et al., 2007), as 

athletes regularly consume protein supplements (Froiland et al., 2004; Kristiansen et 

al., 2005).  Casein and whey protein are regularly investigated.  Whey protein results 

in a rapid and transient increase in amino acids in the plasma which is associated 

with increased whole body protein synthesis (Boirie et al., 1997).  Casein results in 

slower and prolonged increases in plasma amino acids leading to a marked inhibition 

of whole body protein breakdown, possibly due to a slower gastric emptying rate 

(Boirie et al., 1997).  Therefore, the consumption of these proteins may have 

different impacts on the postprandial metabolic response. This study was 

conducted at rest and, therefore, the results may not be transferrable to changes 

following resistance exercise. 

 

The consumption of both casein and whey protein following resistance exercise has 

been shown to stimulate net muscle protein synthesis (Tipton et al., 2004; Tang et 

al., 2009).  The study by Tang et al (2009) demonstrated that whey hydrolysate 

protein stimulated muscle protein synthesis to a greater extent than casein 

following resistance exercise, which may be related to the leucine content of the protein 

and how quickly it is digested (Tang et al., 2009).  The ingestion of whey protein 

following resistance exercise results in a pronounced elevation of circulating amino 

acids (Tang et al., 2009) and significantly greater leucine concentration (Tipton et al., 

2004; Tang et al., 2009) compared to casein.  However, Tipton et al (2004) 

observed no significant difference in net muscle protein synthesis between the two 

proteins.  There may have been a difference but due to insufficient sample size and type 

II error this was not significantly different (Tipton et al., 2004).  Whey protein ingestion 

following a bout of leg resistance exercise has been shown to significantly increase 

myofibrillar protein synthesis throughout a 5 h recovery period (Moore et al., 2009b).  

Sarcoplasmic protein synthesis was also increased at 3 h but this was not different to 

feeding without exercise (Moore et al., 2009b). 

 

Many studies have investigated the influence of CHO and whey protein following 

resistance exercise (Borsheim, Aarsland & Wolfe, 2004; Koopman et al., 2005; Tang 

et al., 2007).  The ingestion of whey protein and CHO following a unilateral leg 
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resistance exercise bout has been shown to lead to greater increases in muscle protein 

synthesis in comparison to an isoenergetic CHO supplement (Tang et al., 2007).  

Similarly, consuming a CHO-whey protein-amino acid supplement following leg 

resistance exercise leads to a positive net muscle protein balance, compared to a CHO 

supplement (Borsheim, Aarsland & Wolfe, 2004).  This was likely attributed to the 

significantly greater increase in muscle protein synthesis as although muscle protein 

breakdown was lower following ingestion of either supplement there was no difference 

between them (Borsheim, Aarsland & Wolfe, 2004).  Koopman et al (2005) did 

demonstrate significantly lower whole body protein breakdown with the consumption of 

CHO-whey protein compared to a CHO supplement following leg resistance exercise.  

The contrasting results may be attributed to the use of whole body protein measures 

versus muscle protein measures.  This study also demonstrated higher whole 

body protein synthesis, which lead to a positive whole body protein balance with CHO-

whey protein supplementation (Koopman et al., 2005). 

 

It is clear that CHO and whey protein can lead to an anabolic state in the muscle. 

However, due to the different metabolic properties of whey and casein proteins, a 

combination of these proteins with CHO may be optimal.  Bovine milk presents an ideal 

supplement to investigate as it contains these nutrients.  Elliot et al (2006) 

demonstrated that whole or fat-free milk consumed following leg resistance 

exercise results in a positive net muscle protein balance that may have been due to 

increased muscle protein synthesis and/or decreased breakdown.  However, the 

exact mechanism could not be discerned as no measures of muscle protein 

synthesis and breakdown were made.  Roy et al (2000) demonstrated no difference in 

3-MH excretion with a CHO-protein-fat supplement compared to a CHO or placebo 

supplement.  There was a trend for lower 3-MH with CHO-protein-fat and CHO ingestion, 

which may have been clinically relevant (Roy et al., 2000).  There was also no 

difference in whole body protein synthesis between CHO-protein-fat and CHO 

supplements, which may have been indicative of insulin being more important than 

circulating amino acids for increases in whole body protein synthesis (Roy et al., 

2000).  Myofibrillar protein synthesis following resistance exercise was responsive to 

ingestion of a CHO-protein-fat supplement with significantly higher increases 

compared to a fasted state (Holm et al., 2010).  Collagen protein synthesis was not 

further increased following exercise with the ingestion of CHO-protein-fat (Holm et al., 

2010). 
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The mechanism underlying greater muscle anabolism with CHO-protein/amino 

aicd supplements may be related to increases in insulin coinciding with increases in amino 

acid availability that would allow insulin to exert its effect on muscle protein synthesis.  

Muscle protein breakdown may then be attenuated due to the action of insulin.  

Therefore, the effect of protein-CHO on intracellular signalling may be attributed to 

greater amino acid availability and/or increased plasma insulin concentration (Ivy et 

al., 2008). 

 

The findings of these studies provide evidence that amino acids or protein should be 

an essential component in a recovery supplement to promote muscle anabolism after 

exercise.  Including CHO may be important to improve palatability and stimulate small 

increases in net protein balance via insulin (Borsheim, Aarsland & Wolfe, 2004).  

Furthermore, CHO in a recovery supplement is required for glycogen resynthesis (Van 

Hall, Shirreffs & Calbet, 2000).  Protein-CHO supplements will provide the substrate 

for these metabolic process and possibly increase activity of key enzymes controlling 

these metabolic processes (Ivy et al., 2008). 

 

2.6.4 Influence of Timing of Supplementation 

As there is an interactive effect of exercise and nutrient supplementation, it follows that 

the nature of that interaction will be dependent, to some extent, on the timing of ingestion 

in relation to the bout of exercise (Rasmussen et al., 2000).   

 

Levenhagen et al (2001) have demonstrated that leg and whole body protein 

synthesis was greater with consumption of a protein-CHO supplement consumed 

immediately rather than 3 h following 60 min of moderate intensity cycling.  This was 

despite similar substrate (amino acid and glucose concentration) and hormonal 

(insulin) milieu following consumption of either supplement.  It was thought that 

exercise increased insulin sensitivity, and this was a central component involved in the 

timing of supplementation.  Protein degradation was not different between timing of 

supplementation.  However, protein metabolism is not different when an essential 

amino acid/CHO supplement is consumed 1 or 3 h following resistance exercise 

(Rasmussen et al., 2000).  This is a similar finding to Borsheim et al (2002) who 

found a similar response to essential amino acids consumed 1 and 2 h post resistance 

exercise.  Fractional synthetic rate remains elevated for more than 48 h after 

resistance exercise (Phillips et al., 1997) so an effect of timing of supplement ingestion 
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after resistance exercise is less likely (Borsheim et al., 2002).  However, there may be a 

different response to ingestion before exercise. 

 

Tipton et al (2001) has shown that ingestion of an essential amino acid/CHO 

supplement either immediately before or after resistance exercise leads to a positive 

net muscle protein balance, primarily due to increased protein synthesis.  However, the 

total response is greater with consumption prior to exercise.  The greater response 

may be due to a greater delivery of amino acids to the muscle due to a greater 

availability of amino acids and their provision when blood flow is elevated (Tipton et 

al., 2001).  However, a later study (Tipton et al., 2007) found no difference in the 

anabolic response to 20 g of whey protein when ingested immediately before or 1 h after 

resistance exercise.  Therefore, although net muscle protein balance was positive the 

timing of ingestion was not as important as it was for essential amino acid-CHO 

ingestion.  It is possible that the delivery of amino acids explains the difference 

between the two studies, which may be linked to the digestion of protein.  Digestion 

of protein may limit the availability of amino acids during exercise when blood flow is 

increased.  The other difference may be due to a lack of CHO, which may have altered 

the response of insulin. However, the insulin response was similar in both studies.  

Finally, there was a large variability in the response of participants that may have 

contributed to a lack of statistical significance (Tipton et al., 2007).  Therefore, the 

effect of protein-CHO timing on protein metabolism requires further investigation. 

 

2.6.5 Influence of Dose 

Research suggests that muscle protein synthesis appears to respond in a dose- 

dependent manner to essential amino acid consumption (Tipton et al., 1999b; 

Borsheim et al., 2002; Miller et al., 2003).  Muscle anabolism has been shown to be 

promoted with as little as 6 g amino acids and 35 g of sucrose (Rasmussen et al., 

2000; Tipton et al., 2001).  This demonstrates that very little protein-CHO is required 

to bring about muscle anabolism.  There may in fact be an upper limit where by 

consuming more protein does not elicit greater increases in protein synthesis.  It 

has been demonstrated that muscle protein synthesis reaches maximal stimulation after 

the consumption of 20g high-quality intact protein (~8.6g essential amino acids), 

suggesting an upper limit for the incorporation of amino acids into proteins (Moore 

et al., 2009a).  Any extra protein consumed is likely to be oxidised (Moore et al., 

2009a). 
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2.6.6 Effect of Acute Protein-CHO on EIMD 

The results of the studies investigating acute protein-CHO supplementation and 

EIMD (Table 2.2) are equivocal.  Some studies report no benefit (Wojcik et al., 

2001; Green et al., 2008; White et al., 2008; Betts et al., 2009) and others 

demonstrate reductions in markers of EIMD (Saunders, Kane & Todd, 2004; Seifert et 

al., 2005; Baty et al., 2007; Saunders, Luden & Herrick, 2007; Rowlands et al., 2008) 

following acute protein-CHO supplementation.  The studies that have been conducted 

have utilised different methodologies (model of EIMD; markers of EIMD and when 

measured; study design; type of CHO and protein in supplement; amount of 

supplement; timing of consumption; matching of supplements), and is likely why results 

are equivocal. 
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The majority of studies demonstrating a benefit of acute protein -CHO 

supplementation have centred on indirect markers of EIMD following endurance 

cycling (Saunders, Kane & Todd, 2004; Saunders, Luden & Herrick, 2007; 

Rowlands et al., 2008; Valentine et al., 2008).  These studies have demonstrated 

attenuations in increased CK between 15 - 24 h (Saunders, Kane & Todd, 2004; 

Saunders, Luden & Herrick, 2007; Valentine et al., 2008) and Mb at 9 h (Valentine et 

al., 2008) following consumption of protein-CHO before, during and/or after 

endurance cycling in comparison to CHO or a control supplement.  However, the 

applicability of these studies to all forms of EIMD is questionable.  Endurance 

cycling is largely concentric (Tee, Bosch & Lambert, 2007) and it is likely that the 

damage predominantly occurs from metabolic stress.  Therefore, these findings may 

not be generalised to other models of EIMD, specifically those involving a high degree of 

mechanical stress.  However, studies using different models of EIMD have 

demonstrated similar results.  Increases in CK and Mb at 24 h and 6 h, 

respectively, have been reduced following consumption of protein-CHO before, 

during and after a bout of resistance exercise compared to a control (Baty et al., 2007).  

Similarly, the intake of protein-CHO before, during and after alpine skiing reduced CK 

and Mb 2 h post exercise (Seifert et al., 2005). 

 

Conclusions of these studies have, however, primarily been based on measures of 

intramuscular proteins in the serum, with CK frequently used.  Basing conclusions on 

CK is problematic for a number of reasons.  Firstly, CK is a highly variable marker 

of EIMD, as previously reviewed.  Secondly, CK is poorly correlated to direct 

markers of EIMD (Fielding et al., 1993; Malm et al., 2000).  Lastly, from an applied 

perspective, the exercising individual needs to know if acute protein-CHO 

supplementation will alleviate soreness, stiffness and the reduced capacity to 

exercise.  It is difficult to know if an attenuated CK response will be functionally 

relevant as there is a little relationship between CK and maximal isometric force 

(Nosaka & Clarkson, 1996). 

 

Few studies have assessed muscle soreness (Wojcik et al., 2001; Baty et al., 2007; 

Valentine et al., 2008).  Baty et al (2007) reported reduced muscle soreness at 24 h 

following muscle damaging exercise.  However, Valentine et al (2008) and Wojcik et 

al (2001) found muscle soreness was not reduced.  The measurement of muscle 

soreness is subjective (Rodenburg, Bar & De Boer, 1993), which may explain the 

equivocal results. 
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More recently, studies have begun to investigate changes in muscle function.  

Valentine et al (2008) investigated muscle function by measuring leg extensions to 

fatigue at 70 % of participants 1 repetition maximum (1RM) and found more 

repetitions were complete 24 h following muscle damaging exercise with protein-CHO 

compared to CHO consumption.  However, it is difficult to state with certainty that these 

results were due to a reduction in EIMD.  The improved muscle function with protein-

CHO ingestion may have been due to an improvement in glycogen re-synthesis due to 

the addition of protein.  Measuring muscle function in conjunction with a variety of other 

indirect markers (CK, IL-6, 3-MH, DOMS, isometric peak torque), no beneficial effects 

of protein-CHO consumed post eccentric exercise were observed compared to 

CHO and a control group (Wojcik et al., 2001).  However, eccentric actions of the 

quadriceps to induce EIMD were completed following a bout of glycogen depleting 

exercise.  Temporary damage of the muscles in a glycogen depleted state may have 

confounded results.  More importantly from an applied perspective, it could be argued 

that exercising individuals do not train in a glycogen depleted state and therefore, this 

does not reflect practices that could be generalised to applied settings.  3-MH was 

assessed and found to increase 24 h post when compared to 1 day prior to eccentric 

exercise with no effect of nutrient intake.  This is in contrast to the observed reduction 

in 3-MH excretion 48 h post resistance exercise with consumption of a CHO/essential 

amino acid supplement (Bird, Tarpenning & Marino, 2006).  3-MH values on day 1 may 

not have been reflective of baseline samples as participants had completed the bout of 

muscle glycogen depleting exercise.  Similarly, other investigations have observed 

no alleviation of EIMD using functional, biochemical and subjective markers (Green et 

al., 2008; White et al., 2008; Betts et al., 2009). 

 

Methodological differences can confound results for a number of reasons and this is a 

likely reason for why there is inconsistent information regarding the benefits of acute 

protein-CHO supplementation for alleviating EIMD.  Firstly, the accurate 

interpretation of the effectiveness of protein-CHO intake is difficult because timing of 

ingestion differs between studies, occurring before, during and/or after exercise.  If 

supplements are to be investigated to improve recovery then ingestion at different time 

points may confound findings as it is difficult to determine if the positive effects are due 

to a reduction in the initial damage, enhanced recovery or a combination of both (Green 

et al., 2008).  Furthermore, if benefits are a result of altered protein metabolism, then 

protein-CHO intake at different time points may alter the response (Tipton et al., 

2001). 
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Secondly, a number of studies have assessed indirect markers of EIMD at one time point.  

It is accepted that the histological evidence of damage is exacerbated over a number of 

days (Newham et al., 1983).  Therefore, to assess the attenuation of EIMD, markers 

of EIMD should be assessed over days to provide an accurate picture of the change 

occurring.  Furthermore, by assessing only one time point, potential benefits of 

supplementation may be missed.  Thirdly, using different models of EIMD may 

affect results due to the different type (metabolic v mechanical) of muscle stress.  

Prolonged endurance exercise is likely to primarily induce metabolic stress, which may 

influence the level of activation and types of degradative pathways.  The degree of 

damage may also affect results.  The majority of studies providing evidence in 

support of the use of protein-CHO show low to moderate levels of muscle damage 

(Baty et al., 2007; Saunders, Luden & Herrick, 2007; Rowlands et al., 2008; Valentine 

et al., 2008), as assessed by CK levels.  Investigations demonstrating no positive 

effect primarily produce high degrees of damage (Wojcik et al., 2001; Green et al., 

2008; White et al., 2008; Betts et al., 2009).  This may imply that acute protein-

CHO supplementation alleviates EIMD, when damage is not severe.  However, 

Saunders, Kane & Todd (2004) demonstrated benefits of protein-CHO intake with 

severe damage.  Using CK to determine the magnitude of damage is problematic as it 

does not provide this information (Friden & Lieber, 2001).  Furthermore, using CK to 

assess differences between studies should be done with caution as CK has high 

interindividual variance and it may not have been measured at standardised 

temperatures (Betts et al., 2009). 

 

There is some evidence that acute protein-CHO supplementation has the potential for 

attenuating indirect markers of EIMD.  This may be via an improved protein balance 

possibly through the ingestion of protein-CHO increasing the extracellular amino acid 

concentration and driving protein synthesis whilst inhibiting increases in protein 

degradation.  However, there is clearly a requirement for more research in this area. 

 

2.7 Milk as a Recovery Supplement from EIMD 

Milk is a nutrient dense food containing numerous essential nutrients: protein, CHO, 

fat, vitamins, minerals and antioxidants (Haug, Hostmark & Harstad, 2007).  Milk 

protein has a high biological value making it a good source of essential amino acids and 

branched chain amino acids (Haug, Hostmark & Harstad, 2007).  Two of the main 

proteins in milk are casein and whey, making up 80 % and 20 % of milk proteins, 

respectively.  Casein is considered a „slow‟ protein (Tipton et al., 2004) as it slowly 
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empties from the stomach (Bos, Gaudichon & Tome, 2000) leading to a slow and 

prolonged appearance of amino acids in the blood (Tipton et al., 2004).  Whey is 

considered a „fast‟ protein due to its rapid digestion (Haug, Hostmark & Harstad, 2007) 

that provides higher concentrations of amino acids in the blood, however, this 

response is short-lived (Tipton et al., 2004).  Both proteins ingested after resistance 

exercise lead to net muscle protein synthesis (Tipton et al., 2004).  Milk contains CHO 

in the form of lactose and has been shown to be a potent insulin secratogue 

(Gannon et al., 1986). 

 

Due to milk providing both amino acids and CHO in similar concentrations to 

many commercially available sports drinks, it could provide the ideal supplement to be 

used within sport and exercise.  Milk ingestion has been shown to have potential 

benefits for hydration (Shirreffs, Watson & Maughan, 2007) and endurance 

capacity following glycogen depleting exercise (Thomas, Morris & Stevenson, 

2009).  In terms of recovery from muscle damaging exercise there have been few 

studies that have utilised milk as a recovery supplement, with many studies utilising 

whey protein supplementation.  Protein from food is equally effective as that in 

supplements for stimulating muscle hypertrophy, and there is no apparent reason why 

muscle growth cannot be optimised by eating foods of high quality proteins such as 

milk (Tipton, 2009).  Therefore, milk may be as beneficial as whey protein 

supplementation for recovery from EIMD.  In fact, milk ingestion 1 h following 

resistance exercise has been shown to result in an increase in a positive net 

muscle protein balance, possibly through increased protein synthesis and a 

decrease in breakdown (Elliot et al., 2006).  This result suggests milk may be 

suitable for consumption during recovery (Elliot et al., 2006), and potentially 

beneficial for recovery from EIMD. 

 

2.8 Summary 

The process of EIMD likely involves two phases: primary and secondary, that lead to 

damage of the membrane and protein structures within the muscle.  As a 

consequence, increases in intramuscular proteins in the serum and muscle 

soreness, and decreases in muscle function are observed.  One postulated reason for 

these changes, that would be detrimental to the exercising individual, is a net negative 

protein balance.  Protein-CHO supplements have been shown to result in muscle 

anabolism following resistance exercise.  There is very little evidence on the effect of 

acute protein-CHO supplementation on protein metabolism following muscle damaging 
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exercise.  However, many researchers have investigated the impact these 

supplements may have on recovery from EIMD using indirect markers. The 

findings are equivocal and there is clear need for further research focusing on the 

effect on muscle function.  Further to this, many of the studies in this area have 

focused on the use of whey protein.  Milk is a convenient, accessible and relatively 

cheap product that may provide an effective source of nutrients to alleviate EIMD.  This 

area also requires investigation. 
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3.1 General Methods 

This thesis consists of four progressive studies designed to examine the effects of 

acute milk supplementation on the attenuation of exercise-induced muscle damage 

(EIMD).  The methods described in this chapter are those that are generic to the 

majority of studies.  Each investigation was conducted in the Sports Sciences 

Laboratories of Northumbria University, following institutional ethical approval.  The 

target population were males who regularly competed in a variety of sports (team and 

individual), except for the final study where non-league footballers were used.  

Participants were recruited by emails sent to the undergraduate students, specifically 

the sports science students, and via poster advertisements within the University.  After 

volunteering for a study, participants were briefed verbally and in writing regarding 

what would be required of them for that particular study.  They were also informed of 

the associated risks and benefits, before providing informed consent (Appendix 1) 

and completing a health questionnaire (Appendix 2).  Participants were fully 

familiarised with all testing procedures prior to commencing the study.  For each 

study, participants were asked to maintain their habitual diet throughout, and record it 

in the provided food diary (except study 1).  Participants were asked to arrive at the 

laboratory in a rested state having avoided strenuous physical activity, caffeine and 

alcohol for at least 48 h and not taken any nutritional supplements or anti-inflammatory 

drugs.  Participants were tested within 30 minutes of the same time each day to minimise 

diurnal variation. 

 

3.2 Experimental Design 

Each study followed an independent design.  This design was selected due to the 

phenomenon of the repeated bout effect associated with eccentric exercise 

(McHugh, 2003).  Studies 1, 2 and 3 equally matched participants into groups 

based on concentric knee flexion peak torque recorded from 6 leg extension- 

flexions during preliminary testing.  Study 4 randomly allocated participants into 1 of 2 

independent groups. 

 

For each study, participants attended the laboratory on either 3 or 4 consecutive 

days, depending on the study.  During the first visit, participants completed baseline 

tests followed by a bout of muscle damaging exercise.  The exception was study 4, 
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whereby participants completed baseline tests one week prior to completing the 

muscle damage protocol.  Prior to baseline tests, participants‟ stature (Seca, Bonn, 

Germany) and body mass (Seca, Bonn, Germany) were recorded.  On the days 

following muscle damaging exercise, participants returned to the laboratory on 

consecutive days to repeat baseline tests, with the exception of the muscle 

damaging protocol.  Baseline tests consisted of participants firstly having a venous 

blood sample collected for analysis.  Following this, participants rated their 

perceived level of muscle soreness in their hamstrings when standing using a visual 

analogue scale (VAS) (Semark et al., 1999; Close et al., 2004; Twist & Eston, 2005) 

(Appendix 6).  Participants then completed a standardised warm-up, the relevant 

muscle performance measures and any other appropriate measures specific to that 

study. 

 

3.3 Nutritional Supplement 

The nutritional content of the supplements used in the studies is shown in Table 3.1.  

The milk-based protein-carbohydrate (CHO) supplement was a commercially 

available low-fat chocolate milkshake marketed to facilitate an athlete‟s recovery 

following exercise (For Goodness Shakes, My Goodness Ltd., London, UK).  This 

product provided protein in the form of semi-skimmed milk and CHO in the forms of 

lactose, sucrose, fructose, maltodextrin and cellulose.  It also contains NutrixMixTM 

which is a unique combination of vitamins and minerals.  The milk supplement was 

semi-skimmed (Rock Farm Dairy, Durham, UK) and provided CHO in the form of 

lactose.  The CHO supplement was a commercially available sports drink 

(Lucozade Sport, GlaxoSmithKline, UK) providing CHO in the form of glucose and 

maltodextrin.  The control supplement used throughout the studies was water. 
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3.4 Dietary Control 

To ensure there were no differences between groups in macronutrient and energy 

content of participants habitual diets, they were provided with a food diary 

(Appendix 3) and weighing scales (Microtonic Kitchen Scale, Salter, Kent, England) with 

which to record their dietary intake for 48 h prior to baseline tests and throughout 

testing.  Each dietary record was assessed using a nutritional software package 

(Microdiet V2, Downlee Systems Ltd., UK).  Results from each study demonstrated 

that there were no differences between groups in total energy intake or macronutrient 

content of the diets (Appendix 4). 

 

3.5 Muscle Damage Protocol 

The same muscle damage protocol was used in all studies in this thesis.  The protocol 

to induce muscle damage was adapted from previous research (Harrison & Gaffney, 

2004) to illicit damage in the hamstrings rather than the quadriceps.  The hamstrings 

were damaged as eccentric exercise of this muscle group was novel in the 
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participant group, were as eccentric actions of the quadriceps was a frequent activity 

and, therefore, did not illicit substantial muscle damage.  Pilot testing demonstrated 

that this protocol resulted in muscle damage of the hamstrings (i.e. increased 

creatine kinase (CK) and reduced isokinetic muscle performance).  Participants 

completed 6 sets of 10 repetitions, with 90 s rest between sets, of unilateral eccentric-

concentric actions of the knee flexors at a test speed of 1.05 rad.s -1 using a 

Cybex Isokinetic Dynamometer (Cybex Norm, Cybex International, New York, 

N.Y.).  This was conducted on one side of the body and then repeated on the 

contralateral leg.  This process took approximately 30 minutes to complete.  

Participants were instructed to provide a maximal effort throughout their full range of 

movement during the eccentric phase of each leg flexion.  During the concentric phase, 

participants were instructed to return their leg to the starting position with minimum 

effort.  Previous studies have used the non-dominant limb (Sayers, Clarkson & Lee, 

2000a; Sayers & Clarkson, 2001) or have not specified the use of the dominant or non-

dominant limb (Cleak & Eston, 1992; Howell, Chleboun & Conatser, 1993; Rodenburg, 

Bar & De Boer, 1993; Bowers, Morgan & Proske, 2004; Harrison & Gaffney, 2004), 

assuming that both limbs respond similarly.  This assumption has not been 

investigated; therefore both legs were tested throughout all studies. 

 

3.6 Muscle Soreness Measurement 

The degree of muscle soreness experienced was measured on a VAS (Appendix 

6).  In all studies, participants were required to rate the level of soreness, combined 

for both legs, that they perceived to have in their hamstrings when standing, from 0 

(no pain-soreness) to 10 (pain-soreness as bad as it could be).  This is referred to as 

passive soreness.  Using similar scales, previous investigators have shown 

significant increases in the delayed-onset of muscle soreness (DOMS) following EIMD 

(Semark et al., 1999; Close et al., 2004; Twist & Eston, 2005).  During studies 2, 3 

and 4, participants were also asked to rate the level of soreness, using the same scale, 

they perceived to have in their hamstrings when conducting some of the muscle function 

measures.  This is referred to as active soreness. 

 

3.7 Muscle Function 

Throughout studies 1, 2 and 3, muscle function was examined using isokinetic 

muscle dynamometry.  Studies 2, 3 and 4 investigated measures of dynamic 
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muscle function using reactive strength index.  The final study examined other 

facets of muscle performance but these are discussed in the relevant chapter. 

 

3.7.1 Isokinetic Muscle Function 

Participants completed 6 concentric maximal-effort knee flexion repetitions at a test 

speed of 1.05 rad.s-1 on a Cybex Isokinetic Dynamometer (Cybex Norm) in a 

sitting position.  Participants were required to maximally extend and flex their leg 

over their maximum range of movement for 6 repetitions.  This was measured 

sequentially on both legs.  From this, peak torque of the best repetition and total 

work of the set were calculated for study 1.  Due to a change in software, studies 2 and 

3 analysed peak torque only.  Coefficient of variations for this protocol, calculated from 

reliability trials in Northumbria University Laboratories, are reported at 4.5 – 4.9 %. 

 

3.7.2 Reactive Strength Index 

Each participant conducted three separate drop jumps from a height of 43 cm on to 

a force plate (Kistler Instrumente AG, Winterthur, Switzerland).  Participants were 

instructed to drop from the box and upon landing jump for maximum height with 

minimum contact time (Young, 1995).  Reactive strength index was calculated from 

jump height (cm) / contact time (s) (Young, 1995) and the mean was used for 

analysis.  Reactive strength index is a measure of an athlete‟s ability to utilise the 

stretch shortening cycle (Young, 1995) and provides a measure of dynamic muscle 

actions that can be related to sports involving running and jumping.  Although this 

does not provide a measure in which the hamstrings are isolated, the studies aimed 

to investigate a global picture of performance that could be applied to a variety of 

athletes.  The coefficient of variation for this protocol, calculated from reliability trials in 

Northumbria University Laboratories, is reported at 7.3 %. 

 

3.8 Blood Sampling and Analysis 

During each study blood samples were collected via venipuncture from a forearm vein 

into a serum gel monovette (9 mL).  Participants from study 3 also had blood collected 

into an EDTA gel monovette (9 mL).  The samples were centrifuged at 3000 r.min-1 

for 10 min (Allegra X-22 Centrifuge, Beckman Coulter, Bucks, UK).  Samples were 
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then aliquoted and stored at -80 °C for later analysis. 

 

3.8.1 Creatine Kinase Analysis 

Following completion of studies 1 and 2, thirty µL of serum was used for the 

analysis of total creatine kinase (CK), measured at 37 °C using the Reflotron (Reflotron 

Plus System, Bio-Stat Diagnostic Systems, Stockport, UK).  Roche Diagnostics Ltd 

report intra-assay and inter-assay coefficients of variation for this system at 3.5 % and 

3.7 %, respectively. 

 

Study 3 analysed total CK activity using high sensitivity procedures (Advia 2400, 

Seimens Healthcare Diagnositics, UK).  This method is adapted from the 

International Federation of Clinical Chemistry (IFCC) reference method.  Seimens 

Healthcare Diagnostics report intra-assay and inter-assay coefficients of variation 

for this system at 0.5 – 0.8 % and 0.9 – 1.6 %, respectively. 

 

Study 4 analysed total CK activity using kinetic UV tests (Olympus analyser, 

Olympus Diagnostica GmbH, Hamburg).  This method is based on the IFCC 

reference method.  Olympus Diagnostica report intra-assay and inter-assay 

coefficients of variation for this system at 0.64 – 2.37 % and 3.2 – 4.55 %, 

respectively. 

 

To allow the comparisons of methods, during study 3 baseline CK samples were 

analysed using both methods (reflotron and high sensitivity).   The intraclass 

correlation coefficient (ICC) was 0.56, demonstrating a low level of agreement 

between methods. 

 

3.8.2 Myoglobin Analysis 

Myoglobin (Mb) was analysed using an assay kit (Myoglobin Enzyme Immunoassay 

Test Kit, Oxford Biosystems Ltd., Wheatley, Oxon, UK).  Absorbance was read using 

an Anthos 2010 Microplate reader (Anthos, Labtec Instruments, Salzberg, Germany).  

Biomerica report intra-assay and inter-assay coefficients of variation at 3.9 % - 6.6 % 
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and 5.2 % - 11.8 %, respectively. 

 

3.9 Statistical Analysis 

Study 1 presented results as means and standard error of the mean (SEM).  All 

studies utilised inferential statistics. Mauchley‟s test was used to check the 

sphericity of the data.  Differences in isokinetic muscle performance measures were 

determined using a factorial analysis of variance (ANOVA) with repeated measures 

on 2 factors (time and leg).  Differences in other performance measures (reactive 

strength index, countermovement jump height, 15 m sprint, change of direction), DOMS, 

intramuscular proteins and inflammatory markers were determined using a factorial 

ANOVA with repeated measures on one factor (time).  Significant within effects were 

analysed using Bonferonni step-wise calculation (Field, 2005).  Significant between 

effects were analysed using a Games Howell post-hoc test (Field, 2005).  Significant 

interaction effects were analysed using Tukey‟s honestly significant difference (HSD) 

test.  Statistical significance was set at p < 0.05. 

 

Studies 2, 3 and 4 reported inferential statistics, however, conclusions were based on 

statistical analysis that reports uncertainty of outcomes as 90% confidence intervals 

(CI), making probabilistic magnitude based inferences about true values of outcomes using 

methods described by Batterham & Hopkins (2006).  The move towards this method 

of analysis is in keeping with recent trends in methods of inferential statistics (Sterne 

& Smith, 2001; Batterham & Hopkins, 2006).  This method allows the emphasis of 

effect magnitudes and estimate precision rather than the traditional null-hypothesis 

testing based on an arbitrary p value which focuses on absolute effect versus non-

effect interpretation (Rowlands et al., 2008) and does not deal with the real world 

significance of an outcome (Batterham & Hopkins, 2006).  This method defines the 

smallest biological or practical effect, allowing the researcher to qualify the 

probability of a worthwhile effect with inferential descriptors to aid interpretation 

(Rowlands et al., 2008).  Magnitude based inferences recognise sample variability 

(Rowlands et al., 2008) and provide scientists, support staff and athletes with an 

indication of the practical meaningfulness of the results.  Traditional inferential 

statistics do not allow for this and can be misleading depending on the 

magnitude of statistic, error of measurement and sample size (Batterham & Hopkins, 

2006).  The selection of this inferential method suits the applied nature of this thesis. 
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Each dependent variable was analysed using a published spreadsheet (Hopkins, 2006) 

to determine the effect of the independent variable as the difference in the change 

between each group.  The analysis of dependent variables were conducted on log-

transformed values to overcome heteroscedastic error (Nevill & Lane, 2007), except 

muscle soreness data and rating of perceived exertion.  These variables were not log-

transformed as it is inappropriate due to interval scaling (Nevill & Lane, 2007).   

Participant descriptive data and muscle soreness data are presented as absolute 

means ± standard deviations (SD).  Means derived from the analysis of log-

transformed variables were back transformed to provide mean percentage 

change and percentage SD, except intramuscular protein values which were reported 

as factors due to the large percentage changes (Hopkins, 2003). 

 

For calculation of the chances of benefit and harm, the smallest worthwhile or 

important effect for each dependent variable was the smallest standardised 

(Cohen) change in the mean: 0.2 times the between-subject SD for baseline values of 

all participants (Batterham & Hopkins, 2006), which has been used elsewhere in a 

similar investigation (Rowlands et al., 2008).  Practical inferences were drawn using 

the approach identified by Batterham & Hopkins (2006).  Quantitative chances of 

benefit and harm were assessed qualitatively: <1% almost certainly not; 1-5% very 

unlikely; 5-25% unlikely; 25-75% possibly; 75-95% likely; 95-99% very likely; >99% 

almost certainly (Hopkins, 2002).  This method provides a way to qualify clear 

outcomes with a descriptor that represents the likelihood that the true value will have 

the observed magnitude (Batterham & Hopkins, 2006).  They are also free of the 

burden of type I and II errors as they are probabilistic rather than definitive 

statements (Batterham & Hopkins, 2006).  Due to there being a large number of 

comparisons that could be reported, only changes from baseline to 48 and 72 h have 

been reported.  These time points were chosen as the first study demonstrated that 

milk supplementation was not beneficial until 48 h following muscle damaging 

exercise.  Throughout the results, p values for the main interaction effects (time x 

group), have also been stated. 
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4. EFFECT OF ACUTE MILK- 

BASED PROTEIN-CHO 

SUPPLEMENTATION ON 

THE ATTENUATION OF 

EIMD 
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4.1 Introduction 

Exercise induced muscle damage (EIMD) has been shown to be caused by activities 

involving eccentric muscle actions (Semark et al., 1999; Byrne & Eston, 2002a; b; 

Harrison & Gaffney, 2004; Twist & Eston, 2005), as previously discussed.  EIMD has 

a number of consequential effects including the delayed-onset of muscle soreness 

(DOMS) (Semark et al., 1999; MacIntyre et al., 2001; Nosaka, Newton & Sacco, 

2002), increased release of intramuscular proteins into the serum (Clarkson et al., 1986; 

Sorichter et al., 2001; Seifert et al., 2005) and most importantly, in terms of sport 

performance, decrements in muscle function (Byrne & Eston, 2002a; b; Harrison & 

Gaffney, 2004; Twist & Eston, 2005).  These measures change over a number of days, 

peaking between 24 and 72 h, possibly due to proteolytic and lipolytic pathways 

initiated by disturbances in Ca2+ homeostasis. 

 

Decrements in muscle function are of primary concern to the athlete.  These 

decrements, occurring in the days following muscle damaging exercise, may be due 

to the disruption of force generating and/or force transmitting structures (Warren et 

al., 2001).  Changes in protein metabolism (Fielding et al., 1991; Lowe et al., 1995) 

and losses in myofibrillar protein (Willoughby, Rosene & Myers, 2003; Willoughby, Taylor 

& Taylor, 2003), possibly due to the secondary phase (Cannon et al., 1991; Lowe et al., 

1995) rather than the primary mechanical event, may be a causal factor of the 

ultrastructural damage observed following muscle damaging exercise, and therefore 

decrements in muscle function.  In support of this, Raastad et al (2010) observed 

significantly, strong correlations between myofibril disruption and decrements in peak 

torque. 

 

Nutritional supplements may minimise changes in protein metabolism.  A combination 

of protein or amino acids and carbohydrate (CHO) has been found to be optimal for 

eliciting a positive effect on protein balance following exercise (Rasmussen et al., 2000; 

Miller et al., 2003; Bird, Tarpenning & Marino, 2006; Elliot et al., 2006; Tang et al., 

2007; Beelen et al., 2008).  Therefore, the consumption of a protein-CHO 

supplement may limit decrements in muscle function through changes in myofibrillar 

protein synthesis and/or protein degradation rates.  There may also be beneficial 

effects in muscle soreness and increases in intramuscular proteins in the plasma. 
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The use of acute protein-CHO consumption, in the context of EIMD, has been 

extensively studied (Wojcik et al., 2001; Saunders, Kane & Todd, 2004; Baty et al., 2007; 

Luden, Saunders & Todd, 2007; Saunders, Luden & Herrick, 2007; Green et al., 2008; 

Valentine et al., 2008).  The results are equivocal with some studies reporting no 

benefit of protein-CHO consumption (Wojcik et al., 2001; Green et al., 2008) whilst 

others have demonstrated significant reductions in markers of muscle damage 

(Saunders, Kane & Todd, 2004; Romano-Ely et al., 2006; Baty et al., 2007; Luden, 

Saunders & Todd, 2007; Saunders, Luden & Herrick, 2007; Etheridge, Philp & 

Watt, 2008; Valentine et al., 2008).  Many researchers reporting benefits of protein-

CHO consumption have derived their conclusions from measures of 

intramuscular proteins in the serum (creatine kinase (CK) and myoglobin (Mb)).  

Changes in biochemical markers are likely to be functionally irrelevant, as there 

is little relationship observed between CK and maximal isometric force (Nosaka 

& Clarkson, 1996).  Furthermore, the impact of acute protein-CHO supplementation 

on alleviating muscle soreness and the reduced capacity to exercise is important to 

athletes.  Only one study to date has measured muscle performance and observed a 

beneficial effect of acute protein-CHO supplementation following muscle-

damaging exercise (Valentine et al., 2008).  Studies evaluating muscle function 

along with a variety of other indicators of EIMD found no beneficial effect of acute 

supplementation with a protein-CHO drink (Wojcik et al., 2001; Green et al., 2008; 

White et al., 2008; Betts et al., 2009).  Methodological differences may have 

confounded results, such as the measurement of EIMD markers at only one time point, 

timing of supplementation, and the mode of exercise used to initiate EIMD.  Many 

studies observing a benefit of protein-CHO supplementation have used endurance 

cycling to initiate damage (Saunders, Kane & Todd, 2004; Saunders, Luden & Herrick, 

2007; Rowlands et al., 2008; Valentine et al., 2008).  This mode of exercise is 

predominantly concentric in nature (Tee, Bosch & Lambert, 2007) and, therefore, 

damage may be primarily due to metabolic processes rather than mechanical damage. 

 

The evidence for acute protein-CHO supplementation reducing EIMD has been 

contradictory.  Many studies have only measured one indirect marker, which is not 

sufficient to provide overall conclusions with regards to the effect on EIMD as 

different degradative pathways are likely responsible for each indirect marker (refer to 

Figure 2.3).  Furthermore, it is apparent that more research using muscle function 

as an indirect marker of EIMD is required, which from an applied perspective is 

important to investigate.  Many of the studies conducted in this area have used whey 
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or milk-based protein.  Milk and milk-based drinks are readily available and are a 

high-quality, inexpensive (Wojcik et al., 2001) source of amino acids, with a similar 

CHO concentration to many sports drinks, that result in a positive protein balance 

after resistance exercise (Elliot et al., 2006).  The benefits of consuming milk-

based drinks in other areas of sport nutrition have been investigated (Wojcik et 

al., 2001; Karp et al., 2006; Shirreffs, Watson & Maughan, 2007).  Previously, studies 

investigating the effect of protein-CHO and CHO drinks on recovery from muscle 

damaging exercise have matched for energy intake (Wojcik et al., 2001) or CHO 

content (Luden, Saunders & Todd, 2007) resulting in different volumes of drink being 

consumed.  This study compared commercially available drinks in volumes that 

athletes could realistically consume post exercise.  The aim of this study was to 

investigate the use of commercially available milk and milk-based protein-CHO 

supplements in attenuating EIMD following resistance- based eccentric exercise. 

 

4.2 Methods 

4.2.1 Participants 

Twenty-four healthy male participants (age 21 ± 3 years; stature 180.8 ± 5.7 cm; mass 

80.2 ± 9.1 kg) who regularly competed in team sports (football, rugby, hockey and 

cricket) volunteered to take part in the study.  Participants were tested within 30 

minutes of the same time of day to minimise diurnal variation. 

 

4.2.2 Experimental Design 

Participants were assigned to 1 of 4 independent groups: (i) milk-based protein-CHO 

(CHO-P), (ii) milk (M), (iii) CHO, or (iv) control (CON).  A one-way ANOVA revealed no 

group differences in baseline participant characteristics (p > 0.05).  There were no 

significant differences between groups in peak torque values used for group allocation 

(p > 0.05). 

 

Participants attended the laboratory on 3 consecutive days.  The procedure for this is 

outlined in section 3.2.  Following completion of the muscle damaging exercise bout 

on the initial day, participants immediately consumed 500 mL of their allocated nutritional 

supplement and again within 2 h post muscle damaging exercise. 
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4.2.3 Nutritional Supplement 

The supplements compared are described in section 3.3.  Nutrient content of the 

drinks was not standardised, as part of the purpose of this study was to use 

commercially available drinks.  Each supplement is commercially available in 500 mL 

bottles, therefore participants were provided with 2 standard servings equating to 1000 

mL. 

 

4.2.4 Muscle Damaging Exercise 

Muscle damage of the hamstrings was induced via unilateral eccentric-concentric knee 

flexions on the Cybex Isokinetic Dynamometer (Cybex Norm).  Please refer to section 3.5 

for more detail. 

 

4.2.5 Muscle Soreness Measurement 

This study assessed passive DOMS.  Please refer to section 3.6 for more 

information. 

 

4.2.6 Isokinetic Muscle Function 

Participants‟ peak torque and total work of the set for 6 maximal concentric knee 

flexions was measured.  Please refer to section 3.7.1 for more detail. 

 

4.2.7 Blood Sampling and Analysis 

Venous blood was collected as outlined in section 3.8.  This was used for the 

analysis of CK (Section 3.8.1) and Mb (Section 3.8.2). 

 

4.2.8 Statistical Analysis 

All dependent variables were analysed using factorial ANOVA‟s and appropriate post-

hoc tests.  Please refer to section 3.9 for details. 
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4.3 Results 

4.3.1 Evidence of Muscle Damage 

For all participants the protocol was deemed to have caused EIMD in both legs.  This 

was evident from reductions in isokinetic muscle performance and increases CK, Mb, 

and DOMS over the 2 subsequent days of testing (Table 4.1). 

 

 

 

4.3.2 Effects of Nutritional Supplement 

4.3.2.1 Muscle Soreness 

No significant differences between groups (F3, 20 = 2.617, p = 0.079) or significant 

interaction effects between time and group (F6, 40 = 1.323, p = 0.270) were 

observed for DOMS (Figure 4.1). 
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4.3.2.2 Isokinetic Muscle Function 

A significant main effect for leg (F1, 18 = 22.115, p < 0.001) and a significant leg x group 

interaction (F3, 18 = 5.397, p = 0.008) were found for peak torque.  There were significant 

decreases in peak torque for the dominant leg between baseline and 48 h in the 

control group only.  Post hoc tests demonstrated that for the dominant leg, peak 

torque was significantly higher after 48 h in the milk-based protein-CHO group 

compared with the control and CHO groups, and in the milk group compared with the 

CHO group (Figure 4.2). 
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There were significant decreases of peak torque for the non-dominant leg between 

baseline and 48 h in the control group only.  Post hoc tests demonstrated that for the 

non-dominant leg, peak torque was significantly higher at 48 h in the milk-based protein-

CHO and milk groups than in the control group. 

 

A significant main effect for leg (F1, 18 = 30.645, p < 0.001) and significant leg x group 

interaction (F3, 18 = 7.010, p = 0.003) were found for total work of the set.  There were 

significant decreases in total work of the set over time for the dominant leg in the 

control (baseline - 24 h and baseline - 48 h), CHO (24 - 48 h and baseline - 48 h), 

milk (baseline - 48 h), and milk-based protein-CHO (baseline - 48 h) groups.  Post hoc 

tests revealed that for the dominant leg, total work of the set at 48 h was significantly 

higher in the milk-based protein-CHO and milk groups than in the CHO and control 

groups (Figure 4.3). 
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There were significant decreases in total work of the set over time for the non- 

dominant leg in the control (baseline - 24 h and baseline - 48 h), CHO (baseline - 

48 h and 24 - 48 h), milk (baseline - 24 h and baseline - 48 h), and milk-based 

protein-CHO (baseline - 24 h and baseline - 48 h) groups.  Post hoc tests revealed 

that for the non-dominant leg, total work of the set at 48 h was significantly higher in 

the milk-based protein-CHO group than in the control group. 

 

4.3.2.3 Intramuscular Proteins in the Serum 

CK analysis identified no significant main effect for groups (F3, 18 = 2.093, p = 

0.137).  A significant time x group interaction effect over the 3 days of testing (F6, 36 = 

3.124, p = 0.014) was observed for CK.  Post hoc tests revealed significantly lower 

CK values at 48 h in the milk and milk-based protein-CHO groups than in the CHO group 

(Figure 4.4).  CK concentrations significantly increased from baseline to 48 h in the 

control and CHO groups only.  Significant increases in CK were observed between 24 

and 48 h for the CHO group only. 
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A significant main effect for group (F3, 18 = 3.399, p = 0.040) was found for Mb.  Post 

hoc tests revealed that Mb concentrations in the milk and milk-based protein-CHO 

groups were significantly lower than in the CHO group (Figure 4.5).  Running a one-

way ANOVA for changes in baseline after 48 h revealed a significant effect for group 

(F3, 18 = 3.628, p = 0.033).  Post hoc tests revealed that Mb concentration in the 

milk-based protein-CHO group was significantly lower than in the CHO group (p < 

0.05). 
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4.4 Discussion 

The primary finding of this study demonstrated that milk and milk-based protein-CHO 

supplementation attenuated changes in peak torque, total work of the set, CK and Mb 

48 h after muscle damaging exercise in comparison to CHO and a control.  There were 

no beneficial effects of consuming milk or milk-based protein-CHO on perceptions of 

passive muscle soreness. 

 

There are several potential mechanisms underlying these findings.  The main 

theory is that the intake of protein and CHO lead to a positive net muscle protein 

balance.  This has been previously observed with the intake of milk following 

resistance exercise (Elliot et al., 2006).  Protein intake will increase amino acid 

availability (Tipton et al., 2007) and CHO will provide the optimal hormonal 

environment by increasing insulin concentrations (Miller et al., 2003; Borsheim et 

al., 2004).  Increased exogenous amino acid availability could coincide with 

increases in insulin concentrations that would allow insulin to exert its effect on 

protein synthesis without the need for elevated protein degradation rates.  Thus 
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muscle protein synthesis will be increased (Rasmussen et al., 2000; Miller et al., 2003; 

Tang et al., 2007) with no concomitant increases in muscle protein breakdown 

(Bird, Tarpenning & Marino, 2006). 

 

Following eccentric exercise the muscle is in a state of catabolism, therefore, 

ingesting milk and milk-based protein-CHO may have lead to a state of 

anabolism or a reduced state of catabolism.  A positive protein balance could limit 

ultrastructural damage or promote repair.  As a consequence, myofibrillar disruption 

and cell membrane integrity would be maintained.  Myofibrillar disruption occurs via 

the ubiquitin-proteosome (Ub-P) pathway and the increase in myofibrillar disruption 

following resistance exercise is reduced following the consumption of a CHO-amino 

acid supplement (Bird, Tarpenning & Marino, 2006).  Limiting myofibrillar disruption 

would impact on muscle function as these two variables have been shown to be 

significantly related (Lauritzen et al., 2009; Raastad et al., 2010).  Furthermore, a 

relationship between muscle function and the percentage of desmin-negative fibres 

has been observed (Lieber et al., 1994).  With regards to limiting increases in Ck and 

Mb, changes in these variables are primarily due to the degradation of membrane 

phospholipids via cytokines and PLA2 activation.  PLA2, which is significantly 

correlated to CK (Milias et al., 2005), leads to PGE2 production resulting in 

lysosomal protein degradation.  The lysosomal pathway is responsible for non-

myofibrillar protein degradation, and is responsive to changes in amino acid concentration 

(Fulks, Li & Goldberg, 1975) and insulin (Mortimore, Ward & Schworer, 1978) that would 

result from protein-CHO ingestion.  Therefore, milk ingestion would reduce lysosomal 

protein degradation and/or increase non-myofibrillar protein synthesis resulting in 

reduced membrane degradation or enhanced repair.  The maintenance of 

myofibrillar protein and membrane integrity is in agreement with other studies who 

have found beneficial effects of protein-CHO ingestion (Saunders, Kane & Todd, 2004). 

 

There were no significant differences in isokinetic muscle performance, CK or Mb 

between milk and milk-based protein-CHO.  Both of these nutritional supplements 

contained similar amounts of protein.  Thus any effect on attenuating EIMD based on 

protein ingestion would be similar for both groups.  The milk and milk-based protein-

CHO supplements did differ in terms of CHO content with milk-based protein-CHO 

containing approximately 2.5 times more CHO.  CHO increases insulin 

concentrations (Miller et al., 2003; Borsheim et al., 2004), which can increase the 
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muscles‟ capacity for protein synthesis (Jefferson, Li & Rannels, 1977) possibly 

through increased amino acid uptake (Borsheim, Aarsland & Wolfe, 2004), and may 

attenuate increases in degradation (Denne et al., 1991).  Previous research has 

indicated that as little as 35 g of sucrose in combination with 6 g of amino acid will 

promote muscle anabolism (Rasmussen et al., 2000; Tipton et al., 2001).  Both 

these supplements had a greater amount of CHO than this.  There may be a ceiling 

effect to CHO content; therefore, any effect of CHO on protein metabolism would be 

similar for both supplements.  The CHO content of the milk and milk-based 

supplements may not have influenced protein metabolism, however, the 

supplements contained different types of CHO with different glycemic effects that 

could have affected postprandial insulin response, thereby impacting on protein 

metabolism.  However, postprandial insulin response is not significantly different 

following the consumption of different CHO types (sucrose, maltodextrin and honey 

powder containing fructose, glucose and maltose) co-ingested with whey protein after 

resistance exercise (Kreider et al., 2007).  Therefore, the different CHO types would 

not affect protein metabolism and thus the attenuation of EIMD differently.  

Furthermore, Bird, Tarpenning & Marino (2006) have indicated that insulin does not 

play a role in the regulation of myofibrillar protein degradation, possibly as the Ub-

P pathway is insensitive to insulin (Kettlehut, Wing & Goldberg, 1988).  This may 

explain why there were no differences between the two groups in some of the 

measured variables. 

 

The blunting of EIMD following milk and milk-based protein-CHO supplementation was 

not apparent until 48 h after muscle-damaging exercise.  Ultrastructural damage 

becomes progressively worse in the days following eccentric exercise, with more 

damage being observed during 24 - 48 h after exercise (Newham et al., 1983) or 3 

days later (Friden, Sjostrom & Ekblom, 1983).  This may partly be because protein 

degradation rates do not increase until 24 h later (Lowe et al., 1995; Wojcik et al., 

2001), peaking at 48 h (Lowe et al., 1995).  Overall, protein balance would remain 

negative.  This may imply that changes in the measured variables before 48 h are not 

due to ultrastructural damage via protein degradation, initiated during the secondary 

phase, but to other processes that may be mechanical in nature.  With regards to 

muscle function, excitation-contraction (E-C) coupling disruption is primarily responsible 

for the initial decrements observed, with damage to the force generating and transmitting 

structures implicated from 48 h (Warren et al., 2002; Raastad et al., 2010).  Altering 

protein metabolism would not significantly impact on E-C coupling; therefore, there 
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would be no influence of protein-CHO ingestion during this phase of EIMD.  In 

support of this, increases in urinary 3-methylhistadine (3-MH) excretion are not 

significantly limited until 48 h after resistance exercise with the consumption of a CHO-

essential amino acid supplement (Bird, Tarpenning & Marino, 2006).  This may be 

why, in the present study, the attenuation of EIMD was not observed until 48 h after 

muscle damaging exercise. 

 

Attenuations of CK and Mb are in agreement with previous work (Saunders, Kane & 

Todd, 2004; Seifert et al., 2005; Baty et al., 2007; Saunders, Luden & Herrick, 2007; 

Valentine et al., 2008).  However, this is only the second investigation to show a 

reduction in the impact of EIMD on isokinetic muscle performance, CK, and Mb 

following acute milk and milk-based protein-CHO consumption.  Similar studies 

previously conducted found no beneficial effects of protein-CHO ingestion on a 

number of measures of EIMD including isokinetic muscle performance (Wojcik et al., 

2001; Green et al., 2008; White et al., 2008; Betts et al., 2009).  These studies differed 

in their methodological approaches (mode of muscle damaging exercise; type of 

supplement; timing of ingestion; measurement points), which may explain the 

contradictory findings.  For example, the mode of muscle damaging exercise may 

affect results due to the different types (metabolic or mechanical) of muscle stress 

experienced which may influence the level of activation and type of degradative 

pathways.  Furthermore, a number of studies have measured variables at only one 

time point.  It is accepted that damage is exacerbated over a number of days, 

therefore, these studies may have missed the time point at when protein-CHO 

supplements could have been beneficial. 

 

Milk and milk-based protein-CHO had no significant effect on the DOMS.  It has been 

suggested that functional and biochemical measures are preferred when comparing 

group differences in EIMD (Rodenburg, Bar & De Boer, 1993).  The reason for this 

finding may be two-fold.  Firstly DOMS is subjective (Rodenburg, Bar & De Boer, 

1993), making it difficult to compare between independent groups.  This may be the 

reason for no observed differences between groups.  EIMD was only induced in the 

hamstrings.  The hamstrings are only a small muscle group in relation to the whole 

body, which may have affected individual perceptions of DOMS.  Secondly, the 

pathway responsible for DOMS is different to those that are implicated in the 

changes in intramuscular proteins and muscle performance (refer to Figure 2.3).  It is 
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unlikely that alterations in protein metabolism would impact on perceptions of muscle 

soreness. 

 

The results demonstrate that the intake of CHO alone had no beneficial effect on 

attenuating EIMD.  This is partly in agreement with Dalton et al (1999) who found 

CHO intake had no beneficial effect on EIMD as indicated by measurements of CK.  

This is an interesting finding, as athletes traditionally consume CHO when 

recovering from exercise (Millard-Stafford et al., 2005).  CHO is a necessary 

component for a recovery drink as it is required for glycogen re-synthesis (Van Hall, 

Shirreffs & Calbet, 2000).  However, consuming CHO and protein will be more 

beneficial for recovery with regards to glycogen re-synthesis and protein 

metabolism.  This indicates that athletes may benefit more from consuming milk or a 

milk-based protein-CHO supplement after eccentric exercise.  The Ub-P pathway, which 

is speculated to lead to decrements in muscle function, is insensitive to insulin 

(Kettlehut, Wing & Goldberg, 1988).  This explains why there was no beneficial 

effect of CHO intake on muscle performance.  The proteolytic activity of lysosomes can 

be affected by insulin, however, it is interesting to note that based on CK and Mb 

data, CHO consumption appeared to exacerbate the damage.  It has previously 

been stated that differences in CK levels do not provide information on the 

differences in magnitude of EIMD (Friden & Lieber, 2001).  This is an important 

finding considering the „normal‟ dietary practices of athletes during recovery, which 

is likely to include a CHO sports drink (Millard-Stafford et al., 2005). 

 

Participants were required to maintain their normal diet to replicate free living, 

however, this was not recorded.  The limitation of this is that diet was not strictly 

controlled and caloric and macronutrient content of each group‟s diet could not be 

assessed.  However, it would be expected that participants with high protein intake 

would be equally distributed across groups.  Furthermore, both groups consuming 

protein and CHO demonstrated similar patterns of results.  This would be unlikely if 

participants with high habitual protein intakes were allocated to one group.  The sample 

size for peak torque, CK and Mb was reduced.  However, significant differences were 

still observed which implies that the sample size provided sufficient power. 

 

In conclusion, milk and milk-based protein-CHO drinks consumed immediately after 
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resistance-based eccentric muscle damaging exercise leads to the reduction of 

EIMD 48 h later.  This may be due to altered protein metabolism limiting the 

disruption of myofibrillar protein and membrane structures and thus reducing the 

impact of EIMD on physical performance and biochemical markers. 
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5.1 Introduction 

The first study of this thesis demonstrated that consuming milk or milk-based 

protein-carbohydrate (CHO) immediately following muscle damaging exercise limited 

decrements in muscle function and increases in creatine kinase (CK) and myoglobin (Mb) 

over 48 h, with no effect on passive muscle soreness.  Exercise induced muscle damage 

(EIMD) may increase degradation of the protein and membrane structures leading to 

myofibrillar disruption, and the loss of cell membrane integrity (Armstrong, Warren & 

Warren, 1991; Evans & Cannon, 1991; Gissel, 2005; Zhang et al., 2008).  The 

benefit derived from milk-based protein-CHO may be from altered protein balance 

by providing additional protein to increase amino acid availability (Tipton et al., 2007) 

and CHO to increase insulin concentrations (Miller et al., 2003).  Changes in 

protein balance may limit the degradation of protein and membrane structures or 

enhance their repair, and as a consequence limit changes in muscle performance and 

intramuscular protein release. 

 

Research investigating the effect of protein-CHO on recovery from EIMD have 

provided the supplement at different times around muscle damaging exercise 

(before, during and/or after), and hence there is very little consistency in 

ascertaining the optimal timing of protein-CHO ingestion.  The effects of 

supplement timing before and following resistance exercise on muscle protein 

balance have been researched (Tipton et al., 2001; Tipton et al., 2007); consuming 

essential amino acids and CHO prior to exercise results in greater amino acid 

uptake by the muscle in comparison to ingestion following exercise (Tipton et al., 

2001). However, the response to timing of whey protein ingestion was not different 

between pre and post exercise consumption (Tipton et al., 2007).  The reason for 

the different findings may be twofold.  Firstly, CHO intake increases insulin 

concentrations (Miller et al., 2003), which has been shown to increase protein synthesis 

via improved amino acid availability (Biolo, Fleming & Wolfe, 1995) and limit myofibrillar 

breakdown (Roy et al., 1997), but CHO was not consumed with whey protein (Tipton 

et al., 2007).  Secondly, whey protein needs to be digested before amino acids are 

available for protein metabolism; therefore, the time of amino acid availability may 

be responsible for the difference.  It is therefore, plausible that timing of protein-

CHO ingestion may impact on protein metabolism following muscle damaging exercise 

and, therefore, may affect changes in intramuscular protein release into the plasma and 

muscle function. 
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To date there has been only one study investigating the timing of protein-CHO 

supplementation on indirect markers of muscle damage (White et al., 2008).  White et 

al (2008) found no effect on the reduction of muscle damage indices when comparing 

a whey protein-CHO supplement against a control in the 96 h following damaging 

exercise.  As a consequence no effect of timing on response was found, thereby limiting 

any conclusions that can be drawn.  The first study provided evidence that milk-

based protein-CHO has a beneficial impact on EIMD.  However, there is a lack of data 

concerning the optimal timing of milk-based protein-CHO supplementation for limiting 

changes in muscle damage indices.  Therefore, the aim of this investigation was to 

compare pre and post milk-based protein-CHO supplementation on the alleviation of 

EIMD. 

 

5.2 Methods 

5.2.1 Participants 

Thirty-two healthy male participants (age 20 ± 2 years; stature 180.3 ± 4.8 cm; mass 

78.5 ± 9.0 kg) who regularly competed in a variety of sports (team and individual) 

volunteered to take part in the study.  Participants were tested in the morning to 

minimise diurnal variation. 

 

5.2.2 Experimental Design 

Participants were assigned to 1 of 4 independent groups: (i) milk-based protein-CHO 

consumed pre-muscle damaging exercise, water consumed at all other time points 

(PRE), (ii) milk-based protein-CHO consumed immediately post-muscle damaging 

exercise, water consumed at all other time points (POST), (iii) milk-based protein-

CHO consumed 24 h post-muscle damaging exercise, water consumed at all other 

time points (TWENTY-FOUR), or (iv) water consumed at all time points (CON).  A one-

way ANOVA revealed no group differences in baseline participant characteristics (p > 

0.05).  There were no significant differences between groups in peak torque values 

used for group allocation (p > 0.05). 
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All participants were required to attend the laboratory on 4 consecutive days.  The 

procedure for this is outlined in section 3.2.  Following baseline testing, participants 

consumed 1000 mL of their allocated supplement within 30 min, and then 

immediately completed a bout of exercise designed to induce acute muscle 

damage.  Upon completing the exercise bout they immediately consumed 1000 mL of 

their allocated supplement within 30 min.  At 24 h post muscle damaging exercise, 

prior to any testing, participants consumed 1000 mL of their allocated supplement. 

 

5.2.3 Nutritional Supplement 

This study provided participants with the milk-based protein-CHO supplement used in 

study 1 (Chapter 4).  Participants were provided with 1000 mL of this supplement as 

the first study demonstrated that this supplement and volume resulted in the significant 

attenuation of decreases in isokinetic muscle function and increases in creatine kinase 

and myoglobin.  Please refer to section 3.3 for nutritional content of this supplement. 

 

5.2.4 Muscle Damaging Exercise 

Muscle damage of the hamstrings was induced via unilateral eccentric-concentric knee 

flexions on the Cybex Isokinetic Dynamometer (Cybex Norm).  Please refer to section 3.5 

for more detail. 

 

5.2.5 Muscle Soreness Measurement 

Participants were required to rate both passive and active muscle soreness.  

Participants were asked to rate perceived muscle soreness in their hamstrings during 

concentric knee flexions.  Please refer to section 3.6 for further information. 

 

5.2.6 Muscle Function  

5.2.6.1 Peak Torque 

Participant‟s peak torque of 6 maximal concentric knee flexions was measured. Please 

refer to section 3.7.1 for more detail. 
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5.2.6.2 Reactive Strength Index 

Reactive strength index was calculated from the mean of 3 drop jumps.  Please refer 

to section 3.7.2 for more detail. 

 

5.2.7 Blood Sampling and Analysis 

Venous blood was collected as described in section 3.8.  This was used for the 

analysis of CK (section 3.8.1). 

 

5.2.8 Statistical Analysis 

Dependent variables were analysed using magnitude based inferences.  Please refer 

to section 3.9 for more detail. 

 

5.3 Results 

5.3.1 Muscle Soreness 

All groups showed an increase in passive and active muscle soreness (DOMS) for both 

legs.  Passive and active muscle soreness peaked at 48 h for all groups and at 72 h 

each group began to return to baseline levels.  For changes in passive DOMS all 

comparisons between baseline and 48 h, and baseline and 72 h were unclear.  The 

exception was that consuming milk-based protein-CHO before muscle damaging 

exercise had a likely benefit for reducing soreness in comparison to consuming milk-

based protein-CHO 24 h following muscle damaging exercise between baseline and 72 

h.  The p value for the main interaction effect was 0.972.  For changes in active DOMS 

(dominant) from baseline to 48 h consuming milk-based protein-CHO immediately 

following muscle damaging exercise had a likely and possible benefit for reducing 

increases in soreness compared to the control group and consuming milk-based 

protein-CHO before muscle damaging exercise, respectively.  Consuming milk-based 

protein-CHO before muscle damaging exercise also had a possible beneficial effect for 

reducing increases in soreness in comparison to the control group.  Between baseline and 

72 h, consuming milk-based protein-CHO before muscle damaging exercise had a likely 

beneficial effect for recovery of active DOMS in comparison to the control group and 

consuming milk-based protein-CHO 24 h following muscle damaging exercise.  All 
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other comparisons were unclear (Figure 5.1).  A summary of the statistical analysis 

for active DOMS is shown in Table 5.1.  The p value for the main interaction effect 

was 0.827. 
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5.3.2 Muscle Function 

A summary of the statistical analysis is shown in Table 5.2. 



Chapter 5  Timing of Milk Supplementation 

 

101 
 

 

 

5.3.2.1 Peak Torque 

Baseline peak torque values for consuming milk-based protein-CHO before, 

immediately or 24 h following muscle damaging exercise, and the control group were 

128 Nm, 127 Nm, 137 Nm and 131 Nm, respectively.  At 48 h peak torque had 

reduced to 100 Nm, 121 Nm, 121 Nm and 103 Nm for the groups consuming milk-

based protein-CHO before, immediately or 24 h following muscle damaging exercise, 

and the control group, respectively.  At 72 h peak torque values for the groups 

consuming milk-based protein-CHO before, immediately or 24 h following muscle 

damaging exercise, and the control group were 119 Nm, 120 Nm, 115 Nm and 99 Nm, 

respectively. 

 

There was a likely benefit of consuming milk-based protein-CHO immediately (-7 ± 30 

%) and 24 h (-12 ± 25 %) following muscle damaging exercise for limiting decreases 
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in peak torque of the dominant leg between baseline and 48 h in comparison to 

consumption before muscle damaging exercise (-22 ± 14 %) and the control group (-24 

± 39 %).  There were no clear effects of the control group versus consuming milk-

based protein-CHO before muscle damaging exercise or consuming milk-based 

protein-CHO immediately versus 24 h following muscle damaging exercise.  For 

changes between baseline and 72 h there was a likely benefit of consuming milk-

based protein-CHO before (-10 ± 16 %) and immediately following (-6 ± 20 %) muscle 

damaging exercise, and a possible benefit of consuming milk-based protein-CHO 24 h 

following muscle damaging exercise (-16 ± 24 %) for limiting decreases in peak torque 

in comparison to the control group (-27 ± 42 %).  There was also a possible benefit of 

consuming milk-based protein-CHO immediately following muscle damaging exercise 

in comparison to consumption 24 h later (Figure 5.2).  The p value for the main 

interaction effect was 0.198. 
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5.3.2.2 Reactive Strength Index 

Baseline reactive strength index values for consuming milk-based protein-CHO before, 

immediately or 24 h following muscle damaging exercise, and the control group were 

118 cm.s-1, 117 cm.s-1, 95 cm.s-1 and 110 cm.s-1, respectively.  At 48 h reactive 

strength index had decreased to 85 cm.s-1, 111 cm.s-1, 87 cm.s-1 and 85 cm.s-1 for the 

groups consuming milk-based protein-CHO before, immediately or 24 h following 

muscle damaging exercise, and the control group, respectively.  At 72 h reactive 

strength index for the groups consuming milk-based protein-CHO before, immediately 

or 24 h following muscle damaging exercise, and the control group were 89 cm.s-1, 112 

cm.s-1, 91 cm.s-1 and 91 cm.s-1, respectively. 

 

Over the first 48 h there was a likely benefit of consuming milk-based protein-CHO 

immediately following muscle damaging exercise (-11 ± 30 %) compared to the 

control group (-24 ± 24 %) and consumption before muscle damaging exercise (-

30 ± 32 %) for attenuating decreases in reactive strength index.  Consuming 

milk-based protein-CHO 24 h following muscle damaging exercise (-7 ± 18 %) 

also demonstrated a likely and very likely benefit for attenuating decreases in reactive 

strength index in comparison to the control group and consumption before muscle 

damaging exercise, respectively.  Again there were no clear effects of consuming 

milk-based protein-CHO before muscle damaging exercises versus the control 

group and consumption of the supplement immediately following versus 24 h 

following muscle damaging exercise.  Decrements in reactive strength index from 

baseline to 72 h were likely blunted by consuming milk-based protein-CHO 24 h 

following muscle damaging exercise (- 4 ± 16 %) compared to the control group (-18 ± 

25 %) and consuming milk-based protein-CHO before muscle damaging exercise (-29 

± 43 %) and by consumption of the supplement immediately following (-11 ± 36 %) in 

comparison to consumption before muscle damaging exercise.  There was also a 

possible harmful effect of consuming milk-based protein-CHO before muscle damaging 

exercise in comparison to the control group (Figure 5.3).  The p value for the main 

interaction effect was 0.214. 
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5.3.3 Creatine Kinase 

Mean baseline CK values for each group were 154 U.L-1, 307 U.L-1, 218 U.L-1 and 220 

U.L-1 for the control group and the groups consuming milk-based protein-CHO 

before, immediately following or 24 h following muscle damaging exercise, 

respectively.  There was a likely benefit of consuming milk-based protein-CHO both 

immediately (6.31  3.06) and 24 h (4.99  7.62) following muscle-damaging 

exercise in comparison to the control group (16.48  7.43) for blunting 

increases in CK between baseline and 48 h.  There was also a possible benefit of 

consuming milk-based protein-CHO before muscle damaging exercise (7.54  

5.16) for blunting increases in CK in comparison to the control group.  All other 

comparisons were unclear.  Between baseline and 72 h there was a possible 

benefit of consuming milk-based protein-CHO immediately following (12.55  

3.59) and before (9.89  7.05) muscle damaging exercise for recovery of CK in 

comparison to the control group (21.49  7.51).  There was no clear benefit of 

consuming the supplement 24 h following muscle damaging exercise (14.64  
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10.76) compared to the control group (Figure 5.4).  A summary of the statistical 

analysis is shown in Table 5.3.  The p value for the main interaction effect was 0.832. 
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Only the results for the dominant leg have been presented as following analysis 

similar responses in both legs were evident. 

 

5.4 Discussion 

This study compared the consumption of milk-based protein-CHO before muscle 

damaging exercise to consumption immediately and/or 24 h following on the 

alleviation of indices of EIMD.  The primary finding of the study was that 

consumption of a milk-based protein-CHO supplement immediately or 24 h 

following muscle damaging exercise was beneficial for blunting increases in active 

DOMS and decreases in muscle function over 48 h compared to pre-exercise 

supplementation.  Over 72 h following muscle damaging exercise, pre-exercise 

supplementation was more beneficial for limiting changes in active DOMS and peak 

torque compared to a control.  Finally, consuming milk-based protein-CHO at any time 

point was beneficial for attenuating increases in CK activity compared to the control 

group.  In agreement with the first study there was no apparent benefit of milk-based 

protein-CHO ingestion at any time point on passive DOMS. 
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Previous studies (Saunders, Kane & Todd, 2004; Romano-Ely et al., 2006; Baty et al., 

2007; Saunders, Luden & Herrick, 2007; Etheridge, Philp & Watt, 2008; Valentine 

et al., 2008) have shown that the consumption of a protein-CHO supplement 

before, during and/or after exercise, leading to changes in indices of muscle damage, 

attenuates those markers.  The current study provides further support for the use of 

protein-CHO supplements for the attenuation of EIMD.  The reason for this blunting is 

speculated to be due to the provision of CHO and protein, which improves muscle 

protein balance by increasing synthesis and/or limiting increases in degradation.  

This may lead to blunting or enhanced repair of myofibrillar and membrane 

proteins reducing changes in indices of muscle damage. 

 

The current study demonstrated a benefit of consuming milk-based protein-CHO post 

muscle damaging exercise on peak torque, reactive strength index and 

active DOMS.  Consuming milk-based protein-CHO post exercise reduced the impact 

of muscle damage, possibly due to the replacement of amino acids lost to the 

increases in protein degradation that have been previously reported (Lowe et al., 

1995).  In turn this could have limited ultrastructural damage and resulted in the observed 

effect on the measured variables.  Previous research has demonstrated that milk 

ingestion post resistance exercise results in a positive net muscle protein balance 

(Elliot et al., 2006).  It is possible that consuming milk-based protein-CHO at 24h post 

had a positive effect as protein degradation rates start to increase at 24h (Lowe et 

al., 1995; Wojcik et al., 2001) peaking at 48h (Lowe et al., 1995) following damaging 

exercise and protein synthesis rates remain below baseline (Lowe et al., 1995).  

Therefore, consuming milk at a time point when the secondary phase is responsible for 

changes in EIMD indices rather than the primary mechanical event would allow the 

actions of CHO and protein to coincide with changes in protein balance.  However, 

this hypothesis has yet to be investigated. 

 

Consuming protein-CHO pre-muscle damaging exercise was not beneficial for 

reducing increases in active DOMS and decreases in muscle performance up to 48 h, 

with the response being similar to the control group.  The reason for this may be linked 

to the availability of nutrients when they are required.  To promote changes in 

protein metabolism within the muscle, a change in the intracellular pool of amino 

acids must occur.  The process of whole protein intake to increased availability of 

amino acids involves gastric emptying which could indirectly effect the rate of amino 
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acid intestinal absorption (Gary, 1991) and thus the availability of amino acids.  The 

gastric emptying halftime for a milk protein solution has been shown to be 26 

minutes (Calbet & MacLean, 1997).  The muscle damaging exercise trial lasts 

approximately 30 minutes which means that pre-exercise ingestion provides amino 

acids at a time when primary mechanical factors influence changes in EIMD indices.  

By providing milk-based protein-CHO following exercise, it is possible that amino acids 

are available at a time when the proteolytic and lipolytic pathways are activated.  It is 

acknowledged that the exercise bout may have delayed gastric emptying.  Previous 

research has demonstrated an increase in gastric emptying half-time of a CHO solution 

during intermittent high-intensity exercise compared to rest (Lieper, Broad & Maughan, 

2001).  Over 72 h, pre-exercise ingestion of milk-based protein-CHO was possibly 

beneficial for limiting changes in EIMD.  However, values at this time point 

remained below both groups that consumed milk-based protein-CHO following 

muscle damaging exercise.  It is not known why consumption pre-exercise may 

have had this effect and this area needs to be researched further.  Lastly, over 48 h 

milk-based protein ingestion pre-exercise had a possible benefit for blunting 

increases in CK. The proteolytic pathways responsible for membrane damage 

(and hence increased CK in plasma), and myofibrillar protein loss (decreased muscle 

performance) are not the same, which may explain the different response.  The 

intake of protein-CHO prior to muscle damaging exercise may allow the 

availability of amino acids and increased insulin concentration at a time that 

influences protein degradation via lysosomal processes. 

 

It has been demonstrated that consuming milk-based protein-CHO immediately or 24 

h post muscle damaging exercise can limit decreases in isokinetic peak torque and 

dynamic muscle performance (reactive strength index), which may be of practical 

benefit to the exercising individual.  Furthermore, increases in active DOMS were 

reduced with the consumption of the supplement post muscle damaging exercise.  

However, in agreement with the first study there was no effect on passive DOMS.  

The reason for this may be two-fold.  Firstly, during measurement of active 

DOMS the hamstrings were activated and isolated which may have made participants 

more consciously aware of the soreness present in them, in comparison to passive 

DOMS.  Secondly, research has suggested that the process underlying the two 

aspects of muscle soreness are different (Nosaka, Newton & Sacco, 2002), and that 

passive DOMS may be related to inflammatory processes where as DOMS during 

activation may be reflex mediated pain (Lieber & Friden, 2002).  The attenuation of 



Chapter 5  Timing of Milk Supplementation 

 

109 
 

active DOMS is of practical interest, as for the exercising individual soreness present 

during muscle actions is more important as it could potentially limit performance.  

However, muscle soreness may also provide a protective mechanism to allow 

sufficient time for recovery (Malm, 2001). 

 

It is proposed that athletes with EIMD can, therefore, limit performance decrements in 

the days following muscle damaging exercise through the consumption of milk-based 

protein-CHO after exercise.  Although pre-exercise ingestion may be potentially 

beneficial at 72 h this is of limited benefit as the ability to conduct everyday 

activities and perform will be reduced for longer.  It is, therefore, suggested that 

those exercising consume milk-based protein-CHO immediately following training or 

competition to limit the negative impact of EIMD on subsequent functional capacity.  This 

is in agreement with the results of the first study, but the novel outcome of this study is 

the benefit to stretch shortening cycle exercise, and that benefits are observed over 72 

h. 

 

In conclusion milk-based protein-CHO consumed immediately or 24 h post muscle 

damaging exercise hastens recovery by 72 h.  The exact mechanisms are 

presently unclear but may be due to limiting increases in protein degradation and/or 

stimulating protein synthesis.  However, further research is required to examine this 

theory. 
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6.1 Introduction 

The first two studies of this thesis have demonstrated that acute supplementation with 

milk or milk-based protein-carbohydrate (CHO) attenuates exercise-induced muscle 

damage (EIMD), and that the optimal timing of this supplementation should be 

immediately or 24 h following the exercise bout.  The benefits may be derived from 

altered protein metabolism during the secondary phase, limiting myofibrillar disruption 

and the loss of cell membrane integrity.  As a consequence, increases in intramuscular 

protein release and decrements in muscle function are limited.  There is also a benefit of 

supplementation on active muscle soreness but it is unlikely that this is derived from 

altered protein metabolism. 

 

The previous studies have provided participants with 1000 mL of the supplement, 

equating to 33 g protein and 118 g CHO for the milk-based protein-CHO 

supplement, and 34 g protein and 49 g CHO in milk.  This volume is quite large, 

especially in terms of caloric content.  Furthermore, following exercise this large volume 

may lead to stomach fullness and discomfort.  Other investigations demonstrating a 

positive impact of protein-CHO supplementation have provided participants with varying 

amounts of CHO and protein (Wojcik et al., 2001; Baty et al., 2007; Valentine et al., 

2008).  If the benefit of protein-CHO supplementation is derived from changes in 

protein metabolism then it can be hypothesised that less CHO and protein can be 

consumed to elicit similar effects, which may also be more beneficial for the athlete in 

terms of reduced caloric intake, and less stomach fullness and discomfort.  Rasmussen 

et al (2000) and Tipton et al (2001) have both demonstrated that as little as 6 g amino 

acids and 35 g of sucrose will promote muscle anabolism.  Furthermore, Moore et al 

(2009a) demonstrated that muscle protein synthesis reaches maximal stimulation after 

the consumption of 20 g high-quality intact protein, suggesting an upper limit for the 

incorporation of amino acids into proteins.  Consuming protein in greater amounts 

than this leads to no further increase in protein synthesis, with additional amino acids 

oxidised (Moore et al., 2009a).  By reducing the amount of protein and CHO through 

decreasing the volume of supplement ingested it may be hypothesised that benefits 

to changes in muscle function and intramuscular proteins will still be observed.  There 

have not been any other studies investigating the dose response of protein-CHO 

supplementation on recovery from EIMD. 
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It has been speculated, throughout the first two studies, that the benefits derived 

from acute milk-based protein-CHO supplementation are due to an impact on 

myofibrillar and membrane protein metabolism during the secondary phase of 

EIMD.  Changes in protein metabolism following EIMD may be related to 

phospholipase A2 (PLA2) and the ubiquitin-protesome (Ub-P) pathway, which have 

been associated with the activation of cytokines, specifically tumor necrosis factor-α 

(TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6).  To date only three studies in 

this research area have assessed cytokines to investigate underlying mechanisms 

(Wojcik et al., 2001; Rowlands et al., 2008; Betts et al., 2009).  Both Wojcik et al 

(2001) and Betts et al (2009) found no benefit of protein-CHO supplementation on 

any indirect markers of EIMD, including cytokines (IL-6, IL-10, IL-1), thereby 

limiting any conclusions that can be drawn.  Rowlands et al (2008) observed a 

possible decrease in creatine kinase (CK) with no changes in cytokines and markers 

of inflammation (IL-6, TNF-α, C-reactive protein (CRP)).  However, basing outcomes 

of protein-CHO supplementation on measures of CK limits conclusions as it is a highly 

variable marker of EIMD. 

 

IL-6 is thought to be the main systemic mediate of the acute inflammatory response 

following exercise (Pyne, 1994) with increases observed following eccentric 

exercise (Dousset et al., 2007; Miles et al., 2008; Buford et al., 2009; Philippou et al., 

2009).  The up-regulation of IL-6 may result in the loss of myofibrillar protein (Caiozzo 

et al., 1996), possibly through the activation of the Ub-P system, as it has attracted 

attention as a factor initiating this pathway (Murton, Constantin & Greenhaff, 

2008).  Another reason may be via the production of CRP (Peterson & Pederson, 2005), 

which also increases following eccentric exercise (Dousset et al., 2007).  

 

Therefore, the aims of this study were two-fold.  Firstly, to determine if a reduced 

volume of milk ingested immediately following muscle damaging exercise reduces 

indices of EIMD; secondly, to investigate the effect of acute milk ingestion on IL-6 and 

CRP. 
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6.2 Method 

6.2.1 Participants 

Twenty-four healthy male participants (age 21 ± 3 years; stature 181.4 ± 6.5 cm; mass 

79.7 ± 9.3 kg) who regularly competed in a variety of sports (team and individual) 

volunteered to take part in the study.  Participants were tested in the morning, 

following an overnight fast, to minimise diurnal variation. 

 

6.2.2 Experimental Design 

Participants were assigned to 1 of 3 independent groups: (i) 500 mL milk (FIVE), (ii) 

1000 mL milk (LITRE), or (iii) 1000 mL of water (CON).  A one-way ANOVA 

revealed no group differences in baseline participant characteristics, or peak torque 

values used for group allocation (p < 0.05). 

 

All participants were required to attend the laboratory on 4 consecutive days, the 

procedure for which is outlined in section 3.2.  Following muscle damaging 

exercise, participants consumed their allocated supplement in the relevant volume. 

 

6.2.3 Nutritional Supplement 

Participants were provided with semi-skimmed milk, the details of which are 

described in section 3.3.  This was altered from study 2; however, study 1 

demonstrated no differences between these two supplements, both being 

concluded as beneficial. 

 

6.2.4 Muscle Damaging Exercise 

Muscle damage of the hamstrings was induced via unilateral eccentric-concentric knee 

flexions on the Cybex Isokinetic Dynamometer (Cybex Norm).  Please refer to section 3.5 

for more detail. 
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6.2.5 Muscle Soreness Measurement 

Participants were required to rate both passive and active muscle soreness.  Active 

muscle soreness was assessed during concentric knee flexions.  Please refer to 

section 3.6 for further information. 

 

6.2.6 Muscle Function 

6.2.6.1 Peak Torque 

Participants‟ peak torque of 6 maximal concentric knee flexions was measured.  

Please refer to section 3.7.1 for more detail. 

 

6.2.6.2 Reactive Strength Index  

Reactive strength index was calculated from the mean of 3 drop jumps.  Please 

refer to section 3.7.2 for more detail. 

 

6.2.7 Blood Sampling and Analysis 

Venous blood was collected as described in section 3.8.  This was used for the 

analysis of CK (section 3.8.1), Mb (section 3.8.2), IL-6 and CRP. 

 

Plasma IL-6 concentrations were analysed from K3EDTA treated venous blood 

using an enzyme linked immunosorbent assay (R&D Systems, Minneapolis, USA).  

R&D Systems report intra- and inter-assay coefficient of variations for IL-6 at less than 

5.8 % and 9.6 %, respectively.  CRP activity was analysed using high sensitivity 

techniques (Advia 2400, Seimens Healthcare Diagnostica, Australia). R&D Systems 

report intra- and inter-assay coefficient of variations at less than 5.3 % and 6.8 %, 

respectively. 

 

6.2.8 Statistical Analysis 

Dependent variables were analysed using magnitude based inferences. Please refer 
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to section 3.9 for more detail. 

 

6.3 Results 

6.3.1 Muscle Soreness 

All groups demonstrated an increase in passive and active muscle soreness that 

peaked at 48 h and started returning to baseline levels by 72 h.  For changes in 

passive muscle soreness (DOMS), all comparisons were unclear except between 0 

and 48 h, which showed a possible benefit for participants consuming 500 mL of 

milk in comparison to those consuming 1000 mL of milk.  The p value for the main 

interaction effect was 0.601.  For changes in active DOMS, all comparisons were 

unclear in both legs (Figure 6.1).  The p value for the main interaction effect was 

0.454.   A summary of the statistical analysis for DOMS is shown in table 6.1. 
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6.3.2 Muscle Function 

A summary of the statistical analysis is shown in Table 6.2. 
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6.3.2.1 Peak Torque 

Baseline values for peak torque of the dominant leg for the control group, and the 

groups consuming 500 mL or 1000 mL of milk immediately following muscle damaging 

exercise were 146 Nm, 130 Nm and 136 Nm, respectively.  At 48 h, peak torque had 

decreased to 120 Nm, 113 Nm and 123 Nm for the control group, and the groups 

consuming 500 mL or 1000 mL of milk immediately following muscle damaging 

exercise, respectively.  At 72 h the control group demonstrated a decrease to 112 Nm, 

however, the group consuming 500 mL of milk and the group consuming 1000 mL of 

milk returned to baseline values of 130 Nm and 137 Nm, respectively. 

 

Changes in peak torque of the dominant leg between baseline and 48 h for the control 

group, those consuming 500 mL of milk and those consuming 1000 mL of milk were -

19 ± 33 %, -10 ± 9 % and -10 ± 10 %, respectively.  All effects were unclear.  

Between baseline and 72 h there was a likely benefit of both groups consuming 500 

mL (-3 ± 13 %) and 1000 mL (-3 ± 14 %) of milk in comparison to the control group (-20 

± 28 %) for changes in peak torque of the dominant leg.  There were no clear effects of 
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participants consuming 500 mL of milk v 1000 mL of milk (Figure 6.2). 

 

 

 

Baseline values of peak torque of the non-dominant leg were 128 Nm, 129 Nm and 

136 Nm for the control group, the group consuming 500 mL of milk and the group 

consuming 1000 mL of milk, respectively.  Peak decrements occurred at 48 h for the 

control group, the group consuming 500 mL of milk and the group consuming 1000 

mL of milk which were 110 Nm, 105 Nm and 117 Nm, respectively.  At 72 h values 

were 113 Nm, 117 Nm and 123 Nm for the control group, the group consuming 500 

mL of milk and the group consuming 1000 mL of milk, respectively. 

 

Changes in peak torque of the non-dominant leg between baseline and 48 h for the 

control group, the group consuming 500 mL of milk and the group consuming 1000 

mL of milk were -15 ± 20 %, -18 ± 22 % and -15 ± 18 %, respectively.  Changes 

between baseline and 72 h were -14 ± 28 %, -11 ± 27 % and -9 ± 8 % for the control 

group, the group consuming 500 mL of milk and the group consuming 1000 mL of milk, 

respectively.  All comparisons between baseline and 48 h, and baseline and 72 h for 
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changes in peak torque of the non-dominant leg were unclear.  The p value for the 

main interaction effect was 0.135. 

 

6.3.2.2 Reactive Strength Index 

Baseline values for reactive strength index for the control group, the group consuming 

500 mL of milk and the group consuming 1000 mL of milk were 110 cm.s-1, 118 cm.s-1 

and 111 cm.s-1, respectively.  At 48 h these decreased to 101 cm.s-1, 113 cm.s-1 and 

104 cm.s-1 for the control group, the group consuming 500 mL of milk and the group 

consuming 1000 mL of milk, respectively.  At 72 h reactive strength index for the 

control group, the group consuming 500 mL of milk and the group consuming 1000 mL 

of milk were 108 cm.s-1, 115 cm.s-1 and 99 cm.s-1, respectively. 

 

Between baseline and 48 h, changes for the control group, the group consuming 500 

mL of milk and the group consuming 1000 mL of milk were -8 ± 16 %, -4 ± 14 % and -

11 ± 47 %, respectively.  Changes between baseline and 72 h were -2 ± 18 %, -2 ± 

18 % and -12 ± 30 % for the control group, the group consuming 500 mL of milk and 

1000 mL of milk, respectively.  All comparisons were unclear and the p value for the 

main interaction effect was 0.786. 

 

6.3.3 Intramuscular Proteins in the Serum 

A summary of the statistical analysis is shown in Table 6.3. 
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6.3.3.1 Creatine Kinase 

Mean baseline CK values were 540.5 U.L-1, 113.4 U.L-1 and 150.4 U.L-1 for the control 

group, the group consuming 500 mL of milk and the group consuming 1000 mL of milk, 

respectively.  Baseline CK values for the control group are relatively high and this 

is due to one participant.  However, as results are analysed as the difference between 

groups in change over time, this participant was not removed from the analysis. 

 

Between baseline and 48 h, changes in CK were 6.7  13.3, 0.5 6.6 and 0.1  

9.3 for the control group, the group consuming 500 mL of milk and the group 

consuming 1000 mL of milk, respectively.  There was a very likely benefit of the group 

consuming 1000 mL of milk in comparison to the control group, and all other effects 

were unclear for changes between baseline and 48 h. 
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Changes for the control group, the group consuming 500 mL of milk and the group 

consuming 1000 mL of milk between baseline and 72 h were 12.9  10.2, 0.2  9.1 

and 3.0  5.2, respectively.  There was a possible benefit of the group consuming 

500 mL of milk in comparison to the control group, and all other effects were 

unclear for changes between baseline and 72 h (Figure 6.3).  The p value for the 

main interaction effect was 0.956. 

 

 

 

6.3.3.2 Myoglobin 

Mean baseline Mb values were 29.1 ng.mL-1, 21.8 ng.mL-1 and 30.2 ng.mL-1 for the 

control group, the group consuming 500 mL of milk and the group consuming 1000 mL of 

milk, respectively.  Changes for the control group, the group consuming 500 mL of milk 

and the group consuming 1000 mL of milk between baseline and 48 h were 7.0  

13.1, 8.1  6.1 and 1.6  7.8, respectively.  All effects were unclear for changes 

between baseline and 48 h.  Changes in Mb for the control group, the group 

consuming 500 mL of milk and the group consuming 1000 mL of milk were 15.5  
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8.2, 1.2  4.6 and 14.7  3.6 between baseline and 72 h, respectively.  There 

was a very likely benefit for the group consuming 500 mL of milk in comparison to 

the control group, and the group consuming 500 mL of milk was almost certainly 

beneficial in comparison to the group consuming 1000 mL of milk for changes 

between baseline and 72 h.  All other effects were unclear.  The p value for the main 

interaction effect was 0.859. 

 

6.3.4 Markers of Inflammation 

6.3.4.1 Interleukin-6 

IL-6 did not change significantly over time.  Baseline values for IL-6 were 1.86 pg.mL-1, 

1.28 pg.mL-1 and 0.90 pg.mL-1 for the control group, the group consuming 500 mL of 

milk and the group consuming 1000 mL of milk, respectively.  Between baseline and 48 

h, changes in IL-6 for the control group, the group consuming 500 mL of milk and the 

group consuming 1000 mL of milk were 27.9 ± 134.7 %, -32.4 ± 595.2 % and -44.5 ± 

130.4 %, respectively.  There was a likely benefit of the group consuming 1000 mL of 

milk in comparison to the control group, with all other effects unclear.  Changes in IL-

6 between baseline and 72 h were 11.1 ± 413.2 %, 23.5 ± 449.6 % and -49.0 ± 200.7 

% for the control group, the group consuming 500 mL of milk and the group consuming 

1000 mL of milk, respectively.  All comparisons were unclear.  The p value for the 

main interaction effect was 0.634. 

 

6.3.4.2 C-Reactive Protein 

Baseline values for CRP were 2.7 mg.L-1, 2.8 mg.L-1 and 1.7 mg.L-1 for the control 

group, the group consuming 500 mL of milk and the group consuming 1000 mL of 

milk, respectively.  Changes in CRP between baseline and 48 h were -19.4 ± 30.1 %, 

10.3 ± 43.3 % and -4.3 ± 75.8 % for the control group, the group consuming 500 mL of 

milk and the group consuming 1000 mL of milk, respectively.  Between baseline and 

72 h changes in CRP for the control group, the group consuming 500 mL of milk and 

the group consuming 1000 mL of milk were 52.6 ± 323.4 %, 25.2 ± 45.4 % and 59.1 ± 

58.8 %, respectively.  The effects of all comparisons for both time points were 

unclear.  The p value for the main interaction effect was 0.028. 
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6.4 Discussion 

The findings of this study demonstrate that decrements in isokinetic muscle 

function, and increases in CK can be blunted with the intake of less milk than has been 

previously shown.  There was no effect of milk ingestion on passive or active muscle 

soreness, reactive strength index or Mb.  Changes in IL-6 can be altered with the 

consumption of one litre of milk immediately following exercise, however, there were 

no effects on CRP. 

 

Reducing the volume of milk consumed and, therefore, the amount of protein and CHO 

had no negative effects for attenuating decrements in isokinetic muscle function and 

increases in CK.  It has been proposed that the benefit derived from milk is due to 

increases in protein synthesis and/or limiting increases in protein degradation.  It has 

been demonstrated that there is a dose-response relationship between muscle protein 

synthesis and amino acid intake after resistance exercise (Borsheim et al., 2002; 

Miller et al., 2003).  Moore et al (2009a) demonstrated that muscle protein synthesis 

is not further stimulated with intakes of protein above 20 g, and that this may be the 

upper limit for incorporation of amino acids into protein pools.  This study compared 

17 g to 34 g protein and found no difference, suggesting that, if the benefits are due to 

increased protein synthesis, then consuming 34 g does not provide extra amino 

acids that can be incorporated into new proteins to preserve myofibrillar and 

membrane proteins.  The excess protein consumed with 1000 mL of milk will not be 

utilised for the synthesis of new proteins, but is more likely to be oxidised (Moore et al, 

2009).  A change in CHO intake through reduced supplement volume also occurred.  

CHO increases insulin that can increase the capacity for muscle protein synthesis, 

however, sufficient amino acids are required for this to be reflected in elevated 

synthesis (Biolo et al., 1999; Volek, 2004).  Therefore, although CHO ingestion was 

reduced this is likely to have minimal effect on protein metabolism.  Furthermore, there is 

likely to be a ceiling effect to CHO intake were by consuming more does not provide 

greater effects.  Therefore, there is no additional benefit to attenuating EIMD with the 

consumption of larger volumes of milk. 

 

Milk, in either quantity, had no effect on increases in passive muscle soreness.  This 

is in agreement with the results of the previous two studies.  In contrast to the second 

study, there was no benefit of milk on reactive strength index, active muscle soreness 
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or Mb.  With regards to changes in reactive strength index, it has a coefficient of 

variation of 7.4 % which indicates a high degree of variability in measurement.  

Therefore, the different findings may be attributed to the low reliability of reactive 

strength index.  Secondly, the decrements observed in the control group over 48 and 

72 h in the second study were greater than those observed in the current study.  

Changes with consumption of one litre of milk consumed immediately following 

muscle damaging exercise were similar in both studies.  This may have masked any 

effect of milk supplementation.  A similar phenomenon was observed for active DOMS 

with participants perceiving less muscle soreness during the current study.  It is 

unknown why the control group demonstrated less muscle damage, based on measures 

of muscle soreness and reactive strength index, and this requires further investigation.  

Regarding effects on Mb, there was a benefit of 500 mL of milk but not a litre over 72 

h.  Again it is difficult to know why this occurred as if less protein and CHO intake limits 

increases in Mb then consuming more of the supplement should produce similar 

benefits.  The use of Mb, however, should be used with caution as assays to 

determine concentrations cannot determine between Mb released from the heart or 

skeletal muscle (Sorichter, Puschendorf & Mair, 1999). 

 

To investigate possible underlying mechanisms, IL-6 and CRP were assessed.  

This is because cytokines have been implicated in many of the pathways 

responsible for myofibrillar and membrane damage and thus changes in indirect 

markers.  There was a likely benefit of a litre of milk in comparison to the control 

group over 48 h on IL-6.  However, altering the IL-6 response did not appear to 

have any additional benefits for changes in muscle function, as there were no 

differences in changes of peak torque between both milk groups.  Research has 

shown that muscle proteolysis is limited with branched chain amino acids 

supplementation, but this response was independent of the IL-6 response (Rohde 

et al., 1997).  More recently, it was shown that CHO supplementation for 48 h 

following high force eccentric exercise did not attenuate the response of IL-6 (Miles 

et al., 2007).  However, there was no impact of CHO on other indirect markers of 

EIMD (Miles et al., 2007).  Therefore, the relevance of this finding requires further 

investigation.  There were no effects of milk on CRP over 48 or 72 h.  Taken 

collectively, the mechanisms underlying the benefits of acute milk supplementation 

require further investigation as the results presented here are inconclusive.  Future 

studies should concentrate on measuring TNF-α and IL-1β as these are the most pro-
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inflammatory combination of cytokines (Pyne, 1994), both with potential for limiting 

protein synthesis (Frost, Lang & Gelato, 1997) and increasing degradation (Andreu 

& Schwartz, 1995).  Furthermore, the current study measured IL-6 and CRP 

systematically and not locally, therefore, future studies should possibly use 

microdialysis techniques. 

 

In conclusion, decrements in muscle function following muscle damaging exercise can 

be limited with the immediate consumption of 500 mL of milk.  The attenuation of 

EIMD, specifically isokinetic muscle function, with protein-CHO is not novel; however, 

this study provides athletes with important information regarding the volume to be 

consumed.  Consuming a supplement with more than 20g of protein may not provide 

any extra benefit for blunting EIMD.  An insight into the role of cytokines and markers 

of inflammation in the limitation of EIMD with milk has been provided.  However, this is 

preliminary research and further investigation is warranted investigating the role 

of the inflammatory process and protein metabolism. 
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7.1 Introduction 

The studies in this thesis have provided information regarding type, timing and 

amount of milk supplementation required to attenuate exercise-induced muscle 

damage (EIMD).  Five hundred millilitres of milk consumed immediately following 

muscle damaging exercise has a beneficial effect, over 48 h and 72 h, on isokinetic 

muscle function and creatine kinase (CK), and in some studies, myoglobin (Mb) and 

active muscle soreness (DOMS) have been attenuated.  Limiting decrements in 

muscle function following muscle damaging exercise is important to the athlete.  The 

first three studies utilised isokinetic dynamometry to assess changes in muscle 

function.  Isokinetic dynamometry has limited external validity when extrapolating to a 

sporting context (Baltzopoulos & Gleeson, 2001), as it does not produce velocities 

used in sport or utilise the stretch shortening cycle.  The second study 

demonstrated benefits to stretch shortening cycle exercise; however, this was not 

reproduced in the third study.  It is clear that to apply the findings of the first three 

studies to athletes then the effects of milk on many different facets of exercise 

performance requires investigation. 

 

Field-based team sports such as soccer, rugby and hockey are popular throughout the 

world (Spencer et al., 2005).  The competitive demands of these sports may impose 

strains on various physiological systems to a point where recovery strategies post-

exercise become influential in preparing for the next match (Reilly & Ekblom, 2005).  

Soccer matches have been shown to induce decrements in hamstring peak torque 

and increases in 20 m sprint time and CK concentrations up to 72 h post-match 

(Ascensao et al., 2008).  Following a rugby match, CK is increased from 24 h 

through to 84 h (Suzuki et al., 2004; Gill, Beaven & Cook, 2006), and lactate 

dehydrogenase (LDH) is increased at 48 h (Suzuki et al., 2004).  The Loughborough 

Intermittent Shuttle Test (LIST), which simulates the physiological demands of field-based 

team sports (Nicholas, Nuttall & Williams, 2000) has been shown to lead to increases in 

EIMD (CK, aspartate aminotransferase) and muscle soreness up to 72 h (Thompson, 

Nicholas & Williams, 1999).  Reported muscle soreness is highest in the hamstrings 

(Thompson, Nicholas & Williams, 1999).  It is therefore apparent that field-based 

team sport athletes will suffer from a degree of muscle damage that can potentially 

hinder subsequent training and performance, and that this damage is most 

pronounced in the hamstrings.  During the competitive season the usual weekly cycle 

of training, taper, competition and recovery can be altered (Ascensao et al., 2008).  
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The match day may not necessarily be the same from week to week (Ascensao et al., 

2008) and a number of matches could take place in one week, alongside training.   

Therefore, these athletes need to be able to limit the consequences of 

muscle damage so that they can perform optimally during subsequent training and 

matches.  Therefore, this study aims to apply the findings of the first three studies to a 

sporting situation and investigate the effect of milk supplementation following muscle 

damaging exercise on performance tests specific to field-based team sports. 

 

7.2 Methods 

7.2.1 Participants 

Fourteen healthy male participants (age 24 ± 4 years; stature 183.1 ± 7.1 cm; mass 79.9 

± 8.4 kg) who competed in non-league (Northern League) soccer volunteered to take 

part in the study.  In addition to recording their diet throughout the study, participants 

were asked to record their diet one day prior to performing their baseline LIST and 

repeat this the day prior to completing the LIST following muscle damaging exercise.  

Participants were tested in the morning, following an overnight fast, to minimise diurnal 

variation. 

 

7.2.2 Experimental Design 

Participants were assigned to one of two independent groups: (i) 500 mL semi-skimmed 

milk (MILK), (ii) 500 mL water (CON).  An independent t-test revealed no group 

differences in baseline participant characteristics (age and body mass), except 

height (p < 0.05).  However, body mass index was not significantly different between 

groups (p < 0.05). 

 

Prior to any testing, participants were asked to attend a familiarisation session, which 

involved completion of the multi-stage fitness test (MSFT).  This was used to determine 

the intensity of the LIST.  All participants were required to attend the laboratory on 5 

days.  On the first visit participants completed baseline performance tests 

(countermovement jump height, reactive strength index, 15 m sprint, change of direction 

speed) and the LIST.  Participants then reported to the laboratory a week later for 4 

consecutive days.  The first day involved completing the muscle damaging protocol and 
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immediately following this, participants consumed their allocated supplement.  At 24, 

48 and 72 h following muscle damaging exercise, participants returned to the 

laboratory to complete baseline performance tests.  At 48 h, participants completed the 

LIST.  A schematic representation of the testing protocol is shown in Figure 7.1. 

 

 

7.2.3 Nutritional Supplement 

Participants were provided with semi-skimmed milk, the details of which are 

described in section 3.3. 

 

7.2.4 Muscle Damaging Exercise 

Muscle damage of the hamstrings was induced via unilateral eccentric-concentric knee 

flexions on the Cybex Isokinetic Dynamometer (Cybex Norm).  Please refer to section 3.5 

for more detail. 

 

7.2.5 Muscle Soreness Measurement 

Participants were required to rate passive soreness and active muscle soreness of the 

hamstrings during all performance measures.  Please refer to section 3.6 for further 

information. 
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7.2.6 Multi-Stage Fitness Test 

The MSFT was completed to gain predictive measures of VO2max in order to 

calculate the running speeds required to elicit 55 % and 95 % of VO2max for 

performance of the LIST (Ramsbottom, Brewer & Williams, 1988).  This involved 

participants running 20 m shuttles, signalled by audio bleeps, which increased in 

running velocity until volitional exhaustion or the participant failed to finish a shuttle in 

time with the bleep on two consecutive occasions. 

 

7.2.7 Muscle Function 

7.2.7.1 Countermovement Jump 

Vertical jump height is commonly used when assessing performance in team-based field 

sports (Keogh, Weber & Dalton, 2003; Wisloff et al., 2004; Gabbett, 2006), and can be 

used as a measure of explosiveness.  In order to assess this, countermovement jump 

height was assessed.  Using a force plate (Kistler Instrumente AG, 

Winterthur, Switzerland), participants were required to place their hands on their 

hips to minimise impact of arm swing, and in one flowing movement bend their knees to 

approximately 90° and then jump straight into the air for maximum height.  

Participants jump height was calculated from flight time and the mean of 2 jumps was 

used for analysis.  The coefficient of variation for this protocol calculated from 

reliability trials conducted in Northumbria University Laboratories is 1.9 %. 

 

7.2.7.2 Reactive Strength Index 

Reactive strength index was calculated from the mean of 3 drop jumps.  Please refer 

to section 3.7.2 for more detail. 

 

7.2.7.3 15 m Sprint 

Speed is a fitness prerequisite for field-based team sport athletes (Reilly, Bangsbo & 

Franks, 2000; Keogh, Weber & Dalton, 2003; Gabbett, 2006).  A 15 m sprint was used 

to assess this physiological parameter.  This distance was chosen as it is reported to 

be the average sprint distance covered during soccer match analysis (Stolen et al., 

2005).  Timing gates (Brower Timing Systems, Utah, USA) were placed at 0, 5, 10 
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and 15 m in order to gain split times.  Participants were instructed to sprint through all 

timing gates as fast as possible from a standing start positioned 30 cm behind the first 

timing gate.  Participants completed this twice and the mean of two performances was 

used for analysis.  Coefficient of variations for this test, calculated from reliability 

trials conducted at Northumbria University Laboratories are between 0.6 and 1.5 %. 

 

7.2.7.4 Change of Direction Speed 

During field-based team sports, players are continually involved in sudden 

directional changes in order to be effective during a match (Mujika et al., 2009), and 

change of direction speed has been shown to discriminate between elite and sub- elite 

soccer players (Reilly et al., 2000).  The T-Test was used as it includes forwards, 

backwards and lateral movements, and acceleration and deceleration, which are all 

involved during field-based team sports.  Timing gates were set up at 0 m, with a 

cone set out 9.14 m forward of this.  At 90° to the left and right of this cone, cones 

were set at 4.57 m (Figure 7.2).  Participants were required to sprint straight to the first 

cone, side-step left, change direction and side-step to the other cone, change direction 

side-step to the central cone and then run backwards through the timing gates.  

Participants were instructed to complete this in the quickest time possible adhering 

to the following rules: must face forward at all times; during side-stepping legs must 

not cross; each side cone must be touched using the hand; when returning to the 

central cone participants must not cut the corner.  Non-adherence to these rules 

resulted in that measurement being removed from analysis.  The mean of two T-tests 

was used for analysis, and the coefficient of variation for this protocol calculated 

from reliability trials conducted in Northumbria University Laboratories is 0.6 %. 
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7.2.7.5 Loughborough Intermittent Shuttle Test 

The LIST is a 90 minute shuttle run test designed to elicit the physiological 

demands of field-based team sports (Nicholas, Nuttall & Williams, 2000).  The test is 

divided into 6, 15 minute cycles that consist of; 3 x 20 m walk at 1.5 m.s-1, 1 x 15 m 

sprint (recovery), 3 x 20 m run at 95 % of VO2max, 3 x 20 m cruise at 55 % of VO2max 

(Figure 7.3). 

 

Each sprint throughout the LIST was timed using timing gates (Brower Timing 

Systems, Utah, USA) set up at 0 and 15 m, which were used to calculate mean sprint 

times for each 15 minute cycle.  Participants were also required to wear a heart rate 

monitor and watch (Polar Electro, Oy, Finland) throughout the LIST to determine mean 

heart rate, which was averaged over 5 s for each cycle.  Lastly, after each 15 min 

cycle participants were asked to rate their perceived levels of exertion on a rating of 

perceived exercise (RPE) scale (Borg, 1998).  During the LIST, participants were 

allowed to drink water ad libitum, the volume of which was recorded.   During 

subsequent testing participants were asked to consume the same volume. 

 

The LIST has been shown to be reproducible (Nicholas, Nuttall & Williams, 2000) and, 

therefore, is a valuable tool to investigate the effects of muscle damage on field-

based team sports. 
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7.2.8 Blood Sampling and Analysis 

Venous blood was collected as described in section 3.8.  This was used for the 

analysis of CK (section 3.8.1) and Mb (section 3.8.2). 

 

7.2.9 Statistical Analysis 

Dependent variables were analysed using magnitude based inferences.  Please refer 

to section 3.9 for more detail. 

 

7.3 Results 

7.3.1 Muscle Soreness 

Both groups showed an increase in passive and active DOMS (all performance 

measures) up to 48 h.  At 72 h this started to return to baseline levels (Figure 7.4). 

 

All effects at both time points were unclear.  The p values for all main interaction 

effects were 0.643, 0.860, 0.744, 0.973 and 0.944 for muscle soreness measured 

passively and during a countermovement jump, drop jump, 15 m sprint and the T-test, 
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respectively.  A summary of the statistical analysis is shown in Table 7.1. 

 

 

 

7.3.2 Muscle Function 

A summary of the statistical analysis is shown in Table 7.2. 
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7.3.2.1 Countermovement Jump 

Baseline jump height for the control and milk groups were 32.8 cm and 33.2 cm, 

respectively.  Jump height decreased for both groups over 72 h.  Changes between 

baseline and 48 h for the control and milk groups were -6.9 ± 6.3 % and -5.5 ± 

6.0 %, respectively.  Between baseline and 72 h changes in jump height were -9.0 ± 

9.2 % and -7.0 ± 3.4 % for the control and milk groups, respectively.  All effects for 

both time points were unclear.  The p value for the main interaction effect was 0.695. 

 

7.3.2.2 Reactive Strength Index 

Reactive strength index decreased for both groups over 48 h and at 72 h levelled 

off.  Baseline values were 124 cm.s-1 and 126 cm.s-1 for the control and milk 

groups, respectively.  Changes between baseline and 48 h for the control and milk 

groups were -18.2 ± 20.1 % and -22.8 ± 22.6 %, respectively.  Between baseline and 

72 h changes in jump height were -16.3 ± 12.5 % and -21.5 ± 14.8 % for the 

control and milk groups, respectively.  All effects for both time points were unclear.  
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The p value for the main interaction effect was 0.223. 

 

7.3.2.3 15 m Sprint 

At baseline the time taken to cover 5 m was 1.14 s and 1.11 s for the control and milk 

groups, respectively.  Between baseline and 48 h there were no clear effects of the 

control group (4.5 ± 7.4 %) in comparison to the milk group (1.4 ± 3.2 %) for 

attenuating increases in the time to cover 5 m.  This was the same for changes 

between baseline and 72 h where the change in the control group was 4.8 ± 4.8 % 

and in the milk group was 3.4 ± 5.3 %.  The p value for the main interaction effect was 

0.748. 

 

At baseline the time taken to cover 10 m was 1.89 s and 1.86 s for the control and milk 

groups, respectively.  Between baseline and 48 h there was a possible benefit of the 

milk group (1.7 ± 1.8 %) in comparison to the control group (5.0 ± 4.8 %) for blunting 

increases in the time to cover 10 m.  The effect was unclear for changes between 

baseline and 72 h where the change in the control group was 5.2 ± 2.1 % and in the 

milk group was 4.0 ± 1.9 %.  The p value for the main interaction effect was 0.860. 

 

At baseline the time taken to cover 15 m was 2.57 s and 2.53 s for the control and 

milk groups, respectively.  Between baseline and 48 h there were no clear effects 

of the milk group (3.5 ± 2.5 %) in comparison to the control group (5.1 ± 4.0 %) for 

attenuating increases in the time to cover 15 m.  There was a possible benefit of the 

milk group (2.6 ± 2.5 %) in comparison to the control group (5.9 ± 4.3 %) for blunting 

increases in the time to cover 15 m between baseline and 72 h (Figure 7.5).  The p value 

for the main interaction effect was 0.720. 
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7.3.2.4 Change of Direction Speed 

Baseline values for change of direction speed were 10.61 s and 10.31 s for the control 

and milk groups, respectively.  Between baseline and 48 h there were no clear effects 

of the milk group (2.0 ± 3.4 %) in comparison to the control group (3.4 ± 3.5 %) for 

blunting increases in change of direction speed.  There was, however, a likely benefit 

of the milk group (0.7 ± 3.9 %) in comparison to the control group (4.8 ± 3.1 %) for 

attenuating increases in change of direction speed between baseline and 72 h (Figure 

7.6).  The p value for the main interaction effect was 0.086. 
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7.3.3 LIST Performance 

A summary of the statistical analysis is shown in Table 7.3. 

 

 

7.3.3.1 Heart Rate 

Heart rate during the LIST before muscle damaging exercise was 158 bpm and 150 

bpm for the control and milk groups, respectively.  There was no clear effect of the milk 

group (4 ± 14 bpm) in comparison to the control group (-4 ± 9 bpm) for attenuating 

changes in heart rate.  The p value for the main interaction effect was 0.533. 

 

7.3.3.2 Rating of Perceived Exertion 

RPE before muscle damaging exercise was 16 and 15 for the control and milk 

groups, respectively.  There was no clear effect of the milk group (1 ± 1) in 

comparison to the control group (0 ± 2) for attenuating changes in RPE.  The p 

value for the main interaction effect was 0.197. 
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7.3.3.3 15 m Sprint 

The mean time to cover 15 m during 90 minutes of the LIST prior to muscle 

damaging exercise for the control and milk groups was 2.93 s and 2.86 s, 

respectively.  There was a likely benefit of the milk group (0.0 ± 2.0 %) in comparison 

to the control group (2.4 ± 1.9 %) for blunting increases in the mean time to cover 15 

m during 90 minutes of the LIST (Figure 7.7).  The p value for the main interaction 

effect was 0.009. 

 

 

7.3.4 Intramuscular Proteins in the Serum 

A summary of the statistical analysis is shown in Table 7.4. 
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7.3.4.1 Creatine Kinase 

Mean baseline CK values for the the control and milk groups were 321 U.L-1 and 174 

U.L-1, respectively.  Baseline CK values for the control group are relatively high but as 

results are analysed as the difference between groups in change over time this would 

not alter results.  For both groups CK increased over 72 h.  There were no clear 

effects of the milk group (5.0  3.1) in comparison to the control group (1.5  2.3) 

for limiting increases in CK between baseline and 48 h.  Between baseline and 72 h 

there were no clear effects of the milk group (11.4  7.0) in comparison to the control 

group (4.9  5.2) for blunting increases in CK.  The p value for the main interaction 

effect was 0.655. 

 

7.3.4.2 Myoglobin 

Mean baseline Mb values were 41.8 ng.mL-1 and 34.1 ng.mL-1 for the control and milk 

groups, respectively.  Both groups showed an increase in Mb up to 72 h (Figure 7.8).  

Between baseline and 48 h changes in Mb were 1.4  2.6 and 1.3  3.3 for the 

control and milk groups, respectively.  Changes between baseline and 72 h in the 

control and milk group were 3.1  4.1 and 1.9  3.4, respectively.  There were no 

clear effects at any time point.  The p value for the main interaction effect was 0.549. 
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7.4 Discussion 

The primary finding of this study was that milk consumed immediately following 

muscle damaging exercise limited decrements in physiological aspects of field- 

based team sports.  A benefit was observed for the time to cover 10 and 15 m, 

change of direction speed and mean 15 m sprint performance during the LIST.  

There was no benefit for active and passive muscle soreness, increases in 

intramuscular proteins in the serum, reactive strength index, countermovement jump 

height, and RPE and heart rate during the LIST. 

 

The finding of attenuated muscle function is in agreement with the first three 

studies.  However, the previous studies have demonstrated benefits to isokinetic 

concentric muscle actions, whereas the current study demonstrated a benefit for 

dynamic sporting movements.  The ingestion of milk may have increased 

myofibrillar protein synthesis and/or limited increases in degradation that may have 

maintained the force transmitting and/or force generating protein structures, or 

enhanced repair.  This would allow subsequent performance to take place at closer to 
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optimal levels.  These structural factors are only one hypothesised reason why 

decrements in muscle function occur following muscle damaging exercise, and is a likely 

mechanism underlying the attenuation of one-off performance.  A reduction in glycogen 

re-synthesis has also been observed following muscle damaging exercise (O'Reilly et al., 

1987; Asp et al., 1998; Zehender et al., 2004).  Muscle glycogen is important for 

performance in intermittent sports and, therefore, impairment of glycogen re-

synthesis will limit performance (Byrne, Twist & Eston, 2004).  The LIST replicates 

the physiological demands of field-based team sports (Nicholas, Nuttall & Williams, 

2000), and muscle glycogen is depleted during it (Nicholas et al., 1999).  Therefore, if 

muscle glycogen is primarily utilised during the LIST and the re-synthesis of it is 

inhibited, the ability to perform repeated sprints will be reduced.  The intake of milk 

could have limited these changes.  Reduced glucose uptake into the muscle cell due to 

inflammatory processes (Jansson, Hjemdahl & Kaijser, 1986; Costill et al., 1990; Kirwan 

& Del Aguila, 2003) and decreased insulin sensitivity due to disruption of the muscle 

cell membrane (Doyle, Sherman & Strauss, 1993), and reduced glucose transport via 

GLUT4 (Asp, Daugaard & Richter, 1995) have all been implicated in reduced glycogen 

re-synthesis.  The intake of milk may limit disruption to the muscle membrane, decreases 

in GLUT4 content or impact on the proteolytic pathways stimulated via inflammation, all 

of which may impact on the muscles ability to re-synthesise glycogen.  In turn this 

would allow participants to maintain their ability to perform repeated sprints to a 

greater extent, which is what has been observed in this study. 

 

There was no impact of milk on the physiological responses (RPE and heart rate) to 

performance of the LIST.  Muscle damaging exercise has been shown to increase RPE 

during endurance exercise performed 48 h later (Davies, Rowlands & Eston, 2009; 

Twist & Eston, 2009).  A change in RPE is implicated in reduced 

performance (Twist & Eston, 2009).  RPE did not increase in either group; 

therefore, this will not have impacted on performance.  Heart rate averaged over each 

15 min cycle also did not change between pre and post muscle damaging exercise in 

either group.  Therefore, participants‟ ability to exercise at a relative intensity was not 

altered due to EIMD.  This provides indirect evidence against a centrally regulated 

mechanism of reduced performance. 

 

Similar to previous studies there was no benefit of milk on passive or active muscle 

soreness. During measurement of either aspect of muscle soreness the 
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hamstrings were not isolated.  This may have, therefore, affected individual 

perceptions of DOMS.  Secondly, milk supplementation may not impact on the 

processes leading to DOMS.  The lack of impact of milk supplementation on 

intramuscular proteins measured in the serum is in contrast to previous studies.  The 

degradative pathways impacting on membrane disruption are different from those that 

lead to myofibrillar disruption, and thus muscle function.  Milk may only impact on 

myofibrillar protein metabolism and not lysosomal degradation, which is why only 

benefits were observed to most aspects of muscle performance.  However, this 

does not explain why differences were observed in previous studies. CK is a highly 

variable indirect marker of EIMD and Mb should be used with caution as previously 

discussed; this may have impacted on the contrasts observed.  From an applied 

perspective, changes in intramuscular proteins are likely to be functionally 

irrelevant; therefore, this finding will be of no concern to athletes involved in field-

based team sports. 

 

Similar to study 3 there was no benefit of milk intake on measures of reactive strength 

index, and in addition there was no benefit to countermovement height. The 

decrements observed in reactive strength index were similar to those for the control 

group in study 2.  During jumping activities, the hamstrings do not play a significant role 

in performance; therefore, if milk ingestion does limit myofibrillar damage then an 

impact on performance will not be observed.  This is because other major muscle 

groups impacting on jumping ability may mask the effects.  During sprinting activities 

the hamstrings are used to a greater extent than the quadriceps (Mann, Moran & 

Dougherty, 1986), which may be why benefits to this aspect of performance were 

observed.  However, there was no effect of milk supplementation on the time to cover 5 

m. The electromyogram (EMG) activity of the hamstrings increases as speed 

increases (Mero & Komi, 1987), therefore, during the initial 5 m other lower limb 

muscles may have a more predominant role in performance. 

 

This study has demonstrated that 500 mL of milk consumed immediately following 

muscle damaging exercise limits decrements in one-off sprinting performance and 

change of direction speed, and the ability to perform repeated sprints during the 

physiological replication of field-based team sports.  These athletes would, 

therefore, be able to limit performance decrements following training or matches that 

could impact on subsequent performance.  During the competitive season, this is 
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important as the match day does not always occur on the same day each week 

(Ascensao et al., 2008) and on many occasions a number of matches take place in one 

week.  This information provides coaches and sports scientists with the 

knowledge of how long performance can be affected after a match or training, and use 

it to inform recovery strategies.  The hypothesised reasons may be linked to alterations 

in protein metabolism and the maintenance of muscle glycogen resynthesis. 
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8.1 General Discussion 

The overall purpose of this thesis was to investigate the effect of acute milk 

supplementation on the attenuation of Exercise Induced Muscle Damage (EIMD).  The 

main finding was that 500 mL of milk consumed immediately following muscle 

damaging exercise reduces decrements in many aspects of muscle function 

between 48 and 72 h, including peak torque, sprints, change of direction ability and 

repeated sprints during physiological replication of field-based team sports.  There was 

some evidence that this intervention also limited decreases in reactive strength index 

and increases in active muscle soreness and intramuscular proteins, but this was not 

conclusive.  There was no benefit of milk on measures of passive muscle soreness or 

countermovement jump height. 

 

A number of studies have previously demonstrated beneficial effects of protein-

carbohydrate (CHO) on EIMD (Saunders, Kane & Todd, 2004; Seifert et al., 2005; 

Baty et al., 2007; Saunders, Luden & Herrick, 2007; Valentine et al., 2008), and this 

thesis adds to the existing literature.  However, the majority of these studies have 

based their conclusions on measures of intramuscular proteins in the serum, as previously 

discussed.  Very few studies measuring muscle function following EIMD have 

demonstrated beneficial effects of acute protein-CHO supplementation (Valentine et 

al., 2008).  This thesis is, therefore, novel in its findings of attenuated 

decrements in muscle function and has extended the literature to findings that can be 

applied to field-based team sports.  Furthermore, there is no existing literature 

investigating volume of supplementation and only one other study (White et al., 2008) 

that has examined timing of supplementation.  Therefore, the findings reported in 

this thesis can be practically applied to provide specific advice for athletes. 

 

There are a number of proposed theories as to why supplementation with 500 mL of 

milk immediately following muscle damaging exercise reduces EIMD.  These are 

highlighted in Figure 8.1.  Throughout this thesis it has been proposed that the 

primary benefit is due to changes in protein metabolism.  Following eccentric 

exercise there are increases in mixed muscle (Phillips et al., 1997; Trappe et al., 

2002b) and myofibrillar (Moore et al., 2005) protein synthesis, which is possibly 

linked to an increase in p70S6K.  Following eccentric exercise p70S6K 

phosphorylation increases for 2 h in the absence of nutritional supply (Eliasson et al., 

2006).  Mixed muscle protein degradation is elevated following eccentric exercise 
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(Fielding et al., 1991; Lowe et al., 1995; Phillips et al., 1997).  Results surrounding the 

effect of eccentric exercise on myofibrillar protein degradation are equivocal likely due to 

the difficulty of using 3-methylhistadine (3-MH) as a measure.  These changes in muscle 

protein metabolism will result in a negative protein balance in the absence of 

nutritional supply, as this has been observed following resistance exercise (Biolo et al., 

1995; Phillips et al., 1997).  The catabolic state of the muscle is likely responsible 

for the sarcomere damage that has been observed (Newham et al., 1983; Lauritzen 

et al., 2009), specifically damage to the Z-disks (Hansen et al., 2009) resulting from 

the loss of desmin (Friden & Lieber, 1998), actin, myosin (Ingalls, Warren & 

Armstrong, 1998), titin and nebulin (Trappe et al., 2002a).  However, relationships 

between protein metabolism and damage have not been investigated. It is postulated 

that the co-ingestion of CHO and protein in the form of milk leads to a positive protein 

balance following eccentric exercise due to an increase in protein synthesis and/or 

limiting increases in protein breakdown. 

 

 

Milk ingestion following resistance exercise has been shown to lead to a positive net 

muscle protein balance (Elliot et al., 2006).  CHO intake reduces the negative protein 

balance observed due to a progressive and delayed reduction of protein breakdown 

(Miller et al., 2003; Borsheim et al., 2004).  CHO intake increases insulin 
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concentrations (Miller et al., 2003; Borsheim et al., 2004), which could decrease 

lysosomal activity (Mortimore, Ward & Schworer, 1978).  Protein intake stimulates net 

muscle protein synthesis (Tipton et al., 2004; Tang et al., 2009) from a combination of 

myofibrillar and sarcoplasmic protein synthesis (Moore et al., 2009b).  The co-

ingestion of these nutrients is, therefore, optimal for eliciting an anabolic state.  

Following eccentric exercise, the intake of milk leading to a positive protein balance could 

enhance repair (Blacker et al., 2010) and/or limit damage of muscle proteins. 

 

Following a combination of resistance exercise and amino acids or protein and CHO 

intake, a positive protein balance is mainly attributed to increases in protein synthesis 

(Borsheim, Aarsland & Wolfe, 2004).  The ingestion of milk could stimulate protein 

synthesis by providing the substrate (amino acids) and the signal required for 

protein synthesis to occur.  The intake of protein will increase the availability of 

intracellular amino acids, which would allow protein synthesis to take place. 

Consuming protein will increase amino acid plasma concentrations that will stimulate 

amino acid transporters to increase the uptake of amino acids into the muscle cell, 

increasing intracellular amino acid availability and thus protein synthesis (Miller et al., 

2004).  This will be a delayed response due to the time required for milk proteins to be 

digested and go through the process of gastric emptying, which has a half-time of 26 

minutes (Calbet & MacLean, 1997).  This may allow amino acid availability to coincide 

with increased insulin concentration, therefore, allowing insulin to exert its effect on 

muscle protein synthesis.  This is postulated to be the reason why milk should be 

consumed following exercise as the availability of nutrients will coincide with the 

secondary phase exacerbating the damage, rather than the primary mechanical 

event.  Milk could also provide a signal for increasing muscle protein synthesis via the 

Akt-mTOR-p70S6K pathway.  Branched chain amino acid ingestion following resistance 

exercise leads to significant increases in p70S6K phosphorylation (Karlsson et al., 

2004).  This could increase messenger ribonucleic acid (mRNA) translation and thus 

muscle protein synthesis, however, this is not clear from the research.  Increasing 

muscle protein synthesis, both myofibrillar and nonmyofibrillar, would enhance 

repair of the damaged structures, and thus changes in muscle function and 

intramuscular proteins measured in the plasma would be reduced.  The finding that 

only 500 mL of milk is required to elicit positive effects on EIMD provides indirect 

support for increases in protein synthesis being the underlying mechanism.  

Muscle protein synthesis is not further stimulated by consuming more than 20 g of 

protein (Moore et al., 2009a), therefore, consuming 1000 mL of milk containing 34 g 
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protein would not provide any extra benefit to attenuating EIMD.  The third study of this 

thesis demonstrated this was the case.  However, increasing muscle protein synthesis is 

unlikely to be the sole underlying cause as increasing myofibrillar protein synthesis is 

unlikely to repair enough damaged muscle proteins within 48 h (Tipton, personal 

communication). 

 

Providing protein and CHO may also limit muscle protein breakdown, thus limiting 

ultrastructural damage and, therefore, changes in indirect markers of EIMD.  

Providing a CHO/amino acid supplement following resistance exercise has been shown to 

significantly reduce myofibrillar protein breakdown (Bird, Tarpenning & Marino, 

2006).  CHO may attenuate muscle protein degradation through the action of 

insulin.  Protein intake will provide exogenous amino acid that can be utilised for increased 

synthesis rather than elevating breakdown to provide the substrate, therefore, 

suppressing the signal for muscle protein breakdown (Biolo et al., 1997; Greer et al., 

2007). 

 

The intake of milk limits decrements in muscle function.  Disruption to the 

sarcomere and excitation-contraction (E-C) coupling damage can both limit the 

ability of the muscle to produce force (Warren et al., 2002).  Initial decrements in 

force production are postulated to be due to E-C coupling damage (Warren et al., 

2002).  In the days following muscle damaging exercise, myofibrillar damage is 

thought to play an increased role in reduced muscle function (Warren et al., 2002; 

Raastad et al., 2010).  Research has found significantly, strong correlations 

between muscle function and myofibrillar disruption (Lauritzen et al., 2009; Raastad et 

al., 2010).  Myofibrillar protein breakdown occurs via the activation of the ubiquitin-

proteosome system (Ub-P).  Calpain activation is the first step in myofibrillar 

degradation (Saido, Sorimachi & Suzuki, 1994) and is probably necessary for 

complete disruption via the Ub-P pathway.  Therefore, the intake of milk may suppress 

protein degradation occurring via this pathway.  Limiting myofibrillar protein 

breakdown would lead to greater preservation of the myofibrillar proteins responsible 

for force transmission and generation, therefore, limiting decrements in muscle 

function.  Reduced decrements in muscle function were not observed until 48 - 72 

h, which may provide indirect evidence that it is the blunting of myofibrillar protein 

degradation which is the underlying mechanism.  At these time points loss of muscle 

proteins is likely to have a greater role in reduced muscle function than damage to the 

E-C coupling system.  However, milk consumption may alter metabolism of the proteins 
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involved in E-C coupling; therefore, milk impacting on E-C coupling damage should 

not be ruled out.  The muscle function measures utilised in this thesis would 

predominantly rely on fast twitch muscle fibres.  Following muscle damaging 

exercise, damage may have predominantly occurred in these fibres; therefore, 

muscle function relying on these fibres for force production would be detrimentally 

affected. 

 

There was evidence that acute milk supplementation limited increases in 

intramuscular proteins measured in the serum.  The lysosomal pathway leads to the 

breakdown of non-myofibrillar proteins (Biolo et al., 2000; Waterlow, 2006), and this 

may be stimulated during EIMD.  Similar to the discussion of the Ub-P pathway, 

the intake of milk could limit protein degradation via this pathway leading to better 

maintenance of the membrane structures within the muscle, and thus reducing 

increases in intramuscular proteins released into the plasma.  The lysosomal 

system is sensitive to changes in amino acids concentration (Fulks, Li & 

Goldberg, 1975), and insulin secreted by CHO can decrease the proteolytic activity of 

lysosomes (Mortimore, Ward & Schworer, 1978).  Furthermore, mTOR, part of the 

Akt-mTOR-p70S6K intracellular signalling pathway of protein synthesis, inhibits the 

autophagy process (Negro et al., 2008).  Therefore, the intake of milk that signals 

this pathway may limit lysosomal protein degradation. 

 

Myofibrillar and lysosomal protein breakdown are stimulated by a number of 

processes during EIMD (Figure 2.3).  Specifically, the ubiquitin-proteosome pathway is 

initiated by reactive oxygen species, cytokines and/or prostaglandin E2 (PGE2) via 

phospholipase A2 (PLA2) production.  Lysosomal protein degradation can be 

stimulated by cytokines and PLA2.  It is possible that milk consumption has a 

secondary impact on signalling in one of these pathways (Figure 8.1).  The 

cytokines have begun to attract attention in this area of research.  Tumor necrosis 

factor-α (TNF-α), which increases following muscle damaging exercise (Cannon et al., 

1991; Hamada et al., 2005), has been implicated as a mediator of proteolytic pathways 

(Costelli et al., 1993; Andreu & Schwartz, 1995; Frost, Lang & Gelato, 1997).  

Rowlands et al (2008) analysed TNF-α following interval cycling with a protein enriched 

meal and found no difference between a high protein and low protein meal even though 

there was a possible attenuation of increases in creatine kinase (CK).  Furthermore, 

Buford et al (2009) found no relationship between TNF-α and CK, implying that this 

cytokine does not play a role in membrane damage.  Other studies (Wojcik et al., 
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2001; Betts et al., 2009) have examined the response of interleukin-6 (IL-6).  There 

was no effect of protein-CHO intake on IL-6, however, these studies failed to 

demonstrate a benefit on any indirect markers of EIMD thus limiting the conclusions 

that can be drawn.  Similarly, Miles et al (2007) did not observe any attenuation 

of IL-6 following CHO supplementation for 2 days after high force eccentric exercise.  

Again there was no impact of CHO on other indirect markers of EIMD, which is in 

agreement with findings from this thesis.  IL-6 may not play a role in muscle protein 

breakdown as research demonstrated that the limitation of muscle proteolysis with 

branched chain amino acids supplementation was independent of the IL-6 response 

(Rohde et al., 1997).  This thesis did not find any conclusive evidence linking the benefit 

of milk ingestion to attenuated IL-6 and C-reactive protein (CRP) responses.  Future 

research is required to investigate this potential theory fully. 

 

PLA2 leads to the production of prostaglandins and leukotrienes (Duncan, 1988; 

Armstrong, Warren & Warren, 1991).  This pathway has been implicated in the 

degradation of membrane phospholipids and thus the release of intramuscular 

proteins into the serum, as inhibiting it protected against the efflux (Duncan & 

Jackson, 1987).  CK has been shown to be significantly related to platelet activating 

factor, which is synthesised from PLA2 (Milias et al., 2005).  The intake of milk may limit 

the activation of PLA2 and thus increases in intramuscular proteins measured in the 

plasma.  Other parts of this pathway include PGE2 and leukotriene activation via 

cyclooxygenase-2 (COX2) and lipoxygenase, respectively.  Therefore, milk may 

impact on signalling downstream of PLA2 activation that could limit membrane 

damage and thus increases in CK and myoglobin (Mb).  COX2 activation is required 

for muscle recovery as it catalyses the reaction of PGF2α, which is involved in 

protein synthesis (Rodemann & Goldberg, 1982).  Therefore, dampening down this 

pathway may not be beneficial to recovery from EIMD as it is required to increase 

muscle protein synthesis and thus repair of damaged proteins. 

 

Cycloxygenase activation is thought to be hyperalgesic (Dubois et al., 1998) with 

PGE2 production sensitising afferent receptors to stimuli (Smith, 1991).  Therefore, 

muscle soreness may be related to cycloxygenase activity.  However, evidence 

analysing muscle soreness, COX2 and PGE2 does not support this notion (Kuipers et 

al., 1985; Croisier et al., 1996; Buford et al., 2009).  This thesis found no impact of 

milk on measures of passive muscle soreness (DOMS) and inconclusive evidence of 

its impact on active DOMS.  It is possible that milk does not impact on this 
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pathway.  However, as previously discussed the measurement of muscle 

soreness is subjective, it is difficult to compare independent groups and some 

measurements of active DOMS were conducted without the hamstrings being 

isolated.  Therefore, this theory should not be discarded. 

 

Reactive oxygen species activation can lead to protein and lipid oxidation, which has 

been shown to occur following eccentric exercise (Sacheck et al., 2003; Close et al., 

2005a; Liao et al., 2010).  Lipid oxidation would cause damage to the membrane 

phospholipids and thus lead to increases in CK and Mb.  Protein oxidation would 

cause damage to muscle proteins leading to changes in many of the measured 

variables.  Reactive oxygen species activation has also been implicated in activating 

the NF-κB pathway (Muller, Rupec & Baeuerle, 1997; Li et al., 2003), which in turn 

activates the Ub-P system (Jackman and Kandarian, 2004).  Therefore, increased 

reactive oxygen species production may lead to decrements in muscle function.  Milk 

contains anti-oxidants, including selenium, vitamin E, vitamin A and glutathione (GSH) 

(Haug, Hostmark & Harstad, 2007). 

 

Reduced glutathione is synthesised from L-cysteine, L-glutamic acid and glycine.  

Whey protein is rich in cysteine, and as cysteine is the limiting factor of glutathione 

synthesis, it may represent an effective cysteine delivery system for glutathione 

replenishment (Bounous & Molson, 2003).  In its reduced state, glutathione is able to 

donate a reducing equivalent (H+ and e-) to reactive oxygen species to remove them, 

forming oxidised glutathione (GSSH) (Haug, Hostmark & Harstad, 2007).  Therefore, 

the intake of milk may limit oxidative stress, thus limiting Ub-P activation, and protein 

and lipid oxidation that would subsequently dampen myofibrillar and membrane 

damage and, therefore, changes in muscle function and intramuscular proteins 

measured in the serum.  There is little research investigating the oxidative response to 

milk intake.  One study in mice showed that lipid oxidation was prevented following a 

heavy exercise session when the diet was supplemented with whey protein (Elia et al., 

2006). 

 

Oxidised glutathione may also have a role in preserving Ca2+ homeostasis, 

specifically inhibiting its release by reducing the open status of Ca2+ channels and 

stimulating its uptake via metabolic Ca2+ pumps (Belia et al., 2000).  Prolonged 

increases in Ca2+ concentration have been implicated in initiating the proteolytic and 
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lipolytic pathways discussed.  Preserving Ca2+ homeostasis would limit the activation 

of these pathways and thus myofibrillar and membrane damage.  This would reduce 

decrements in muscle function and increases in CK and Mb.  Milk was most 

beneficial when consumed immediately following muscle damaging exercise and is 

unlikely to have impacted on initial increases in Ca2+ concentration.  However, the 

secondary influx of Ca2+ (Yeung & Allen, 2004; Gissel, 2005) could be altered, which 

may be another reason why benefits are not observed until 48 - 72 h following muscle 

damaging exercise. 

 

The intake of milk may impact on a number of processes occurring during the 

process of EIMD (Figure 8.1).  One of the problems with the process of EIMD is that 

it is still not fully understood (Kendall & Eston, 2002), which adds to the difficulty 

when postulating what impact milk may be having.  The area of research investigating 

the use of protein-CHO in aiding recovery following EIMD has only become 

increasingly popular in the last few years, with results equivocal and few studies 

investigating mechanisms. 

 

Participants were unable to be blinded to the supplements used.  Furthermore, 

participants knew the purpose of the studies.  This could have potentially led to a 

placebo effect, whereby the participants‟ belief in the efficacy of milk led to 

enhanced performance.  Research has shown that the placebo effect does exist in 

sport, whereby participants believed they had ingested a supplement, performed 

better than baseline or controls (Clark  et al., 2000; Beedie et al., 2006).  

Participants may have heard claims regarding milk or had an understanding of the 

metabolic impact of protein and CHO.  This could have influenced their 

performance psychologically by impacting on motivation and expectancy (Beedie & 

Foad, 2009).  Although the placebo effect was possibly apparent and may have 

impacted on the results this would be of interest and not concern.  Performance was 

improved following muscle damaging exercise for those participants consuming 

milk, and for athletes the concern is optimal performance not if the supplement is 

having a physiological impact.  However, for applied scientists it is important to 

know what physiological impact an intervention has.   The improvement in 

muscle performance may have been due to an interaction between psychological 

and physiological variables (Beedie & Foad, 2009).  However, there was no benefit of 

milk on subjective measures (muscle soreness and rating of perceived exertion), 

reactive strength index and countermovement jump height.  Therefore, if a placebo 
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effect existed, positive results in all measured variables would be expected. 

 

The practical implications of the findings presented in this thesis are that it provides 

athletes with specific advice for type, amount and timing of supplementation to aid 

recovery following muscle damaging exercise.  This information would be of benefit to 

those experiencing a new exercise stress that is mechanical in nature, and would allow 

them to train and/or perform closer to optimal levels in the days following exercise.  It 

would also be of benefit to athletes during competition periods.  It should be 

highlighted that preventing the process of EIMD may not be beneficial to athletes.  It 

could be argued that in many situations blunting the processes that occur following 

muscle damaging exercise may hinder recovery and chronic adaptations.  There 

has been limited research investigating the impact of recovery interventions on 

chronic adaptations, however, it should be considered when working with athletes.  

One study has investigated the effect of cold water immersion on endurance training 

effects (Yamane et al., 2006).   It was found that following 6 weeks of endurance cycling 

training there was a significant improvement in performance time, maximal oxygen 

uptake and ventilator threshold in the control leg.  However, in the leg that was immersed 

in cold water following each training session there was no significant improvements in 

maximal oxygen uptake and ventilator threshold, therefore, post-exercise cooling may be 

adverse for physical training (Yamane et al., 2006).   In the current study, there was 

some evidence of milk limiting increases in active muscle soreness; however, this was 

not conclusive as previously discussed.  Muscle soreness may provide a protective 

effect and, therefore, reducing this may alter an athlete‟s perception of their ability to 

carry out certain training loads (Barnett, 2006).  However, this may only be harmful 

when there are no concurrent impacts of supplementation on muscle function.  The 

other practical implication of this thesis is that convenient and accessible milk 

products have been used throughout the studies.  This makes it very easy for athletes 

to use the information presented to their benefit.  The findings have also impacted on 

industry by allowing companies to utilise the results in marketing material and 

highlighting the role of milk in sport.  This thesis has shown that milk benefits 

recovery from eccentric muscle actions.  Although CHO is beneficial for recovery from 

glycogen depleting exercise (Tarnapolsky et al., 1997), the first study of this thesis 

found no benefits for recovery from muscle damaging exercise.  Recovery is multi-

dimensional, and it is important that the strategy used accounts for this.  Milk, due to its 

combination of CHO and protein, is beneficial for other aspects of athletic 

performance and recovery (Shirreffs, Watson & Maughan, 2007; Thomas, Morris & 
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Stevenson, 2009).  Milk will also help in meeting the athletes ‟ CHO needs for 

successful performance as well as providing many health benefits. 

 

8.2 Directions for Future Investigation 

This thesis was applied in its direction and although it has provided some novel 

research findings that athletes could utilise, it has also raised more questions.   

Therefore, there are two main directions for future research: further applied  

research or investigating potential mechanisms.  From an applied perspective there is 

vast potential for other measures of muscle function to be analysed, specifically those 

that can be applied to real world sport settings.  The protocol to initiate EIMD throughout 

this thesis was novel to all participants mainly because it does not represent 

movements that would be commonly replicated by exercising individuals during their 

training.  Although this provided an appropriate way to study EIMD, it initiated damage 

that was likely more pronounced than that which would be experienced during a 

new exercise stress, during a tournament or following a heavy training session.  This 

may limit its applicability to the real-world setting.  Therefore, future research should 

focus on using an exercise stress that is applied in nature. 

 

Participants throughout this thesis were male who regularly competed in a variety of 

sports.  Therefore, the findings can be generalised to this group.  Future 

research should consider utilising different groups of participants including more 

highly trained individuals and women.  Women are rarely used as participants in this area 

of research.  Estrogen levels may affect skeletal muscles response to muscle damage.  

Tiidus and Enns (2009) argue that gender or estrogen minimses evidence of EIMD based 

on findings from animal studies  These studies demonstrate that females or higher 

estrogen levels limit damage to structural muscle proteins (Komulainen et al., 1999), 

increases in CK (Amelink et al., 1990) and the inflammatory response (St. Pierre 

Schneider, Correia & Cannon, 1999; Tiidus et al., 2001).  However, Hubal and Clarkson 

(2009) concluded that the majority of data from studies involving humans indicate that 

gender and estrogen levels do not significantly affect EIMD measured directly (Stupka et 

al., 2000; Stupka et al., 2001) or indirectly via CK (Sorichter et al., 2001; Sewright et al., 

2008), strength recovery (Thompson et al., 1997; Sayers & Clarkson, 2001) and muscle 

soreness (Rinard et al., 2000; Dannecker et al., 2005; Sewright et al., 2008).  Results from 

humans and animals clearly show different results and although animal studies provide a 

model that allows for control of confounding variables and participant variability, they are 

limited as the results are not easily transferred to humans.  Although, the majority of 
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evidence demonstrates there are no gender differences in the response to muscle 

damage, it cannot be assumed that the findings of this thesis are transferrable to women.  

A recent investigation demonstrated that milk consumption in combination with 

resistance exercise lead to gains in muscle mass in women (Josse, et al, 2010).  

Therefore, milk does have benefits for exercising women, and future investigations 

should concentrate on milk for recovery in women.  Milk may also have additional 

benefits in recovery.  Studies have demonstrated increased perceptions of satiety when 

milk was consumed in comparison to a fruit drink (Dove et al., 2009) or carbonated 

beverage (Harper et al., 2007) at breakfast.  Dove et al (2009) found that this 

translated into decreased energy intake at lunchtime.  Therefore, milk may also 

suppress appetite and help achieve a negative energy balance, which could aid weight 

loss or weight maintenance.  For many individuals, particularly women, this is one of the 

main focuses of exercising. 

 

The benefits of milk have been postulated to be due to limiting the breakdown of 

muscular proteins or enhancing their repair via increased protein synthesis and/or 

limiting increases in protein breakdown.  There has been very little research 

investigating protein metabolism following EIMD and only one study examining the 

impact of protein-CHO on these changes (Wojcik et al., 2001).  Therefore, future 

research should consider these types of studies.  In conjunction with this it is 

important to examine the parts of the pathway where milk ingestion may be 

impacting on, as outlined in Figure 8.1.  Studies that have attempted this by 

measuring cytokines have done so by analysing changes in the blood.  This may not 

reflect changes in the muscle, and therefore, future studies should use muscle biopsies 

and microdialysis techniques.  However, these methods can lead to methodological 

artefacts and microdialysis cannot be used during exercise. 

 

8.3 Conclusion 

In conclusion, 500 mL of milk consumed immediately following eccentric resistance 

based exercise limits decrements in some facets of muscle function, such as 

sprinting and isokinetic concentric muscle actions.  There is a possible benefit of milk 

for reducing increases in muscle soreness experienced during activity and 

intramuscular proteins measured in the serum.  There are a number of postulated 

mechanisms which could lead to these observed benefits.  However, until further 

research is conducted on the mechanisms of EIMD and changes in protein 

metabolism following muscle damaging exercise it is difficult to conclude with 
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certainty what these are. 
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 INFORMED CONSENT FORM 

 
 
Project Title: The effect of milk supplementation on football performance 
                        following exercise-induced muscle damage 
                        
                         
 
Principal Investigator: Emma Cockburn 
 
Participant Number: ______ 
 

               please tick  
  where applicable 

I have read and understood the Participant Information Sheet.  
 

I have had an opportunity to ask questions and discuss this study and I have received 
satisfactory answers. 

 
 

I understand I am free to withdraw from the study at any time, without having to give a 
reason for withdrawing, and without prejudice. 

 
 

I agree to take part in this study.  
 

I would like to receive feedback on the overall results of the study at the email address 
given below.  I understand that I will not receive individual feedback on my own 
performance. 
 
Email address…………………………………………………………………… 

 
 

 
 

 
Signature of participant.......................................................    Date.....……………….. 
 
 
(NAME IN BLOCK LETTERS)....................................................………………………. 
 
 Signature of Parent / Guardian in the case of a minor  
 
......................................................................................... 
 
 
 

 
Signature of researcher.......................................................    Date.....……………….. 
 
 
(NAME IN BLOCK LETTERS)....................................................………………………. 
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FOR USE WHEN TISSUE IS BEING REMOVED BUT NOT STORED 
 
Project Title: The effect of milk supplementation on football performance following 
exericse-induced muscle damage. 
 
Principal Investigator: Emma Cockburn 
 
 
Participant Number: __________ 
 
I agree that the following tissue or other bodily material may be taken and used for 
the study:  
 
 
Tissue/Bodily material Purpose Removal Method 
Blood (plasma) 
 

For analysis of the 
following: Creatine 
Kinase, Myoglobin and 
markers of inflammation 

Via venipuncture 

 
 

  

 
 

  

 
I understand that if the material is required for use in any other way than that 
explained to me, then my consent to this will be specifically sought. I understand that 
I will not receive specific feedback from any assessment conducted on my samples, 
but should any kind of abnormality be discovered then the investigator will contact 
me.  
 
 
 
Signature of participant.......................................................    Date.....……………….. 
 
 
Signature of Parent / Guardian in the case of a minor             
 
.........................................................................................        Date.....……………….. 
 
 
Signature of researcher.......................................................    Date.....……………….. 
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GENERAL HEALTH QUESTIONNAIRE 

 
Name: …………………………… 
Date of Birth: …………………… 
Subject number: ………………… 
 
As you are participating in exercise within this laboratory, please can you complete the 
following questionnaire.  Your co-operation is greatly appreciated. 
All information within this questionnaire is considered confidential. 
 
Where appropriate please circle your selected answer. 
 

1. How would you describe your current level of activity? 
Sedentary / Moderately Active / Highly Active 

 
2. How would you describe your current level of fitness? 

Very Unfit / Moderately Fit / Trained / Highly Trained 
 

3. How would you describe your current body weight? 
Underweight / Ideal / Slightly Overweight / Very Overweight 

 
4. Smoking Habit: - 

Currently a non-smoker  Yes / No 
Previous smoker   Yes / No 
If previous smoker, how long since you stopped? ………Years 
Regular smoker   Yes / No of …… per day 
Occasional smoker   Yes / No of …… per day 

 
5. Alcohol Consumption: - 

Do you drink alcohol?  Yes / No 
If yes then do you -  have an occasional drink   Yes / No 
   Have a drink every day?   Yes / No 
   Have more than one drink per day? Yes / No 

 
6. Have you consulted your doctor within the last 6 months? 

Yes / No 
If yes, please give details to the test supervisor 

 
7. Are you currently taking any medication (including anti-inflammatory drugs)? 

Yes / No 
If yes, please give details to the test supervisor 

 
8. Do you, or have you ever suffered from:- 

Diabetes   Yes / No 
Asthma   Yes / No 
Epilepsy   Yes / No 
Bronchitis   Yes / No 
Elevated cholesterol Yes / No 
High Blood Pressure Yes / No 
 

9. Do you suffer from, or have you ever suffered from any heart complaint or pains 
in your chest, either associated with exercise or otherwise? 
Yes / No 
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10. Is there a history of heart disease in your family? 
Yes / No 

 
 

11. Do you feel faint or have spells of severe dizziness when undertaking exercise 
or otherwise? 
Yes / No 

 
12. Do you currently have any form of muscle joint injury? 

Yes / No 
 

13. Have you ever suffered from any knee joint injury or thigh injury? 
Yes / No 

 
14. Have you had any reason to suspend your training in the last 2 weeks? 

Yes / No 
 

15. Do you currently take any anti-inflammatory medication? 
Yes / No 
If yes, please give details to the test supervisor 
 

16. Do you currently take any form of nutritional supplement (e.g. creatine, whey 
and casein protein, HMB, etc)? 
Yes / No 
If yes, please give details to the test supervisor 

 
17. Are you able to drink milk? 

Yes / No 
 

18. Is there anything to your knowledge that may prevent you from successfully 
completing the test that has been explained to you? 
Yes / No 
If yes, please give details to the test supervisor 

 
Please provide any further information concerning any condition/complaint that you 
suffer from and any medication that you may be taking by prescription or otherwise. 
……………………………………………………………………………………………………
……………………………………………………………………………… 
 
 
Signature of Subject: ………………………… 
Signature of test supervisor: ………………… 
Date: ……………………
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DIETARY FOOD RECORD INSTRUCTIONS 

 
 
Name:……………………..  
 
Dates to record:…………………………………………………………………………… 
 
………………………………………………………………………………………………… 

 

 
• Please record dietary intake for the following days: day prior to visit 2; 2 days 

prior to visit 3; visit 3,4 & 5 (day 4 should be same as day prior to visit 2) 
 
• Follow the guidelines for recording foods, beverages, and supplements 

provided. 
 

  
INSTRUCTIONS: 

 ALL foods and beverages (INCLUDING WATER) that are consumed should be 
recorded. 

- this includes any supplements (e.g., vitamins, minerals) 

- record the date and time of consuming each food, drink or snack 

- record everything at the time of consumption, not from memory at the end of the 
day 

- start each day on a new page 
 

 Be very specific in your description of the type of food 

- “bread” was it white or wholemeal? 

- “meat” was it streaky bacon or lean beef topside? 

- “milk” was it full fat, semi-skimmed or skimmed? 

- “cheese” was it cheddar or edam? 

- “margarine” was it low fat? 

- “spaghetti Bolognese” how much pasta, how much mince, type of sauce, any 
vegetables? 

 

 Include the preparation method 

- grilled or fried bacon 

- boiled or roast potatoes 

- bread toasted 
 

 Include anything that was added to the food or drink 

- addition of sugar to tea 

- addition of margarine to bread 

- addition of oil (what type) to cook bacon 
 

 Use nutrient descriptors and brand names to describe foods 

- diet 
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- low calorie 

- reduced fat 

- Dairylee 

- Cadbury 
 

 

 Write down how much you have consumed 

- use the scales provided to weigh all food 

- use the labels on foods to help you determine amounts 

- save labels from packages and return them with your food record forms, 
especially for ready prepared food (this will greatly assist and enhance our 
analysis of your true nutrient intake) 

- write down the number of sausages, fish fingers, slices of meat, etc 

- describe the size of a piece of food (e.g., small apple, large banana, medium 
egg) 

 

 Write everything down – don‟t forget snacks, nibbles, second helpings, sweets 
 

 Do not guess the amounts of food eaten as this makes results inaccurate. 
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Example of Diary 
 
Day:     Date:    
  

 
Time 

 
Food/Drink 

 
Description 

 
Amount 
Eaten 

8am 
 

Cereal Kelloggs Branflakes (see box) 50g 

 
 

Milk Semi skimmed 100ml 

 
 

Orange Juice Smooth from concentrate (see 
carton) 

500ml 

10.30am 
 

Cereal Bar Brunch bar with hazelnut (see 
wrapper) 

1 bar 

12pm 
 

Baked potatoe Microwave Large 

 
 

Butter Lurpak spreadable (see carton) 5g 

 
 

Cheese Medium cheddar, grated 10g 

 
 

Beans Heinz baked beans (see label) 100g 

 Orange diluting juice Tesco own with no added sugar 
(see bottle) 

20ml diluting; 
150ml water 

2.45pm Water Tap 500ml 
 

7pm 
 

Chicken Diced and stir-fryed with extra 
virgin olive oil 

200g 
Oil: 10ml 

 
 

Carrots 2 medium stir-fryed, chopped 30g 

 
 

Rice White boiled rice (see label) 75g 

 
 

Brocolli 3 florets stir-fryed 30g 

 
 

Mushrooms Button, stir-fryed 30g 

 Water 
 

Tap 200ml 

9pm 
 

Toast 1 slice white bread 20g 

 
 

Jam Strawberry with real fruit (see 
label) 

10g 

 
 

Milk Semi-skimmed 100ml 
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Day:     Date:     
 
       

 
Time 

 
Food/Drink 

 
Description 

 
Amount 
Eaten 

 
 

   

 
 

   

 
 

   

 
 

   

 
 

   

 
 

   

 
 

   

 
 

   

 
 

   

 
 

   

 
 

   

 
 

   

 
 

   

 
 

   

 
 

   

 
 

   

 
 

   

    
 

  
 

  

 
 

   

 
 

   

 
IF MORE SPACE IS REQUIRED WRITE ON THE BACK 
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Study 2 – Timing of Milk Supplementation 

Caloric (kcal) Content of Participants Recorded Diet 

 48 h pre 24 h pre Baseline 24 h 48 h 

CON 2727 ± 2330 ± 2280 ± 2214 ± 2203 ± 
 731 753 762 928 966 

PRE 2442 ± 2700 ± 2345 ± 2916 ± 3054 ± 
 1004 594 741 673 1429 

POST 1748 ± 2375 ± 1876 ± 1824 ± 2111 ± 
 554 879 422 574 630 

TWENTY-FOUR 1930 ± 2141 ± 2021 ± 2790 ± 2461 ± 
 972 727 653 847 1169 

 
Values are reported as mean ± SD 
 

Carbohydrate (g) Content of Participants Recorded Diet 

 48 h pre 24 h pre Baseline 24 h 48 h 

CON 295 ± 104 311 ± 132 289 ± 100 337 ± 196 281 ± 129 

PRE 340 ± 166 384 ± 118 322 ± 107 390 ± 111 429 ± 284 

POST 214 ± 86 287 ± 151 243 ± 69 230 ± 123 289 ± 114 

TWENTY-FOUR 233 ± 102 288 ± 88 262 ± 88 376 ± 109 354 ± 195 
 
Values are reported as mean ± SD 
 

Protein (g) Content of Participants Recorded Diet 

 48 h pre 24 h pre Baseline 24 h 48 h 

CON 112 ± 25 90 ± 20 102 ± 20 76 ± 33 103 ± 36 

PRE 122 ± 76 131 ± 50 108 ± 42 132 ± 24 140 ± 84 

POST 77 ± 36 104 ± 48 76 ± 24 91 ± 55 124 ± 39 

TWENTY-FOUR 88 ± 47 107 ± 53 94 ± 43 140 ± 72 113 ± 69 

 
Values are reported as mean ± SD 
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Fat (g) Content of participants Recorded Diet 

 48 h pre 24 h pre Baseline 24 h 48 h 

CON 116 ± 54 78 ± 31 88 ± 45 72 ± 32 82 ± 54 

PRE 109 ± 55 80 ± 24 79 ± 32 103 ± 51 99 ± 41 

POST 67 ± 34 98 ± 43 73 ± 29 66 ± 18 88 ± 32 

TWENTY-FOUR 58 ± 24 71 ± 36 74 ± 28 91 ± 44 76 ± 27 

 
Values are reported as mean ± SD 
 
 

Study 3 – Volume of Milk Supplementation 

Caloric (kcal) Content of Participants Recorded Diet 

 48 h pre 24 h pre Baseline 24 h 48 h 

CON 2434 ± 937 1811 ± 
1398 

1968 ± 735 2146 ± 892 2082 ± 
1002 

FIVE 1893 ± 637 2076 ± 743 2250 ± 962 2125 ± 914 1847 ± 585 

LITRE 2137 ± 884 1877 ± 559 1945 ± 640 2113 ± 841 1897 ± 527 
 
Values are reported as mean ± SD 
 

Carbohydrate (g) Content of Participants Recorded Diet 

 48 h pre 24 h pre Baseline 24 h 48 h 

CON 303 ± 155 301 ± 304 238 ± 103 312 ± 148 278 ± 162 

FIVE 298 ± 98 283 ± 61 286 ± 150 253 ± 104 229 ± 76 

LITRE 287 ± 150 247 ± 60 211 ± 32 223 ± 87 240 ± 129 
 
Values are reported as mean ± SD 
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Protein (g) Content of Participants Recorded Diet 

 48 h pre 24 h pre Baseline 24 h 48 h 

CON 95 ± 75 67 ± 66 95 ± 54 95 ± 64 112 ± 78 

FIVE 75 ± 43 86 ± 41 88 ± 35 98 ± 48 86 ± 44 

LITRE 93 ± 37 93 ± 55 106 ± 57 104 ± 66 93 ± 21 

 
Values are reported as mean ± SD 
 

Fat (g) Content of Participants Recorded Diet 

 48 h pre 24 h pre Baseline 24 h 48 h 

CON 64 ± 30 46 ± 21 78 ± 38 66 ± 39 65 ± 27 

FIVE 53 ± 27 75 ± 48 90 ± 44 87 ± 64 72 ± 47 

LITRE 76 ± 24 64 ± 31 81 ± 39 95 ± 64 70 ± 25 

 
Values are reported as mean ± SD 
 
 

Study 4 – Effects of Milk on Field-Based Team Sport Performance 

Caloric (kcal) Content of Participants Recorded Diet 

 Week pre 48 h pre 24 h pre Baseline 24 h 48 h 

CON 3598 ± 2174 ± 2447 ± 2220 ± 2322 ± 2819 ± 
 759 973 1176 580 985 1139 

MILK 2123 ± 2033 ± 2232 ± 2454 ± 1710 ± 2367 ± 
 727 582 918 874 599 828 

 
Values are reported as mean ± SD 
 

Carbohydrate (g) Content of Participants Diet 

 Week pre 48 h pre 24 h pre Baseline 24 h 48 h 

CON 573 ± 131 313 ± 157 349 ± 192 314 ± 102 334 ± 160 456 ± 254 

MILK 280 ± 75 260 ± 80 341 ± 139 325 ± 112 240 ± 71 340 ± 103 

 
Values are reported as mean ± SD 
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Protein (g) Content of Participants Diet 

 Week pre 48 h pre 24 h pre Baseline 24 h 48 h 

CON 142 ± 33 96 ± 37 102 ± 25 86 ± 34 115 ± 32 106 ± 48 

MILK 101 ± 32 90 ± 19 105 ± 38 109 ± 24 85 ± 29 92 ± 62 

Values are reported as mean ± SD 

 

Fat (g) Content of Participants Diet 

 Week pre 48 h pre 24 h pre Baseline 24 h 48 h 

CON 98 ± 47 69 ± 41 81 ± 52 78 ± 37 67 ± 41 76 ± 21 

MILK 71 ± 35 71 ± 35 59 ± 33 89 ± 46 52 ± 35 80 ± 35 
 
Values are reported as mean ± SD 



Appendix 5  Pilot Study Results 

 

175 
 

 
Variable Baseline 24 h 48 h 

CK (U/I) 178 351 1178 

Peak Torque 
Dominant (Nm) 

159 143 135 

Peak Torque Non- 
dominant (Nm) 

136 123 126 

Total Work of the Set 
Dominant(J) 

1193 1099 913 

Total Work of the Set 
Non-dominant (J) 

1106 986 816 
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Muscle Pain/Soreness Data Sheet 

 

Subject:_______________   Group:    

 

Exercise bout: 1    Day: 1 / 2 / 3 / 4 

 

Instructions: Draw a vertical line corresponding to the pain/soreness that you have as a 

result of the exercise protocol. 

 

 

General 

 
Active (right) 

 
Active (left) 

 

 

 

No pain/ 

soreness 

Pain/soreness 

as bad as it 

could be 

No pain/ 

soreness 

Pain/soreness 

as bad as it 

could be 

No pain/ 

soreness 

Pain/soreness 

as bad as it 

could be 
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