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 Cass Business School, City University, London

Abstract
A new algorithm for  Computer  Aided Geometric Design of  least squares  (LS) splines with variable  knots,
named GeDS, is presented.  It is based on interpreting functional spline regression as a parametric B-spline
curve, and on using the shape preserving property of its control polygon. The GeDS algorithm includes two
major  stages.  For  the  first  stage,  an  automatic  adaptive,  knot  location  algorithm  is  developed.  By  adding
knots, one at a time, it sequentially "breaks" a straight line segment into pieces in order to construct a linear
LS B-spline fit,  which captures the "shape" of the data. A stopping rule is applied which avoids both over
and under fitting and selects the number of knots for the second stage of GeDS, in which smoother, higher
order (quadratic,  cubic,  etc.)  fits  are generated.  The knots appropriate for the second stage are determined,
according to a new knot location method, called the averaging method. It approximately preserves the linear
precision property of B-spline curves and allows the attachment of smooth higher order LS B-spline fits to a
control  polygon,  so  that  the  shape  of  the  linear  polygon of  stage one  is  followed.  The GeDS method pro-
duces simultaneously linear,  quadratic,  cubic (and possibly higher order)  spline fits with one and the same
number of B-spline regression functions. The GeDS algorithm is very fast, since no deterministic or stochas-
tic  knot  insertion/deletion  and  relocation  search  strategies  are  involved,  neither  in  the  first  nor  the  second
stage. Extensive numerical examples are provided,  illustrating the performance of GeDS and the quality of
the  resulting  LS  spline  fits.  The  GeDS  procedure  is  compared  with  other  existing  variable  knot  spline
methods  and  smoothing  techniques,  such  as  SARS,  HAS,  MDL,  AGS  methods  and  is  shown  to  produce
models with fewer parameters but with similar goodness of fit characteristics, and visual quality.
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1. Introduction. 

Consider  a  response  variable  y  and  an  independent  variable  x ,  taking  values  within  a
certain interval  @a, bD  and assume there is a functional  relationship between x  and y  of
the form

(1)y = f HxL + e ,

where f H ÿ L  is an unknown function and e  is a random error variable with zero mean. A
problem which arises in a number of statistical applications is to estimate f H ÿ L , based on
a sample of observations 8yi, xi<i=1

N .

Different  nonparametric  smoothing methods for  the solution of  this  problem have been
proposed and the related literature is extensive. We will mention here some well known,
spatially  adaptive  smoothing  techniques  such  as:  the  wavelet  shrinkage  methods  of
Donoho and Johnstone (1994, 1995),  the variable  bandwidth kernel  method of Fan and
Gijbels (1995), hybrid adaptive splines (HAS) of Luo and Wahba (1997). Another popu-
lar  approach  to  smoothing  is  to  use  penalized  splines,  considered  by  Eubank  (1988),
Wahba  (1990),  Marx  and  Eilers  (1996),  Rupert  and  Carroll  (2000),  Rupert  (2002).  A
third  class  of  methods  uses  adaptive  knot  selection  procedures,  such  as  stepwise  knot
inclusion/deletion strategies,  to  develop variable  knot spline regression models.  Among
the latter are the early work of Smith (1982), the TURBO spline modelling technique of
Friedman and Silverman (1989),  the  MARS method proposed by Friedman (1991),  the
POLYMARS of Stone et al.  (1997), and more recently the minimum description length
(MDL)  regression  splines  of  Lee  (2000)  and  the  spatially  adaptive  regression  splines
(SARS) of  Zhou and Shen (2001).  A different  knot  removal algorithm for  constructing
splines with "almost free" knots, chosen from a subset of the data points, was proposed
by Lytch and Mørken(1993). Constructing multivariate spline regression and knot loca-
tion was considered also by Kaishev (1984). A fourth group of works applies reversible
jump  Markov  chain  Monte  Carlo  (RJMCMC)  based  methods,  to  develop  Bayesian
adaptive  splines,  such  as  those  of  Smith  and  Kohn  (1996),  Denison  at  al.  (1998)  and
Biller  (2000),  in  the  context  of  generalized  linear  models.  These  procedures  simulate
tens  of  thousands  of  spline  models  which  are  then  averaged  pointwise  to  produce  a
resulting estimate of  f ,  but  they are  associated  with a high computational  cost  and the
inconvenience of having the resulting model in a non-explicit form. A stochastic optimi-
zation  algorithm  for  "almost  free"-knot  splines,  called  adaptive  genetic  splines  (AGS)
was  recently  proposed  by  Pittman  (2002)  but  the  related  computational  cost  is  also  a
concern, as noted by the author. 

Constructing  free-knot,  least  squares  splines,  given  a  fixed  number  of  knots,  has  been
considered as a nonlinear approximation problem by De Boor and Rice (1968), (see also
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De  Boor,  2001)  and  by  Jupp  (1978).  As  is  well  known,  the  non-linear  optimization
problem of finding the best least squares free-knot spline approximation may not have a
unique  solution,  and  as  noted  by  Jupp  (1978),  may  have  potentially  a  high  number  of
local  extrema.  The  routine  of  De  Boor  and  Rice  (1968),  called  NEWNOT  leads  to  a
possibly  locally  optimal  knot  placement,  given  the  number  of  knots  is  known.  The  LS
approximation with as few knots as possible has been considered by Hu (1993) and by
Schwetlick  and  Schütze  (1995),  who  combine  non-linear  optimization  with  a  knot
removal and relocation strategy. Reported numerical examples and computer times refer
to models with only a small  number of knots.  However,  the computational  cost  of  run-
ning such routines may be prohibitive if splines with many more knots are required to fit
very  unsmooth  functions,  based  on  large  data  sets,  such  as  the  HeaviSine,  Doppler,
Bumps and Blocks examples. The latter were first introduced by Donoho and Johnstone
(1994)  and  are  considered  here  as  test  examples  4-7  in  Section  6.  A recent  account  of
free-knot  least  squares  splines  and  knot  selection  strategies  is  provided  by  Cox  et  al.
(2002). 

In  conclusion,  we  note  that  most  of  the  quoted  spline  fitting  methods  of  the  third  and
fourth  group  perform  knot  placement  search,  within  suitable  subsets  of  candidate  knot
locations,  e.g. the data points 8xi<i=1

N ,  and hence are not entirely free-knot  splines. They
apply  either  deterministic  or  stochastic  adaptive  knot  insertion/deletion  and  relocation
strategies, which may suffer from the knot confounding problem, as noted by Zhou and
Shen  (2001).  Moreover,  they  may  become  computationally  prohibitive  for  highly
unsmooth  functions  and  large  data  sets  (see  e.g.  Lee  2000).  Another  drawback  of  the
above mentioned algorithms is that most of them involve parameters whose values need
to  be  subjectively  preassigned  by  the  user.  For  example,  in  some cases  a  guess  for  an
initial set of knots is needed or the user is required to set lower and upper bounds for the
number of knots to be included in the final fit. However, such choices may significantly
affect  the  performance of  the  corresponding algorithms and the  quality  of  the  resulting
fits.  A further  problem is  that  some of  the  methods  impose limitations  on  the  data  set,
e.g.,  need  rescaling  so  that  xi œ @0, 1D ,  i = 1, ..., N .  The  wavelet  shrinkage  method  of
Donoho and Johnstone (1994) requires  equally  spaced 8xi<i=1

N  with N = 2i ,  i = 1, 2, ... .
All  of  the  above  mentioned  procedures  do  not  allow  real  time,  visual  control  of  the
entire fitting process,  which is a desirable feature in many of the practical  applications.
As  will  be  seen,  the  method  developed  here  overcomes  the  problems  that  have  been
identified.

The  purpose  of  this  paper  is  to  develop  a  simple,  automatic,  numerically  efficient,
method of recovering the unknown function f , in the form of a free knot, least squares,
spline regression model. We take an approach which is new and very different from the
existing methods. The basic idea is that fitting a variable knot regression spline to a set
of data may be viewed as "geometrically designing" a spline curve, so as to capture the
"shape", defined by the data points,  in a similar way to designers "drawing" parametric
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curves  through  scattered  points  on  the  plane,  in  Computer  Aided  Geometric  Design
(CAGD)  applications.  As  a  consequence,  our  algorithm  is  very  fast,  since  there  is  no
computationally  expensive  stochastic  or  deterministic  knot  relocation  search  involved.
In order  to  distinguish  the  splines  produced by this  new method from MARS, TURBO
splines,  POLYMARS,  HAS,  SARS,  AGS,  NEWNOT  etc,  we  call  our  procedure,  the
method of geometrically designed (GeD) splines, or GeDS in abbreviated form. 

We  will  show  that  the  proposed  method  of  constructing  GeD  splines  may  be  equally
successfully applied to recover both smooth or wiggly functions with highly non-homoge-
neous smoothness properties over the x  range. By recovering f , we mean reproducing it,
not only sufficiently accurately (with respect to the related mean squared error), but also
with  the  corresponding  estimated  curve  having  desirable  visual  characteristics.  As  will
be illustrated, our method produces good estimates with an appropriate degree of smooth-
ness,  avoiding overfitting  or underfitting,  for  widely varying signal-to-noise ratios.  The
method is also automatic, since in most of the applications the user needs to input only
the data  set  8yi, xi<i=1

N  and run the  corresponding code.  It  is  simple,  i.e.,  easy to  imple-
ment  and  follow  by  users  with  different  backgrounds,  allowing  them  to  have  visual
control  and  understanding  of  the  fitting  process  and  the  corresponding  output.  Finally,
we note, that the GeDS method gives rise to a very fast computational algorithm, taking
just seconds on a standard PC to recover f , even if it is highly unsmooth and the result-
ing spline fit involves many knots. We do not aim at necessarily finding spline fits with
as  few  knots  as  possible,  and  with  optimal  knot  placement.  However,  in  most  of  the
examples presented in Section 6, the resulting GeD splines have very few knots, produc-
ing very low mean squared error  (MSE), within the noise level.  In the case of the well
known  Titanium  Heat  data  example,  first  given  in  De  Boor  and  Rice  (1968)  (see  our
Example 8, Section 6), the MSE of the GeD quadratic spline fit is lower than that for the
optimal cubic fit, found by Jupp (1978), both fits having five internal knots.

The paper is organized as follows. In the next section we define the B-spline regression
model and show that the latter can be viewed as a parametric B-spline curve. We further
recall  some  important  characteristics  of  B-splines,  and  B-spline  curves,  such  as  their
shape  preserving  and  linear  precision  properties,  which  will  be  used  in  developing
GeDS. In Section 3, a new knot location rule, called the averaging method is introduced
and shown to have a very good linear precision property. Due to this property this rule is
used to define the number and position of the knots of the final GeD spline fits. In Sec-
tion 4, we introduce stages A and B of the proposed algorithm. Since stage A is essen-
tial,  its  detailed  description  is  given  in  Section  5.  Section  6  contains  the  results  of  the
numerical  performance  of  GeDS  and  its  comparison  with  other  existing  spline  fitting
procedures. Conclusions and a discussion of the characteristics of GeDS are provided in
the closing Section 7.
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2. The B-spline regression as a parametric curve

As mentioned earlier, we base our approach to constructing GeD splines on the idea that
fitting  a  variable  knot,  least  squares  spline  regression  to  a  noisy  set  of  data  8yi, xi<i=1

N

may be viewed as a  process  of  computer aided geometric  design of  the shape of  a two
dimensional  parametric  curve,  guided  by  the  data  points  whose  "true"  location  on  the
plane is perturbed by the noise component e . To elaborate further on this idea, recall that
a two dimensional parametric curve QHtL  in CAGD is given coordinate-wise as

QHtL = 9 xHtL
yHtL=,

where t  is a parameter , t œ @a, bD . 

Let us note, that the functional dependence underlying (1) is in fact a functional curve of
the form y = f HxL  that can be viewed as a special case of a parametric curve for which
xHtL = t , i.e., 

QHtL = 9 xHtL
yHtL= = 9 t

f HtL=.

In this paper we assume that f  is a spline function of degree n - 1(order n), defined on
@a, bD ,  which  can  be  represented  as  an  appropriate  linear  combination  of  B-splines  of
order  n .  The  latter  are  piecewise  polynomial  functions  of  degree  n - 1,  defined  on  the
set of knots Dk,n = 8ti<i=1

2 n+g1+...+gk , with

(2)
t1 § t2 § ... § tn-1 § tn < tn+1 = ... = tn+g1 < tn+g1+1 = ... = tn+g1+g2 <
... < tn+g1+...+gk-1+1 = ... = tn+g1+...+gk < tn+g1+...+gk +1 § ... § t2 n+g1+...+gk ,

where tn = a ,  tn+g1+...+gk+1 = b ,  and 1 § gi § n - 1, i = 1, ..., k  are called the multiplici-
ties  of  the  knots.  B-splines  coincide  with  a  polynomial  of  degree  n - 1  at  each  of  the
intervals  between  adjacent,  distinct  knots  and  these  pieces  are  smoothly  joined  at  the
latter  knots,  up to their  Hn - 1 - giL-th derivative.  In this paper we will  use splines with
simple knots (of multiplicity one, i.e., gi = 1, i = 1, ..., k ) except for the n  left and right
most knots which will be assumed coalescent. In this case (2) simplifies to

(3)Dk,n = 8t1 = t2 = ... = tn < tn+1 < ... < tn+k < tn+k+1 = ... = t2 n+k< .
Denote  by  SDk,n  the  linear  space  of  all  n-th  order  spline  functions  defined  on  Dk,n .  In
order  to  express  a  spline   f œ SDk,n ,  one  can  introduce  p = n + g1 + ... + gk  B-splines
Ni,nHtL ,  i = 1, ..., p ,  of  order  n  on  Dk,n ,  defined  through  the  Mansfield-De  Boor-Cox
recurrence relation

(4)Ni,0HtL = 9 1
0

     
if

   
ti § t < ti+1

otherwise
,
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(5)Ni,nHtL = t-tiÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅti+n-1-ti
 Ni,n-1HtL + ti+n-tÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅti+n-ti+1

 Ni+1,n-1HtL .
Using B-splines defined on Dk,n , one can approximate f HxL  with a spline function

(6)fDk,nHxL = q ' NnHxL = ⁄i=1
p qi Ni,nHxL ,

where  q = Hq1, ... qpL '  is  a  vector  of  unknown  parameters,  to  be  estimated  and
NnHxL = HN1,nHxL, ..., Np,nHxLL ' .

If n , k  and Dk,n  are known, one can estimate q  based on 8yi, xi<i=1
N  using the least squares

method as

q
`

= HF ' FL-1 F ' Y ,

where  F = HNnHx1L, ..., NnHxN LL ',  Y = Hy1, ..., yN L ' ,  and  F ' F  is  non-singular,  i.e.,  the
Schoenberg-Whitney condition holds. The latter condition states that F ' F  is non-singu-
lar iff each interval @ti, ti+nD  contains at least one observation xi , i.e., there exist indexes
1 § l1 < l2 < ... < lp § N ,  such  that  ti < xli < ti+n ,  i = 1, ..., p .  Thus,  the  LS  regression
spline fit for a fixed Dk,n  is

f
`

Dk,n
HxL = ‚

i=1

p
q
`

i Ni,nHxL .
However, the degree n - 1, the number of knots k  and their position in Dk,n  are in gen-
eral also unknown parameters which need to be determined. As mentioned earlier, such
splines are called splines with free or variable  knots,  for  which one of the most impor-
tant  problems  is  to  define  the  number  and  location  of  the  knots.  In  Section  3,  we  will
present an algorithm for the solution of this problem, approaching the regression spline
(6) as a parametric curve. Thus, if we view the functional B-spline curve (6) as paramet-
ric, we can write

(7)QHtL = 9 xHtL
yHtL= = 9 t

fDk,nHtL
= = 9

t
⁄i=1

p qi Ni,nHtL
=.

To  develop  the  GeD  spline  methodology  we  will  need  some  of  the  properties  of  the
B-splines, which have made them the preferred set of basis functions in CAGD, approxi-
mation  theory  and  statistics.  The  first  such  property  of  crucial  importance  for  CAGD
applications is the partition of unity property. 

Property 1 (partition of unity). The sum of all B-splines evaluated at t  is equal to one,
i.e., 

⁄i= j-n+1
j Ni,nHtL = 1, for any t œ @t j, t j+1L , j = n, ... , n + k .

Proof. See, for example De Boor 2001, p. 96. Ñ

Next we give another important  property of B-spline curves,  called the linear  precision
property.
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Property 2 (linear precision). The following identity holds

(8) t = ⁄i=1
p xi

* Ni,nHtL  , 
where,

(9)xi
* = Hti+1 + ... + ti+n-1L ê Hn - 1L , i = 1, ..., p .

Proof. The result follows from Marsden's identity (see e.g. Cohen et al. 2001, Theorems
7.19, 7.14). Ñ

The  values  xi
*  given  by  (9)  are  known  as  the  Greville  abscissas.  In  view  of  the  linear

precision property (8) we can rewrite (7) as 

(10)QHtL = 9 xHtL
yHtL= = 9 t

fDk,nHtL
= = 9 ⁄i=1

p xi
* Ni,nHtL

⁄i=1
p qi Ni,nHtL

=.

Note that (10) is a subset of the general class of parametric B-spline curves

(11)QHtL = ⁄i=1
p  ci Ni,nHtL = 9 ⁄i=1

p xi Ni,nHtL
⁄i=1

p qi Ni,nHtL
= ,

where  ci = Hxi, qiL, i = 1, ..., p ,  denote  the  vertexes  of  the  control  polygon  C ,  of  QHtL ,
called also the control points of QHtL . Note that, due to the partition of unity property of
B-splines, any point from a B-spline curve QHtL  in (11) is expressed as a convex, barycen-
tric combination of its control points. This leads us to Property 3.

Property 3 (affine invariance). The parametric B-spline curve QHtL  is affinely invariant.

Proof. The proof follows by the definition of affine invariance (see e.g. Farin 2002). Ñ

We note that QHtL  are also invariant under an affine reparametrization, a property which,
as a consequence, holds for GeDS.

Since the set of curves, defined by (10), is a subset of the parametric B-spline curves in
(11), each one of them has a control polygon with vertexes Hxi

*, qiL , i.e.,

(12)QHtL = ⁄i=1
p  ci Ni,nHtL = 9 ⁄i=1

p xi
* Ni,nHtL

⁄i=1
p qi Ni,nHtL

= .

A functional B-spline curve QHtL  of order n = 3  and its control polygon C  are illustrated
in Fig. 1. Let us note that the control polygon plays an important role in CAGD since it
mimics the shape of its related curve. This is stated by the following property.

Property  4  (shape  preserving).  The  B-spline  curve  QHtL  has  the  same  shape  as  its
control polygon, i.e, it crosses any straight line no more often than does C .

Proof.  The result  follows by applying the well  known Schoenberg's variation diminish-
ing property which states that the number of sign changes in the spline function QHtL  is
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not bigger  than the number of sign changes in the sequence of its  B-spline coefficients
qi , i = 1, ..., p  (see e.g., De Boor 2001, p. 141). Ñ

In  particular,  in  the  linear  case  Hn = 2L ,  QHtL  coincides  with  its  control  polygon  and
hence  the  shape  preserving  property  holds  exactly.  In  the  quadratic  case  Hn = 3L  the
curve QHtL , evaluated at the knots t3, t4, ..., tk+4 , interpolates C  and is tangential to each
of  its  segments,  ci, ci+1 ,  dividing  it  in  a  proportion  Hti+2 - ti+1L : Hti+3 - ti+2L ,
i = 2, ..., k + 2.  This  is  illustrated  by  Fig.  1,  in  the  case  of  k = 5,  where  D j = t j+1 - t j ,
j = 3, ... k + 3.  In  the  cubic  case  Hn = 4L ,  the  spline  curve,  evaluated  at  a  knot,  i.e.,
QHti+3L  is somewhere within the triangle of points ci , ci+1 ci+2 , i = 1, 2, ..., p . Hence, the
higher the degree, the stronger the curve deviates from its control polygon C , but it still
remains within the convex hull of C , due to the following property.

Property  5  (convex  hull).  The  B-spline  curve  QHtL  lies  within  the  convex  hull  of  its
control  polygon,  and  more  precisely,  each  of  its  polynomial  segments  lies  within  the
convex hull of the n  control points, defining it. 

Proof. The proof follows from the fact that every point of the curve QHtL  of order n  is a
barycentric  combination  of  n  control  points,  i.e.,  QHtL = ⁄i= j

n+ j-1  ci Ni,nHtL ,
t œ @tn+ j-1, tn+ jD , j = 1, ..., k + 1. Ñ

The  shape  preserving  and  convex  hull  properties,  illustrated  in  Fig.  1  are  an  important
motivation for developing the GeDS algorithm. The shaded areas in Fig. 1 are examples
of convex hulls in the case of a quadratic B-spline curve.

x1
*

t1=t2=t3
a

x2
* x3

* x4
* x5

* x6
* x7

*t4 t5 t6 t7 t8 x8
*

t9=t10=t11

b

q1=q8

q2

q3=q4

q5

q6

q7

D6 D7 D8

c1

c2

c3 c4

c5

c6

c7

c8

D6
: D7

D7
: D8

Fig. 1. A quadratic, functional B-spline curve and its control polygon.

As noted above, linear GeDS are optimal, with respect to shape preservation and, as will
be  seen  in  Section  6,  lead  to  very  accurate  fits  of  f .  However  they  may  not  be  suffi-
ciently smooth, in some applications, where continuous first and higher order derivatives
of  f  are  required.  Thus,  a  quadratic  B-spline  curve  is  best  suited  as  a  compromise
between smoothness and shape preservation, having a continuous first derivative and at
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the  same  time  being  tangential  to  each  of  the  segments  of  its  control  polygon.  This
makes quadratic splines especially suitable for implementing the GeDS algorithm.

Thus, due to the shape preserving and convex hull properties, the control polygon can be
manipulated  in  order  to  design  the  shape  of  a  functional  or  parametric  B-spline  curve.
We  use  this  approach  in  solving  the  problem  of  recovering  the  unknown  function  f
from  a  set  of  observations  8yi, xi<i=1

N  and  construct  an  appropriate  control  polygon  C
which captures the shape of the data. Then, having C  and the relation between ci  and ti ,
given by (9), we define the number and position of the knots of a smooth B-spline curve,
which  best  approximates  the  data  in  the  LS  sense.  The  procedure  of  finding  the  most
appropriate  control  polygon  C  is  the  first  major  stage  of  our  algorithm,  explained  in
details in Section 5. The problem of defining the number and position of the knots of a
functional  B-spline  curve,  given  its  control  polygon,  comprises  the  second major  stage
of the algorithm.

Let  us  note  that,  for  the  functional  curves  (12),  given  the  knots  Dk,n  and  the  degree
n - 1, it is always possible to use (9) and find values of the Greville abscissae xi

* . Then,
the free parameters to be estimated, based on the data are the y-coordinates of the con-
trol  points.  The  latter,  called  De  Boor  ordinates,  coincide  with  our  unknown  spline
regression  coefficients  q ,  as  seen  from (12).  Hence,  given  n  and  Dk,n ,  finding  LS esti-
mates of the regression coefficients q , based on 8yi, xi<i=1

N , is equivalent to estimating the
location  of  the  y-coordinates  of  the  vertexes  of  the  control  polygon in  (12).  This  is  an
important point, which, along with the other recollected properties of B-spline paramet-
ric curves, has allowed us to develop our CAGD approach to constructing free-knot least
squares regression splines.

To implement the proposed approach, given a control polygon C  and a fixed n , we need
to be able to find Dk,n  of the functional B-spline curve, attached to it. Hence, given the
control  points  ci ,  if  their  x-coordinates  xi  could  be  obtained  as  the  Greville  abscissa
values  from  an  appropriate  set  of  knots  Dk,n ,  one  could  attach  a  functional  B-spline
curve fDk,n , on to the polygon C , since the linear precision property (8) will be fulfilled.
Let  us  note  that  conditions  (9)  are  imposed,  since  we  are  interested  in  modeling  func-
tional curves in a parametric form. However, for  parametric curves,  (9) is not required.
So,  one  can  arbitrarily  choose  the  set  of  knots  and  attach  more  then  one  parametric
B-spline curve on to a given control polygon.

Unfortunately,  it  is  not  always possible to  find the  knots  Dk,n ,  given the  x-coordinates,
xi ,  of the control points, so that (9) is satisfied. It can be seen that expressions (9) form
an  over-determined  system  of  equations,  with  constraints  on  the  knots,  given  by  the
definition  of  Dk,n .  Since x1 = a  and xp = b ,  the  system (9) contains  k + n - 2  equations
and  k  ordered,  unknown  knots.  In  the  next  section  we  propose  a  method,  which  over-
comes this difficulty  and expresses the set of internal knots, through xi ,  i = 1, ..., p ,  so
that the linear precision property (8) of B-spline curves holds, at least approximately. 
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3. Positioning of the knots

In this section, we present a method, called averaging knot location method. It allows to
avoid the problem of solving system (9) with respect to ti+n , i = 1, ..., k  and at the same
time provides a set of knots Dk,n , such that the B-spline curve fDk,n  approximately obeys
the linear precision property (8). This implies that, for given xi  of C , the averaging knot
location  method produces  Dk,n ,  such that  the  Greville  abscissas  xi

* ,  obtained from Dk,n ,
are very close to xi  of C .

1) The averaging knot location method

 Choose the internal knots in Dk,n  as the averages of the x-coordinates of the vertexes of
the control polygon C , i.e., 

(13)ti+n = Hxi+1 + ... + xi+n-1L ê Hn - 1L , i = 1, ... , k .
The following proposition establishes an important property of rule (13),  which will  be
used throughout the sequel. 

Proposition 1. The averaging knot location method (13) is affinely invariant.

Proof. Note that, according to (13), an internal knot ti+n  is a convex, barycentric combina-
tion  of  xi+1, ... , xi+n-1 .  Hence,  the  assertion  of  the  proposition  follows,  since  affine
transformations leave barycentric combinations invariant. Ñ

Now, we  investigate  the  extent  to  which  the  averaging  knot  location  method preserves
the linear precision property (8). 

Proposition  2.  The  deviation  dHtL := » ⁄i=1
p xi

* Ni,nHtL - ⁄i=1
p xi Ni,nHtL »  of  the  spline

function ⁄i=1
p xi Ni,nHtL , with knots given by (13), from the straight line t ª ⁄i=1

p xi
* Ni,nHtL ,

t œ @a, bD is bounded by

(14)dHtL § max jœ 82,...,p-1< » x j
* - x j » .

Proof. Note that 

dHtL = » ⁄i=1
p Hxi

* - xiL Ni,nHtL » § ⁄i=1
p » Hxi

* - xiL Ni,nHtL »
§ max jœ 82,...,p-1< » x j

* - x j » ⁄i=1
p Ni,nHtL § max jœ 82,...,p-1< » x j

* - x j »
where we have applied the partition of unity property of Ni,nHtL , i = 1, ..., p . Ñ

In order  to  assess  the  accuracy  of  the  bound (14)  and illustrate  the  extent  to  which the
averaging  knot  location  method  preserves  the  linear  precision  property  of  B-spline
curves, we have randomly generated abscissa values x j  for three fixed numbers of verti-
ces p ,  equal respectively to 6 Hk = 3L ,  11 Hk = 8L  and 23 Hk = 20L ,  in the quadratic case
Hn = 3L .  The  number  of  simulations  for  each  value  of  p  is  1000.  The  corresponding
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thousand  graphs  of  ⁄i=1
p xi Ni,nHtL ,  t œ @0, 1D  with  knots   defined  by  (13),   have  been

plotted in Fig. 2 (a), (b) and (c). 
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Fig.  2.  Graphs of  1000 simulations of  ⁄i=1
p xi  Ni,nHtL,  with  Dk,3  according to  (13)

and estimates of  d
`
0.95
max

 and b
`

0.95
max

 for  (a)  p = 6  Hk = 3L,  d
`
0.95
max

= 0.16,  b
`

0.95
max

= 0.31;
(b)  p = 11  Hk = 8L,  d

`
0.95
max

= 0.09,  b
`

0.95
max

= 0.17;  (c)  p = 23  Hk = 20L,  d
`
0.95
max

= 0.05,
b
`

0.95
max

= 0.09.

In Fig. 2,  two corridors are also shown. The first,  defined by the dashed lines,  is based
on the 95 sample percentile of the maxt dHtL , denoted by d

`
0.95
max

. The second corridor (the
solid lines) is based on the bound (14), denoted by b

`
0.95
max

. As can be seen from Fig.2, the
maximum deviation of ⁄i=1

p xi Ni,nHtL  from the straight line t  is reasonable, and decreases
as the  number of  knots  increases.  Thus,  the higher  the number of  knots,  the better  rule
(13) allows for the linear precision property of a B-spline curve to be preserved. Similar
conclusions are found to hold for the cubic case (n = 4), applying both d

`
0.95
max

 and b
`

0.95
max

.

We have explored also other possible methods for defining the knots through the coordi-
nates of the control points ci , i = 1, ..., p . In order to formulate these methods, we have
applied  ideas  which  are  similar  to  those  used  in  CAGD  to  define  rules  for  choosing
parameter  values,  that  correspond  to  some points  on  the  plane,  to  be  interpolated  by  a
parametric B-spline curve. In this case, several alternative methods, such as the uniform,
the  chord  length,  and  the  centripetal  methods have  been proposed in  the  CAGD litera-
ture (see Farin 2001). According to these methods, the parameter values are chosen to be
proportional  to  the  distances  between  the  data  points  which are  interpolated.  However,
our  purpose  here  is  different,  in  that  we  seek  to  express  the  knots  of  a  functional
B-spline  curve  which  approximates  a  set  of  data  through  the  control  points.  So,  we
define the following alternatives to the latter methods. 

2) The uniform method 

(15)ti+n = a + i b-aÅÅÅÅÅÅÅÅÅÅk+1 , i = 1, ..., k

3) The "Chord Length" method 

(16)ti+n = a + Hb - aL H Li+1+...+Li+n-1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅn-1 L ê L ,     i = 1, ..., k ,

where L = ⁄ j=2
p ∞c j - c j-1¥ = ‚

j=2

p "#################################################Hx j - x j-1L2 + Hq j - q j-1L2  
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and Ll = ⁄ j=2
l ∞c j - c j-1¥ , l = 2, ..., p - 1.

4) The "Centripetal" method 

(17)ti+n = a + Hb - aL H Li+1+...+Li+n-1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅn-1 L ê L ,     i = 1, ..., k ,

where L = ⁄ j=2
p H∞c j - c j-1¥L0.5  and Ll = ⁄ j=2

l H∞c j - c j-1¥L0.5 , l = 2, ..., p - 1.

We  have  investigated  these  three  rules,  as  alternatives  to  the  averaging  knot  location
method. Their ability to preserve the linear precision property (8) is illustrated in Fig 3.
A comparison of Fig. 3 with Fig. 2 (c), shows that these methods are considerably worse
than the averaging knot location method. Note, that rules 2) and 3) are not affine invari-
ant and use both the x  and y  coordinates of ci , in contrast to the averaging knot location
method, which is affine invariant and uses only the x-coordinates xi , i = 1, ..., p  of the
vertexes of C . 
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Fig. 3.  Graphs of 1000 simulations of  ⁄i=1
p xi  Ni,nHtL  for p = 23  Hk = 20L  with Dk,3

defined according to: (a) the uniform method (15), d
`
0.95
max

= 0.28, b
`

0.95
max

= 0.29; (b)
the  chord  length  method  (16),  d

`
0.95
max

= 0.31,  b
`

0.95
max

= 0.32;  (c)  the  centripetal
method (17), d

`
0.95
max

= 0.27, b
`

0.95
max

= 0.28.

4. The GeDS algorithm

In order to solve the problem of recovering the unknown function in (1) and construct a
GeD spline,  as  a  free-knot,  least  squares  B-spline  regression  model  of  order  n ¥ 2,  we
apply  the  CAGD  ideas  and  properties  of  parametric  B-spline  curves,  as  described  in
Section  2.  Thus,  in  CAGD,  in  order  to  design  a  curve,  the  number  and  position  of  its
control  points  are  interactively  manipulated,  so  as  to  reach  a  desirable  position  of  the
curve in the plane. In the latter design approach, it is essential to manipulate the control
polygon in such a way that it represents a rough version (i.e. a linear approximation) of
the  smooth  shape  which  has  to  be  drawn.  A  smooth  B-spline  parametric  curve  is
"attached" to the control polygon on each step of the interactive design process until the
desirable shape and position of the curve is achieved. The use of the control polygon in
the  design  is  based  on  the  shape  preserving  property  of  parametric  spline  curves,  dis-
cussed in Section 2. 
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We transfer  these  CAGD ideas  to  the  context  of  non-parametric  regression  smoothing,
in  order  to  develop  our  new  method  for  the  construction  of  "geometrically  designed",
free knot, least squares B-spline regression curves, i.e., GeDS. The method includes two
major stages, A and B. In stage A, a LS linear spline fit is constructed, in order to obtain
the "geometric  form" of  the data.  For this purpose,  a  new, spatially  adaptive  procedure
for  automatic  knot  insertion,  equipped with an appropriate  stopping rule,  is  introduced.
The  LS  linear  fit  is  then  used  in  stage  B  as  a  guideline  for  designing  the  shape  of  a
smoother, quadratic, cubic (or higher order) LS spline model. We note that the knots are
determined as the averages of the knots of the linear spline fit, applying (13). This distin-
guishes our GeDS algorithm from other existing spline methods and makes it very fast,
since  no  time  consuming,  knot  insertion-deletion  schemes,  or  other  simulation  and
search algorithms are involved. As will be seen from the examples, stages A and B are
sufficient to obtain an accurate fit to the data.

In what follows, we give further details of the two stages of the proposed procedure for
constructing GeDS. 

Stage  A.  Construction  of  a  free  knot,  LS  linear  B-spline  fit  by  an  automatic  knot
insertion algorithm.

In  this  first  stage,  an  automatic  knot  insertion  algorithm  is  applied  to  construct  a  free-
knot, least squares, linear (order n = 2) B-spline curve (polygon), which reproduces the
"shape" of the data set 8yi, xi<i=1

N .  The algorithm may be given the following geometric
interpretation. It starts from an LS fit, in the form of a straight line segment. The latter is
then sequentially "broken" into a piecewise linear LS fit, by adding knots, one at a time,
at some points, where the fit deviates most from the "shape" of the data, according to a
measure  based  on  appropriately  defined  clusters  of  residuals.  A  stopping  rule  is  intro-
duced, which allows us to determine the appropriate number and location of the knots of
the  linear  spline  fit  and  thus,  avoid  over-  or  under-fitting.  Note  that  the  LS  linear
B-spline fit  f

`
Dk,2

HxL ,  produced in this way, coincides with its control polygon, hence its
knots  Dk,2  coincide  with  the  abscissas  of  its  control  points,  i.e.,  ti+1 = xi ,  i = 1, ..., p ,
p = k + 2.  So,  as  it  will  be  illustrated  in  the  next  section,  the  linear  GeD  spline  fit
f
`

Dk,2
HxL  is  a sufficiently  accurate  reconstruction of the unknown function,  given that no

further smoothness is required. If a smoother fit is required, a higher order GeD spline is
constructed in stage B of the GeDS procedure. A formal description of the algorithm for
stage A is given in Section 5.

Stage B. Designing the shape of a higher order (quadratic, cubic etc.) LS spline curve,
via the LS B-spline polygon of stage A.

For  n = 3, 4, ...  we  apply  the  averaging  knot  location  method  (13),  and  choose  the  k
internal  knots  ti+n ,  i = 1, ..., k  in  Dk,n ,  as  the  averages  of  abscissa  values  xi+1 ,
i = 1, ..., k  of  the  vertexes  of  the  LS  B-spline  polygon,  f

`
Dk,2

HxL ,  produced  in  stage  A.
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Based on Dk,n  we then construct a higher order (quadratic, cubic etc.) LS B-spline regres-
sion  curve,  f

`
Dk,n

HxL ,  fitting  the  data.  The  latter  fit  has  a  control  polygon  with  vertexes,
whose y-coordinates are the LS regression estimates q

`
i , i = 1, ..., p  and whose x-coordi-

nates are the Greville abscissas xi
*,  obtained from the knots Dk,n ,  applying (9). We note

that  the  p  vertexes  of  the  two  polygons,  the  control  polygon  of  the  LS  higher  order
B-spline  fit  f

`
Dk,n

HxL ,  and  the  LS  linear  B-spline  fit,  f
`

Dk,2
HxL ,  will  be  correspondingly

close to  each other.  Their  x-coordinates  xi  and xi
*  are  close,  due to the linear  precision

property of the averaging knot location method (see Fig 2). Their y-coordinates, f
`

Dk,2
HxiL

and q
`

i , are close, since f
`

Dk,2
HxiL  and f

`
Dk,n

Hxi
*L  are close as LS fits to 8yi, xi<i=1

N , evaluated
at  the  close  x  locations  xi  and  xi

* ,  and  f
`

Dk,n
Hxi

*L º q
`

i .  For  a  proof  of  the  fact  that
f
`

Dk,n
Hxi

*L º q
`

i  see e.g., Cohen et al. (2001), p. 281.

In  this  way,  we  assure  that  the  control  polygon  of  f
`

Dk,n
HxL  is  close  to  the  LS  B-spline

polygon f
`

Dk,2
HxL . But, due to its shape preserving property (see Section 2), the fit f

`
Dk,n

HxL
will have the same shape as its control polygon, hence will be close to the shape of the
LS B-spline  polygon f

`
Dk,2

HxL ,  which  follows  the  shape of  the  data.  But since,  applying
the  averaging  knot  location  method  (13),  more  knots  are  inserted  at  locations  where
f
`

Dk,2
HxL  is more wiggly and less knots at its smoother segments, we guarantee that more

knots  are  placed  where  the  data  exhibits  more  variation.  In  this  way  we  assure  that
f
`

Dk,n
HxL  has  appropriately  located  set  of  knots  and  adequately  approximates  the  data.

This  is  the  basic  CAGD  idea  underlying  stage  B  of  the  proposed  GeDS  method.  It
allows us  to  avoid  complex and time consuming knot  optimization procedures.  As will
be  illustrated  by  the  examples  in  Section  6,  the  resulting  fits  have  good  visual  quality
and appropriate goodness of fit measure.

Remark:  Stages A and B are sufficient to produce a very good quality spline fit with a
reasonably small number of knots as seen from the examples, given in Section 6. How-
ever,  since  GeDS  does  not  produce  optimally  placed  knots,  in  some  applications,  a
Fibonacci optimization search applied sequentially to each knot, produced after Stage B,
may give some improvement of the MSE (see Example 8, Section 6).

5. An automatic, knot insertion algorithm for free-knot, LS linear 
B-spline regression 

In view of the importance of stage A of GeDS, this section contains a detailed descrip-
tion. 

Step  1.  Set  n = 2  and  k = 0,  i.e,  the  starting  set  of  knots  is  D0,2 = 8ti<i=1
4  with

t1 = t2 = a < b = t3 = t4  and find the LS B-spline fit, in the form of the straight line

f
`

D0,2
 HxL = q

`
1 N1,2HxL + q

`
2 N2,2HxL .
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Find the residuals ri ª rHxiL = yi - f
`

D0,2
HxiL , i = 1, ..., N and calculate the residual sum of

squares  RSSHkL = ⁄i=1
N ri

2  and  the  mean  squared  error  MSEHkL = RSSHkL ê N  of  the  fit
with k  internal knots. Since the i-th residual rHxiL , is a function of xi , i = 1, 2, ..., N  we
will refer to xi  as the x-value of the i-th residual.

Step 2.  Group the  consecutive  residuals  ri ,  i = 1, ..., N  into  clusters  by their  sign,  i.e.,
find a number l , 1 § l § N and a set of integer values d j > 0, j = 1, ..., l  such that 

signHr1L = ... = signHrd1L ∫ signHrd1+1L = signHrd1+2L = ... = signHrd1+d2L ∫
... ∫ signHrd1+d2+...+dl-1+1L = signHrd1+d2+...+dl-1+2L = ... = signHrd1+d2+...+dlL ,

and ⁄ j=1
l d j = N . Note that the clusters are formed and numbered consecutively, follow-

ing the order of the residuals, i.e., the order of their x-values x1 < x2 < ... < xN .

Step 3. For each of the l  clusters of residuals of identical signs, calculate the "within-clus-
ter" mean residual value 

m j =
i

k
jjjjjj‚

i=1

d j

 rdH jL+i

y

{
zzzzzzìd j , j = 1, ... , l ,

where dH jL = d1 + d2 + ... + d j-1  and the "within-cluster" range x j ,  defined as the differ-
ence between the right-most and the left-most x-value of the residuals, belonging to the
j-th cluster,  i.e.,  x j = xdH j+1L - xdH jL+1 ,  j = 1, ..., l .  Throughout  the sequel,  we will  need
the more general notation for dH jL = ⁄i< j di  to denote partial sums of non-ordered values
di , for which i < j  and we will call the interval between the right-most and the left-most
x-value of the residuals, belonging to the j-th cluster, i.e., @xdH jL+1, xdH j+1LD ,  the "within-
cluster" interval.

Step 4. Find 

(18)mmax = max
1§ j§l

 Hm jL

(19)xmax = max
1§ j§l

 Hx jL

and  calculate,  correspondingly,  the  normalized  "within-cluster"  mean  and  range  values
m j

£ = m j êmmax  and x j
£ = x j ê xmax , so that 0 < m j

£ § 1, 0 < x j
£ § 1. Note that the equalities

(18) and (19) will not necessarily be fulfilled for one and the same cluster index j , i.e.,
the  two  maximums  mmax  and  xmax  may  in  general  be  attained  for  2  different  clusters
with indexes jm ∫ jx .

Step 5. Calculate the cluster weights

(20)w j = b m j
£ + H1 - bL x j

£ ,   j = 1, ... , l ,

where,  b  is  a  real  valued  parameter,  0 § b § 1.  The  value  w j  can  serve  as  a  measure,
attached to  the j-th  cluster  of  residuals  of  identical  sign,  which measures the deviation
of  the  least  squares  linear  B-spline  regression  polygon  f

`
Dk,2

HxL  from  the  j-th  cluster.
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Obviously,  the  weight  w j  itself  is  a  weighted  sum  of  the  normalized  "within-cluster"
mean  and  "within-cluster"  range  values  and  the  weight  b  is  one  of  the  parameters,
whose value will need to be chosen by the user at the start of Stage A. 

Step  6.  Order  the  clusters  in  descending  order  of  their  weights  w j ,  j = 1, ... , l ,  i.e.,
create  a  list  of  corresponding  cluster  indexes  8 j1, j2, ... , jl<  such  that
w j1 ¥ w j2 ¥ ... ¥ w jl .  In  the  case  where some clusters  have coincident  weights,  they are
ordered  in  descending  order  of  their  "within-cluster"  means.  If  the  latter  coincide,  the
order between the clusters is set, according to the descending values of the "within-clus-
ter"  ranges.  In  the  case  of  coincident  "within-cluster"  ranges,  the  clusters  are  ordered
with respect to the number of residuals (of identical  sign) in each cluster. Finally, if all
of  the  listed  characteristics  of  some  of  the  clusters  are  identical,  they  are  ordered  in
decreasing  order  with  respect  to  the  x-value  of  the  right  most  residual  in  the  cluster.
These proposed ways of ordering the clusters are reasonable and meaningful, since they
all characterize, in one way or another, how much the current least squares linear spline
fit f

`
Dk,2

HxL  deviates from each of the clusters. Thus, to improve f
`

Dk,2
HxL , we insert a new

knot, at an appropriate location, in the "within-cluster" interval of x-values, correspond-
ing to the j1 -th cluster.  Since, in general, even equality of the w j  is relatively unlikely,
the ordering of the clusters is based practically on the ordering of their weights w j . The
precise definition of the new knot placement criterion is given in the next step.

Step 7. Check whether there is already a knot in the "within-cluster" interval of the j1 -th
cluster with highest rank, according to the ordering in Step 6, i.e., check whether

(21)ti œ @xdH j1L+1, xdH j1L+d j1
D  ,

for each internal knot ti œ Dk,2 , i = 3, ... , k + 2. 

If there is already a knot in the "within-cluster" interval of the j1 -th cluster, the check is
repeated for the cluster with index j2 , and so on until the first cluster, with index js , say,
in  the  ordering  of  clusters  is  found,  whose  "within-cluster"  interval  does  not  contain  a
knot then insert a new knot t*  at

(22)t* =
i
k
jjjj ‚

i=dH jsL+1

dH jsL+d js

 ri xi
y
{
zzzzìi

k
jjjj ‚

i=dH jsL+1

dH jsL+d js

 ri
y
{
zzzz ,

Note  that  (22)  is  a  convex  combination  of  the  x-values  of  the  residuals  in  the  cluster
with  index  js ,  whose  "within  cluster"  interval  does  not  contain  a  knot.  The  new  knot
position  can  be  viewed  as  the  weighted  average  of  the  x-values  of  the  residuals  in  the
js -th cluster, the weights being the normalized values of the residuals. Thus, we use the
information about the x-values for which the fit is worse, in that it departs most strongly
from the  data.  Note  that,  in  defining  the  position  of  the  new knot,  we  use  information
about the values of both the independent variable x  and the response variable y .
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After  the  location  of  the  new  knot  t*  is  found,  the  Schoenberg-Whitney  condition  is
checked with respect to Dk,2 ‹ 8t*< . If this condition is violated, the new knot is placed at
the first cluster for which it holds and (21) does not hold. If there are no such clusters the
algorithm exits  from Stage A with Dk,2 .  Otherwise,  the set  of  knots Dk,2  is updated,  by
adding t*  to it,  i.e.,  Dk+1,2

* := Dk,2 ‹ 8t*< ,  the  number of  interior  knots  k  is  increased  by
one and Step 8 is executed.

Step 8. Find the least squares linear B-spline fit

f
`

Dk+1,2
*  HxL = ‚

i=1

p

 q
`

i Ni,2HxL .

Since Dk+1,2
*  contains the new knot, the number of B-splines p  will increase by one.

Step  9.  Calculate  the  MSEHk + 1L  for  f
`

Dk+1,2
*  HxL .  Note  that  Dk,2 Õ Dk+1,2

*  implies  that
SDk,2 Õ SDk+1,2

*  hence  f
`

Dk,2  HxL œ SDk+1,2
*  and  applying  the  orthogonality  property  of  least

squares estimation it is easy to show that 

(23)‚
i=1

N

 Iyi - f
`

Dk,2
 HxiLM

2
= ‚

i=1

N

 Iyi - f
`

Dk+1,2
*  HxiLM

2
+ ‚

i=1

N

 I f
`

Dk+1,2
*  HxiL - f

`
Dk,2

 HxiLM
2 .

Equality  (23)  implies  that  MSEHk + 1L < MSEHkL .  It  is  obvious  also  that  MSEHkL  will
converge to zero as k + nö N  since,  when k + n = N  the fit  interpolates  the data.  The
insertion  of  the  new  knot  t*  at  a  location,  where  the  fit  deviates  most  from  the  data,
assures that the decrement of the MSE, will be significantly big, although not necessar-
ily maximal.  Equalities  (22)  and (23)  give rise  to  the  rule  for  exit  from Stage A of  the
algorithm, given next.

Step  10.  If  the  set  of  knots  Dk+1,2
*  contains  less  than  q  internal  knots,  for  some  given

value  of  q ,  then  the  algorithm  goes  back  to  Step  2.  If  this  is  not  the  case  and  Dk+1,2
*

contains q  or more internal knots then the ratio

(24)a = MSEHk + 1L ê MSEHk + 1 - qL
is  calculated  and  if  a > aexit ,  an  exit  from Stage  A of  the  algorithm is  performed.  The
value aexit  is chosen ex ante to be close to 1, since the ratio a  will be close to zero if the
fit has improved significantly and will tend to 1 if no improvement has been achieved on
the  last  q + 1  consecutive  iterations  and  the  corresponding  values  of  the  MSE  have
stabilized.  Our  experience  has  shown that  the  rule  (24)  works well  as  a  model selector
with q = 2, i.e., stabilization with respect to MSEHk - 1L , MSEHk + 1L  is sufficient to exit
from Stage  A with  the  appropriate  number  of  knots.  Hence,  q  has  been  fixed  equal  to
two.

This completes the description of  Stage A of  GeDS. To summarize, there are only two
parameters b  and aexit  associated with the GeDS algorithm. Their choice is discussed in
Section 6.1.
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6. GeDS in action

The implementation of the GeDS algorithm has been carried out using Mathematica. We
have run the GeDS Mathematica  code for  all  test  examples on a standard PC (Pentium
IV, 1.4 Ghz, 512 RAM). The code is available, upon request to the corresponding author.

à 6.1. Input to the GeDS Mathematica program

In order to run the program, it  is  necessary to input only the set  of data 8xi, yi<i=1
N .  The

two parameters, aexit œ @0, 1D  and b œ @0, 1D ,  defined correspondingly in steps 10 and 5
of Section 5, by means of which the exit from GeDS can be controlled, have preassigned
values, which in general need not be re-set. The parameter aexit  is related to the stopping
rule,  which determines when to  exit  from Stage A, i.e.,  the number and location of the
knots of the final LS linear B-spline fit.  The parameter b  is related to the residual mea-
sure  (20)  and  its  choice  depends  on  the  wiggliness  of  the  recovered  function  and  the
level  of  the noise e .  In the Normal case,  e ~ NH0, seL ,  the noise level  is defined by the
variance se

2 . As will be illustrated, most of the examples are run with the two parameters
having  the  preassigned  values  aexit = 0.9,  b = 0.5  and  this  produces  very  good  results.
Choices  of  aexit œ @0, 0.7D  make  the  algorithm  exit  after  the  first  few  steps  which,  for
most functions, does not lead to an adequate resulting fit.

The  choice  of  b  depends  on  the  level  of  the  signal-to-noise  ratio  (SNR),
SNR = HvarH f LL0.5 ê se  and on the degree of smoothness of f . As will be seen, in most of
the  numerical  examples,  the  appropriate  value  of  b  was  0.5,  which  means  that  the
"within-cluster" mean and range can be considered equally important components of the
weights w j ,  j = 1, ..., l .  However, based on our experience,  when the SNR is high and
f  is smooth recommended values are b œ @0.5, 0.6D , aexit = 0.9. If the SNR is high and
f  is  a  wiggly  function  then  the  recommended  choice  is  b œ @0.5, 0.6D ,
aexit œ @0.99, 0.999D ,  since otherwise underfit  may result.  In the case when SNR is low
and f  is smooth, one may use b œ @0.4, 0.5D ,  aexit œ @0.9, 0.99D .  It  is known that,  when
the  SNR  is  low  and  the  underlying  function  is  very  unsmooth,  recovering  f  is  very
difficult and different choices of b  and aexit  may need to be attempted.

à 6.2. Numerical results

In  order  to  facilitate  comparison  of  GeDS  with  existing  smoothing  methods,  we  have
simulated  data  using  the  functions  given  in  Table  1,  which  have  been  widely  used  in
testing other existing smoothing procedures.
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Table 1. Summary of test functions.

Function Specification

1 f1 HxL = 10 xÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ1+100 x2

2 f2 HxL = H4 x - 2L + 2 ‰-16 H4 x-2L2

3 f3 HxL = sin H8 x - 4L + 2 ‰-16 H4 x-2L2

HeaviSine f4 HxL = 4 sin H4 p xL - sgn Hx - 0.3L - sgn H0.72 - xL
Doppler f5 HxL =

è!!!!!!!!!!!!!!!!!x H1 - xL sin I 2 p H1+eLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHx+eL M, e = 0.05

Bumps f6 HxL = ‚
j
h j I1 + ° x-s jÅÅÅÅÅÅÅÅÅÅÅÅw j

•M-4, 8h j< = 84, 5, 3, 4, 5, 4.2, 2.1, 4.3, 3.1, 5.1, 4.2<
8s j< = 80.1, 0.13, 0.15, 0.23, 0.25, 0.40, 0.44, 0.65, 0.76, 0.78, 0.81<
8w j< = 80.005, 0.005, 0.006, 0.01, 0.01, 0.03, 0.01, 0.01, 0.005, 0.008, 0.005<

Blocks f7 HxL = ‚
j
h j

1+sgn Hx-s jLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2 , 8h j< = 84, -5, 3, -4, 5, -4.2, 2.1, 4.3, -3.1, 2.1, -4.2<
8s j< = 80.1, 0.13, 0.15, 0.23, 0.25, 0.40, 0.44, 0.65, 0.76, 0.78, 0.81<

The  data  sets,  used  to  test  GeDS were  simulated  by  adding  noise  to  each  of  the  seven
functions,  as  given  in  Table  1.  As  seen,  we  have  included  examples  testing  GeDS for
different  values of  SNR, and for  various characteristics  of  the data set:  small  and large
sample  sizes,  x-values  in  a  grid  or  uniformly  generated  within  different  intervals
x œ @a, bD .  In  all  examples,  the  noise  has  a  Normal  distribution,  with  the  exception  of
Example  1,  where  the  noise  is  uniformly  distributed.  Note  also  that  the  test  functions
included in Table 2 possess different smoothness properties: some of them are relatively
smooth, others very wiggly.

Table 2. Summary of examples used to test GeDS.

Example
No

Function
HdataL

Interval Sample
size, N

Data
xi, i = 1, ..., N

Noice level,
se

SNR

1 f1 HxL @-2, 2D 90 xi = -2 + H2-H-2LLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ89 Hi - 1L U  H-0.05, 0.05L -

2 f2 HxL @0, 1D 256
150

U  H0, 1L 0.6, 0.4, 0.25
0.25

2, 3, 5
5

3 f3 HxL @0, 1D 256 U  H0, 1L 0.3 3

4 HeaviSine @0, 1D 2048 xi = 1ÅÅÅÅÅÅÅÅÅÅÅÅ2047  Hi - 1L 1 7

5 Doppler @0, 1D 2048 xi = 1ÅÅÅÅÅÅÅÅÅÅÅÅ2047  Hi - 1L 1 7

6 Bumps @0, 1D 2048 xi = 1ÅÅÅÅÅÅÅÅÅÅÅÅ2047  Hi - 1L 1 7

7 Blocks @0, 1D 2048 xi = 1ÅÅÅÅÅÅÅÅÅÅÅÅ2047  Hi - 1L 1 7

8 Titanium
Heat Data

@595, 1075D 49 xi = 595 + 10 Hi - 1L - -

In  order  to  compare  the  quality  of  the  fits  produced  by  GeDS to  those  given  by  other
authors, we use the MSE, defined with respect to the true function f , rather than to the
data:
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MSE =
i
k
jjjjj‚

i=1

N

I f HxiL - f
`

Dk,n
HxiLM

2y
{
zzzzzì N .

Note  that,  in  practice,  the  underlying  function  is  unknown and  a  set  of  observations  is
fitted.  For  this  reason,  we  give  also  the  L2 -error  of  approximation,  defined  as  è!!!!!!!!!RSS .
However,  for  fair  comparison  between  the  smoothing  methods,  one  would  need  all
model parameter  values,  such as,  number of  knots (regression functions)  and degree of
the spline fits etc., which often are not reported in full. The Titanium Heat Data example
is  appropriate  to  compare  different  smoothing  methods  since  the  data  are  real  and
DeBoor and others have published the number and position of the knots and the degree
of their spline fits.  For fair  comparison of the speed of computation one would need to
implement  all  available  methods  using  the  same hardware  and  software,  and  test  them
on entirely identical  simulated data sets. Such a comparison is outside the scope of this
paper.

We have run GeDS with 400 simulated data sets for Examples 1-3 and 31 data sets for
Examples 4-7. This allows us to compute the median of the MSE, obtained using GeDS,
and  compare  it  with  the  MSE  medians  given  by  other  authors.  However,  in  order  to
illustrate how GeDS performs, in each example we have used a single data set randomly
chosen among the simulated data sets. 

We compare most of our results, except those for the Blocks and Bumps examples, with
the results of Luo and Wahba (1997) since, along with the median MSE values for their
fits,  they  give  also  the  order  and the  number of  the  basis  functions.  We have excluded
the  Bumps  and  Blocks  since  Luo  and  Wahba  (1997)  use  versions  of  these  functions
which differ from ours, i.e., from those proposed by Donoho and Johnstone (1994).

Example 1.  We start  by  testing GeDS on recovering  the  function  f1 ,  which appears  in
Schwetlick and Schütze (1995). Our 400 simulated data sets have the same characteris-
tics  as  the  data  set  of  Schwetlick  and  Schütze  (1995)  (see  Table  2),  so  we  are  able  to
compare  our  results  with  theirs.  Graphs  of  the  linear  B-spline  fits,  produced  on  each
consecutive  iteration  in  Stage A of  GeDS, preceding the  final  one,  are  given in  Fig.  4.
As can be seen, the initial,  straight line fit, given in Fig. 4 (a), is sequentially improved
by adding knots, one at each step, to reach the fit  given in Fig. 5 (a), which can not be
significantly  improved  by  adding  more  knots.  Applying  the  averaging  knot  selection
method (13)  to  the  knots  of  the  final  linear  fit  of  Stage  A,  the  set  of  knots  of  the  qua-
dratic and cubic LS spline fits  are defined.  These fits,  resulting from stage B of GeDS,
are correspondingly plotted in Fig. 5 (b) and (c). The closeness of the control polygons
of  the  final,  linear,  quadratic  and  cubic  fits,  is  illustrated  in  Fig.  5  (d).  It  can  be  seen
from Fig. 5 (a), (e) and (f), that the shape preserving property of B-splines holds and the
fits  follow  the  shape  of  their  control  polygons  but  they  move  away  from  them  as  the
order of the B-splines increases.
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Fig. 4. (Example 1) Graphs of the linear B-spline fits, produced on each consecu-
tive iteration on Stage A of GeDS, except the final one.
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Fig.  5.  (Example  1)  Graphs  of  the  final  B-spline  fits,  produced  by  GeDS:  (a)
linear;  (b)  and  (e)  quadratic,  correspondingly  without  and  with  its  control  poly-
gon;  (c)  and  (f)  cubic,  correspondingly  without  and  with  its  control  polygon;  (d)
the control polygons of the fits in (a) - the thick line, in (b) - the dashed line and
in (c) - the dotted line; The dotted function in (a), (b), (c) is the true function.

The details  of  the  final  linear,  and its  corresponding  quadratic  and cubic  spline  fits  for
Example  1  are  presented  in  Table  3.  Note  that  the  values  for  aexit  and  b  are  the
"automatic"  preassigned  values  0.9, 0.5.  As  can  be  seen,  the  function  f1  is  symmetric
and GeDS places, symmetrically around the origin, 8, 7 and 6 knots, respectively for the
linear,  quadratic  and  cubic  fits.  As  seen  from  Table  3,  all  the  fits  are  of  a  very  good
quality  with  respect  to  the  MSE.  The  400  linear,  quadratic  and  cubic  GeD  spline  fits,
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with  median  number  of  regression  functions  n + k = 10,  have  median  L2 -errors  corre-
spondingly 0.26, 0.267, 0.264, which are lower than 0.277, obtained by Schwetlick and
Schütze  (1995)  for  a  quartic  fit  with  the  same  number  of  regression  parameters  and
optimally  located  knots.  For  all  400  linear  fits,  the  number  of  internal  knots  used  by
GeDS is 8 or 9. Let us note that the computation time for the fits given in Table 3 is less
then a  second (0.89 sec.)  and does not  involve any complicated search procedures.  We
have produced also a quartic GeDS fit which has five internal knots as does the optimal
quartic  fit  of  Schwetlick  and  Schütze  (1995),  obtained  starting  from  fifteen  knots  and
after  three  time consuming knot  generation,  removal  and relocation  stages.  Our quartic
fit has L2 -error equal to 0.46 which indicates that it does not deviate considerably from
the (locally) optimal solution.

Table 3.  (Example 1) The linear, and its  corresponding quadratic and cubic fits
produced by GeDS .

Fit
No

Graph n k Internal knots aexit, b L2 - error, MSE

1 Fig. 5, HaL 2 8 8-1.1, -0.33, -0.12, -0.05, 0.05, 0.12, 0.32, 0.96< 0.9, 0.5 0.2699, 0.000189
2 Fig. 5, HbL 3 7 8-0.69, -0.22, -0.09, 0.00, 0.09, 0.22, 0.64< 0.9, 0.5 0.2944, 0.000127
3 Fig. 5, HcL 4 6 8-0.51, -0.17, -0.04, 0.04, 0.16, 0.47< 0.9, 0.5 0.2631, 0.000119

Example  2.  This  smooth  function  first  appears  as  a  test  example  in  Fan  and  Gijbels
(1995). It has been used later by Luo and Wahba (1997), Denison at al. (1998) and Zhou
and Shen (2001) to test their fitting procedures. With this example, we illustrate that our
algorithm works well  for  data sets with different  sample sizes and various noise levels,
assuming e  is  normally  distributed.  It  takes  between  0.89  sec  and  1.66  sec  to  compute
the GeDS fits,  given in  Table  4.  The L2 -errors  of  all  the  fits  are  within the noise level
and their visual quality is very good, as can be seen from Fig. 6. The median MSE value
of the 400 linear fits, for se = 0.4, with median number of internal knots k = 5, is 0.009.
This is lower than the MSE value 0.012  of Luo and Wahba (1997), and is equal to that
of  Zhou  and  Shen  (2001),  both  obtained  using  cubic  splines  with  higher  number  of
regression functions (e.g., 13 for the fit of Luo and Wahba (1997)). Let us note that for
all  400 linear  fits  the  number of  internal  knots  used by GeDS is  between 4 and 6.  The
linear and cubic fits corresponding to the quadratic fit No 3, Table 4, have five and three
internal knots and 0.0066 and 0.0277 MSE values respectively.

Table 4. (Example 2) Summary of fits produced by GeDS.

Fit
No

Graph N se n k Internal knots aexit, b L2 - error, MSE

1 Fig. 6, HaL 150 0.25 3 4 80.37, 0.46, 0.54, 0.62< 0.9, 0.5 2.87, 0.001282
2 Fig. 6, HbL 256 0.25 3 4 80.38, 0.46, 0.54, 0.63< 0.9, 0.5 4.01, 0.001359
3 Fig. 6, HcL 256 0.4 3 4 80.38, 0.46, 0.54, 0.60< 0.95, 0.5 6.17, 0.006573
4 Fig. 6, HdL 256 0.6 3 5 80.26, 0.39, 0.51, 0.55, 0.62< 0.95, 0.5 9.03, 0.021918
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Fig.  6.  (Example  2)  Graphs  of  the  final  quadratic  B-spline  fits,  produced  by
GeDS:  (a)  N = 150,  s = 0.25;  (b)  N = 256,  s = 0.25;  (c)  N = 256,  s = 0.4;  (d)
N = 256, s = 0.6; The dotted function in (a), (b), (c), (d) is the true function.

Note that the first two fits in Table 4 are obtained with aexit = 0.9 and b = 0.5. Since the
noise  levels  for  fits  No  3  and  4  are  higher  than  for  fits  No  1  and  2,  aexit  has  been
increased to 0.95, because,  in the case of a smooth function and a high noise level,  the
relative improvements in RSS from one step to another would be smaller and more steps
would be needed to recover the function.

Example 3. The function f3  (see Table 1) appears as a test example in Fan and Gijbels
(1995), Luo and Wahba (1997), Denison at al. (1998) and Zhou and Shen (2001). Using
the GeDS algorithm we have produced linear, quadratic and cubic fits whose details are
given in Table 5. The SNR of the sample data is 3, as for fit No 3 of Example 2. Since
f3  is also relatively smooth we have used aexit = 0.95  and b = 0.5  in order to obtain the
fits in Fig. 7 (e) and (f), which have very good visual quality and low MSE values. The
GeD spline fits No 1-3 of Table 5, which have the same number of regression functions
k + n ,  are  obtained with the preassigned "automatic" values aexit = 0.9  and b = 0.5. As
seen  from Fig.  7  (a),  (c)  and  (d),  the  linear  and  quadratic  fits  are  sufficiently  accurate
while the cubic one underfits the data. Adding one more knot by running GeDS with the
higher value of aexit = 0.95  improves the cubic fit as illustrated by Fig. 7 (f). The behav-
ior of the stopping rule is illustrated in Fig.7 (b). It can be seen that with aexit = 0.9  the
algorithm exits with 6 internal knots for the linear fit and the RSS ê N  is 0.082677. This
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means that the MSE of the linear fit with 8 knots is at least 90% of the value 0.082677,
i.e., the MSE has stabilized for three consecutive steps at which models with 6, 7 and 8
knots  have  been  computed.  If  aexit = 0.95  the  algorithm  exits  one  step  later,  with  7
internal knots for the linear fit and RSS ê N = 0.07967 since the improvement in RSS ê N
for the next two consecutive steps is less than 5% of 0.07967. So, we see that our stop-
ping  rule,  based  on  the  idea  of  exiting  upon reaching  a  certain  level  of  stabilization  in
MSE, selects models with the appropriate number of knots. 
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Fig.  7.  (Example  3)  Graphs  of  the  final  B-spline  fits,  produced  by  GeDS:  (a)
linear; (c) and (e) quadratic; (d) and (f) cubic; (b) for each step of the fitting pro-
cess the values of: a-ratio - black dots, MSE - grey dots; The dotted function in
(a), (c), (d), (e), (f) is the true function.
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Table 5. (Example 3) Summary of fits produced by GeDS for Example 3.

Fit
No

Graph n k Internal knots aexit, b L2 - error, MSE

1 Fig. 7, HaL 2 6 80.30, 0.40, 0.50, 0.60, 0.63, 0.83< 0.9, 0.5 4.60, 0.009931
2 Fig. 7, HcL 3 5 80.35, 0.45, 0.55, 0.61, 0.73< 0.9, 0.5 4.63, 0.005961
3 Fig. 7, HdL 4 4 80.40, 0.50, 0.57, 0.69< 0.9, 0.5 4.99, 0.019523
4 Fig. 7, HeL 3 6 80.33, 0.37, 0.45, 0.55, 0.61, 0.73< 0.95, 0.5 4.53, 0.006153
5 Fig. 7, Hf L 4 5 80.35, 0.42, 0.50, 0.57, 0.69< 0.95, 0.5 4.51, 0.004258

The  median  MSE  value  for  the  400  linear  and  quadratic  fits  are  respectively  equal  to
0.0075 and 0.0095, and are comparable with those produced by other authors. For exam-
ple, Luo and Wahba (1997) report MSE = 0.007  and number of basis functions equal to
13  for  their  HAS models.  For  all  400  linear  fits  the  number  of  internal  knots  used  by
GeDS is between 5 and 7. It takes 1.58 sec to compute fits No 1-3 and 1.88 sec to com-
pute fits No 4 and 5 of Table 5.

Example 4. The HeaviSine function is one of the four functions introduced by Donoho
and Johnstone  (1994)  and  widely  used  as  test  examples  by  other  authors,  e.g.  Fan  and
Gijbels  (1995),  Luo  and  Wahba  (1997),  Denison  at  al.  (1998),  Zhou  and  Shen  (2001),
Lee  (2000),  Pittman (2002).  It  is  a  smooth function  with  two discontinuities  at  x = 0.3
and  x = 0.72.  It  takes  55  seconds  to  obtain  simultaneously  the  linear,  quadratic  and
cubic GeD spline fits, illustrated in Fig. 8. Their details are given in Table 6. In this and
the  following  examples  of  spatially  inhomogeneous  curves,  we  have  set  the  value  for
aexit  at  0.99,  to  prevent  GeDS  from  producing  a  spline  approximation  which  is  too
smooth for adequately representing the "shape" of the data.

Table 6. (Example 4) Summary of fits produced by GeDS for Example 4.

Fit
No

Graph n k Internal knots aexit, b L2 - error
MSE

1 Fig. 8, HaL 2 18 80.10, 0.13, 0.18, 0.29, 0.30, 0.30, 0.32, 0.38, 0.44,
0.57, 0.63, 0.71, 0.71, 0.72, 0.74, 0.83, 0.84, 0.99<

0.99, 0.5 46.56
0.2203

2 Fig. 8, HbL 3 17 80.11, 0.16, 0.23, 0.29, 0.30, 0.31, 0.35, 0.41, 0.50,
0.60, 0.67, 0.71, 0.72, 0.73, 0.79, 0.84, 0.92<

0.99, 0.5 43.42
0.0482

3 Fig. 8, HcL 4 16 80.14, 0.20, 0.26, 0.30, 0.31, 0.33, 0.38, 0.46, 0.55,
0.64, 0.69, 0.72, 0.73, 0.77, 0.81, 0.89<

0.99, 0.5 44.82
0.0942

For  the  quadratic  GeDS  fit  for  example  4,  the  median  number  of  regression  functions
k + n  is only 20  while the median MSE value 0.057, is comparable with 0.04  given by
Luo and Wahba (1997) for their cubic spline model with  50 basis functions. Our GeDS
algorithm uses between 17  and 21  internal knots to fit the 31 simulated data sets in the
linear case. Based on the L2 -errors for the linear, quadratic and cubic fits given in Table
6, one can see that the best fit for this particular function is of degree 2.
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Fig.  8.  (Example  4)  Graphs  of  the  final  B-spline  fits,  produced  by  GeDS:  (a)
linear;  (b)  quadratic;  (c)  cubic;  The  dotted  function  in  (a),  (b),  (c)  is  the  true
function.

Example  5.  This,  function  is  known  as  the  Doppler  function.  It  is  highly  oscillating,
especially  around  the  origin  and  is  difficult  to  recover.  Using  the  GeDS  algorithm  we
have obtained six different  fits  for the same data set with SNR equal to 7. Fits No 1-3,
given  in  Table  7,  are  calculated  simultaneously  in  304  seconds  with  aexit = 0.99.  The
quadratic  one  has  46  knots  and  MSE = 0.13.  For  comparison  the  HAS  cubic  fit,  pro-
duced  by  Luo  and  Wahba  (1997)  has  MSE = 0.10  with  120  basis  functions.  Based  on
the  quadratic  GeD spline  fits  of  31 simulated  data  sets  we have  obtained median MSE
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value 0.089  and median number of knots 62, using aexit = 0.999.  The number of knots
for the 31 quadratic fits was between 50 and 78.
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Fig.  9.  (Example  5)  Graphs  of  the  final  B-spline  fits,  produced  by  GeDS:  (a)
linear;  (b)  quadratic;  (c)  cubic;  The  dotted  function  in  (a),  (b),  (c)  is  the  true
function.

Comparing the L2 -errors of the fits of degree 1,2 and 3, summarized in Table 7 the best
fit  for the Doppler function is the quadratic one. The GeDS fits No 4-6, given in Fig. 9
are obtained in 717 seconds.
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Table 7. (Example 5) Summary of fits produced by GeDS for Example 5.

Fit
No

Graph n k aexit, b L2 - error, MSE

1 - 2 47 0.99, 0.5 48.24, 0.199802
2 - 3 46 0.99, 0.5 46.77, 0.125328
3 - 4 45 0.99, 0.5 49.04, 0.233945
4 Fig. 9, HaL 2 74 0.999, 0.5 45.21, 0.114633
5 Fig. 9, HbL 3 73 0.999, 0.5 44.92, 0.060037
6 Fig. 9, HcL 4 72 0.999, 0.5 46.10, 0.106811

Example 6. The Bumps function is very wiggly and difficult to fit as well. Following the
prescription for choosing aexit  in the case of fitting wiggly functions with high SNR, we
have set  aexit = 0.99  and have obtained the GeDS fits  whose details  are summarized in
Table 8. Looking at the L2 -errors we see that the fit with the lowest L2 -error is the linear
one. A linear fit for Bumps is given also by Lee (2000) whose MDL procedure automati-
cally chooses the order of the fit within the range 1 to 4. Based on 31 simulated data sets
the  median  MSE  value  for  the  linear  fit  is  0.22,  for  the  quadratic  fit  is  0.51  and  the
median number of  knots is  90.  The  GeDS algorithm places between 79  and 102  knots
for these 31 fits. For comparison the median MSE value reported by Pittman (1994) for
the cubic AGS fit is 0.4001, for a certain median number of knots, which is not given.

Table 8. (Example 6) Summary of fits produced by GeDS for Example 6.

Fit
No

Graph n k aexit, b L2 - error, MSE

1 - 2 83 0.99, 0.5 48.59, 0.283631
2 - 3 82 0.99, 0.5 56.03, 0.631448
3 - 4 81 0.99, 0.5 66.44, 1.198390
4 Fig. 10, HaL 2 103 0.999, 0.5 44.51, 0.140580
5 Fig. 10, HbL 3 102 0.999, 0.5 47.96, 0.264664
6 Fig. 10, HcL 4 101 0.999, 0.5 52.29, 0.445403

The fits  No 1-3 are  obtained in  795 seconds,  whereas fits  No 4-6,  given in  Fig.  10 are
computed  in  1255  seconds.  Let  us  recall  that,  due  to  their  shape  preserving  property,
higher  order  B-spline  curves  deviate  more  strongly  from their  control  polygons,  which
explains  why the quadratic  and cubic  B-spline  fits  in  Fig.  10 (b)  and (c)  reproduce the
very narrow and high spikes of the Bumps function less well than the linear fit in Fig. 10
(a).
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Fig.  10.  (Example  6)  Graphs  of  the  final  B-spline  fits,  produced  by  GeDS:  (a)
linear;  (b)  quadratic;  (c)  cubic;  The  dotted  function  in  (a),  (b),  (c)  is  the  true
function.

Example 7. For the Blocks function, in order to obtain fits No 1-4 given in Table 9, we
have  run  our  algorithm  with  aexit = 0.99  and  aexit = 0.999.  We  have  obtained  linear,
quadratic  and  cubic  fits  for  this  example,  but  only  results  for  the  linear  and  quadratic
cases are presented in Fig 11, since the MSE increases with the degree, i.e., as seen from
Table  9,  the  L2 -error  of  the  linear  fit  is  lowest.  Let  us  note  once  again  that,  since  the
GeDS algorithm produces simultaneously fits of different order, it may be considered as
a free parameter. The order of the fit, with lowest L2 -error, may serve as an estimate for
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this free parameter which is estimated by Lee (2000) applying his time consuming MDL
optimization procedure.
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Fig.  11.  (Example  7)  Graphs  of  the  final  B-spline  fits,  produced  by  GeDS:  (a)
linear;  (b)  linear;  (c)  quadratic;  The  dotted  function  in  (a),  (b),  (c)  is  the  true
function.

The  fits  No  1-2  are  obtained  in  344  seconds  and  No  3-4  in  856  seconds.  Our  median
MSE  value,  based  on  31  runs  with  aexit = 0.999  is  0.12  with  83  median  number  of
knots. For comparison, the median MSE value given by Zhou and Shen (2001) is 0.08,
who do not report the number of knots. 
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Table 9. (Example 7) Summary of fits produced by GeDS for Example 7.

Fit
No

Graph n k aexit, b L2 - error, MSE

1 Fig. 11, HaL 2 53 0.99, 0.5 55.63, 0.642906
2 - 3 52 0.99, 0.5 59.80, 0.860989
3 Fig. 11, HbL 2 85 0.999, 0.5 42.43, 0.082962
4 Fig. 11, HcL 3 84 0.999, 0.5 43.68, 0.126953

Example  8.  The  Titanium Heat  Data  example,  was  first  considered  by  DeBoor  (1968)
(see  also  DeBoor  2001),  and  used  as  a  test  example  by  Jupp  (1978),  Hu  (1993)  and
Schwetlick  and  Schütze  (1995).  It  is  suitable  for  comparing  variable  knot  spline  algo-
rithms,  since  the  real  data,  and  the  spline  fits  with  corresponding  knots  and  L2 -errors
have  been  published.  As  a  result  of  running  GeDS  we  have  obtained  linear,  quadratic
and cubic  spline fits,  illustrated in Fig. 12 and 13. The linear fit  with 6 knots, obtained
after stage A of GeDS in 0.49 seconds with aexit = 0.9  and b = 0.5, is given in Fig. 12
(a). Its corresponding quadratic spline fit with 5 internal knots, obtained after stage B, of
GeDS is given in Fig. 12 (b). 
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Fig. 12. (Example 8) The linear (a) and quadratic (b) B-spline fits to the Titanium
Heat data, produced by GeDS.

Changing the  values  of  aexit  and b  to  0.8  and 0.6  respectively,  leads  to  the  GeDS fits,
given in Fig. 13. They have lower L2 -error than the fits No 1 and 2, (see Table 10), and
number of internal knots, is respectively 11 for the quadratic and 10 for the cubic models.
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Fig. 13. (Example 8) The quadratic (a) and cubic (b) B-spline fits to the Titanium
Heat data, produced by GeDS.

Table 10. (Example 8) Summary of fits produced by GeDS for Example 8.

Fit
No

Graph n k Internal knots aexit, b L2 - error

1 Fig. 12, HaL 2 6 8798.61, 850.23, 870.49,
896.79, 935.07, 964.77<

0.9, 0.5 0.1606

2 Fig. 12, HbL 3 5 8824.42, 860.36, 883.64,
915.93, 949.92<

0.9, 0.5 0.1695

3 Fig. 13, HaL 3 11 8811.18, 836.99, 860.36, 877.74, 890.90, 900.90,
912.52, 927.52, 935.03, 949.92, 990.01<

0.8, 0.6 0.0617

4 Fig. 13, HbL 4 10 8824.20, 848.16, 868.57, 884.09, 895.60,
907.28, 920.01, 930.03, 944.95, 971.69<

0.8, 0.6 0.0919

For  comparison,  the  cubic  spline  fit  of  DeBoor  and  Rice  (1968)  has  L2 -error  equal  to
0.092.  Jupp (1978) has found the  optimum knot  location  of  a  cubic  spline fit  with five
internal knots, for which the L2 -error is equal to 0.087. We have used, the internal knots
of  fit  No  2  (see  Table  10),  produced  after  Stage  B  of  GeDS  algorithm,  as  an  initial
approximation  for  a  Fibonacci  knot  optimization  search  in  order  to  get  some improve-
ment in the L2 -error value. As a result, we have obtained a quadratic B-spline fit with 5,
slightly  adjusted,  internal  knots,  {817.82,  863.33,  882.38,  909.49,  955.23},  and  with
L2 -error = 0.0545  which  turns  out  to  be  lower  than  the  optimal  value  0.087  of  Jupp
(1978) for the cubic case.
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7. Discussion and comparison with other methods

Based on the results of Section 6, we can conclude that the GeDS algorithm can be used
successfully for  fitting  both smooth and spatially  inhomogeneous functions.  It  is a fast,
stable,  non-complicated  algorithm  with  an  appropriate  geometric  interpretation  which
allows  the  user  to  follow  the  entire  fitting  process.  The  algorithm  is  automatic,  in  the
sense  that  one  can  use  the  default  values  of  the  two  input  parameters  aexit  and  b  to
successfully  fit  relatively  smooth  functions,  and  fit  less  smooth  functions  applying
another pair of values for aexit  and b . Thus, automation is combined with some flexibil-
ity in controlling the output, which is often more convenient than the entirely automatic
approach.  The  existence  of  two  input  parameters  gives  flexibility  in  tuning  GeDS  to
cope  with  the  particular  noise  level  and  smoothness  characteristics  of  the  underlying
function.  The  results  of  fitting  the  smooth  functions  in  Section  6  show  that  the  spline
models,  produced  applying  the  default  values  aexit = 0.9,  b = 0.5,  are  comparable  with
those obtained with other methods. 

There are no restrictions for  GeDS with respect  to the data set 8xi, yi<i=1
N ,  in contrast  to

some  of  the  other  algorithms.  Thus,  the  wavelet  shrinkage  method  of  Donoho  and
Johnstone (1994) requires the x  values to be equally spaced and N  to be a power of 2.
Other methods, e.g. SARS, HAS and the method of automatic Bayesian curve fitting of
Denison at al. (1998) seem to require rescaling of the function to the @0, 1D  interval. 

Our algorithm does not require any initial guess for the possible number and/or position
of the knots in contrast to, other methods e.g., NEWKNOT of DeBoor and Rice (1968),
Schwetlick  and  Schütze  (1995),  Zhou  and  Shen  (2001).  Although  Schwetlick  and
Schütze  (1995)  give  some  recommendations  for  the  number  of  knots,  their  results  are
seen to be sensitive with respect to this parameter. The Bayesian algorithm of Denison at
al.  (1998)  requires  a  guess  for  the  prior  number  of  knots  and  it  chooses  the  candidate
knot locations among the N  regular grid points on the range of x . The AGS method also
chooses the possible knot sites among the abscissae values of the data points. The GeDS
algorithm does not restrict the minimum and maximum possible number of knots as do,
e.g., HAS and AGS methods. 

One of the most important characteristics of the GeDS algorithm is that it gives simulta-
neously linear, quadratic, cubic, etc. fits because once the LS linear B-spline fit on Stage
A is found, using the averaging knot location method (13), one immediately obtains the
knots  for  the  higher  order  B-spline  fits.  As  far  as  we  have  been  able  to  establish,  no
other  spline  fitting  procedure  is  capable  of  doing this.  Hence,  one has the flexibility  to
choose  the  degree  of  the  fit  providing  best  compromise  between  smoothness  and
accuracy.

Automatic, Computer Aided Geometric Design of Free-Knot, Regression Splines 34



As an alternative to the stopping rule (24) we have implemented two additional stopping
methods according to  which our  algorithm exits  with the  number of  knots  which mini-
mizes Stein's unbiased risk estimate (SURE) (see Stein (1981))

(25)RH f
`L = 9‚

i=1

N Iyi - f
`

Dk,n
HxiLM

2= í N + D Hk+n-1LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅN s2

 or the generalized cross validation (GCV) (see e.g., Craven and Wahba (1979)) 
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criterion.  We have  assumed that  the  minimum is  attained  when  SURE or  GCV do  not
decrease  in  two  consecutive  steps.  Rules  (25)  and  (26)  depend  on  the  choice  of  the
parameters D and dHkL ,  and when D = 2  and dHkL = k + 1  they behave roughly as (24),
although in some of the cases, e.g., in Examples 3 and 6 they force GeDS to exit much
later than (24), causing some overfit.  The choice D = 3  and dHkL = 3 k + 1, as noted by
Zhou and Shen (2001) tends to yield a smaller model, underfitting the underlying func-
tion.  For  a  comparative  study  of  different  model  selection  methods,  we  refer  to  Lee
(2002).

As  a  general  conclusion  we  believe  that,  with  (25)  and  (26),  GeDS  becomes  entirely
automatic  and can  be applied if  such a feature  is  preferred  to the flexibility  of  control-
ling the output provided by rule (24).

In  conclusion,  we  have  demonstrated  in  this  paper  that  the  proposed  GeDS  method
provides a novel approach to choosing the number and position of the knots. It produces
simultaneously, linear quadratic, cubic and higher degree fits. It is motivated by geometri-
cal  arguments  and  does  not  place  knots  through  complex  stochastic  or  deterministic
optimization of GCV, SURE, MDL or any other function of RSS or/and k + n  within a
multivariate parameter space. However, it provides stepwise minimization of the RSS as
seen from Fig. 7 (b) which is terminated following an appropriate stopping rule, involv-
ing  an  adjustable  exit  parameter.  Another  positive  characteristic  is  that  GeDS  can  be
extended to multivariate non-parametric smoothing. Details of how this may be done are
outside the scope of this paper and are subject of ongoing research.

Acknowledgements

The  authors  would  like  to  acknowledge  support  received  by  the  UK  Institute  of
Actuaries.

35 V. Kaishev, D. Dimitrova, S. Haberman and R. Verrall



References

Biller,  C.  (2000).  Adaptive  Bayesian  regression  splines  in  semiparametric  generalized
linear models. J. Comput. and Graph. Stat., 9, 122-140.

Cohen, E., Riesenfeld, R. F. and Elber, G. (2001). Geometric Modelling with Splines: An
Introduction. , Natick, Massachusetts: A K Peters.

Cox, M., Harris, P. and Kenward, P. (2002). Fixed and free-knot univariate least-squares
data  approximation  by  polynomial  splines.  Technical  Report  CMSC  13/02,  National
Physical Laboratory, Teddington, UK.

Craven, P. and Wahba, G. (1979). Smoothing noisy data with spline functions: Estimat-
ing  the  correct  degree  of  smoothing  by  the  generalized  cross  validation.  Numerische
Mathematik, 31, 337-403.

De Boor, C. (2001). A practical Guide to Splines, Revised Edition, New York: Springer.

De Boor,  C.  and Rice,  J.  (1968).  Least  squares  cubic  spline approximation II.  Variable
knots. Comp. Sci.Dpt. Technical Report 21, Purdue Univrsity, West Laffayet, Indiana.

Denison, D., Mallick, B., and Smith, A. (1998). Automatic Bayesian curve fitting, J. R.
Statist. Soc., B, 60, 333-350. 

Donoho,  D.  and  Johnstone,  I  (1994).  Ideal  spatial  adaptation  by  wavelet  shrinkage.
Biometrika, 81, 425-455.

—————  (1995).  Adapting  to  unknown  smoothness  via  wavelet  shrinkage.  J.  Am.
Statist. Ass., 90, 1200-1224.

Eubank, R.(1988). Spline smoothing and Nonparametric Regression. Dekker, New York.

Fan,  J.  and  Gijbels,  I.  (1995).  Data-driven  bandwidth  selection  in  local  polynomial
fitting:Variable bandwidth and spatial adaptation. J. R. Statist. Soc., B, 57, 371-394. 

Farin, G. (2002). Curves and Surfaces for CAGD, Fifth Edition, San Francisco: Morgan
Kaufmann.

Friedman, J.  H. (1991). Multivariate adaptive regression splines (with discussion). Ann.
Statist. 19, 1-141.

Friedman,  J.  H.  and  Silverman,  B.W.  (1989).  Flexible  Parsimonious  smoothing  and
additive modeling (with discussion).Technometrics., 31, . 3-39.

Hu,  Y.  (1993).  An  algorithm  for  data  reduction  using  splines  with  free  knots.  IMA  J.
Numer. Anal., 13, 328-343.

Jupp, D. (1978). Approximation to data by splines with free knots. SIAM J. Num. Analy-
sis., 15, 328-343.

Automatic, Computer Aided Geometric Design of Free-Knot, Regression Splines 36



Kaishev, V. K. (1984). A computer program package for solving spline regression prob-
lems,  In:  Proceedings  in  Computational  Statistics,  COMPSTAT  (eds  T.  Havranek,  Z.
Sidak and M. Novak), pp. 409-414, Wien: Physica-Verlag.

Lee, T. C.M. (2000). Regression spline smoothing using the minimum description length
principle. Stat. & Prob. Letters, 48, 71-82.

Lee,  T.  C.M. (2002).  On algorithms for  ordinary least  squares  regression spline fitting:
A comparable study. J. Statist. Comput. Simul., 72(8), 647-663.

Luo, Z., and Wahba, G. (1997). Hybrid adaptive splines. J. Am. Statist. Ass., 92, 107-115.

Lytch, T. and Mørken, K. (1993). A data reduction strategy for splines with application
to the approximation of functions and data. IMA J. Numer. Anal., 8, 185-208.

Marx,  B.  D.  and  Eilers,  P.  H.C.  (1996).  Flexible  Smoothing with  B-splines  and  Penal-
ties. Stat. Science, 11, 2, 89-121.

Pittman,  J.  (2002).  Adaptive  Splines  and  Genetic  Algorithms.  J.  Comput.  and  Graph.
Stat., 11, 3, 1-24.

Rupert,  D. (2002). Selecting the number of knots for  penalized splines. J. Comput. and
Graph. Stat., 11, 4, 735-757.

Rupert,  D.,  and  Carroll,  R.  J.  (2000).  Spatially-Adaptive  penalties  for  spline  fitting.
Australian and New Zealand Journal of Statistics, 42, 205-223.

Schwetlick, H. and Schütze, T. (1995). Least squares approximation by splines with free
knots. BIT. Numerical Math., 35, 854-866.

Smith,  P.  L.  (1982).  Curve  fitting  and  modeling  with  splines  using  statistical  variable
selection techniques. Report NASA 166034, Langley Research Center, Hampton, VA.

Smith,  M.  and  Kohn,  R.  (1996).  Nonparametric  regression  using  Bayesian  variable
selection. J. Econometrics, 75, 317-344.

Stein,  C.  (1981).  Estimation of  the mean of  a  multivariate  normal.  The Ann.  Statist.,  9,
1135-1151.

Stone,  C.  J.,  Hansen,  M.H.,  Kooperberg,  C.  and  Truong,  Y.  K.  (1997).  Polynomial
Splines  and  their  tensor  products  in  extended  linear  modeling.  Ann.  Statist.,  25,
1371-1470.

Zhou,  S.  and  Shen,  X.  (2001).  Spatially  adaptive  regression  splines  and  accurate  knot
selection schemes. J. Am. Statist. Ass., 96, 247-259.

Wahba, G. (1990). Spline Models for Observational Data. SIAM, Philadelphia

37 V. Kaishev, D. Dimitrova, S. Haberman and R. Verrall



  1

 
FACULTY OF ACTUARIAL SCIENCE AND STATISTICS 

 
Actuarial Research Papers since 2001 

 
 
 

135. Renshaw A. E. and Haberman S. On the Forecasting of Mortality Reduction Factors.   February 
2001.          

ISBN 1 901615 56 1 
 
136. Haberman S., Butt Z. & Rickayzen B. D.  Multiple State Models, Simulation and Insurer 

Insolvency.  February 2001.  27 pages.       
ISBN 1 901615 57 X 

 
137. Khorasanee M.Z.  A Cash-Flow Approach to Pension Funding.  September 2001.  34 pages. 
 

 ISBN 1 901615 58 8 
 

138. England P.D.  Addendum to “Analytic and Bootstrap Estimates of Prediction Errors in Claims 
Reserving”.  November 2001.  17 pages. 

ISBN 1 901615 59 6 
 

139. Verrall R.J.  A Bayesian Generalised Linear Model for the Bornhuetter-Ferguson Method of 
Claims Reserving.  November 2001.  10 pages. 

ISBN 1 901615 62 6 
 
140. Renshaw A.E. and Haberman. S.  Lee-Carter Mortality Forecasting, a Parallel GLM Approach, 

England and Wales Mortality Projections.  January 2002.  38 pages. 
ISBN 1 901615 63 4 

 
141. Ballotta L. and Haberman S.  Valuation of Guaranteed Annuity Conversion Options.  January 

2002.  25 pages. 
ISBN 1 901615 64 2 

 
142. Butt Z. and Haberman S.  Application of Frailty-Based Mortality Models to Insurance Data.  April 

2002.  65 pages. 
ISBN 1 901615 65 0 

 
143.  Gerrard R.J. and Glass C.A.  Optimal Premium Pricing in Motor Insurance: A Discrete 

Approximation.   (Will be available 2003). 
 
144. Mayhew, L.  The Neighbourhood Health Economy.  A systematic approach to the examination of 

health and social risks at neighbourhood level.   December 2002.  43 pages. 
 

ISBN 1 901615 66 9 
 
145. Ballotta L. and Haberman S.  The Fair Valuation Problem of Guaranteed Annuity Options:  The 

Stochastic Mortality Environment Case.  January 2003.  25 pages. 
 

ISBN 1 901615 67 7 
 

146. Haberman S., Ballotta L. and Wang N.  Modelling and Valuation of Guarantees in With-Profit and 
Unitised With-Profit Life Insurance Contracts.  February 2003.  26 pages. 

 
ISBN 1 901615 68 5 

147. Ignatov Z.G., Kaishev V.K and Krachunov R.S.  Optimal Retention Levels, Given the Joint 
Survival of Cedent and Reinsurer.  March 2003.  36 pages. 

ISBN 1 901615 69 3 
 
148. Owadally M.I.  Efficient Asset Valuation Methods for Pension Plans.  March 2003.  20 pages. 

ISBN 1 901615 70 7 
 



  2

149. Owadally M.I.  Pension Funding and the Actuarial Assumption Concerning Investment Returns.  
March 2003.  32 pages. 

ISBN 1 901615 71 5 
 

150. Dimitrova D, Ignatov Z. and Kaishev V.  Finite time  Ruin Probabilities for Continuous Claims 
Severities.  Will be available in August 2004. 

 
151. Iyer S.  Application of Stochastic Methods in the Valuation of Social Security Pension Schemes.  

August 2004.  40 pages. 
ISBN 1 901615 72 3 

 
152. Ballotta L., Haberman S. and Wang N.  Guarantees in with-profit and Unitized with profit Life 

Insurance Contracts; Fair Valuation Problem in Presence of the Default Option1.  October 2003.  
28 pages. 

 ISBN 1-901615-73-1 
 

153. Renshaw A. and Haberman. S.  Lee-Carter Mortality Forecasting Incorporating Bivariate Time 
Series.  December 2003.  33 pages. 

ISBN 1-901615-75-8 
 

154. Cowell R.G., Khuen Y.Y. and Verrall R.J.  Modelling Operational Risk with Bayesian Networks.  
March 2004.  37 pages. 

ISBN 1-901615-76-6 
 
155. Gerrard R.G., Haberman S., Hojgaard B. and Vigna E.  The Income Drawdown Option: 

Quadratic Loss.  March 2004.  31 pages. 
ISBN 1-901615-77-4 

 
156. Karlsson, M., Mayhew L., Plumb R, and Rickayzen B.D.  An International Comparison of Long-

Term Care Arrangements. An Investigation into the Equity, Efficiency and sustainability of the 
Long-Term Care Systems in Germany, Japan, Sweden, the United Kingdom and the United 
States. April 2004.   131 pages. 

ISBN 1 901615 78 2 
 
157. Ballotta Laura.  Alternative Framework for the Fair Valuation of Participating Life Insurance 

Contracts.  June 2004.  33 pages. 
ISBN 1-901615-79-0 

 
158. Wang Nan.  An Asset Allocation Strategy for a Risk Reserve considering both Risk and Profit.   

July 2004.  13 pages.   
ISBN 1 901615-80-4 

 
 

Statistical Research Papers 
 
1. Sebastiani P.  Some Results on the Derivatives of Matrix Functions.  December 1995.   
 17 Pages.         

ISBN 1 874 770 83 2 
 
2. Dawid A.P. and Sebastiani P.  Coherent Criteria for Optimal Experimental Design.   
 March 1996.  35 Pages.       

ISBN 1 874 770 86 7 
 
3. Sebastiani P. and Wynn H.P.  Maximum Entropy Sampling and Optimal Bayesian Experimental 

Design.  March 1996.  22 Pages.      
ISBN 1 874 770 87 5 

 
4. Sebastiani P. and Settimi R.  A Note on D-optimal Designs for a Logistic Regression Model.  May 

1996.  12 Pages.        
ISBN 1 874 770 92 1 

 
5. Sebastiani P. and Settimi R.  First-order Optimal Designs for Non Linear Models.  August 1996.  28 

Pages.         
ISBN 1 874 770 95 6 

 
6. Newby M.  A Business Process Approach to Maintenance: Measurement, Decision and Control.  

September 1996.  12 Pages.       
ISBN 1 874 770 96 4 



  3

 
7. Newby M.  Moments and Generating Functions for the Absorption Distribution and its Negative 

Binomial Analogue.  September 1996.  16 Pages.    
ISBN 1 874 770 97 2 

 
8. Cowell R.G.  Mixture Reduction via Predictive Scores.  November 1996.  17 Pages. 

          ISBN 1 874 770 98 0 
 
9. Sebastiani P. and Ramoni M.  Robust Parameter Learning in Bayesian Networks with Missing 

Data.  March 1997.  9 Pages.       
ISBN 1 901615 00 6 

 
10. Newby M.J. and Coolen F.P.A.  Guidelines for Corrective Replacement Based on Low Stochastic 

Structure Assumptions.  March 1997.  9 Pages.   
ISBN 1 901615 01 4. 

 
11. Newby M.J.  Approximations for the Absorption Distribution and its Negative Binomial Analogue.  

March 1997.  6 Pages.      
ISBN 1 901615 02 2 

 
12. Ramoni M. and Sebastiani P.  The Use of Exogenous Knowledge to Learn Bayesian Networks from 

Incomplete Databases.  June 1997.  11 Pages.    
ISBN 1 901615 10 3 

 
13. Ramoni M. and Sebastiani P.  Learning Bayesian Networks from Incomplete Databases.   
 June 1997.  14 Pages.        

ISBN 1 901615 11 1 
 
14. Sebastiani P. and Wynn H.P.  Risk Based Optimal Designs.  June 1997.  10 Pages. 

          ISBN 1 901615 13 8 
 
15. Cowell R.  Sampling without Replacement in Junction Trees.  June 1997.  10 Pages. 

          ISBN 1 901615 14 6 
 
16. Dagg R.A. and Newby M.J.  Optimal Overhaul Intervals with Imperfect Inspection and Repair.  July 

1997.  11 Pages.       ISBN 1 901615 15 4 
 

17. Sebastiani P. and Wynn H.P.  Bayesian Experimental Design and Shannon Information.  October 
1997.  11 Pages.      ISBN 1 901615 17 0 
 

18. Wolstenholme L.C.  A Characterisation of Phase Type Distributions.  November 1997.   
 11 Pages.        ISBN 1 901615 18 9 
 
19. Wolstenholme L.C.  A Comparison of Models for Probability of Detection (POD) Curves.  December 

1997.  23 Pages.      ISBN 1 901615 21 9 
 
20. Cowell R.G.  Parameter Learning from Incomplete Data Using Maximum Entropy I: Principles.  

February 1999.  19 Pages.      ISBN 1 901615 37 5 
 
21. Cowell R.G.  Parameter Learning from Incomplete Data Using Maximum Entropy II: Application to 

Bayesian Networks.  November 1999.  12 Pages   ISBN  1 901615 40 5 
 
22. Cowell R.G.  FINEX :  Forensic Identification by Network Expert Systems.  March 2001.  10 pages. 

          
ISBN 1 901615 60X 

 
23. Cowell R.G.  When Learning Bayesian Networks from Data, using Conditional Independence Tests 

is Equivalant to a Scoring Metric.  March 2001.  11 pages.  
ISBN 1 901615 61 8 

 
24. Kaishev, V.K., Dimitrova, D.S., Haberman S., and Verrall R.J.  Autumatic, Computer Aided 

Geometric Design of Free-Knot, Regression Splines.  August 2004.  37 pages. 
ISBN 1-901615-81-2 

 
 
 



 
 

Faculty of Actuarial Science and Statistics 
 
 

Actuarial Research Club 
 
 

The support of the corporate members 
 
 

CGNU Assurance 
Computer Sciences Corporation 

English Matthews Brockman 
Government Actuary’s Department 

Swiss Reinsurance 
Watson Wyatt Partners 

 
 

is gratefully acknowledged. 
 

 
 

 
ISBN 1-901615-81-2 


