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Abstract Sound propagation within certain non-relativistic condensed matter models
obeys a relativistic wave equation despite such systems admitting entirely non-
relativistic descriptions. A natural question that arises upon consideration of this is,
“do devices exist that will experience the relativity in these systems?” We describe a
thought experiment in which ‘acoustic observers’ possess devices called sound clocks
that can be connected to form chains. Careful investigation shows that appropriately
constructed chains of stationary and moving sound clocks are perceived by observers
on the other chain as undergoing the relativistic phenomena of length contraction and
time dilation by the Lorentz factor, γ , with c the speed of sound. Sound clocks within
moving chains actually tick less frequently than stationary ones and must be sepa-
rated by a shorter distance than when stationary to satisfy simultaneity conditions.
Stationary sound clocks appear to be length contracted and time dilated to moving
observers due to their misunderstanding of their own state of motion with respect to
the laboratory. Observers restricted to using sound clocks describe a universe kine-
matically consistent with the theory of special relativity, despite the preferred frame
of their universe in the laboratory. Such devices show promise in further probing ana-
logue relativity models, for example in investigating phenomena that require careful
consideration of the proper time elapsed for observers.
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1 Introduction

The repeated null results from experiments to detect the luminiferous aether towards
the end of the nineteenth century—most notably the null result of the Michelson-
Morley experiment [1]—culminated with many physicists, most notably George
FitzGerald, Hendrik Lorentz, and Henri Poincaré, proposing mechanisms by which
the aether was undetectable. FitzGerald [2] and Lorentz [3,4] independently (1889 and
1892 respectively) suggested that objects contract parallel to their direction of motion.
Woldemar Voigt [4,5] suggested modification of the time coordinate to ensure that the
wave equation for light worked in all reference frames, and Lorentz [4,6] also later
introduced this same notion of ‘local time,’ though unlike length contraction he did
not assign any physical importance to it. Poincaré [7], however, realised a physical
significance of this notion of local time as suggested by Lorentz in that it would be
the time recorded on clocks synchronised using light signals.

Eventually, aether theory fell victim toOckham’s razor1: Einstein’s theory of special
relativity sufficed to explain all of the same phenomena with the added simplification
of not requiring an undetectable aether. It is important to realise that while the theory
of special relativity won out over any of the aether theories, aether-based models still
produce the exact same kinematic results as the theory of special relativitywhen treated
correctly due to both theories exhibiting the exact same mathematical formalism [8].

In an effort to describe black holes, Unruh [9] came up with an analogy in terms
of sound waves propagating up a waterfall: if at some location along the waterfall the
flow speed of the water exceeds the speed of sound in the water, it becomes impossible
to sonically signal upstream anymore. This model is analogous to a black hole, except
here sound takes the place of light. Such objects are called acoustic black holes or
dumb holes (where ‘dumb’ is a synonym for mute). It is worth noting that such a
model possesses a preferred reference frame: the reference frame in which the water
is stationary.

Under several assumptions (no gravitational back-reaction, an unquantised grav-
itational field, and that at the Planck scale the wave equation for quantum fields is
still applicable), Stephen Hawking famously demonstrated that black holes may be
expected to evaporate by radiating at a characteristic temperature [10]. Whether the
assumptions that Hawking made are valid is still unknown, and when Hawking’s
assumptions were scrutinised by Unruh [11], the result of black hole evaporation was
initially put into doubt. Acoustic black holes possess comparative problems: at suf-
ficiently small length scales the continuum description breaks down (the expected
equivalent of the Planck scale for spacetime), the field fluctuations (phonons) interact
with the background that they propagate on (in analogy to gravitational back-reaction),
and the analogy to the gravitational field itself (the fluid flow) is unquantised.

Unruh, following the same process as Hawking, theorised that acoustic black holes
should emit an acoustic analogue of Hawking radiation [12]. Fortunately, in stark
contrast to physics at the Planck scale, molecular physics, atomic physics, and fluid
mechanics are well understood. While the validity of the underlying assumptions in

1 Named in honour of William of Ockham, though often spelt “Occam’s razor”.
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Hawking’s derivation of black hole radiation could not be directly tested, the compar-
ative assumptions in the acoustic black hole model could be. Unruh [13] and others
(Brout et al. (analytically) [14], Corley (analytically) [15,16], and Corley and Jacob-
son (numerically) [17,18]) were able to show that acoustic black holes should radiate
at a temperature as calculated using Hawking’s approach for black holes even when
the comparative assumptions in the acoustic black hole model were broken. This result
demonstrates that the blackbody temperature of black holes as calculated by Hawking
will not necessarily break down when the contributions of Planck scale physics are
taken into account, providing us with some evidence that our current understanding
of black hole thermodynamics could well be correct [9].

Models such as acoustic black holes are inherently nonrelativistic, yet neverthe-
less they appear to share some properties with relativistic systems [19]. This class of
models are referred to as analogue gravity models. There are many examples of ana-
logue gravity models. For example, quasiparticle production has been theorised [20]
to occur in expanding Bose–Einstein condensates in analogy to particle production
due to cosmic inflation. Bose–Einstein condensates have also been used to study ana-
logue Hawking radiation, both theoretically [21,22] and experimentally [23,24]. An
extensive list of the analogue gravity models known to exist up until 2011 can be found
in the Living Reviews in Relativity article by Barceló et al. [19].

It is natural towonder how far these analogies can be pushedbefore theybreakdown.
How many of the features of general relativity appear in analogous form within these
models? If all of the features of general relativity emerge in some analogue form, then
under what assumptions does this occur? Is there a microscopic mechanism behind
the analogue form of gravity, and can we use this knowledge to infer anything about
the origins of gravitation in our universe? If it is not possible to make all of the features
of general relativity emerge in some analogous form in these systems, then why do
we find the emergence of some aspects of general relativity and not others?

In order to answer these questions it is useful to understand the experience of
observers within analogue relativity systems since observers were crucial in the under-
standing of general relativity, specifically in explaining the physical interpretation of
general covariance [25]. The principle of general covariance states that the laws of
physics should be independent of choice of coordinate system, as coordinates do not
exist in nature a priori. It can be shown, however, that smoothly dragging the grav-
itational field around on a background spacetime manifold (a mathematical process
called an active diffeomorphism) can result in a physical description of reality that
is mathematically indistinguishable from a mere change in coordinates (a passive
diffeomorphism). Therefore, if it is impossible to distinguish between an active dif-
feomorphism and a passive diffeomorphism, and if the principle of general covariance
is taken to be true (that coordinates are indeed unphysical), then it follows that active
diffeomorphismsmust also be unphysical. Consequently, the spacetimemanifold itself
must be seen as being unphysical. It is only with respect to events or physical objects
(in other words, observable quantities) that locations in spacetime have any meaning
at all.

The interpretation here is that spacetime has no real, physical meaning independent
of coincidences. What is meant by this is that points in spacetime are only defined by
two or more events or objects coinciding, such as two particles passing through the
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same point in space simultaneously. With this in mind, the existence of more than one
solution to a covariant set of field equations is not seen to be problematic. If one metric
tensor solves the field equations and yields spacetime paths for multiple observers that
coincide at certain proper times for each observer, then all metric tensors consistent
with the same initial conditions will yield spacetime paths for these observers that
coincide at the same proper times. Einstein remarks on this, “... the requirement of
general covariance takes away from space and time the last remnant of physical
objectivity” [25].

The principle of general covariance and its interpretation on the meaning (or rather
lack of meaning) of spacetime naïvely appears to be a problem that will be impossible
to overcome in analogue gravity models because such models do possess an objec-
tive, physical analogue of spacetime; there is a preferred reference frame. In order to
investigate if or how general covariance manifests in analogue gravity systems, we
will need to consider the proper time elapsed by observers in analogue gravity models.

Barceló and Jannes [26] described the physics of ‘natural’ interferometers in ana-
logue relativity models. Such devices would be constructed out of quasiparticles,
themselves made up from the particles of the medium under consideration. Observers
within these analogue universes, using these interferometers to perform Michelson–
Morley type experiments, would find the exact same results that we found in our
universe: that the aether is undetectable.

The reason for this is that the medium itself obeys a relativistic wave equation,
and thus the resulting kinematics of the medium are subject to the symmetries of the
Lorentz group. For example, it has been shown how electromagnetic-like theories
based on models that admit a privileged reference frame can, in the low-energy limit,
appear to obey Lorentz invariance to internal observers [27]. Consequently, any object
constructed from the medium of the analogue universe will inherit the symmetries of
the medium, i.e. the Lorentz group. Interferometers built this way will possess arms
that will shrink in their direction of motion, and thus without any way to measure
velocity relative to their aether, observers who only have access to these devices will
come to believe the postulates of relativity via Ockham’s razor.

Additional discussions on the emergence of Lorentz symmetry and relativity in
physical models that admit a rest frame can be found in the literature. For example,
see Liberati et al. [28], Volovik [29], and Nandi [30].

While quasiparticle interferometers are sufficient in demonstrating the emergent
relativity of these systems, we would like to ask, are such constructs necessary to
demonstrate this relativity? An observer within such a system who is free to perform
any experiment they would like using an interferometer made from a material other
than the one used to construct the medium of their universe will be able to infer
motion relative to their aether and will not come to believe the postulates of relativity.
However, if certain restrictions are placed on which experiments such observers are
allowed to perform with non-quasiparticle interferometers, can such observers come
to believe the postulates of relativity through their observations?

Operationally speaking, constructing (or even describing how to construct) quasi-
particles that would then in turn be used to build devices such as interferometers seems
difficult, though such devices would most likely prove to be invaluable additions to
the tool-kit of experimental physicists seeking to test analogue relativity systems. To
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this end, we turn our attention towards devices that are inserted into analogue rela-
tivity systems from the laboratory in order to determine if, with certain constraints,
such devices can appropriately act as relativistic observers in such analogue systems.
With certain restrictions placed on what type of experiments can be conducted, we
show here that sound clocks—the equivalent of light clocks in systems obeying sonic
relativity—can be used as appropriate relativistic observers for a medium in which
sound obeys a relativistic wave equation.

2 Approach

As a preface to what we will discuss here, it should be noted that the work carried
out here is essentially equivalent to the work performed by Poincaré at the beginning
of the twentieth century in his effort to incorporate his philosophy of relativity into
the aether based model prevalent at the time. Here, our aether is that of a condensed
matter system (such as a large slab of solid matter or a perfect liquid, either of which
must be homogeneous and isotropic), and light is replaced by disturbances within our
medium: sound. While Poincaré sought a description for the way in which mechan-
ical bodies naturally behaved in order to obscure detection of the aether, we are, in
some sense, attempting to do the reverse: how can we manufacture obfuscation of an
aether from observers within it in such a way that the observers come to believe the
postulates of relativity? What are the minimum constraints that we are required to put
on experimental equipment in an aether-based system such that observers who only
have access to that equipment have the existence of that aether hidden from them?We
ask this questions in the context of analogue gravity models from which we aim to, if
possible, make analogies to phenomena in our own universe. However, let it be made
abundantly clear that we are not attempting to revive aether-based models as a basis
for how our own universe works.

We go through a detailed analysis of the experience of observers who are both
stationary andmovingwith a constant velocitywith respect to themedium that they are
confined to (which is at rest within the laboratory). The results obtained for stationary
observers are in no way surprising, and calculations done from the laboratory frame
without considering the technicalities of stationary observers’ experience will yield
the same results. However, going through the more painstaking analysis is instructive
in how to approach the problem of analysing the experience of moving observers.
The results found for the experience of moving observers are indeed surprising at first
glance and are not what is expected from the naïve, simple calculation done from the
laboratory (which just happens to work for the stationary observers because they share
the reference frame of the laboratory, even if they are unaware of it). We will discuss
the specifics of the analysis and the restrictions that are necessary as they become
important.

3 Simple Sound Clocks

Here we describe devices called sound clocks for systems in which sound obeys a
relativistic wave equation, i.e. systems that exhibit sonic relativity. A sound clock is a
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Fig. 1 The operation of a sound clock is, in principle, straightforward: a sound pulse is emitted by the
clock when an observer wishes to begin recording time, and after travelling to the end of the sound clock
arm it is detected, whereupon a new sound pulse (the ‘echo’) is then emitted back towards the central clock
mechanism. Upon reception of the echo, the clock reading is advanced forward by one tick. Note that this
figure depicts one sound clock at three distinct moments in time as opposed to three sound clocks at one
moment in time

device that is analogous to the light clock used in thought experiments to show time
dilation in special relativity. Sound clocks consist of a clock mechanism out from
which an arm, called the timing arm, is extended. At both ends of the timing arm,
sound can be detected and emitted. To record time, a sound pulse is emitted from
the end of the timing arm in contact with the clock mechanism, and at some later
point in time, part of the wavefront will intersect the far end of the timing arm and be
detected. Immediately following detection, a sound pulse is then emitted back in the
same fashion. Upon reception of this second sound pulse—what we will herein refer
to as the ‘echo’—the clock mechanism advances its reading forward by one tick.

A diagrammatic outline of this process can be seen in Fig. 1.We could also imagine
additional shorter timing arms being present to increment the sound clock by fractions
of a tick, but for the sake of clarity in figures, we shall not include these. Observers
thus have some sense of local time by counting ticks of their clock. However, if an
observer wishes to know when an event occurred at some other location, then they
must have access to the reading on the clock positioned at that location (for example,
by sending a message to the observer at that location and requesting the reading for
when a specified event happened).

Let us first consider a single sound clock as observed from the laboratory that is
limited in the possible trajectories it can take: it is only allowed to travel in the direction
perpendicular to its timing arm. If in the laboratory the length of the sound clock’s
timing arm is known, and the velocity of the sound clock with respect to the medium
is known, then the distance that n sound pulses have travelled can be determined via
simple geometric arguments.

Furthermore, if one knows the speed of sound in the medium, then the time it took
for these n sound pulses to trace out their paths can be determined. From Fig. 2, it
can be determined that, in the laboratory frame, the total distance travelled by n sound
pulses that are emitted and received by a sound clock travelling at velocity v for time
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vΔtn

L

Fig. 2 A sound clock travelling with velocity v for some time�tn in which time n sound pulses are emitted
and returned to the clock

�tn (�tn for the duration of time that is required for n sound pulses to be emitted and
received) in the direction perpendicular to its timing arm is given by

s =
√

(2Ln)2 + (v�tn)2. (1)

Dividing the distance that the n sound pulses have travelled by their speed, the speed
of sound, c, yields the time, �ts (�ts for the time it took to trace out the path of length
s), that it has taken for these n sound pulses to trace out their paths through space,

�ts = s

c
=

√(
2L

c
n

)2

+
(v

c
�tn

)2
. (2)

Note that �ts and �tn are equal, which is easiest to see for integer values of n: when
n is integer, a sound pulse has just been detected; in order to detect a sound pulse, the
sound clock and the sound pulse that is being detected must be at the same place at
the same time. Defining some new variable �t := �tn = �ts (how long the clock
has been recording ticks for), and also defining β := v/c, we can determine exactly
how long it takes for a sound clock travelling at any velocity less than c to record n
ticks of the clock,

�t = 2L

c

n√
1 − β2

. (3)

The tick frequency, or the period, of any sound clock is therefore given by,

T = �t

n
= 2L

c

1√
1 − β2

. (4)

The Lorentz factor, γ = √
1 − β2−1

, has appeared for the tick frequency of a moving
sound clock.

Note that for a sound clock at rest with respect to the medium in the laboratory
frame we have v = 0, and thus β = 0, from which we obtain

123



1274 Found Phys (2017) 47:1267–1293

�t = 2L

c
n, (5)

which corresponds to a period of

T = 2L

c
. (6)

This is exactly the time we expect it to take for n sound pulses to bounce along and
back an arm of length L at rest.

4 Sound Clock Chains

Consider nowmultiple sound clocks at different locations in space.A chain of regularly
spaced sound clocks is the easiest such example of multiple sound clocks to consider.
The sound clocks that form a chain are connected by arms of tunable length to their
neighbours and are synchronised with the use of a sound pulse from some agreed-upon
clock (call it the origin clock).

Consider the sound clocks to be labelled with integer values corresponding to how
many steps away from the origin clock they are, with the origin clock itself being
labelled clock 0. In general, there can be sound clocks to either side of the origin
clock, with clocks on one side possessing positive integer labels, and clocks on the
other side possessing negative integer labels. We shall adopt the following convention:
when labelled from the laboratory, the sound clock with the largest positive-integer
label is at the front of the chain if the chain is in motion; if the chain is stationary, we
can freely label either side positive or negative.

Relative to a given sound clock, we call clocks closer to the front of a moving
chain ‘upchain’ and clocks closer to the back of a moving chain ‘downchain’: from
the definition of the labelling scheme outlined above, this means that the direction
‘upchain’ is parallel to the sound clock chain’s velocity vector, and the direction
‘downchain’ is anti-parallel to the sound clock chain’s velocity vector. The labelling
convention is shown in Fig. 3.

210−1−2

v

UpchainDownchain

L

LH

Fig. 3 A chain of sound clocks whose clocks have been separated and synchronised under the assumption
that they are stationary. The length of the vertical timing arms (L) of all sound clocks in the chain is equal,
as is the length of the horizontal spacing arms (L H ), though the lengths L H and L are not necessarily equal
(only at rest is this the case)
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We wish for all of the sound clocks within a given chain to share a common coor-
dinate system, so sound clocks within a chain must tick at the same frequency. The
timing arms of adjacent sound clocks are assumed to be exactly parallel, and so to
fulfil the requirement that they tick synchronously, the timing arms must be of equal
length. This requirement and others will be discussed further in what follows.

4.1 Calibrating Clock Separation

A chain of sound clocks can be seen in Fig. 3, where L refers to the length of the
‘vertical’ arms (i.e. the timing arms), and L H is the length of the horizontal arm sepa-
rating sound clocks, which we also call the spacing arms. Note that for what follows
the terms ‘vertical arms’ and ‘horizontal arms’ are interchangeable with ‘timing arms’
and ‘spacing arms’, respectively. The vertical arm of each sound clock is used to
measure time directly in the same method as described for the single sound clock in
Sect. 3, while the horizontal arm is used to space the sound clocks in an appropriate
manner. For the purposes of our discussions here, the timing arms and spacing arms
are considered to always be perpendicular to one another. We focus on the case where
chains of sound clocks are only allowed to travel in the direction of the axis in which
they are connected.

Observers who possess sound clocks and who are limited in their ability to make
measurements as previously detailed have no ability to detect motion with respect
to their medium. Any inertial motion within an analogue relativity system should
therefore be indistinguishable from rest since observerswho only possess sound clocks
have no way to tell the difference between zero velocity with respect to the medium
and constant non-zero velocity with respect to the medium.

Observers travelling with constant velocity separate sound clocks within a chain by
simultaneously sending soundpulses along their timing arms and spacing arms.Believ-
ing themselves to be at rest, when the spacing arms are tuned to such a length that the
two sound pulses return simultaneously, observers believe that the separation of their
sound clocks (i.e. the spacing-arm length) is exactly the same length, L , of their timing
arms. This belief happens to be true when a chain of sound clocks is actually at rest,
but this is not the case when a chain of sound clocks is moving with a constant velocity.

By what distance should sound clocks travelling at a constant velocity be separated
in order for this simultaneity condition to hold? Consider a simple chain of two sound
clocks as seen in Fig. 4. The observer located at one of the sound clocks is able to adjust
the separation distance of the two sound clocks by extending the arm that connects
them or by reeling it back in.

Within a chain of sound clocks, the path taken by the sound pulse within the timing
arms on its outbound journey and its inbound journey is symmetric for any motion
perpendicular to the timing arms. This, however, is not the case for a sound pulse in
the spacing arms. For sound pulses propagating between clocks in the spacing arms,
there are two distinct paths takenwhen the clocks are travellingwith non-zero velocity.
As can be seen in Fig. 4, there is a downchain journey for which the sound pulse is
travelling in the opposite direction to the sound clocks, and there is an upchain journey
for which the sound pulse is travelling in the same direction as the sound clocks. The
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10 10

v

Fig. 4 The spacing arms between adjacent sound clocks in moving sound clock chains must be shorter
than the timing arms by a factor of γ , to ensure that sound pulses that are emitted simultaneously along
both arms also return simultaneously. Note that the readings of both clocks are advanced by exactly one
tick when the sound pulses return (this is obscured partially for clock 0)

downchain journey, as seen in Fig. 4, takes less time to complete as v grows, while the
upchain journey takes longer. The time it takes for a sound pulse to travel between two
adjacent clocks downchain (�td , which is greater than zero) and the time it takes to
travel between two adjacent clocks upchain (�tu , which is greater than zero), as shown
in Fig. 4, can be seen to obey the following relationships for a separation length of L H ,

L H − v�td = c�td , (7)

∴ �td = L H

c + v
, (8)

and,

L H + v�tu = c�tu, (9)

∴ �tu = L H

c − v
. (10)

For simultaneously emitted timing and synchronisation sound pulses to be detected
simultaneously, we don’t need to know exactly how long it takes the sound pulse to
make either the downchain or upchain journey alone. We know that, by construction,
the sum of the upchain and downchain times must be the same as the time for which
one tick of the clock occurs as dictated by the timing arm, and one tick of the clock
is given by (3) with n = 1. With the length of the vertical arm labelled L we have the
relationship

�t = �td + �tu = 2L

c

1√
1 − β2

. (11)

Substituting in the relationships for �td and �tu allows us to solve for the separation
distance, L H , which we find to be

L H = L

γ
. (12)
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4.2 Synchronisation of Clocks

When the origin clock (clock 0) in a sound clock chain begins to record time,
it simultaneously sends sound pulses along every arm connected to it. The sound
pulse sent down its own timing arm is used to advance its own clock, whereas the
pulses sent along the sound clock chain via the spacing arms are used to synchro-
nise directly adjacent clocks (these are the synchronisation pulses). Upon receiving
the synchronisation pulse, a given clock will simultaneously begin to record its own
time and propagate the synchronisation pulse further along the chain. By this man-
ner, all of the clocks in the chain can be synchronised with respect to the origin
clock.

We can construct expressions for the time taken for the synchronisation pulse emit-
ted from the origin clock to travel to another clock: �t+s = |k| �tu is the time it takes
for the synchronisation pulse to reach clock k (k steps in the upchain direction), while
�t−s = |k| �td is the time it takes for the synchronisation pulse to to reach clock
−k (k steps in the downchain direction). When at rest, �t+s and �t−s are equal. The
relationships for the downchain and upchain synchronisation times can be combined
into a single expression, and substituting in the expression for L H from (12) we find

�t±s = L

c

√
1 ± β

1 ∓ β
|k| . (13)

Despite the fact that the sound clocks are travelling in a medium with a preferred
reference frame, the relativistic Doppler factor,

D =
√
1 + β

1 − β
, (14)

has appeared instead of the non-relativistic one, where β is the fractional speed of
the sound clock chain with respect to sound. This is a result of observers within
the sound clock chain setting the separation between adjacent clocks in such a way
that the simultaneity of returned sound pulses occurs. In setting their separation in
such a way, they have not only made their chain appear to exhibit the relativistic
phenomenon of length contraction to observers in the laboratory, but they have also
made their system appear to display the relativistic Doppler shift in regards to how
long it takes sound to propagate between adjacent clocks to observers within the
laboratory.

We now know how long it takes for any given clock, k, to tick n times (nk) once
it begins its clock: this is given by (3). We also know how long it takes for clock k
to start its clock with respect to some initial clock (i.e. the time until it receives the
synchronisation pulse): this is given by the appropriate choice of synchronisation time
from (13). For n ticks of the kth clock (nk), the total amount of time that has transpired
since the lead clock first began recording time is simply given by the sum of these two
times.
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For a clock a in the upchain direction we have the expression

t = L

c

√
1 + β

1 − β
|a| + 2L

c

na√
1 − β2

, (15)

and for a clock b in the downchain direction we have the expression

t = L

c

√
1 − β

1 + β
|b| + 2L

c

nb√
1 − β2

. (16)

Let us also rearrange these equations for the number of ticks recorded by any clock
post synchronisation. Upchain, the number of ticks recorded by clock a after time t is

na = ct
√
1 − β2

2L
− |a|

2
(1 + β), (17)

while downchain the number of ticks recorded by clock b after time t is

nb = ct
√
1 − β2

2L
− |b|

2
(1 − β). (18)

Adding to (17) and (18) the offsets that the observers located at clocks a and b will
add to their clocks to account for the believed synchronisation time (|a| /2 and |b| /2,
respectively) yields the proper clock reading, denoted ν, for clocks that are upchain
and downchain, respectively. Note that, by the labelling scheme, we can express the
proper clock reading of any clock in the chain, k (where k is any integer), at an instant
in time with a single formula,

νk := nk + |k|
2

= ct
√
1 − β2

2L
− k

2
β. (19)

From this equation we can rearrange for t again, yielding

t = L

c
(|k| + kβ) γ + 2L

c
nkγ = 2L

c

(
νk + k

2
β

)
γ. (20)

(15) and (16) are limiting cases of (20) and are now superfluous.
From (19) or (20), one can obtain the useful relationships for the difference in time

as a function of the difference of proper clock reading of any clock or clocks,

�t (�ν) = t (νl) − t (νk) = 2L

c
γ�ν + L

c
γβ (l − k) , (21)

and for the difference in proper clock reading for any clock or clocks as a function of
a difference in time,
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Fig. 5 Two chains of sound clocks instantaneously adjacent to one another after having carried out their
calibration and synchronisation procedures. The sound clock chain at the bottom is stationary, while the
sound clock chain at the top is travelling with a fractional velocity of β = √

3/2, corresponding to a Lorentz
factor of γ = 2. Simultaneity requirements lead to the moving chain possessing asynchronous clocks that
are separated by a distance of L/γ , where L is the length of the vertical timing arms

�ν (�t) = νl(t1) − νk(t0) = c

2Lγ
�t + 1

2
β (k − l) . (22)

These two relationships, (22) and (21), are of crucial importance in Sects. 5 and 6. It
is important to note that the quantity �ν present in (21) and (22) is entirely general
and can correspond to the difference in proper clock reading as recorded by a single
clock (k = l), which must of course occur at two different instances in time (�t �= 0),
or to the difference in proper clock reading as recorded by different clocks (k �= l),
which can be calculated for any difference in time.

When observers—moving or not—request information from another observer on
their chain for a believed simultaneous point in time, they will request information
recorded at the same proper clock reading (i.e. �ν = 0). This is because all observers
in inertial motion believe themselves to be at rest and so believe that all synchronised
clocks possess the same proper clock readings at a given point in time. In reality, a
moment in time is given by �t = 0 for which, in general, different clocks will not
read a difference in proper clock reading of �ν = 0 (which only happens to be true
for chains of sound clocks at rest).

Figure 5 shows two chains of sound clocks, one at rest and one travelling with a
velocity of v parallel to the stationary chain, at an instant in time. It can be seen that, as
per (22), the stationary chain (β = 0) possesses clocks that all have the same reading
at an instant in time, whereas the moving chain possesses clocks whose readings differ
as a function of their separation from the origin clock.
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5 Relativistic Effects Observed by Stationary Sound Clocks

Consider the following scenario: amoving chain of sound clocks passes by a stationary
chain of sound clocks with a velocity of v, which corresponds to a fractional speed of
β, with respect to sound. The moving chain travels in the direction parallel to its own
spacing arms, and passes by the stationary chain parallel to it and close enough to it
that the travel time for sound between clock faces on adjacent chains is small with
respect to the time it takes clocks on either chain to tick. Observers located at each
clock can only record the information accessible from their immediate surroundings:
they can read their own clock face, they can count how many clock faces they have
passed by on the adjacent chain, and they can read the value recorded on clocks in the
adjacent chain when they are sufficiently close (i.e. next to them). Observers within a
chain then have to talk to one another and exchange their own measurements in order
to come to some understanding of whatever experiment they conducted.

As we shall demonstrate, observers located on the stationary chain of sound clocks
determine that the sound clocks within the moving chain appear to be both separated
by a shorter distance and tick less frequently than their own sound clocks. This is in
keeping with what is seen in the laboratory. Later, when we consider measurements
made by observers on a moving sound clock chain of a stationary chain we find that,
contrary to what occurs in the laboratory, moving observers also determine that the
clocks in the stationary chain are separated by a shorter distance than their own and
ticks less frequently than their own. This only happens when both chains are treated
equally in that observers are only allowed to use their own clocks as time references,
observers can only signal with sound pulses, and observers have no means by which
to detect motion with respect to the medium that they are embedded within.

5.1 Time Dilation as Seen by Stationary Observers

Imagine that observers within the stationary chain of sound clocks decide to focus on
the lead sound clock of the moving chain as it passes by, as seen in Fig. 6. The first
experiment they wish to conduct is:

“How many times do moving clocks appear to tick for every tick of stationary
ones?”

Todetermine howmany times sound clocks in ameasuring chain believe themselves
to tick for every one tick of a sound clock in a different chain, we use the following
procedure:

1. Determine the separation in time, �t , for some clock, z, in the chain that is being
measured to increment its clock reading once. This is obtained using (21) with
z = l = k and �νz = 1.

2. Determine which clocks, k and l, in the chain performing measurements clock z
is next to at two points in time separated by �t . This is done by determining how
far clock z has moved in �t as calculated in Step 1.

3. Determine the proper clock reading on clock k when the clock that is being mea-
sured, z, is next to it, and determine the proper clock reading on clock l when the
clock that is being measured, z, is next to it. The difference in these two proper
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Fig. 6 The observers in the stationary chain focus only on the lead sound clock of the moving chain. The
moving chain has a fractional velocity of β = 3/

√
13, with respect to sound, corresponding to a Lorentz

factor of γ = √
13/2 ≈ 1.8. With this velocity, the moving chain of sound clocks travels a distance of 3L

in the laboratory for every tick of its clocks. In this example, the clocks labelled k and l in the stationary
chain are clocks 0 and 3, respectively

clock times is how many ticks observers within a measuring chain believe to have
occurred for them for one tick of the clock they were measuring. In other words,
evaluate (22) for clocks k and l as determined in Step 2 using time difference
obtained in Step 1. The difference in these proper clock readings gives the per-
ceived number of ticks that have transpired in the chain performing measurements
for one tick of the clock being measured.

Consider that some clock, k, in the stationary chain is next to a clock in the moving
chain, z, when the moving clock has a proper clock reading νMz (where the superscript
‘M’ denotes that the quantity pertains to the moving chain). At some later point in
time, clock z in the moving chain has moved next to some other clock in the stationary
chain, l, at the moment that clock z advances its proper clock reading forward one tick
to νMz + 1. From (21), the time it takes for a given clock in the moving chain, z, to tick
once (�νMz = 1) is 2Lγ /c where γ is the sonically relativistic Lorentz factor of the
moving clock. The distance covered by a moving clock ticking once is then given by

xM = v�t = v
2L

c
γ = 2Lγβ. (23)

Stationary clocks are separated by a length of L , so the number of stationary-clock
spacing-arm lengths that the moving clock has travelled in this time is given by bL ,
where b is just some number. Equating these two distances and solving for b, we find,

b = 2γβ. (24)

We have then that l = k + b. What is the difference in the proper clock reading,
�νS = νSl −νSk (the superscript ‘S’ denotes that the quantity pertains to the stationary
chain), corresponding to the difference in time, �t , that it takes for clock z in the
moving chain to travel between clocks k and l in the stationary chain? From (22) (with
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β = 0 as we are considering the proper clock reading difference of the stationary
chain), we find the difference in proper clock readings to be,

�νS(�t) = νSl (t1) − νSk (t0) = γ. (25)

Observers in the stationary chain determine that their clocks have all ticked γ times
for one tick of the moving clock. This is, in fact, true. In the laboratory, all clocks
within the stationary chain possess the same proper clock reading at the same instant
in time, and all stationary clocks have indeed ticked γ times for one tick of the moving
clock.

5.2 Length Contraction as Seen by Stationary Observers

Now imagine that observers located in the stationary chain decide to focus on more
than just the first sound clock of the moving chain. The next experiment they wish to
perform is:

“How are clocks in the moving chain spaced, relative to clocks in the stationary
chain?”

When we want to determine the length of an object in a laboratory (at least for
any experiment that takes place over reasonable distances and times) we will typically
find the positions of both ends of the object in question at an instant in time and
then determine the separation of these points in space. This is done with respect to
some fixed coordinate system parallel to the object (e.g. a ruler). The definition of
‘an instant in time’, a notion that is crucial in operationally determining lengths, is
a velocity-dependant quantity for observers who only have access to sound clocks.
The only measure of time that observers with sound clocks have access to is their
proper clock reading as given by (19). Within a given chain, observers at different
clocks will possess a different proper clock reading at a given point in time if their
chain is travelling with respect to the medium (i.e. β �= 0 in (22)). To determine how
observers with sound clocks measure distance, we must ask what measurements they
makewhen their clocks have the same readings. The procedurewe follow to determine
what distance one chain of sound clocks measures another chain’s spacing arms to be
is:

1. Determine which two clocks, k and l (where k �= l), in a given chain are going to
be used to perform measurements on lengths in another chain.

2. Determine the difference in time that is required for these two recording clocks to
have the same proper clock reading, i.e. determine which two times correspond
to νk = νl using (19). The difference in time between these two clock readings is
given by (21) for �ν = 0 and k �= l.

3. Determine which clock, k′, in the chain that is being measured is next to clock k
in the chain performing measurements at the time value corresponding to νk , and
which clock, l ′, in the chain that is being measured is next to clock l in the chain
that is performing measurements at the time value corresponding to νl .

4. Determine how many spacing arms, b, separate the clocks in the chain performing
measurements (|b| = |l − k|). Determine how many spacing arms, b′, separate
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Fig. 7 The observers in the stationary chain of sound clocks determine the separation of sound clocks
in the moving chain by determining which of their own clocks are simultaneously next to a given pair of
clocks in the moving chain. From this information, they are able to determine how many spacing arms in
the stationary chain are simultaneously parallel to a given number of spacing arms in their own chain, and
with the knowledge that their own spacing arms are of length L , they can determine how long the spacing
arms in the moving chain are. The moving chain is travelling with a fractional velocity of β = √

3/2,
corresponding to a Lorentz factor of γ = 2. In this example, clocks k and l in the stationary chain are clocks
0 and 1, respectively

the clocks in the chain being measured
(∣∣b′∣∣ = ∣∣l ′ − k′∣∣). Using this information,

determine how many spacing arms in the chain being measured simultaneously
appear to be parallel to one spacing arm in the chain performing themeasurements.

Consider that, at some time, one of the clocks in a moving chain, k′, is next to one
of the clocks (call it k) in the stationary chain: we shall label this time t (νSk ). Which
clock in the moving chain, l ′, is next to some other clock in the stationary chain, call
it l = k + b, when clock l has the same proper clock reading as clock k at time t (νSk )?
From (21), with β = 0, the difference in time between the moments when clocks k
and l have the same reading is 0. That is to say,

t (νSk ) = t (νSl ). (26)

As expected, the clocks in the stationary chain possess the same proper clock reading
at the same instant in time. This means that the moving chain has not moved relative
to the stationary chain when clocks k and l perform their measurements at equal clock
readings, as can be seen in Fig. 7, for b = 1.

Clock l is b spacing arms away from clock k, and the spacing arms in the stationary
chain have length L; therefore clocks k and l are separated by a distance of bL . Clock
k′ in the moving chain is next to clock k in the stationary chain, while simultaneously
clock l ′ in the moving chain is next to clock l in the stationary chain; the number of
spacing arms separating clocks k′ and l ′ in the moving chain is labelled b′. Clocks
in the moving chain are separated by spacing arms of length L/γ , so we have the
equality
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bL = b′ L

γ
. (27)

This leads to the relationship
b′ = γ b. (28)

Directly adjacent clocks in the stationary chain (when b = 1 in (28)) will (correctly)
conclude that, parallel to the single spacing arm that separates them, there are γ spacing
arms in the moving chain.

Furthermore, if one were to extend the formalism and imagine that there were
clocks at every point in space along a chain of sound clocks, the hypothetical clock
with label k +1/γ would be next to some clock in the moving chain, whose neighbour
would be next to clock k in the stationary chain.

6 Relativistic Effects Observed by Moving Sound Clocks

Consider that observers located on a moving chain of sound clocks wish to perform
the same experiments as the stationary chain did in Sect. 5.

To reiterate: a moving chain of sound clocks passes by a stationary chain of sound
clocks with a velocity of v, which corresponds to a fractional speed of β, with respect
to sound. The moving chain travels in the direction parallel to its own spacing arms
and passes by the stationary chain parallel to it and close enough to it that the time it
takes sound to propagate between the two chains is small with respect to the time it
takes clocks on either chain to tick. Observers located at each clock only have at hand
the information accessible from their immediate surroundings; they can count how
many clock faces they pass by on the adjacent chain, and they can read the value off of
adjacent clock faces when they are sufficiently close. Observers within the chain then
have to talk to one another and exchange their own measurements in order to come to
some understanding of whatever experiment they conducted.

As foreshadowed in Sect. 5, we find that observers located on moving chains of
sound clocks find that sound clocks within a stationary chain appear to be both sep-
arated by a shorter distance and tick less frequently than their own sound clocks. It
is not obvious that this result should appear, and in fact it only does so when the
observers are constrained to use their own clocks as time references, can only signal
with sound pulses, and cannot detect motion with respect to the medium that they are
embedded within. These constraints lead observers to ask for measurements made at
the wrong laboratory time when they wish to aggregate and compare data recorded
‘simultaneously’ because the clocks in the moving chain do not actually possess the
same reading at an instant in time.

6.1 Time Dilation as Seen by Moving Observers

Imagine that observers in the moving chain decide to focus on the lead sound clock
of the stationary chain as they pass it, as seen in Fig. 8. The first experiment they wish
to conduct is:
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Fig. 8 The observers in the moving chain focus only on the lead sound clock of the stationary chain in
order to determine how many times their own clocks tick for every one tick of a clock in the moving chain.
Due to the asynchronicity of clocks in the moving chain, the observers within the moving chain come to
the incorrect conclusion that their clocks tick γ times for every 1 tick of a clock in the stationary chain. The
moving chain is travelling with a fractional velocity of β = 3/

√
13, with respect to sound, corresponding

to a Lorentz factor of γ = √
13/2 ≈ 1.8. In this example, the clocks labelled k and l in the moving chain

are clocks 3 and 0, respectively

“How many times do stationary clocks appear to tick for every tick of moving
ones?”

The method used here is exactly the same as was outlined in Sect. 5.1. Consider
that some clock in the moving chain, k, is next to a clock in the stationary chain, z,
when the stationary clock has a proper clock reading νSz . At some later point in time,
the moving chain has moved such that some other clock in the moving chain, l, is
next to clock z at the moment that clock z advances its proper clock reading forwards
one tick to νSz + 1. The difference in time, �t , that it takes for clock z to tick once,
�νSz = 1, can be obtained using (21) (with β = 0 because we are considering the
stationary clock). The time taken for a stationary sound clock to advance its proper
clock reading by one tick is found to be 2L/c (as expected from (6)). The distance
that the moving chain has travelled in this time is given by

xM = v�t = 2Lβ. (29)

Sound clockswithin themoving chain are separated by a distance of L/γ . The distance
that the moving sound clock chain has travelled, xM, is equal to some multiple, b, of
its own sound clocks’ separation length,

b
L

γ
= 2Lβ. (30)

From this, we can easily solve for b:

b = 2γβ (31)
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Note that the value of b determined here is exactly the same as b in (24).
The moving sound clock chain has travelled a distance of b multiples of its own

spacing arm length in the time that it has taken the stationary sound clock, z, to tick
once. Therefore, clock l = k −b is next to the stationary clock, z, when it advances its
time forward by one tick. The difference between the proper clock readings of clock
k at some time t0 and clock l at some later time t1 = t0 + 2L/c can be obtained from
(22):

�νM (�t) = νMl (t1) − νMk (t0) = γ. (32)

Where, again, the superscript M indicates that these are quantities pertaining to the
moving chain. Even though the chain of moving sound clocks actually ticks less
frequently than the chain of stationary sound clocks, observers travelling along with
the moving chain believe that the stationary chain ticks less frequently than their own
due to their incorrect belief that they are at rest, which results in their clocks being
asynchronous.

6.2 Length Contraction as Seen by Moving Observers

The observers in the moving chain now decide to focus on more than just the first
sound clock of the stationary chain in order to perform their next experiment:

“How are clocks in the stationary chain spaced, relative to clocks in the moving
chain?”

We take the same approach as with the stationary chain’s experiment, except with
the roles of the stationary and moving chain reversed: which two clocks in the moving
chain are two adjacent clocks in the stationary chain simultaneously next to (where
simultaneity is defined as equal proper clock readings)?

The method used here is exactly the same as was outlined in Sect. 5.2. Consider the
scenario in which at some time, t0, some clock in themoving chain, k, has proper clock
reading νMk while next to a clock in the stationary chain. After what period of time
does another clock l, that is b spacing arms away (l = k + b), have the same proper
clock reading as clock k (νMl = νMk )? With use of (21) we can find the difference in
time, �t , for �νM = 0 for clocks k and l = k + b:

�t
(
�νM

)
= t (νMl ) − t (νMk ) = b

Lγβ

c
. (33)

In this time the moving chain has moved a total distance of,

xM = v�t = bLγβ2. (34)

Clocks in the moving chain are separated by a distance of L/γ , so clock l = k + b is
b multiples of L/γ away from clock k. Clock l has also travelled a total distance of
xM (from (34)) after the moment in time when clock k made its measurement, so the
location of clock l at time t1 as compared the location of clock k at time t0 is given by

xMl (t1) = b
L

γ
+ bLγβ2. (35)
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Fig. 9 The observers in the moving chain determine what they believe to be the separation of sound clocks
in the stationary chain by determining how many sound clocks are between two of their own sound clocks
at an instant in time (as they understand it). The moving chain has a fractional velocity of β = √

3/2,
with respect to sound, corresponding to a Lorentz factor of γ = 2. At this velocity, adjacent clocks in the
moving chain only have the same clock reading when separated by a period of time that corresponds to
having travelled a distance of γ L = 2L in the laboratory. In this example, clocks k and l in the moving
chain are clocks 0 and 1, respectively

This distance corresponds to somemultiple, b′, of the stationary sound clocks’ spacing
arm length. Equating b′L with xMl (t1) yields

b′ = γ b. (36)

Clocks k and l = k + b in the moving chain register the same proper clock reading at
two different instants in time. At these instants in time, clock k is situated over some
clock in the stationary chain, and clock l = k + b is situated over some other clock
that is γ b spacing arms away from the clock that k was situated over, as can be seen
in Fig. 9, for b = 1. Directly adjacent neighbours in the moving chain (i.e. b = 1 in
(36)) will (incorrectly) conclude that there are exactly γ clock arms simultaneously
parallel to their single clock arm, a result that arises due to the asynchronicity of their
clocks.

7 Sonic Relativity

We have now seen what look like relativistic effects from the perspective of internal
observers: time dilatation appears to be given by (25) and (32), while apparent length
contraction appears to be described by equations (28) and (36). However, none of these
relationships explicitly deal with lengths or times. Ticks and numbers of clocks are
both unitless, and furthermore, while γ as it appears in these equations is a quantity that
we can calculate in the laboratory, internal observers as we have currently described
them can only measure it (by counting how many clocks they pass in a given period
of time or by comparing clock readings on their own chain to another chain). We shall
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now cast all previous formulae in terms of quantities that internal observers themselves
can measure and demonstrate the appearance of sonic relativity. Let us start with some
defined quantities based on beliefs held by internal observers.

Assume that observers operationally define a unit of length called an ‘arm’ and a
unit of time called a ‘tic’. A timing arm of length L (as measured in the laboratory) is
operationally defined by internal observers to be 1 arm long, and 1 tic is operationally
defined to be the time it takes for a sound clock with a timing arm of length 1 arm
to advance its clock reading forward once. All observers in inertial motion believe
themselves to be at rest, and so they believe 1 tic of time to be the time it takes for a
sound pulse to travel 2 arm (to the end of the timing arm and back again). The speed
of sound to any internal observer is then defined to be

c̃ := 2
arm

tic
. (37)

With the belief that they are at rest, all observers co-moving with a chain of sound
clocks that are calibrated and synchronised as per the procedures outlined in Sects. 4.1
and 4.2 believe that their spacing arms are exactly 1 arm in length each, as it takes
exactly 1 tic of time for the echo of a sound pulse propagated between adjacent
clocks in a chain to return. This requirement itself formed the basis of the calibration
procedure as outlined in Sect. 4.1. With these definitions, we can determine at what
velocity—in units of arm/tic—observers in a given chain believe another chain to be
travelling.

In 1 tic of time for a stationary clock, 2γβ clock arms in the moving chain pass
by (as per (31)). Recalling from (28) that stationary observers believe that γ spacing
arms in the moving chain are simultaneously next to one of their own, observers on
the stationary chain come to conclude that clocks in the moving chain are separated by
γ −1 arm per clock. Stationary observers therefore (correctly) believe that 2γβ clocks
in the moving chain have a length of 2β arm. These 2γβ sound clocks of length 2β
arm take 1 tic to pass by. Thus, the perceived velocity of the moving chain, ṽ, in units
of arm/tic (up to a sign) is given by

|ṽ| = 2β arm

1 tic
= 2

v

c

arm

tic
= c̃

c
v = c̃β. (38)

The perceived fractional velocity, β̃ := ṽ/c̃, of the moving chain with respect to sound
using only measurements of quantities available to internal observers is related to the
actual fractional velocity with respect to sound by

∣∣∣β̃
∣∣∣ = β. (39)

Moving observes determine the same relationships. A moving clock passes by 2γβ

stationary clocks in 1 tic of time (as per (24)), and from (36) moving observers deduce
that γ spacing arms in the stationary chain lay simultaneously parallel to one of their
own (i.e. moving clocks appear to be separated by γ −1 arm per clock). Because the
moving observers think that they are the ones who are stationary and that the stationary
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observers are moving, they believe that 2γβ clocks have passed by them, with a total
length of 2β arm in a time of 1 tic. This leads to the (believed) velocity of the moving
chain, ṽ, in units of arm/tic (up to a sign) of

|ṽ| = 2β arm

1 tic
= 2

v

c

arm

tic
= c̃

c
v = c̃β. (40)

The believed fractional velocity, β̃ := ṽ/c̃, of the stationary chain with respect to
sound using only measurements of quantities available to internal observers is given
by ∣∣∣β̃

∣∣∣ = β. (41)

Both stationary andmoving observers believe that the other chain of sound clocks is
movingwith a fractional velocitywith respect to sound that is equal inmagnitude to the
value of the moving chain’s fractional velocity with respect to sound in the laboratory
frame. Utilising an agreed-upon coordinate system, observers in the moving chain
will report the value of β̃ that they measure to be different than that as measured by
stationary observers by a sign. Both stationary and moving observers define

γ̃ := 1√
1 − β̃2

. (42)

A given observer measures length by counting the number of spacing arms between
simultaneous measurements of the endpoints of an object: 1 arm is exactly the length
of one spacing arm.We define �̃′ to be the length, as measured by a stationary observer,
of an object whose length is measured to be �̃ by an observer at rest with respect to
the object. Both stationary and moving observers believe that γ b clocks in the other
chain lay simultaneously next to b of their own, as per (28) and (36), respectively.
Thus, observers in each frame will state that the total length spanned by some number
of their own spacing arms is equal to the length spanned by γ times as many spacing
arms of the other chain, leading to the relationship

�̃′ = �̃

γ̃
, (43)

where γ has been replaced by the internal observer defined γ̃ .
A given observer measures elapsed time by counting ticks of their own clock: 1 tic

is exactly the time it takes for one’s own clock to tick once. We define τ̃ ′ to be the
duration, as measured by a stationary observer, of a localised process whose duration
is measured to be τ̃ by an observer at rest with respect to the process. As per (25) and
(32), both stationary and moving observers believe their own clock readings to have
advanced γ̃ times in the time it takes a given clock in the other chain to advance its
clock reading once. Therefore, both stationary and moving observers believe that a
clock in the other chain takes γ̃ as much time to tick once as their own clock does,
leading to the relationship
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τ̃ ′ = γ̃ τ̃ , (44)

where, as before, the internal-observer-defined Lorentz factor γ̃ is used due to its
equality with γ .

8 Discussion

Through an operational approach, it has been shown that it is possible for a certain
class of inertial observers to deduce the existence of two key phenomena from special
relativity—length contraction and time dilation—in condensed-matter systems for
which the speed of sound plays an analogous role to the speed of light within our
universe. The observers we discuss are significantly restricted in their ability to assign
temporal and spatial values to events. They are only able to claim when events occur
relative to their own clock, can only make claims about events that are sufficiently
local such that the time it takes for the signal to reach them is negligible, and must
confer with one another after taking local measurements to come to an understanding
of the events that transpired.

The observers travelling at a constant velocity have no way to tell if they are
stationary or moving. With no way to tell who is in motion, this question would
become a philosophical one for internal observers, and some internal observers may
even come to the same conclusions that we in our universe have: that all motion
is relative. We have seen that when internal observers assume the former state of
motion—that they are indeed stationary—then those who are in motion incorrectly set
the separation of their clocks, a process that was achieved by fulfilling the requirement
that sound simultaneously emitted along two objects of equal length will result in
the simultaneous reception of echoes. This simultaneity condition results not only
in the incorrect separation of clocks within a moving chain; it also results in the
asynchronicity of those clocks.

In constructing their chains of sound clocks in such a way that local simultaneity
conditions hold, observers who are stationary see the moving chain to be length con-
tracted exactly as one would expect from a naïve application of relativistic formulae,
with c being the speed of sound instead of the speed of light. The clocks within the
moving chain also appear to be time dilated as would be expected from special rela-
tivity. This is due to the use of sound pulses to advance clock readings, and moving
clocks increase the path length, thus increasing the time it takes for a sound pulse to
return to the clock mechanism by exactly the Lorentz factor again.

More curiously, the observers in moving chains also witness stationary sound clock
chains as being length contracted: this is not actually the case and is again a result of
making use of simultaneity arguments. Moving observers think that the clocks within
their own chain are synchronous, and thus when they wish to know what happened at
some distant clock simultaneous with their own clock, they ask the observer located at
that distant clock to provide them with information recorded when the distant clock’s
readingwas the same as their own.These clocks are not actually synchronous, however,
so the observers in the moving chain are actually comparing information from two
separate instances in time. This happens to work out in exactly the right way to make
the observations of moving observers and stationary observers symmetric: moving
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observers also perceive stationary sound clock chains to be length contracted and time
dilated exactly as one would expect from a naïve application of relativistic formulae,
with c being the speed of sound instead of the speed of light.

We see that the ‘in-universe’ experience—the internal observers’ description of
their universe—can be described by the mathematical formalism of special relativity
provided that such observers believe the postulates of relativity, a conclusion that they
would reasonably come to when given no ability to detect their aether. It is merely a
misunderstanding of the Newtonian mechanics at play that results in the appearance of
relativistic effects to these internal observers. Given the ability to detect their own state
of motion relative to their aether, moving observers would quickly come to understand
that they have incorrectly separated and calibrated their clocks, and fixing this problem
would result in the disappearance of the apparent relativistic effects that are witnessed
by moving observers.

We have intentionally remained within the realm of discussing devices that are
operationally controlled by observers, and the relativity within the system described
appears as a result of the belief that observers have about their state of motion. Nev-
ertheless, it is worth noting that if we had access to devices that were built from
quasiparticles made up from the medium itself, then sonic relativity would emerge
naturally. As described by Barceló and Jannes [26], a device constructed from these
quasiparticles (such as a sound clock chain) would shrink naturally as v approaches c,
just as physical objects held together by the electromagnetic force do when travelling
close to the speed of light [31]. This would entirely remove the role of the observers
in tuning the separation of neighbouring clocks, and therefore the belief held by the
observers on their state of motion would become inconsequential.

Furthermore, while we have restricted our analysis to chains of sound clocks that
must keep their timing and spacing arms perpendicular, and that are only able to move
in the direction perpendicular to their timing arms, devices built from quasiparticles
would not be limited in these ways. If the sound clock chains that we describe here
were permitted to travel with a velocity possessing a non-zero component in the
direction parallel with the timing arms, then any change in the direction of motion
mid-journey to include such a component of velocity would lead to the asynchronous
return of echoes in the timing and spacing arms. Additionally, if these devices could
alter the angle between their arms, this would again lead to the asynchronous return
of sound pulses in the timing and spacing arms, and if the angle between the arms was
closed to 0◦, observers could quite easily determine that the timing and spacing arms
are different lengths. These effects would be naturally taken care of in quasiparticle
devices, however: the entire device’s dimensions would change accordingly with its
velocity, conspiring to make the effects of length contraction impossible to detect to
the observers located on the chain.

9 Conclusion

It is perhaps not too surprising that stationary observers in these systems infer thatmov-
ing observers undergo relativistic time dilation and length contraction, but given the
presence of a preferred reference frame it may not be immediately obvious that mov-
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ing observers should see stationary observers subject to these same effects (although
if one has a sufficient understanding of the history of special relativity, especially
in the context of aether theory, then this may not actually be too surprising). Given
that relativity is seen in both directions just as in our universe, it can be seen that
the existence of a preferred reference frame is not immediately prohibitive in the
emergence of a self-consistent description of relativity by internal observers in ana-
logue gravity systems. While some aspects of relativity can be made to appear, it
is not clear to what extent relativistic physics can be made to manifest in such
systems.

If the role of observers in analogue gravity systems is taken more seriously, inves-
tigating the observations made by such observers might give us some insight into
how many of the phenomena described by general relativity can be seen to arise in
analogue gravity models in a self-consistent manner. Are there any analogue gravity
models that appear to possess all of the phenomena of general relativity (in analogous
forms) to internal observers? If this is not the case, then why not?Why should some of
the phenomena of relativity emerge in a self-consistent manner in suchmodels, but not
others? Considering the experience of observers may help to answer these questions.
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