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Abstract

The ability to utilize signals at optical frequencies, as opposed to

say microwave frequencies, provides much more bandwidth and sig-

nal transmission speed to meet the increasing telecommunication de-

mands in today’s world. The ability to integrate optical circuits in the

same manner as in electronic integrated circuits means that optical

devices can be miniaturized and can even complement today’s com-

plex electronic circuits and devices. Silicon nanophotonics is a highly

attractive platform for emerging integrated optical solutions in areas

including optical signal transmission, signal processing, optical sens-

ing and optical computing. This is primarily because the silicon plat-

form is compatible with CMOS fabrication processes, which through

significant investment have developed and matured over many years to

serve the electronics industry. Transitioning into an optical platform

that can exploit this vast electronics manufacturing industry is viable

particularly for enabling low cost mass manufacturing of integrated

photonic circuits. High refractive index contrast silicon waveguide

platforms such as silicon-on-insulator (SOI) enable strong confine-

ment of light in sub-micron waveguides as well as the sharp bending

of waveguides with minimal loss. The SOI platform has therefore at-

tracted research interest into the development of compact integrated

silicon photonic circuits.

Thin-ridge SOI waveguides are particularly promising because they

minimize signal transmission loss by significantly reducing the waveg-

uide etch-depth and therefore reducing scattering losses due to side-

wall roughness. However, a consequence of the reduced etch-depth is

the possibility for TM guided modes to couple to highly coherent TE



radiation in the adjacent slab. This TM-TE coupling phenomenon,

named lateral leakage radiation, is the subject of this thesis. The main

aim of this thesis is to investigate the possible exploitation of this in-

herent coupling relationship between TM and TE polarizations. The

novel structures presented herein could have potential applications

which include optical biosensing, polarization rotation and resonant

optical filtering.

The main contributions of this research work include first and fore-

most the discovery of a resonant coupling effect in thin-ridge waveg-

uides when illuminated by TE slab beam. It is shown through simu-

lation that a resonant TM mode in a thin-ridge waveguide is excited

when a TE slab beam is incident upon it at a phase-matched an-

gle of propagation. This resonance effect has a canonical Lorentzian

response and the quality-factor can be controlled by adjusting the

waveguide dimensions. It is also shown that several such resonator

waveguides can be cascaded in a coupled resonator topology to real-

ize higher order Chebyshev filter responses. Another contribution in

this thesis is that a holographic-based grating structure exploiting the

TM-TE coupling in thin-ridge waveguides can be used to efficiently

convert a Gaussian TE slab beam into a collimated TM slab beam.

It is shown that an apodized grating is the most suitable design for

achieving this goal. Lastly, it is also shown through simulation that

the lateral leakage effect can be utilized as a biosensor to measure re-

fractive index changes at the surface of a thin-ridge waveguide caused

by the deposition of biomolecules. A tapered thin-ridge waveguide in

tandem with a planar lens structure is proposed as a potential sensor

topology for evanescent field biosensing.

In summary, it has been shown that lateral leakage in thin ridge

waveguides can be enhanced using unique waveguide structures and

exploited for integrated optical applications.
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Chapter 1

Introduction

Today, researchers are not only interested in finding new types of photonic devices

but also ensuring that these devices can be integrated into photonic circuits on

chips that will drive the next generation of opto-electronic technologies [1]. This

requires the miniaturization of photonic devices for optical signal transmission

and processing allowing compact integration of several photonic and electronic

devices for advanced system functionality. Silicon has been identified as a promis-

ing platform for integrating photonic circuits primarily because this is the same

platform that the electronics CMOS (complimentary metal oxide semiconductor)

industry utilizes for manufacturing electronic circuits [2]. Since silicon is a CMOS

compatible platform, it is envisioned that existing mature CMOS technologies can

be harnessed for the mass manufacture of low cost but advanced opto-electronic

circuits.

Photonic devices are comprised primarily of optical waveguides. Optical

waveguides are the backbone of photonic circuits as they provide the conduits

for optical signal transmission and processing. Several types of silicon optical

waveguides exist exhibiting different traits that make them advantageous for var-

ious purposes. One example is the silicon-on-insulator (SOI) nanowire waveguide

which is in the order of 450nm width by 260nm height [3]. It has been shown that

the high index contrast of the SOI platform enables light to propagate around

tight bends with minimal bending loss enabling the fabrication of densely in-

tegrated photonic circuits [2]. Another type of waveguide is the rib-waveguide.

Although mode confinement is decreased compared to strip waveguides, they can

1



1. Introduction

provide electrical access to the optical modes through the slab waveguide for ex-

ample by doping the silicon. This technique has been utilized for example to

design Raman lasers in silicon rib waveguides [4]. Another example is the slot

waveguide which has proved useful due to the field enhancement in the slot re-

gion which has been exploited for example in non-linear optics [5] as well as for

enhancing light-matter interactions [6]. A photonic crystal (PhC) waveguide is

yet another type of waveguide introduced as a defect in a photonic crystal lattice.

It can have extremely small sub-wavelength lateral dimensions [7]. Consequently

extremely tight mode confinement can be obtained resulting in increased field

intensities within the defect waveguide. This makes PhC waveguides useful for

various applications including non-linear optics and optical sensing that benefit

from enhanced light matter interactions [8]. Another recent addition to the fam-

ily of waveguides is the coupled resonator optical waveguide (CROW) which is

formed by coupling several optical resonators together such as ring resonators,

disk resonators and even photonic crystal cavities [9]. Depending on the energy

storage capacity of the resonators in a CROW, also known as the quality-factor,

the optical field intensity in the resonators can increase dramatically and the

propagation delay through the CROW can also rise. CROWS have been uti-

lized for optical sensing, non-linear optics, delay lines, optical filtering and opti-

cal switching [9]. This list illustrates how each type of waveguide topology has

unique characteristics that makes it advantageous for various applications over

other types of waveguides.

Another recent type of waveguide is the silicon-on-insulator (SOI) thin-ridge

waveguide. A thin-ridge waveguide is similar to a strip or rib waveguide except

that the etch depth reached when fabricating the thin-ridge waveguide is very

shallow in the order of 15nm for a 220nm thick silicon slab [10]. The design

of thin-ridge waveguides was primarily motivated by the fact that fabrication of

silicon waveguides in the current state of the art is not error-free. A major draw-

back of strip and rib waveguides, which are deeply etched, is that the sidewall

roughness that occurs during fabrication leads to inaccuracies in the waveguide

dimensions resulting in scattering losses [4]. One approach to tackling this prob-

lem has been to design integrated optical devices with tolerance to fabrication

errors taken into account [11]. Thin-ridge SOI waveguides tackle this problem of

2



1. Introduction

scattering loss by removing a significant portion of the waveguide walls that lead

to the problem of sidewall roughness in the first place. This removes a significant

portion of the scattering losses that can occur in thin-ridge waveguides thus de-

creasing the overall propagation losses for TE and TM guided modes in thin-ridge

waveguides [12]. However, it was discovered that the propagation loss for the TM

guided mode is strongly dependent on the waveguide dimensions and can vary

significantly [10]. This loss phenomenon was identified as being caused by cou-

pling from the guided TM mode to a highly coherent TE slab mode and it came

to be referred to as lateral leakage radiation. Interestingly, very little work has

been found that tries to exploit this lateral leakage radiation behaviour [13, 14].

It is believed that research opportunities could lie here and it could prove to be a

worthwhile endeavour. The mechanisms that lead to this lateral leakage radiation

will be described in the following background. This background is crucial since

the core subject of this thesis is to explore ways of exploiting this lateral leakage

radiation phenomenon for practical purposes.

1.1 Background of lateral leakage radiation in

thin-ridge SOI waveguides

In 2007, Webster et. al. [10] characterized the propagation losses of a thin-ridge

waveguide that was fabricated using a thermal oxidation process to enhance the

smoothness of the side walls to reduce sidewall scattering losses. The waveguide

core thickness was 205nm while the ridge height was only 15nm. Vertically, this

waveguide structure only supports a single slab mode at a wavelength of 1550nm.

The loss measurements that they obtained showed the transmission losses for the

fundamental TE and TM modes as a function of the waveguide width. They ob-

served low TE propagation losses of about 0.7dB/cm, which remained relatively

steady across the changing waveguide widths. This was attributed to the de-

creased side-wall roughness that mitigates scattering losses. However, a peculiar

phenomenon was observed in the TM mode propagation loss. It was observed

that the TM propagation loss was significantly higher than that of the TE mode.

However, at specific waveguide widths around 0.72µm and 1.44µm, the TM mode
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Figure 1.1: (a) Shows the orthogonality between the TM guided mode and TE
guided mode electric field polarizations. (b) Shows the non-orthogonality between
the TM guided mode and the TE slab radiation mode electric field polarizations.

loss decreased significantly to the point of equalling the propagation loss of the

TE mode. There was certainly a strong dependence of the TM mode loss on the

waveguide width.

A phenomenological approach was used in [10] to account for this cyclic change

in the TM mode propagation losses. This approach looked at the mode coupling

conditions that can exist between the various modes in the waveguide structure

to account for the lost power in the TM mode. These are namely mode non-

orthogonality, phase matching and the perturbation where the coupling occurs.

To understand this loss phenomenon, it is necessary to look at these factors

in greater detail to understand why this phenomenon is observed specifically in

thin-ridge waveguides and why it is strongly width dependent.
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1.1.1 Mode non-orthogonality

In addition to the TE and TM guided modes that propagate in a thin-ridge

waveguide, there are also slab modes that can propagate unbounded within the

slab regions adjacent to the waveguide. The TM guided mode of the waveguide

is always orthogonal to the TE guided mode. This is depicted in Figure 1.1 (a)

(i) and (ii) which depicts the electric field components of the TM guided mode

and TE guided mode respectively. It should be noted that the TM guided mode

has a significant longitudinal electric field component which is parallel to the z-

axis of the waveguide. The TM mode also has a vertically oriented electric field

component which is shown to be parallel to the y-axis. However, the TE guided

mode has a predominantly lateral electric field component along the x-axis and

has a very small electric field component in the z-axis.

One can also compare the TM guided mode to the TE slab modes which are

unbounded in the surrounding slab region. Figures 1.1 (b) (i) and (ii) respectively

illustrate the electric field components of the TM guided mode and a TE slab

mode which propagates at an angle to the waveguide z-axis. This TE slab mode

is bound vertically into a discrete mode with a specific propagation constant,

however, the wave is not bound laterally and is free to propagate at any angle

to the z-axis. Thus, the depiction in Figure 1.1 (b) (ii) is simply one of the

many possible directions that the TE slab mode can propagate in. Remember

that the TM guided mode has a significant longitudinal electric field component

in the z-axis. If the TE slab mode is propagating at an angle to the z-axis

as illustrated in Figure 1.1 (b) (ii), its electric field that is transverse to the

direction of propagation of the wave will have a significant projection onto the

z-axis. Therefore, it is possible for the TM guided mode to be non-orthogonal

relative to TE slab modes propagating at an angle to the waveguide.

1.1.2 Phase matching

For coupling to occur between two propagating modes, it is imperative for them

to be phase-matched. This means that their phase-velocities, or propagation con-

stants, or effective indices are equivalent in a particular direction of propagation.

It was shown in [10] and explained in Section 1.1.1 that the TM guided mode
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and TE radiation can be non-orthogonal. It was also shown in [10] how the TM

guided mode and TE radiation can be phase matched. To explain this possibility

it is necessary to consider the effective index of the TM guided mode relative to

TE slab modes which can have an infinite number of propagation directions in

the slab.

It is possible to predict any phase matching that may occur between the

guided and radiated modes by evaluating the slab mode effective indices as was

done in [10]. The slab mode effective indices can be evaluated for the TE and TM

slab modes as a function of the silicon slab thickness. Figure 1.2 (a) shows the

evaluated slab mode effective index as a function of the slab waveguide thickness

for both the TE and TM polarizations. The slab thickness of the core region in

the thin-ridge waveguide shown in the inset figure is labelled as t1 which is equal

to 205nm as used in [10]. The slab thickness of the slab region adjacent to the

thin-ridge waveguide is labelled as t2 which is equal to 190nm as used in [10].

As illustrated in Figure 1.2 (a), the guided TM mode effective index must reside

between the effective indices of the TM slab modes which are guided by slabs of

thicknesses t1 and t2. Similarly, the guided TE mode effective index must reside

between the effective indices of the TE slab mode at t1 and t2.

However, the TE slab modes propagating in the slab region of thickness t1

would have an effective index which is higher than the effective index of the

guided TM mode. Figure 1.2 (b) illustrates a comparison between the propagation

constants of the TE and TM modes in the waveguide structure. In the z-axis

direction, the TE guided mode and also a TE slab mode propagating in the z-

axis direction would both have a larger propagation constant in comparison to the

TM guided mode. Unlike the TE guided mode, the TE slab modes have freedom

of propagation direction in the x-z plane. Consequently, there exists a TE slab

mode whose angle of propagation relative to the z-axis, gives it an equal phase

velocity to the guided TM mode in the z-axis. This is illustrated in Figure 1.2 (b)

as a TE slab mode propagating at an angle θ to the z-axis. As such, the TM

guided mode is not only phase matched to this particular TE slab mode in the

z-axis direction but is also non-orthogonal to it as was discussed in Section 1.1.1.
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1.1.3 Perturbation

As described in [10, 15], coupling between the TM guided wave and TE slab

mode occurs at the waveguide walls which act as a refractive index perturbation

between the core and slab regions of the waveguide. This coupling process be-

tween the TM guided wave and the TE slab radiation is depicted in Figure 1.3

similar to the depiction in [10]. At each waveguide wall, the TM mode couples

to TE slab radiation propagating in both directions at an angle to the waveguide

wall. In Figure 1.3 the reflected TE slab waves at the waveguide walls have been

neglected for simplicity of the image as well as the fact that they would be in-

significant due to the small index change across the 15nm thick waveguide wall.

The transmitted TE slab radiation generated on each side of the waveguide is

composed of two co-propagating TE slab modes generated from both waveguide

walls. This occurrence therefore also predicts that the result of the superposition

between the two co-propagating TE slab modes on either side of the waveguide is

dependent on the relative phase between the two modes. If the phase of one TE

slab mode generated at one waveguide wall is in-phase with the TE slab mode

generated from the adjacent waveguide wall, then the TE radiation will be max-

imum. On the other hand, when the TE slab mode from one wall is out-of-phase

with the TE slab mode from the adjacent wall, then the two radiating beams will

interfere destructively resulting in net zero TE slab radiation.

Based on Figure 1.3, and as highlighted in [10], the phase between the TE

slab modes generated from either waveguide wall is dependent on the waveguide

width or the separation between the waveguide walls. Therefore, at particular

waveguide widths, the TE radiation from both waveguide walls can be out-of-

phase and interfere destructively resulting in zero TE slab radiation. Similarly, at

a different waveguide width where the TE slab modes generated at the waveguide

walls interfere constructively, the TE slab radiation can reach a maximum. This

therefore explains the strong dependence of the TM mode loss on the waveguide

width shown in [10].

8



1. Introduction

θ 

W 

TM 

TE 

core slab slab 

TE slab radiation  
wave front 

k0NTM k0nTE k0nTE 

z 

x 

y 

x 

Waveguide walls  

θ 

Figure 1.3: TM to TE mode coupling occurs at the waveguide walls which act as
perturbations. TE slab modes are generated from both waveguide walls, in both
directions and propagating at an angle θ to the waveguide. The phase between
the co-propagating TE slab modes determines the TE radiation loss from the TM
guided mode.

1.1.4 Simulation of lateral leakage radiation

To simulate and illustrate this lateral leakage behaviour of a TM thin-ridge waveg-

uide, a mode matching simulation technique was used in [15] for a waveguide with

a core thickness of 205nm and an etch depth of 15nm. The numerical tool used

in [15] was obtained for the investigations of this thesis and the simulations were

repeated to illustrate the TM mode loss dependence on the waveguide width.

Figure 1.4 (a) shows the TM mode loss in the thin-ridge waveguide as a function

of the waveguide width. It is clear from the results of Figure 1.4 (a) that the TM
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mode loss changes significantly with the waveguide width.

For example, at a waveguide width of 1µm, it is observed that the TM mode

loss is at a maximum position. Figure 1.4 (b), (c) and (d) shows the x, y and z

electric field components respectively of the guided TM mode in this 1µm waveg-

uide. The y-directed electric field component (Ey) indicates that the guided mode

is radiating into TE polarized radiation propagating laterally in the slab waveg-

uide. Therefore at this waveguide width the TE radiation generated from both

waveguide walls interferes constructively resulting in maximum lateral leakage

radiation experienced by the TM mode.

On the other hand, a waveguide width of 1.43µm is observed to have the

lowest TM mode loss. Figure 1.4 (e), (f) and (g) shows the x, y and z electric

field components respectively of the guided TM mode in this 1.43µm waveguide.

A comparison between Figure 1.4 (c) and (f) indicates that the electric field of

the TM mode in the 1.43µm waveguide is confined and does not radiate into

the TE polarization. This therefore represents the waveguide width at which the

TE radiation generated at both waveguide walls is out-of-phase and results in

destructive interference.

These results show very low propagation losses at about 0.72µm and 1.43µm

which agrees with the observed measurements made in [10]. The fact that the

results of Figure 1.4 compare well with the results presented in [10] provides con-

fidence that the numerical tool obtained for these studies can be used effectively

to replicate the results of that previous work and thus could now be used to pur-

sue the novel investigations contained in the remainder of this thesis. Figure 1.4

also provides an insightful illustration of the lateral leakage loss behaviour which

can be predicted for thin-ridge waveguides.

1.1.5 Summary and outlook

The presence of this TE polarized lateral leakage radiation phenomenon in a thin-

ridge waveguide raises questions about the possible exploitation of this particular

behaviour. What distinguishes lateral leakage radiation from other common radi-

ation losses is the fact that the guided TM mode radiates into a highly coherent

TE slab mode since it propagates at a very specific angle to the waveguide. There-
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fore, unlike incoherent radiation losses due to scattering, it is feasible that the

coherent TE slab mode could be recovered in its entirety. If the optical power

and information in the TE slab mode can be recovered, then it would be possible

to exploit the lateral leakage phenomenon in an application where the TM-TE

coupling relationship is perturbed to a measurable degree.

One possible application that arises in a thin ridge waveguide relates to the

strong evanescent field of the guided TM mode due to the high index contrast of

the silicon waveguide. The strong TM mode evanescence is evident in the sim-

ulated electric field results in Figure 1.4 (c). A strong evanescent field generally

translates into a higher susceptibility to perturbations at the waveguide surface.

Therefore, one could ask the question - would this lateral leakage radiation be

affected by external perturbations of the evanescent field? Another observation

made was that the lateral leakage effect involves coupling between a TM guided

and TE slab mode which are usually orthogonal polarizations. Given their in-

trinsically coupled state in the thin-ridge waveguide, one could ask - is it possible

to exploit this TM-TE coupling of the lateral leakage effect for polarization con-

version purposes? These are some of the questions that will be explored later

in this thesis. Three specific application areas formed the basis for the work in

this thesis; namely biosensing, polarization conversion and optical filtering. Each

chapter focusing on a specific application begins with a detailed introduction and

literature review of the application area under question.

1.2 Thesis outline

In Chapter 2, the goal is to investigate whether it is possible for the lateral leakage

effect in thin-ridge waveguides to be exploited for evanescent field sensing. Partic-

ularly sensing targeted towards biological materials. Firstly, the state of the art

in integrated optical biosensing is explored to identify important characteristics

of optical biosensors and how the thin-ridge waveguide may be advantageous for

this purpose. It has been shown that thin-ridge waveguides can provide a low

scattering loss silicon waveguide platform which is identified as a challenge faced

by biosensors based on deeply etched silicon waveguides. Through simulation,

the effect of a nanoscale film of material - representing a layer of antibodies or

12



1. Introduction

other biomolecules deposited on the surface of a thin-ridge waveguide is studied

with respect to how it influences the lateral leakage effect. A potential sensor

topology based on a thin-ridge waveguide taper and a planar lens structure is

proposed which could enable the observation of changes to the lateral leakage

radiation caused by biomolecular deposition.

Chapter 3 focuses on investigating the potential application of the lateral

leakage effect for efficient polarization conversion based on its intrinsic TM-TE

coupling behaviour. A study of polarization converters looks to identify the types

of polarization converters that exist and opportunities that thin-ridge waveguide

structures may exploit. It is found that polarization conversion in high index

SOI waveguide is not trivial and existing structures can be quite complex and

of varying effectiveness. The lateral leakage effect in thin-ridge waveguides pro-

vides a simple mode-coupling mechanism that could be exploited for polarization

conversion. The challenges of polarization conversion using thin-ridge waveguide

structures is also explored in the form of a discussion. It is proposed that a

holographic approach can be utilized to devise a structure resembling a grating

pattern which could efficiently convert a TE polarized beam into the TM po-

larization. A binary approximation of this grating pattern for TE to TM beam

conversion is simulated using the eigenmode expansion method. Various opti-

mizations to the binary grating pattern are investigated to help achieve efficient

polarization conversion from an incident TE beam to a TM beam.

The study of Chapter 4 is based on a serendipitous discovery encountered

while researching grating based polarization converters in Chapter 3 where sig-

nificant TE field reflection occurred when a TE beam was incident on the grat-

ing. Chapter 4 proposes that this may be due to resonant coupling from the

TE polarization to the TM polarization and then back again into a reflected TE

polarization; and asks the question - if it is indeed a resonance effect, what op-

portunities could this avail? The chapter begins by exploring existing optical

resonator applications and it is found that optical filtering for applications such

as wavelength division multiplexing is an important field to which resonators have

been applied. The state of the art in integrated optical filtering is investigated

to identify the important features of filters as well as opportunities for improve-

ment. Coupled resonator optical waveguides (CROWs) in SOI are found to have
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sharp spectral filtering characteristics while being physically compact. However,

fabrication errors in deeply etched silicon CROWs adversely affect their spectral

filtering characteristics. It is concluded that the low scattering loss thin-ridge

waveguides could therefore have an impact here. To investigate if the observed

reflection in Chapter 3 is indeed due to a resonance effect, only a single waveguide

is utilized instead of a grating, and a TE slab mode is launched towards it at an

angle where it is phase matched to the guided TM mode. The wavelength depen-

dence of this proposed resonance effect is also studied. For a typical resonator, it

is known that the quality factor (Q) of the resonator can be manipulated by ad-

justing the coupling into and out of the resonant cavity. If the analogy between

the thin-ridge and a typical resonator holds, then factors affecting the lateral

leakage effect should influence the Q of the thin-ridge waveguide resonance. Fac-

tors investigated include the waveguide width and the waveguide height. The

next section of the chapter explores the possibilities and challenges of designing

coupled resonator filters using thin-ridge waveguide resonators. An example of a

third order and fifth order Chebyshev filter based on thin-ridge waveguides are

synthesized and simulated.

Chapter 5 of the thesis is the conclusion which summarizes the key findings of

the research work presented in this thesis and proposes new interesting research

directions. One key finding is the ability to efficiently rotate the polarization

of an incident TE beam into a TM beam using thin ridge waveguide grating

structures. Based on these findings, it is proposed that this grating structure

could be investigated for polarization splitting and rotation for TE-TM or TM-TE

conversion. A second discovery is the resonance effect that thin-ridge waveguides

exhibit when a TE field is incident on the waveguide at a phase matched angle of

propagation. This led to the ability to utilize thin-ridge waveguides of varying Q-

factors to synthesize coupled resonator structures which exhibit improved spectral

filtering characteristics. In addition to optical filtering, these resonators could also

potentially be exploited for optical sensing, non-linear optics, optical delay lines

as well as optical switching.
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1.3 Research publications

It is my belief and I understand it is also the belief of my supervisors that the

findings of this thesis represents several highly significant advancements in the

field of integrated photonics. This is underscored by the patent application sub-

mitted with respect to this work as shown in the patents list below. Due to this

patent process, it has been necessary to postpone publication of much of this this

work. However, since the patent has been submitted almost simultaneously with

the submission of this thesis, it will now be possible to pursue publication of this

work in appropriately high profile outlets.

The following publications and publication drafts have been produced:

Patents:

• Australian Provisional Patent Application No. 2015901035, in the name of

RMIT University WM Ref: P40221AUP1.

Journal papers:

• One manuscript on the work presented in Chapter 3 on polarization conver-

sion has been written and is awaiting submission. The manuscript is shown

in Appendix B.

Conferences:

• Kiplimo Yego, Thach G. Nguyen, and Arnan Mitchell. ”Evanescent wave

sensors utilizing laterally radiating thin-ridge silicon-on-insulator waveguide

tapers.” In 2014 OptoElectronics and Communication Conference, OECC

2014 and Australian Conference on Optical Fibre Technology, ACOFT 2014,

pages 577-579, 2014. [16]

• Kiplimo Yego, Thach G. Nguyen, and Arnan Mitchell. ”Utilization of Co-

herent Lateral Leakage Radiation from Thin-Ridge SOI Waveguides for

Integrated Optical Evanescent Biosensing.” In JSAP-OSA Joint Symposia

2012, The 73rd Japan Society of Applied Physics Autumn Meeting, 11p-G2-

13, 2012. [17]
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Chapter 2

Evanescent wave biosensing using

lateral leakage radiation in

thin-ridge waveguides

2.1 Introduction

Chapter 1 looked at the advantages and motivations for the use of the silicon-

on-insulator (SOI) platform for the development of integrated optical devices.

Various types of SOI waveguide structures were introduced as well as some of

their unique advantages and applications. Thin-ridge waveguides on the SOI

platform were identified as having a significant advantage of low scattering losses

due to the small ridge height unlike deeply etched silicon waveguides. However,

it was also explained that while the TE mode does propagate with low loss the

TM mode of the thin-ridge waveguide suffers from a significant width dependent

loss caused by the TM mode coupling to a TE slab mode propagating at a spe-

cific angle to the waveguide. This TM-TE coupling occurs at both thin-ridge

waveguide walls and in both directions, and has hence become known as lateral

leakage. This TM-TE coupling explained the width dependency of the lateral

leakage loss because the coherent TE slab modes generated at both waveguide
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walls interfere with each other. If the optical path length between the waveguide

walls (the waveguide width) enables the TE slab modes to be out of phase, they

would interfere destructively and no lateral leakage radiation would be observed.

Similarly, they can be in-phase resulting in maximum lateral leakage radiation

This review of the lateral leakage phenomenon raised some interesting ques-

tions. Does it mean that the TM mode is not useful in thin-ridge waveguides

because it is lossy? It was proposed in the introduction that, in fact, the TM

mode may be useful because the coherent nature of the TE radiation makes it

recoverable unlike randomly radiated light. Therefore, one could ask - what po-

tential exploitation or application could be gained from this lateral leakage effect?

One feature that was identified is that the TM mode in a thin-ridge waveguide is

strongly evanescent while the TE slab mode to which it is coupled is not. This

opens up the possibility for exploiting this difference in evanescence for applica-

tions that rely on strong interactions with the evanescent field of a waveguide.

Another identified characteristic of the lateral leakage phenomenon is the coupling

that occurs between the TM guided mode and TE slab mode. This raised the

question on whether it is possible to utilize this effect for polarization conversion.

These were the possible exploitations that were identified in the introduction.

The focus of this chapter will be the first question: Is it possible to exploit the

different evanescent field strengths of the coupled TM guided and TE slab modes

in thin-ridge waveguides for applications that rely on strong interactions with the

evanescent field of a waveguide?

Before trying to explore whether it is possible to use the evanescent field of the

thin-ridge waveguide, it will be valuable to review existing technologies exploit-

ing the evanescent fields of waveguides. The evanescent fields of waveguides have

been exploited for example in biomolecular sensing [18], in chemical sensing [19]

as well as for integrated spectroscopy [20, 21]. Integrated spectroscopy is a more

advanced application of evanescent field detection compared to general biomolec-

ular and chemical mass sensing. It requires having a device [21] or devices [20]

having a range of wavelength channels to be able to probe an analyte across a wide

range of different excitation wavelengths. As a proof of principle, it is easier to

look at the simpler sensing mechanisms such as biomolecular and chemical mass

sensing. Biomolecular unlike chemical evanescent field sensors are used for de-
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tecting molecules in a liquid [18] rather than gaseous environment [19]. This has

made evanescent field sensors preferable for biosensing due to the practical ease

of immobilizing biomolecules in a liquid environment onto the waveguide surface

where it can strongly interact with the evanescent field. Biosensing could there-

fore be a suitable starting point for investigating the use of the strong evanescent

fields in thin-ridge waveguides.

Fan et. al. [18] did a review of optical biosensors that traverse various plat-

forms including surface plasmon resonator sensors, interferometric sensors, micro-

sphere resonator sensors, ring resonator sensors optical fiber and photonic crys-

tal sensors. They showed that integrated planar waveguide sensors were mostly

outperformed in sensitivity by non-integrated sensors such as low loss silica mi-

crospheres. However, a motivation for utilizing planar waveguide structures has

been identified as the extremely small foot print they can occupy enabling dense

integration of sensor arrays as well as being easily combined with microfluidic

systems for lab-on-a-chip applications. This bodes well for portable sensors that

can be taken to the point-of-care rather than being confined in a laboratory due

to bulky optical components.

For cheap and mass fabrication of integrated optical sensors, it has also

been identified that the CMOS compatible silicon waveguide platform is well

suited [22]. In 2006, Densmore et. al. published a seminal paper on silicon-

on-insulator (SOI) based evanescent field sensing [3]. They compared the silicon

waveguide to a wide range of other waveguide platforms including silicon nitride,

polymer and silica waveguides to show the enhanced sensitivity of SOI waveguides

for both affinity and bulk evanescent field sensing.

These advantages of optical biosensing in integrated silicon-on-insulator waveg-

uides makes it an interesting proposal to consider the use of SOI thin-ridge waveg-

uide structures for evanescent field biosensing. This chapter looks at two main

questions pertaining to thin-ridge waveguide sensing. Firstly,is the lateral leak-

age effect in thin-ridge waveguides perturbed by biomolecular deposition on the

waveguide surface and if so, how? Secondly, what sensor topology could be used

to demonstrate this biosensing capability in thin-ridge waveguides? However,

before delving into this investigation one must first ask, what are the character-

istics of a good evanescent field biosensor? This question will be explored first by
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investigating existing SOI evanescent field biosensors.

The following literature review will focus on the transduction mechanism of

state of the art optical sensors. This refers to the mechanisms used for converting

a binding signal, as a result of biomolecular deposition on the waveguide surface,

into a measurable optical signal. There are other components to the front and

back-end of the sensor such as the interpretation of the optical signal to extract the

relevant binding signal. However, it is assumed that these components external to

the transduction process are common across the various types of optical sensors

and hence are omitted in this literature review.

2.2 Review of SOI evanescent field biosensors

Silicon-on-insulator evanescent field biosensors can be categorized according to

the type of sensor topology used or according to the type of waveguide used.

If the goal is to investigate thin-ridge waveguides as a platform for biosensing,

then the question one first needs to ask is what are the important features of a

waveguide biosensor? Secondly, what properties of a thin-ridge waveguide makes

it unique and therefore potentially advantageous for waveguide based biosensing?

Consequently, to answer these questions, a good perspective may be look at the

existing biosensors from the point of view of the type of waveguide used. These

include nanowire waveguides, slot waveguides, photonic crystal waveguides and

ridge waveguides.

2.2.1 Nanowire waveguide biosensors

In 2006, Densmore et. al. published a significant paper on SOI based evanescent

field sensing [3]. They compared the SOI waveguide to other waveguide platforms

including silicon nitride, polymer and silica waveguides. Their results showed that

TM guiding SOI waveguides were significantly more sensitive to surface refractive

index changes due to the strong evanescent field. As a proof of concept, the

nanowire waveguide was used in a Mach-Zehnder interferometer (MZI) topology

to form a refractive index sensor. One arm of the MZI formed the sensing arm

while the other formed the reference arm. The sensing arm was left exposed
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to the environment while the non-sensing portions of the MZI, including the

reference arm, was covered by a polymer. Fluids of different concentrations were

then introduced over the sensing arm. This caused a shift in the phase between

the sensing arm and the reference arm. A phase shift versus superstrate index

change relative to deionized water was measured as 300(2π) per refractive index

unit (RIU−1).

Using the same nanowire waveguide, the same group improved on the MZI

topology whereby the length of the two arms in the interferometer was increased

by folding them into spiral paths [23]. The spiral-path increased the interaction

length between the analyte and the light in the waveguide and was therefore

expected to enhance sensitivity. However, from the recorded measurements, the

improvement in phase shift change due to increased fluid concentrations was

measured at 460(2π) RIU−1 which was only slightly better than that observed

previously [3].

Another waveguide sensor topology based on the nanowire waveguide was

proposed in [24] where a Bragg grating structure was fabricated directly onto the

waveguide walls. The Bragg grating structure takes the form of small periodic

index perturbations whereby specific wavelengths resonant in the grating are

completely reflected. This results in a notch in the transmission spectrum of

the waveguide grating. When used as an evanescent field sensor, variations of the

superstrate refractive index was shown to cause a spectral shift in the waveguide’s

transmission spectrum. The reported measurement resolution was as high as 10−6

RIU for bulk refractive index changes for a device length of 180µm. However,

this proposed grating technique, unlike the MZI which uses a reference arm, is

highly susceptible to spectral shifts caused by temperature changes due to the

large thermo-optic coefficient of silicon.

A common biosensor topology where the nanowire waveguide has been ex-

ploited is in ring resonator structures [22, 25–28]. De Vos et. al. [22] utilized a SOI

ring resonator structure to demonstrate label-free measurement of biomolecules

adsorbed or deposited on the waveguide surface for quantitative molecular de-

tection. The ring resonator with a race-track shape was used in an add-drop

topology showing a sharp resonance peak in the transmission spectrum. When

biomolecules were deposited on the ring surface, a shift in the resonance peak
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was observed The race-track shape was utilized instead of a circular ring because

it gave more control over the coupling coefficient between the bus waveguide and

the resonator. They concluded that the SOI ring was particularly sensitive for

measuring adsorbed biomolecules rather than for bulk sensing of concentration

changes in the surrounding fluid with a detection limit of 10−5 RIU. Xu et al [25]

went further and characterized the effect of the ring radius on the ring resonators

spectral sharpness and found that a larger ring radius gives a sharper resonance

which would more suitable for detecting smaller changes in the resonance shift

caused by biomolecular adsorption. However, a larger ring radius covers a larger

area and so they instead utilized a folded cavity topology to achieve the long

cavity length of a large radius ring but over a smaller area. The resonance peak

of the folded cavity was also much sharper than that of a simple race-track ring.

They concluded that with a folded cavity with a Q-factor of about 20,000, a long

interaction length could be achieved of 1.27mm within an area of 110×110µm2.

Multiplexing of several ring resonator biosensors was also shown to be possible

by using multiple ring resonators having different radii and hence independent

resonances [26, 28]. In this way each resonator sensor could be used for differ-

ent measurements but they can all be simultaneously probed since each resonator

occupies a different resonance wavelength. SOI ring resonators have been success-

fully trialed in the biological sciences for measuring important biological proteins

such as cancer biomarkers [27].

In spite of having several advantages, the ring resonator structure suffers two

problems when used for biosensing. Firstly, the positive thermo-optic coefficient

of silicon causes spectral shifts due to temperature variations. This problem

was solved by using a reference resonator which is not exposed to the biosensing

environment and thus only experiences spectral shifts caused by temperature

changes [28]. This reference shift is then used to compensate for temperature

shifts experienced in the sensing resonator thus accurately evaluating spectral

shifts caused by biomolecular adsorption. This however takes up valuable real

estate on the chip and also requires additional post-processing of the evaluated

data to obtain correct measurement data.

Another intrinsic problem of ring resonators known as resonance or mode

splitting occurs at resonance resulting in a dual peak [29]. This is due to the
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presence of a forward (clockwise) propagating and backward (counter-clockwise)

propagating resonant modes which are degenerate. Generally the backward prop-

agating mode is not expected to be excited, but in practice surface roughness on

the ring can lead to coupling to this backward propagating mode.

Whispering gallery mode (WGM) resonators in SOI waveguides, which take

the form of disk resonators, have also been exploited for label free integrated

biosensing [30, 31]. Boyd and Heebner [30] wrote a seminal paper in 2001 propos-

ing the use of disk resonators for biosensing. Like ring-resonators, adsorption of

biomolecules on the disk surface changes the resonant mode effective index and

consequently causes a spectral shift of the resonant wavelength. Grist et. al. [31]

showed that it is possible to reduce the disk radius to as low as 3µm with the

advantage of increasing the free spectral range (FSR) of the resonator which en-

ables multiplexing of several disk resonators. However, this results in a significant

decrease in the quality (Q) factor of the resonator thus decreasing its sensitiv-

ity. Having a larger disk resonator enables the attainment of higher Q-factors

but at the same time increases the number of modes that can be supported in

the disk resonator. A multimode disk resonator is non-ideal due to the risk of

cross coupling between modes that may be caused by fabrication defects of the

resonator. Multimode resonators would also have several spectral peaks for each

of the supported modes thus significantly decreasing the FSR and potential of

being able to multiplex several resonators.

2.2.2 Slot waveguide biosensors

Slot waveguide structures have also been exploited in the development of inte-

grated optical biosensors [6, 32]. A slot waveguide is composed of two strip or

ridge waveguides of narrow width, which are positioned adjacent to each other

with a narrow gap between them. This dual-waveguide structure in fact behaves

as a single waveguide and supports a quasi-TE and quasi-TM mode that spans

both waveguides and the slot [32]. As shown in [32], the quasi-TM mode looks

similar to that of a general strip waveguide. However, the quasi-TE mode is

quite different in that it appears strongly laterally confined within the slot re-

gion. The slot introduces a discontinuity in the laterally oriented TE electric
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field which results in a high field intensity maintained within the narrow slot in-

terfaces. It was shown in this paper that the quasi-TE mode had a significantly

stronger surface sensitivity. In [6], an almost four fold improvement in sensitivity

was demonstrated in a ring resonator based on an optimally designed quasi-TE

slot waveguide over a strip waveguide. The slot gap was 100nm wide. The slot

waveguide is primarily beneficial when biomolecular binding occurs within the

waveguide slot where the field is enhanced. This makes it difficult to ensure pre-

cise delivery of biomolecules to the useful sensing area within the slot. Due to

the strong lateral confinement of the optical field within the slot, scattering loss

due to surface roughness would be enhanced in slot waveguides. Therefore, great

care needs to be taken with their fabrication - particularly in ring resonators.

2.2.3 Photonic crystal waveguide biosensors

Lee and Fauchet [33] in 2007 proposed the utilization of a silicon photonic crystal

microcavity for single particle detection. The lattice constant was 400nm and the

pore diameter used was 240nm. The microcavity defect was achieved by increas-

ing a single pore size to 685nm. The microcavity was introduced into the photonic

crystal lattice such that it supported a defect cavity mode which appears as a

spectral transmission peak inside the spectral bandgap of the photonic crystal.

Lee and Fauchet proposed the potential use of this structure for biosensing by

testing its sensitivity to an artificial single particle of 320nm diameter which was

placed inside the microcavity. It was observed that the transmission peak was

shifted by as much as 4nm when the particle of 320nm diameter was at the edge

of the cavity.

The defect mode can be supported inside the photonic bandgap of a photonic

crystal (PC) in other ways than with a microcavity. An entire row of holes in

the PC lattice can be removed [34] to form a line defect waveguide, or the holes

of a an entire row can be made of smaller dimensions to the other holes in the

PC [35]. Garcia-Ruperez et. al. [34] proposed using a line defect in a PC with

a lattice constant of 390nm and a pore size of 110nm. Rather than monitoring

the band-edge of the guided mode they utilized the sharp fringes in the slow-light

regime near the guided mode band-edge. The benefit is that in the slow-light
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regime the interaction with the target biomolecules is enhanced. They tested the

detection capability with standard anti-BSA/BSA binding tests and concluded

that they could attain an extremely low mass detection limit of 2.1pg/mm2. The

refractive index sensitivity was measured as 174.8nm/RIU. More recently, Dutta

and Pal [35] proposed the use of a line defect in a SOI PC lattice to achieve an

even higher sensitivity of 260nm/RIU. Their proposed sensor topology relied on

the detection of the cut-off wavelength of the guided defect mode which shifted

under the influence of a changing external refractive index.

A particular advantage of using photonic crystals for biosensing was identified

as the enhanced field strength provided by the small photonic crystal waveguide

dimensions. The enhanced field within the hole and cavity defects consequently

increases the light-matter interaction with the adsorbed biomolecules within the

defect cavities, thus improving the sensitivity of the device. While the holes and

cavity defects are beneficial for providing enhanced light-matter interaction, they

also introduce challenges unique to PC biosensors. The presence of such minute

surface perturbations could make it more difficult to perform surface chemistry

necessary for the biosensing process. This includes both the pre-treatment or

functionalization as well as the post-processes of rinsing the waveguide surface.

Improper surface chemistry can lead to non-specific biomolecular binding which

can lead to false-positive or false-negative results.

2.2.4 Thin-Ridge waveguide biosensors

Thin-ridge waveguides differ from the more common strip and ridge waveguides

by the fact that the waveguide is formed by shallow etching the silicon slab layer.

The TM mode is particularly attractive for evanescent field sensing due to the

strong evanescent field at the waveguide surface [12]. Some demonstrations of

biosensing utilizing thin-ridge waveguides for evanescent field biosensing have

been presented [36, 37]. The waveguide used in [36] had a width of 1.23µm which

was expected to provide a larger surface area for sensing. It was shown that

athermal silicon waveguides can be achieved with some constraints applied on

the thin-ridge waveguide dimensions. This has the added benefit of not requiring

reference waveguides that are generally used to compensate for effective index
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shifts caused by temperature changes. A TM thin-ridge waveguide was used in a

ring resonator sensor topology and the waveguide width was selected for low loss

TM mode propagation to minimize lateral leakage effects. The reported detection

limit of surface mass density was calculated as 100fg/mm2 which in comparison

to other sensors was relatively good.

However, a drawback of such a technique could be that when biomolecules

are deposited on the waveguide surface not only would the phase velocity of the

TM mode change but also it is possible that the lateral leakage loss may vary.

The reason for this likelihood is that low loss TM mode propagation in thin-

ridge TM waveguides is width dependent due to destructive interference of the

TE lateral radiation generated at the waveguide walls as discussed in Section 1.1.

Biomolecular deposition on the waveguide surface would have the effect of varying

the optical path length between the waveguide walls and could therefore affect

TM mode lateral leakage loss. The thin-ridge ring resonator loss has also been

investigated [38] and shown to be strongly dependent on the ring radius thus

severely limiting the realization of small ring radius sizes. These factors may

negatively impact the ring resonator quality factor and hence any improvements

on sensitivity based on the proposed ring topology.

2.2.5 Summary

Some important features of optical biosensors have been identified. Firstly, high

index contrast waveguide platforms such as SOI are advantageous since they pro-

vide a strong field enhancement at the waveguide surface especially for modes

with the field oriented normal to the strong index contrast. Enhancing the in-

teraction length between the waveguide mode and the analyte has also been

identified as a key criteria to achieving high sensitivity and low detection limits.

Consequently, there has been a preference for the use of resonant structures such

as ring resonators where the effective optical length of the device is much longer

than the physical length. Fabrication errors inherent to deeply etched silicon

waveguides pose a problem for ring resonator structures due to scattering losses

that lead to such effects as mode splitting. Other waveguide structures such as

slot-waveguides and photonic crystal waveguides have also been exploited because
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of the optical field enhancement they provide. The difficulty in the exploitation

of slot waveguides and photonic crystal waveguides was the difficulty in delivering

biomolecules to the enhanced field regions due to their very small size.

The thin-ridge waveguide structure, which is the core subject of this thesis has

also been previously investigated for biosensing purposes exploiting the existing

ring resonator sensor topology. Because of the inherent TM mode lateral leak-

age loss behaviour it is believed that thin-ridge waveguide sensors using existing

topologies such as ring resonators will be severely restricted. In spite of this, the

thin-ridge waveguide topology has advantages over strip waveguides because the

small waveguide walls minimize scattering losses common to strip waveguides.

This analysis therefore raises an interesting question: Is it possible to realize a

biosensor topology that takes advantage of this lateral leakage phenomenon rather

than being hamstrung by it?

2.3 Lateral leakage response to an adsorbed biofilm

on the waveguide surface

This section investigates through simulation what would happen to the lateral

leakage radiation if a biomolecular layer (biofilm) were deposited on the waveg-

uide surface. It is hypothesized that, if a biofilm was deposited on the waveguide

surface, the cladding refractive index would be perturbed altering the effective

indices of both the guided TM mode and the TE slab mode. This should con-

sequently affect the coupling relationship between the guided TM mode and the

TE slab mode.

Consider a functionalized waveguide immersed in a solution whereupon biomolecules

suspended in the solution are immobilized onto the waveguide surface to form a

continuous biomolecular film (biofilm). This biofilm would have a higher refrac-

tive index than the surrounding solution and would therefore increase the cladding

refractive index at the waveguide surface. This would consequently alter the ef-

fective index of the guided modes in the waveguide.

Now consider a laterally radiating thin-ridge waveguide with biofilm deposited

indiscriminately over the entire surface, including both the waveguide and slab

26



2. Evanescent wave biosensing using lateral leakage radiation in
thin-ridge waveguides

regions. The effective indices of the guided TM and the TE slab modes would

both be perturbed by the presence of the biofilm. However, as illustrated in

Figure 1.4, the TM mode has a significantly stronger evanescent field that the

vertically tightly confined TE slab mode. It would therefore be expected that the

strongly evanescent TM mode would vary significantly in effective index compared

to the TE slab mode.

A fully vectorial mode matching technique was used to simulate the guided

modes of a thin-ridge SOI waveguide. This was done for a range of biofilm

thicknesses from 0nm to 500nm with a material refractive index of 1.5, which is

a typical refractive index of a biomolecular film [39]. The biofilm thickness was

increased vertically to simulate its accumulation on the waveguide surface. In

doing so, an approximation was taken in assuming that the biofilm only grows

vertically on the waveguide surface and not laterally on the waveguide walls.

The impact of biofilm accumulating on the waveguide walls might have a larger

impact on the TE-TM coupling strength rather than the phase velocities of the

guided TM and radiated TE modes which is of interest in this investigation. In

reality the biofilm would probably accumulate laterally as well, but given that

the ridge height is significantly less than the biofilm thickness, the impact of this

approximation would only be noticeable while the film was thin.

In addition, the lateral increase in biofilm would primarily be significant only

over the 15nm waveguide wall whereas the biofilm thickness ranges from 0nm to

500nm which is far greater than the wall thickness. Furthermore, this simplifica-

tion eases the complexity of the mode-matching simulation.

The simulation window, as shown in Figure 2.1 (a), was bounded vertically

by perfectly conducting planes but left fully open in the horizontal direction to

accurately model the lateral leakage radiation [15]. Similar waveguide dimensions

to [15] were used. A waveguide width of 1µm and etch depth of 15nm was selected

to maximize lateral leakage radiation at 1.55µm wavelength.

Figure 2.1 (c) shows the effective index gradient of the guided TM mode and

that of the radiating TE slab mode as a function of the biofilm thickness. The

effective index rate of change for both modes is initially steep. The change in

the guided TM mode effective index is about 4 times greater than that of the

radiating TE slab mode. As the biofilm thickness increases, the rate of change in
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Figure 2.1: (a) Cross sectional view and (b) plan view of the thin-ridge waveguide
simulation window. (c) Rate of change of the TM and TE mode indices for varying
biofilm thicknesses and the resulting change in TE slab mode angle.
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effective index for both the guided TM and TE slab modes decreases and slowly

approaches a maximum value.

This decreased gradient is caused by the fact that as the biofilm thickness

increases, its interaction with the evanescent tail of the mode above the biofilm

also decreases. The steeper TM mode gradient indicates a stronger interaction

with the biofilm. This is due to the longer evanescent tail of the guided TM mode

extending into the cladding medium as opposed to the vertically tightly confined

radiating TE slab mode.

This result shows that the guided TM mode is therefore more sensitive to

changes in the biofilm than the radiating TE slab mode.

Since the guided TM and TE slab modes respond differently to the variation

of the biofilm thickness, it is expected that the radiation angle illustrated in

Figure 2.1 (b) will also vary with the biofilm thickness.

The TE slab mode angle depends on the effective indices of the guided TM

mode (NTM) and TE slab mode (NTE) [10], which is expressed as

θ = arccos(
NTM

NTE

) (2.1)

Using the simulated effective indices of the guided TM mode and slab TE mode,

the TE slab mode angle at different biofilm thickness was calculated using Equa-

tion (2.1).

Figure 2.1 (c) shows the calculated radiation angle on the right y-axis as a

function of the biofilm thickness. The increase in biofilm thickness results in a

decreasing angle of radiation. The rate of change for small biofilm thicknesses is

higher and this gradient decreases as the biofilm thickness grows.

It is not surprising that this asymptotic curve of the radiation angle is similar

to that observed for the effective indices. Since the rate of change of the effective

index is highest for small biofilm thicknesses, we would also expect the highest

rate of change in the radiation angle for smaller biofilm thicknesses. As the biofilm

thickness grows and its interaction with the evanescent field diminishes, its effect

on the TM mode’s phase velocity consequently also decreases. This results in the

characteristic asymptotic curve of the radiation angle as a function of the biofilm
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thickness.

This result shows that when a biomolecular film is deposited on the surface of

a thin-ridge waveguide the angle of propagation of the TE slab mode is altered.

2.4 An evanescent wave biosensor concept ex-

ploiting the lateral leakage effect

In Section 2.3, it was shown through simulation that when a biomolecular film

is deposited on the surface of a thin-ridge waveguide, the angle of the TE slab

mode generated by the waveguide is altered. In this section, a sensor topology

is investigated that could exploit this relationship between the deposited biofilm

and the lateral leakage radiation angle.

2.4.1 Sensor topology

Equation (2.1) assumes the ideal case of a longitudinally invariant waveguide

with a fixed width and which radiates at only one angle. However, this is not

practical since the TM mode launched into the waveguide has to first propagate

in a non-radiating structure to arrive at the radiating waveguide. To get from

the non-radiating structure to the radiating structure, a transition is needed. If

the transition is a simple step function, then the beam will be poorly formed.

Instead the transition needs to be gradual. Such a device was demonstrated

using a thin-ridge waveguide taper [14].

It has been shown that a tapered thin-ridge waveguide which transitions from

a non-radiating waveguide to a strongly radiating waveguide can generate a well

collimated Gaussian-shaped TE beam [14]. The tapered thin-ridge waveguide

could therefore be a suitable sensing platform. It is expected that the deposition

of biofilm on the tapered waveguide would alter the principal angle of radiation of

the collimated TE beam just as it did for the longitudinally invariant waveguide.

However, the problem still exists of how to observe the change in angle of

such a wide radiating TE beam. Dalvand proposed in his thesis [40] a wavelength

division multiplexing (WDM) device concept based on the thin-ridge waveguide

taper, which tackles a similar problem to that faced by the waveguide taper used

30



2. Evanescent wave biosensing using lateral leakage radiation in
thin-ridge waveguides

Dimpled 
Thin-ridge  
Waveguide  
Taper 

Leaky TM Guided Mode 

Gaussian TE radiation 

Focusing Lens 

Collecting 
Output  
waveguide 

Silica Substrate 

Silicon Slab y 

x 

z 

Dimpled waveguide cross-section 

Waveguide width 

Dimple 

Lens’s focal plane 

Figure 2.2: 3D render of the sensor topology. The waveguide taper provides
the sensing surface and the lens is used to resolve any changes in the TE beam
radiation angle by focusing it to the output waveguide at the focal plane. Inset
image shows the cross section of a dimpled waveguide structure.
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as a sensor. In the WDM device, a waveguide taper was proposed to radiate the

waveguide TM mode into a coherent TE beam propagating in the slab waveguide.

When the wavelength of excitation was changed, consequently altering the mode

effective indices in the waveguide and the slab, the TE beam’s angle of radiation,

predicted by simulation, was also altered. A planar lens structure was used to

focus the coherent TE beam to a narrow focal point. It was shown in Dalvand’s

thesis that the change in angle of the TE beam results in a shift of the focal point

where the beam is focused to at the lens’s focal plane. This effect was based

on the Fourier transformation properties of a lens [41]. When there is a shift in

the angular spectrum of an incident beam, this results in a spatial shift of the

transmitted beam resulting in a spatially shifted focal point at the focal plane.

Consequently, by positioning several waveguides at the focal plane of the lens, it

was shown that it is possible to distribute various input wavelength channels into

several separate output waveguides positioned at the focal plane of the lens.

The proposal in this section is that a similar structure as illustrated in Fig-

ure 2.2 could also be exploited as an evanescent wave sensor topology. In this sen-

sor topology a thin-ridge waveguide taper is designed to radiate a TE Gaussian-

shaped beam. The radiated TE beam is then focused through a planar lens

structure, which focuses the beam to a point on the focal plane of the lens. It is

expected that if a biofilm were to be deposited on the surface of the waveguide

taper, then the angle of the radiated TE beam would also change. The conse-

quence of this should be that when the beam continues to propagate through the

lens structure, the TE beam beam would be focused to a different point in the

focal plane of the lens. The shift in the position of the focal point of the beam

should be relative to the biofilm deposited on the waveguide taper.

If an output waveguide is then positioned at the focal plane of the lens, it will

be illuminated by the focused TE beam resulting in a specific amount of power

being coupled into the TE mode of the waveguide. As the location of the focused

beam should be shifted under the influence of biofilm being deposited on the

waveguide taper, the amount of power being coupled into the waveguide should

also change. This would consequently result in a direct relationship between the

quantity of biofilm being deposited on the thin-ridge waveguide taper and the

amount of power coupled into the output waveguide.
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2.4.2 Techniques for simulating the thin-ridge waveguide

taper sensor

A full 3D electromagnetic simulation of the proposed sensor topology illustrated

in Figure 2.2 is not a trivial problem. This is due to the wide separation and large

size of the taper and lens structures coupled with the high resolution required

to resolve the small waveguide dimensions such as the nm-scale etch depth. To

simplify such a 3D numerical analysis, it is simpler to simulate the thin-ridge

waveguide taper and the planar lens structure separately. As was done in [14],

the thin-ridge waveguide taper can be modelled using a mode-matching approach;

while the lens can be modelled using a beam propagation approach [40]. The two

problems can be linked together by utilising the TE beam generated from the

taper as the input field to the second simulation of the lens structure. This dual

approach was used in the simulation of the thin-ridge waveguide taper sensor.

The common options for modeling optical waveguide structures includes the

finite difference time domain (FDTD) method, conventional and wide angle beam

propagation methods (BPM) and the eigenmode expansion method (EME) [42].

FDTD can be used to accurately model a structure since the exact wave

equation satisfying Maxwell’s equations is used to calculate the field propagation

through the structure. The only approximation made is in discretizing the equa-

tion in space and time so that the equations for the electric and magnetic fields

can be computationally evaluated. However, the accuracy of this technique is

dependent on the discretization resolution used. The resolution has to be high

enough to properly represent the field in the smallest refractive index changes

within the problem. If the simulation window is small or if the number of di-

mensions required are few then it is possible to use this method. However, in

large 3D simulation windows where waveguide features are very small, as is the

case for thin-ridge waveguides, the FDTD method becomes intractable due to the

immense computational requirements that are necessary.

In the conventional beam propagation method (BPM) simulation techniques

paraxial approximations are made on the field. As such the type of structures

simulated with BPM generally need to have fields propagating mainly along one

principal axis (generally called the z-axis). If the problem or structure contains
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fields propagating at wide angles to this principal axis then the error due to the

paraxial field approximations increase leading to inaccurate results. BPM would

therefore not be suitable for the simulation of thin-ridge waveguide structures

since the propagation of the TM fields in the waveguides and the TE radiating

fields are at wide angles to each other of about 50◦.

The semi-analytical eigenmode expansion (EME) method simulates the prop-

agation of fields in a waveguide structure by discretizing the waveguide into lon-

gitudinally invariant sections. In each section the electromagnetic field is decom-

posed into a finite set of eigenmodes that exist in the waveguide structure. For a

continuously varying waveguide structure, such as a tapered waveguide, the stair-

case approximation is used to subdivide the taper into longitudinally invariant

sections. The advantage of the EME method is that it can model fields prop-

agating at wide angles to the principal z-axis and is also computationally very

efficient. The accuracy of this simulation technique is dependent on having an

adequate set of eigen modes to correctly represent the propagating field. EME

has in fact been exploited for the efficient and accurate simulation of longitudi-

nally varying structures [14]. As a result, the EME method was similarly chosen

for simulating the waveguide taper structure in this investigation.

However, the propagation of the TE beam through the planar lens structure

was simulated using the beam propagation method (BPM). This was based on

the fact that the lens structure has a smooth curvature and it is important that its

continuously varying index profile is accurately approximated in the simulation.

With the eigen mode expansion which was used in the waveguide taper structure,

accurately modeling the lens would mean that the structure would have to be

subdivided into a large number of longitudinally invariant sections. This can be

computationally very expensive.

On the other hand, since a beam can be expressed as a superposition of parax-

ial waves [41], the TE beam can also he expressed as superposition of paraxial

slab modes. As was done in [43], the BPM simulation method provides an ef-

ficient and accurate way to simulate the propagation of the TE beam through

the lens structure. In addition to this, there is no expected TE-TM polarization

coupling at the lens but only conventional Fresnel reflection and transmission.

As such, a 2D approximation of the propagating field can be taken, where only
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the TE polarization is considered to be propagating and the background index is

equal to the TE slab mode effective refractive index. The Beamprop tool in the

Rsoft simulation software was used to perform this simulation.

2.4.3 Simulated thin-ridge waveguide taper response to

biofilm deposition

As a first step towards analysing the complete sensor of Figure 2.2, the thin ridge

taper was analysed in isolation to predict the effect of adding a biofilm to the

taper. It is expected that the deposition of biofilm on the waveguide taper surface

will result in a variation of the principal propagation angle of the radiated TE

beam.

To explore this proposal the waveguide taper was modeled under different

biofilm thicknesses using the eigen mode expansion method as discussed in Sec-

tion 2.4.2. The dimensions of the waveguide taper were identical to that of

the taper presented in Dalvands thesis [40]. The length of the waveguide ta-

per was 140µm and the waveguide width was linearly tapered along this length

starting from a non-radiating waveguide width of 1.72µm to a strongly radiating

waveguide width of 1.05µm. This waveguide taper topology is illustrated in Fig-

ure 2.3 (a) and (b). Similar to the waveguide taper topology in [40], a dimple was

positioned at the center of the waveguide as illustrated in Figure 2.3 (a). The

dimple structure serves the purpose of enhancing the lateral leakage radiation [44]

by increasing the number of waveguide walls where TM-TE coupling can occur.

In the waveguide taper design, the dimple allows the length of the taper to be

minimized while still coupling about 99% of the power from the TM mode to the

TE radiating beam [40]. The etch depth of the waveguide was also increased to

50nm, compared to the 15nm etch depth used in Section 2.3, to meet the 99%

coupling requirement along the 140µm taper structure.

Figure 2.3 (c) shows the y-directed electric field component corresponding to

the TM polarization. It is observed that the TM mode that is launched into the

waveguide taper decays in power as it propagates through the length of the taper.

Figure 2.3 (d) shows the x-directed electric field component corresponding to the

TE polarization. A TE polarized beam is observed to be propagating at an angle
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Figure 2.3: (a) and (b) Shows the cross sectional and the plan view of waveguide
taper. The dimensions t1=220nm and t2=170nm). (c) and (d) Shows the elec-
tric field components for the TM and TE polarizations respectively.(e) Angular
spectrum of TE beam for various biofilm thicknesses.
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from the waveguide on either side of the taper structure. It is evident that these

radiated TE beams have a Gaussian-like amplitude profile.

To analyse the effect of biofilm deposition on the waveguide taper surface, the

angular spectrum of the radiated TE beam was plotted and compared over various

biofilm thicknesses. As discussed in Section 2.4.2, the total TE field propagating

through the uniform slab region can be expressed as a weighted superposition of

the eigenmodes of the slab waveguide. The effective index of each eigenmode can

be interpreted as a propagation angle [14]. The eigenmode with an effective index

equal to the effective index of the silicon slab corresponds to a 0◦ propagation

angle relative to the z-axis.

Figure 2.3 (e) shows the angular spectrum of the radiated TE beam for three

different biofilm thicknesses of 0nm, 10nm and 20nm. It is observed that there is

a distinct shift in the angular spectrum of the radiated TE beam as the biofilm

thickness increases. The principal angular direction of the radiated TE beam is

observed to decrease as a result of the increasing biofilm thickness. This result

agrees with the decreasing radiation angle observed in Section 2.3.

Therefore, it is clearly evident from these results that the application of biofilm

on the waveguide taper surface has the effect of changing the principal angle of

propagation of the radiated TE Gaussian beam.

2.4.4 Fourier transform of the TE beam via a Lens

If the radiated TE beam observed in Section 2.4.3, is propagated through a planar

lens structure, it is expected that the broad Gaussian beam incident on the lens

will be focused to a narrow Gaussian spot at the focal plane of the lens. It is

hypothesized that based on the Fourier transformation properties of the lens,

any angular shifts in the incident TE beam, caused by biofilm deposition on the

taper waveguide, should result in a spatial shift of the focal point of the beam. If

an output waveguide is positioned at the focal plane to collect the power in the

focused beam, then this spatial shift in the beam should consequently alter the

amount of power coupled into the output waveguide.

The lens width was designed to be 300µm, which is about double the maximum

TE beam width, so that the entire TE beam propagates through the lens. Using
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Figure 2.4: (a) Lens and output waveguide simulation window. (b) Shows the TE
beam propagating through the lens and focused onto the focal plane of the lens
where the output waveguide aperture is positioned. (c) Spatial field distribution
of the TE beam at the focal plane for various biofilm thicknesses. (d) The relative
power coupled into the output waveguide as a function of biofilm thickness
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simple lens equations [41], the radius of curvature was set to 180µm so as to give

the lens an approximate focal length of 1000µm. This long focal length improves

the depth of focus for the TE beam [41], which aids efficient coupling into the

output waveguide. The etch depth of the lens structure and the output waveguide

is equal to 50nm which is the same as that of the waveguide taper. As discussed

in Section 2.4.2, the lens was simulated in 2D, since only the propagation of the

TE polarized beam through the lens was being investigated. Figure 2.3 (a) shows

the 2D simulation window.

To evaluate the power coupled into the fundamental mode of the output

waveguide, the overlap integral was taken between the TE beam at the focal plane

and the fundamental TE mode of the output waveguide. The output waveguide

aperture was 10µm which is equal to the width of the focused TE beam. The

output waveguide is aligned with the focused TE beam when there is no biofilm

on the waveguide taper.

Figure 2.3 (b) shows the 2D field plot of the TE beam propagating across the

lens structure for the scenario where there is no biofilm on the waveguide surface.

It is observed in this plot that the TE beam is launched perpendicular to the

lens and propagates parallel to the z-axis. After crossing the lens the TE beam

width begins to decrease monotonically as the beam is focused. At the output

waveguide, the TE beam is incident across the aperture of the waveguide and it

is observed that most of the beam is coupled into the aperture of the waveguide.

Figure 2.3 (c) shows the spatial field distribution of the TE beam across the fo-

cal plane of the lens where the output waveguide aperture is located (z=1000µm).

The focused TE beam field at the focal plane is plotted for three different biofilms

of 0nm, 10nm and 20nm thicknesses. It is evident from this plot that there is a

spatial shift of the focused TE beam as a result of the deposition of biofilm on

the waveguide taper. The spatial shift in the beam’s position is approximately

5µm for both biofilm increments from 0nm to 10nm and 10nm to 20nm.

Figure 2.3 (d) represents the relative power coupled into the output waveguide

as a function of the biofilm thickness. It is observed that for the zero biofilm case,

the power coupled into the output waveguides is about -6dB. This is likely due to

the mis-match between the incident beam and the waveguide mode. Figure 2.3 (d)

shows that as the focused beam is shifted under the influence of an increased
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biofilm thickness, the power coupled into the output waveguide is decreasing

following the Gaussian profile of the focussed beam. This may be due to the fact

that the biofilm range being observed is relatively wide.

These results therefore show that by utilizing a lens structure, it is possible

to transform the angular shift in the wide TE beam observed in Section 2.4.3

into a spatial shift of the focused TE beam in the focal plane of the lens. This

shift consequently alters the amount of power coupled into the output waveguide.

This leads to a direct relationship between the biofilm thickness and the power

in the output waveguide. Importantly, there is a 20dB change in output power

for a 20nm change in biofilm thickness.

2.4.5 Wavelength dependence of power coupled to the

output waveguide

In Section 2.4.4, it was shown that a lens structure can be used to spatially shift

the focal point of the beam in the focal plane as a result of biofilm application on

the waveguide taper. It was also shown that the amount of power coupled into

the output waveguide would decrease as the focused beam shifts farther away

from the waveguide aperture. However, the measurement of absolute power is

not a reliable technique of monitoring changes in the biofilm thickness on the

waveguide taper. Fluctuations in this absolute power can be caused by other

factors such as changes in TM-TE coupling as well as by absorption.

To overcome such problems, a robust alternative to measuring optical power

at the output waveguide is proposed. In Dalvand’s WDM device concept [40], it

was shown numerically that the power from the focused TE beam that is cou-

pled into the output waveguide is wavelength dependent. This is due to the fact

that changing the wavelength alters the radiation angle of the TE beam from the

thin-ridge waveguide taper. This results in a spatial shift of the focused beam

which alters the amount of power coupling into the output waveguide positioned

at the focal plane. However, the waveguide taper sensor utilizes a single waveg-

uide rather than several output waveguides as was the case for the WDM device

concept [40]. It is therefore proposed that the application of biofilm on the ta-

per should consequently shift the spectral response of the beam observed at the
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Figure 2.5: (a) Depicts the spatial shift in the focused beam as a result of biofilm
deposition on the waveguide taper. (b) Depicts the expected TE beam spatial
shift in the opposite direction as a result of wavelength adjustment.
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output waveguide. Therefore, the wavelength shift in the maximal power cou-

pled into the output waveguide can be used to monitor the quantity of biofilm

deposited on the thin-ridge waveguide taper.

To evaluate the power coupled into the fundamental mode of the output

waveguide as a function of wavelength, the overlap integral was taken between

the TE beam at the focal plane and the fundamental TE mode of the output

waveguide. This is the same method as outlined in Section 2.4.4. The power cou-

pled into the output waveguide was then evaluated as a function of the excitation

wavelength. This was done for two scenarios, when there was no biofilm on the

waveguide taper surface and when it was coated with 10nm of biofilm.

Figure 2.6 shows a plot of the power coupled into the fundamental mode of

the output waveguide in decibels as a function of wavelength. Two plots are

shown for the case when there is no biofilm on the waveguide surface and for

when it is coated with 10nm of biofilm. At 1.55µm, it is evident that the power

coupled into the output waveguide is at a maximum for the uncoated taper. When

the taper is coated, the power coupled into the output waveguide falls by about

3dB. However, as the wavelength is increased for the coated taper waveguide,

the power coupled into the output waveguide increases to a maximum at about

1.56µm. This corresponds to approximately a 10nm wavelength shift for the

10nm of biofilm coating.

Figure 2.6 shows that there is distinct shift in the peak-power wavelength,

which is a direct result of the biofilm coating that was deposited on the waveguide

taper surface. It may be possible to enhance the sensitivity and extinction ratio

of the sensor response by utilizing a longer taper to generate a wider TE beam

with a narrower angular spectrum. The result would be a narrower waist of

the focused beam and therefore a smaller width waveguide can be used at the

output. A shift in angle as previously observed would result in a lot less power

being coupled into the narrower waveguide making it more sensitive. However,

this enhanced sensitivity would come at a cost requiring a longer taper and wider

lens and therefore a larger device footprint.

Be that as it may, by utilizing the excitation wavelength it is possible to track

changes in the biofilm thickness atop the waveguide taper by monitoring the

wavelength shift required to achieve maximum power coupling into the output
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Figure 2.6: The power coupled from the focused beam into the fundamental mode
of the waveguide as a function of wavelength for the uncoated scenario and when
10nm of biofilm coating is present.

waveguide.

2.5 Discussion

The numerical investigations done until this point have focused primarily on the

transduction mechanism of converting a binding signal, caused by the deposi-

tion of biomolecules on the waveguide surface, into a measurable optical signal.
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There are other important investigations that could follow such as interpreting

the optical signal to extract the relevant binding signal again. However, crucial

to the analysis of the proposed design of the tapered thin-ridge waveguide sensor

in this chapter would be to experimentally verify the proposal through fabrica-

tion and characterization of the sensor. Such characterization would enable a

realistic analysis of the device’s sensitivity, limit of detection and even dynamic

range which would be otherwise quite difficult to realistically estimate through

simulation. However, it is possible to speculate on the factors affecting these

sensor characteristics.

Noise

Interpretation: Noise is any signal that is received at the detector that is not due

to the analyte. This can be due to random fluctuations in sensing optical carrier,

or the materials responding to this carrier, or can be due to parasitic channels

that arrive at the detector, but did not interact with the analyte.

• Thin-ridge waveguide taper sensor: Main source is parasitic channels be-

cause the beam is in free space, it is in principle possible for light that did

not interact with the analyte to arrive at the detector.

• State of the art waveguide sensors: In ring resonator, MZI waveguide based

sensors, parasitic noise is mitigated by light being confined to a single mode

of the system only light that is guided in the fundamental mode arrives at

the detector, and it can be guaranteed that this light has interacted with

the analyte.

Sensitivity

Interpretation: Interpreted as the rate of change of signal at the detector with

changing concentration of analyte.

• Thin-ridge waveguide taper sensor: Is dependent on the strength of the

evanescent field which is enhanced by using the waveguide TM mode. Sen-

sitivity is also dependent on the contrast between the highly evanescent

guided TM mode and the tightly confined radiating TE mode. Sensitivity
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is dependent on interaction length, which is single pass for the taper sen-

sor. Increasing the taper length for example increases interaction length

between light and analyte.

• State of the art waveguide sensors: Is dependent on the evanescent field

strength of the waveguide mode, where TM is also primarily used. In MZI

sensors, the sensitivity is also dependent on the contrast between the sensing

arm and reference arms of the sensor. Interaction length is single pass

in interferometric topologies such as MZI and multiple pass in resonant

topologies such as rings. In MZI sensors sensitivity can be improved for

example by increasing the length of the MZI arms. In ring resonators,

interaction length can be enhanced by increasing the resonator Q-factor.

Detection limit

Interpretation: Interpreted as the smallest amount of analyte that can be de-

tected. Ultimately, the fact that the analyte is formed of discrete, localized

molecules must be considered. Would be dependent on both the sensitivity and

the noise floor. Increasing sensitivity and decreasing the noise floor improves the

detection limit.

• Thin-ridge waveguide taper sensor: In the regime of single molecules, im-

proving sensitivity of a taper sensor, for example, by making it longer would

not improve detection because of the inherent single pass interaction be-

tween light and analyte.

• State of the art waveguide sensors: In the regime of localized single molecules,

increasing the length of an MZI to improve its sensitivity does not improve

detection of localized molecules. However, for ring resonators, increasing

Q-factor to improve sensitivity can enhance the detection limit of the sensor

for localized molecules.

Dynamic range

Interpretation: Is taken to refer to the sensors linear range starting from the noise

floor until saturation where the sensor response becomes non-linear.
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• Thin-ridge waveguide taper sensor: In the taper sensor, the parameter that

changes during sensing is the radiation angle which is defined by a sinusoidal

function. The dynamic range would therefore be defined by the range from

the noise floor to the peak of the sinusoid where signal changes become

non-linear.

• State of the art waveguide sensors: In MZI sensors, the dynamic range is

also defined by a sinusoidal function formed from the interference between

the two arms of the MZI. Consequently, the dynamic range would also span

from the noise floor to the peak of the sinusoid. In ring resonators, the

dynamic range is dependent on the Q-factor or sharpness of the resonance

peak as well as the free spectral range of the sensor.

From the above comparison, it appears that the taper sensor proposed in

this chapter shares similar properties to an MZI sensor particularly in terms of

sensitivity, detection limit and dynamic range. This is no surprise since both the

taper sensor and the MZI reply on using the contrast between two sensing arms to

detect refractive index changes at the waveguide surface. There is some difference,

however, in the taper sensor noise characteristic. This can be attributed to the

fact that the reference arm of the taper sensor is coherent radiation while the

reference arm in an MZI is a fully confined waveguide mode. The collection and

measurement of this radiation is thus more susceptible to parasitic noise compared

to the collection of a well confined waveguide mode in the MZI.

An advantage of waveguide based sensors is that light is confined in a single-

mode waveguide, which strongly limits the parasitic channels. In the TM lateral

leakage sensor, this single-mode system is abandoned, and the signal is collected

from a 2D free-space system. One may easily think that this system would there-

fore have plenty of room for parasitic channels in the form of light scattered from

waveguide boundaries as well as edge reflections within the chip. These para-

sitic channels, which are effectively noise sources, may end up at the output of

the system thus undermining sensor characteristics such as the dynamic range.

However, such parasitic channels can be mitigated through k-vector or k-space

filtering if the angular spectrum supported by the system is limited to a narrow

range, for example by using a long aperture. Randomly scattered light in the
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system having a broad angular spectrum would therefore be filtered out by the

limited range of supported k-vectors within the sensor system. This may indeed

be the case for the tapered waveguide sensor since only the collimated and coher-

ent TE beam radiated by the taper, having a narrow angular spectrum, would

be focused via the lens and end up at the output waveguide. Parasitic channels

passing through the lens would be focused randomly at the output plane thus

limiting the parasitic noise collected at the output. Other methods for filtering

the beam in k-space could be for example using another tapered waveguide at

the output since it would also have a narrow angular spectrum over which it can

collect light from an incident beam. In fact any output structure that can dis-

criminate based on k-vector or angle of incidence could plausibly be engineered

into the TM lateral leakage based sensor.

2.6 Conclusions and Future Work

In this chapter, it has been shown that the lateral leakage phenomenon in thin

ridge SOI waveguides can in fact be exploited for evanescent field biosensing. The

deposition of biofilm on the waveguide surface has the effect of perturbing the

strongly evanescent TM guided mode to a larger extent than the tightly confined

TE slab mode. The result is that the phase velocity of the TM mode changes

at a higher rate, resulting in its coupling to TE slab radiation propagating at a

different angle. It is this change in the TE radiation angle that can be exploited

to monitor variations in the biofilm thickness accruing on the waveguide surface.

A sensor topology was proposed that utilizes this lateral leakage phenomenon

based on a thin-ridge waveguide taper, a planar lens structure and an output

waveguide. It was shown that the taper radiated a TE slab beam at a specific

principal angle and this angle varies as the thickness of biofilm on the taper

surface increases. The planar lens structure was used to focus the TE slab beam

to the focal point of the lens where an output waveguide was positioned. The

TE beam was focused and coupled into the fundamental TE mode of the output

waveguide. It was shown that as the angle of the TE beam changed under the

influence of biofilm, the focal point to which the lens focuses the TE beam was

spatially shifted. This means that the focused beam was taken out of alignment
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with the output waveguide and less power was coupled into the output waveguide.

In this way the power at the output waveguide was shown to vary with the biofilm

thickness on the taper surface.

In addition to this, it was shown that by scanning the wavelength of excitation,

the angle of radiation could be varied too. Consequently, the biofilm thickness

which altered the TE angle of radiation also caused a spectral shift in the power

delivered to the output waveguide. It was therefore shown that the taper and

lens structure provides a direct relationship between the biofilm deposited on the

waveguide taper and the spectral shift observed at the output waveguide. The

wavelength shift at the output waveguide could therefore be used as a means of

monitoring the biofilm accruing on the waveguide taper surface.

Further improvements can be made to this biosensing topology given that the

overall device length of about 1mm is quite large. This is in comparison to other

integrated sensing mechanisms such as optical ring resonators which for example

can have a radius of 10µm plus additional input and output waveguides of a few

hundreds of microns. This may necessitate a change in the sensor topology to

exploit optical phenomena such as resonance to enhance the light-matter inter-

action at the thin-ridge waveguide surface. Increasing the number of waveguide

walls in the sensor topology may also improve the TM-TE conversion efficiency.

This may improve the compactness of the device and also enhance the sensitivity

of the TM-TE coupling to evanescent field perturbations.

The analysed sensor utilizes a lens to collect the TE beam emitted by the

leaky waveguide and focus it into the aperture of an output waveguide. This is

effectively a means to filter the output based on the k-vector of the beam. A

possible technique for reducing the overall size of the sensor would be to remove

the lens and instead use another leaky taper to collect the collimated beam. It was

shown in [14], that a tapered leaky waveguide could generate a highly collimated

beam with a very narrow range of k-vectors. It should be possible to use such

a taper to collect a collimated beam as well. It is conceivable that an array of

tapers, each designed to collect a different k-vector TE beam could be placed

side by side very close to the sensor and this would serve to direct the different

k-vectors of TE beam to one or the other outputs of the various tapers. However,

it should be noted that a simple taper will radiate or collect equally from both
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sides and thus some further research would be required to establish a taper that

could robustly and efficiently collect light from a single side only. However, as

noted in [13], it is difficult to maintain single side radiation over a broad aperture

and so further research would be required to pursue this opportunity.

Even if a lensed tapered waveguide could be designed, there is still a funda-

mental drawback of this sensor topology. The taper radiates a TE beam from

both waveguide walls. However, only one of these beams is utilized for sens-

ing purposed. The result is that half of the light is wasted by not utilizing the

both TE beams. Furthermore, there is the possibility that this light may find its

way back into the sensor resulting in parasitic effects. To overcome these prob-

lems, one may consider utilizing a dual waveguide setup, as was proposed in [13],

where the separation and excitation phase between the waveguides is engineered

to generate a single-sided TE beam from the coupled waveguide system. Such an

approach may mitigate both light wastage as well as potential parasitic effects.

Due to the high thermo-optic coefficient of silicon, evanescent field biosensors

such as ring resonators and Mach Zhender interferometers generally incorporate

a reference arm which is used to compensate for temperature induced wavelength

shifts in the sensing arm. The taper sensor could be sensitive to temperature.

Like the ring sensor, it would be possible to have a reference taper that is not

exposed to the analyte which could be used to calibrate against variations in

temperature. Another possibility would be to try to engineer the sensor to be

minimally sensitive to temperature. Some researchers have proposed athermal

waveguides [36], however, these designs have been optimized over several waveg-

uide geometric parameters to achieve waveguide properties that are minimally

impacted by temperature over a modest wavelength range. To achieve something

similar with these ridges, several waveguide parameters would be required. The

simple ridge of Section 2.3 has only one parameter the ridge height, but it may

be possible to introduce additional parameters, for example a dimple [44] and

then optimize these properties to minimize temperature dependence.

Ideally to keep the response of the sensor simple and to maintain as high a

contrast between the sensitive TM mode and the reference TE mode, the biofilm

should be applied only to the surface of the ridge, with the side-walls and slab

region protected. It is possible to fabricate the silicon ridge waveguide with side-
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oxide covering the side-walls of the waveguide. This side-oxide layer is achieved by

coating the waveguides with oxide SiO2 and then planarizng the oxide revealing

only the top-surface of the ridge. Such a configuration may be useful to consider

for this type of sensor.
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Chapter 3

Beam polarization rotator in

thin-ridge waveguides

3.1 Introduction

The investigation in Chapter 2 looked into how the lateral leakage phenomenon

in thin-ridge silicon waveguides could be exploited for evanescent wave sensing.

It was predicted that the highly evanescent guided TM mode would be more

susceptible to refractive index changes at the waveguide surface compared to the

tightly confined TE slab mode to which it is coupled. Through simulation it was

shown that surface refractive index perturbations affects the coupling relation-

ship between the guided TM mode and the TE slab mode such that the radiation

angle of the TE slab mode may be altered. It was also shown through simulation

that a tapered thin-ridge waveguide in tandem with an integrated lens structure

could be used as a sensor topology that exploits this TM-TE coupling relation-

ship to measure refractive index changes at the waveguide surface in terms of a

corresponding wavelength shift.

This chapter focuses on another attribute of the lateral leakage effect also

based on the coupling relationship that exists between the TM guided and TE

slab modes. Since these two orthogonal polarizations become intrinsically cou-
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pled under the conditions of lateral leakage, there exists the possibility of ex-

ploiting this coupling relationship to convert from one polarization to the other.

Essentially being able to realize polarization rotation, which can be TM to TE

conversion or vice versa.

From a general perspective polarization rotators, quarter wave plates and po-

larizers are some of the key devices for controlling and changing the polarization

state of light. Another crucial polarization controlling device is the polarization

beam splitter (PBS). The ability to manipulate the polarization of light using

these devices is extremely useful in optics and has been exploited in numerous

applications, for example in polarization multiplexing (POLMUX), which has

been used to increase the data carrying capacities in optical fiber links [45, 46].

Optical isolation can also be achieved by the use of non-reciprocal polarization

rotators which aids in the attenuation of back-scattered and unwanted reflected

light in an optical system [47]. In chemical and biological polarimetric sensors,

these detect changes in birefringence caused by molecular adsorption [48, 49].

Polarimetric sensors of physical parameters such as strain have also been demon-

strated in birefringent optical fibers [50, 51]. In imaging systems polarizers are

used for viewing or filtering light of specific polarization [52, 53] that can yield

vital information such as surface features [54] as well as in enhancing image

contrast for remote sensing [55]. Polarization conversion systems employing po-

larizing gratings and quarter-wave plates have also been utilized to efficiently

convert unpolarized light into linearly polarized light for use with liquid crystal

displays [56]. In quantum optics, polarization encoding exploits the dual polar-

ization states that a single photon can have to encode information in quantum

bits also known as qubits. Consequently, polarization rotators and splitters are

essential for quantum communication [57, 58]. These examples show some of the

important roles that polarization control plays in optics today.

The integration of optical devices including polarization controllers into com-

pact photonic integrated circuits (PICs) enables complex optical systems to be

shrunk onto a chip . This is both cost and space effective compared to bulk

optics. There is also the inherent stability the optical waveguide platform pro-

vides particularly for phase sensitive devices such as interferometers [58]. One

example is in coherent receivers used for polarization multiplexing (POLMUX).

52



3. Beam polarization rotator in thin-ridge waveguides

Coherent receivers contain multiple optical and electronic components, including

polarization splitters, and through integration there is now a possibility of mono-

lithically fabricating and packaging these devices into compact coherent receiver

modules [45, 59]. Integration of polarization rotators [58] and splitters [57] have

also been demonstrated for potential application in polarization encoding for on

chip quantum computing and communication.

Silicon is one of the most desired optical materials for integration primar-

ily because of its CMOS fabrication compatibility [2] which makes it a highly

economical platform especially when considering the integration of optical and

electronic circuits. Silicon-on-insulator (SOI) in particular is advantageous be-

cause it is a high index contrast platform which enables high mode confinement

and low bending loss suitable for dense integration of photonic circuits [60]. Con-

sequently, research into polarization controllers in the SOI platform has attracted

extensive research interest.

One example is in implementing polarization diversity in silicon photonic inte-

grated circuits (PICs). PICs in the SOI platform are particularly affected by high

birefringence [61] due to the asymmetry of the SOI rectangular waveguide struc-

ture. Side-effects of birefringence include polarization mode dispersion (PMD),

polarization dependent wavelength characteristics (PDλ) and polarization depen-

dent loss (PDL) and these can lead to signal-to-noise ratio deterioration in phase

sensitive PICs. Polarization insensitive photonic circuits are the key to over-

coming these side-effects. Currently the most popular approach for achieving

polarization independence is through polarization diversity technologies [62, 63].

Other approaches include using square shaped waveguides [64, 65] or through

stress compensation [66] but these methods generally suffer from fabrication in-

tolerance.

Polarization diversity technologies are composed of polarization beam splitters

(PBS) and polarization rotators (PR) or combined polarization splitter-rotators

(PSR). Polarization diversity technologies overcome the problem of birefringence

in PICs by first splitting the randomly polarized input light from an optical fiber

into two orthogonal polarization channels, TE and TM. One of the polarization

channels is then rotated so as to be identical to the other, then both are sent

independently into two identical PICs. This does away with the need for designing
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PICs for the two different polarization states.

One of the most effective and novel solutions to this problem was demon-

strated by Bogaerts et. al. [62]. They utilized a 2D-grating coupler to separate

the light in an optical fiber into two orthogonal polarizations which are simul-

taneously coupled into the TE polarization of two separate waveguides that are

perpendicular to each other. However, this solution is primarily targeted to sit-

uations where light originates from a fiber and needs to be coupled into a PIC

through a grating coupler. This may represent a majority of the PICs today, but

would not work if one is butt-coupling light into a chip. Another fact to consider

is that only the TE mode is excited meaning PICs utilizing TM polarizations

as in integrated sensing would still need polarization rotators to convert the TE

polarized light to TM. Research into inline polarization splitters and rotators for

polarization diversity would still be of great interest because there are and will be

situations in photonic chips where light sources [1] and photo-detectors [67] are

integrated to form complete PICs in which polarization control is still necessary.

While polarization diversity is an important application for which polariza-

tion splitters and rotators are sought, it is not the only focus of research into

SOI polarization manipulation. Cutting edge research is also being undertaken

to successfully deposit garnet on SOI waveguides to design Faraday rotators [47]

which if realized would pave the way for integrated optical isolators and circula-

tors. Nonlinear polarization rotation is also being exploited in silicon waveguides

for the purposes of optical switching [68, 69] albeit this research area is still in

its infancy with typical device lengths of several millimeters. The strong bire-

fringence present in SOI waveguides also lends itself naturally to applications in

integrated polarimetric sensing. Polarimetric sensors for measuring biological ad-

sorption [48] as well as in measuring physical strain [50] have been demonstrated

in optical fibers as discussed earlier. While integrated refractometric sensors have

been well studied as discussed in Section 2.2, integrated polarimetric sensors that

exploit the strong birefringence in waveguide platforms such as silicon appear to

be an untapped area of research.

Therefore, there is clearly continuing interest in polarization manipulation in

silicon waveguides and most research seems particularly focused on polarization

rotation. This is not surprising since the high index contrast in SOI waveguides
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would be expected to enhance the asymmetry between the TE and TM polariza-

tions making polarization rotation difficult. It therefore becomes an attractive

research proposition to look into polarization conversion when one comes across a

phenomenon such as the lateral leakage effect where the TE and TM polarizations

of a SOI waveguide structure are intrinsically coupled.

This chapter begins by reviewing SOI integrated polarization rotators to iden-

tify what are the important characteristics of polarization rotators. The inves-

tigation then considers what are challenges for polarization rotation using the

lateral leakage effect. If it is indeed possible to utilise the lateral leakage effect

for polarisation manipulation, then the question arises - what sort of structure

could be utilized to achieve this polarization rotation and how can it be simulated

to demonstrate this effect? The efficiency of the polarization rotating device is

considered as well as what improvements can be made to increase this efficiency.

3.2 Review of SOI polarization rotator technolo-

gies

There exist several types of SOI integrated polarization rotator technologies that

can be broadly grouped according to the polarization rotation method. Some

techniques for achieving polarization rotation include mode coupling [70–74] as

well as adiabatic tapering [75, 76]. There is also a class of polarization rotators

that rely on changes to the waveguide geometry which enables excitation of hy-

brid mode polarizations [77–88]. A majority of polarization rotators, particularly

in the silicon waveguide platform, fall within the above general categorizations.

Let us consider the advantages and shortcomings of these existing types of polar-

ization rotators.

3.2.1 Mode coupling

Evanescent mode coupling has been exploited to couple TE-TM polarizations

between adjacent waveguides with varying structures utilized to phase-match the

two polarizations.
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Yue et. al. [70] proposed a three waveguide structure composed of two single

mode rectangular waveguides and a larger square multimode waveguide structure.

One of the smaller waveguides is positioned atop the square multimode waveguide

and the other to the side. The higher order TE01 mode of the large square

waveguide provides a short intermediate coupling path between the TE and TM

polarizations of the two smaller waveguides. This structure yielded a polarization

rotator with a relatively short length of 21µm, however, the three waveguides were

vertically and horizontally offset making it a complex topology from a fabrication

point of view. The reported polarization rotation efficiency was greater than 90%

over a 68nm bandwidth.

Liu et. al. [71] demonstrated that by using two adjacent photonic wire waveg-

uides, the corresponding widths can be engineered so that the TM mode in a

600nm wide waveguide can be coupled across to the TE mode of a 333nm wide

waveguide. The TE mode in the input waveguide is not phase matched to any

modes in the adjacent waveguide and therefore remains within the input waveg-

uide. Consequently, not only is polarization rotation obtained but also polariza-

tion splitting is simultaneously achieved to make a polarization splitter-rotator

(PSR) device. While this device is only approximately 45µm in length, adia-

batic tapers are necessary for coupling from standard 450nm wide waveguide to

the polarization coupler which increases the overall device length. The reported

insertion loss (IL) was less than 2dB over a 60nm bandwidth and had a polar-

ization extinction ratio (PER) of 12dB. Recently, researchers have devised and

simulated similar concepts for mode polarization cross-coupling between adjacent

waveguides of various types to make a PSR. This includes coupling between wire

and slot waveguides [72, 73] as well as between rib waveguides [74], which all had

simulated operational bandwidths under 100nm.

A significant advantage of using the mode coupling technique for polarization

rotation is that it is also possible to achieve polarization splitting simultaneously

within the same device. This can be beneficial particularly for implementing

polarization diversity in PICs. The insertion loss is also generally very low due to

the lack of significant scattering interfaces within the waveguide. The drawback

however is that the mode couplers are phase sensitive and are optimized to have

a specific optical length at a specific wavelength. Consequently, the bandwidth
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of operation cannot be large. Because of the sensitivity to phase, the fabrication

process needs to also be precise so as to attain good polarization extinction ratios.

3.2.2 Adiabatic Tapering

Ding et. al. [75] demonstrated that by adiabatically tapering out a strip waveg-

uide, it is possible to convert the fundamental TM mode into the first order TE

mode while preserving the fundamental TE mode. They used a 2×2 multimode

interference coupler to separate the fundamental TE mode to one output while

the first order TE mode is converted into the fundamental TE mode at the second

output waveguide. Consequently, both polarization conversion and polarization

splitting can be obtained with this cascade of devices. The device length was

approximately 30µm without including the adiabatic tapers leading into the de-

vice. The insertion loss was better than 2.5dB across a 100nm bandwidth but

suffered from poor cross-talk between the output waveguides at -12dB. The use

of multimode interference also limits the device’s bandwidth of operation due to

its wavelength dependent behaviour.

Sacher et. al. [76] also recently demonstrated an adiabatically tapered po-

larization rotator and splitter. They utilized a bi-level taper to convert the fun-

damental TM mode of a wire waveguide into the first order TE mode of a rib

waveguide over a length of 100µm. They then adiabatically coupled the first or-

der TE mode into an adjacent wire waveguide while the fundamental TE mode

was preserved throughout the entire structure. The insertion loss was less than

1dB across the entire bandwidth but the length of the entire structure added up

to approximately 500µm.

Although adiabatic tapering has shown to yield low insertion losses combined

with simultaneous polarization splitting and rotation, the device lengths can be

quite large compared for example to mode coupling technologies. In addition to

this, it is necessary that at the output the multiple waveguide modes generated

in the conversion process need to be well separated, which usually requires strong

index contrast and hence deep side-wall etching which could cause scattering loss.

The potential benefit of thin-ridge waveguides as polarization rotators is that the

polarization conversion process due to the lateral leakage effect does not require
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any adiabatic tapering at all.

3.2.3 Mode hybridization

A large number of integrated polarization rotators can be classed as achieving po-

larization rotation through the excitation of hybrid polarization modes. These can

be further functionally grouped into polarization rotators that operate through

the use of asymmetric waveguides [77–82], through mode evolution [83–86] as well

as through the use of hybrid plasmonic waveguides [87, 88].

3.2.3.1 Asymmetric waveguides

Polarization rotation using asymmetric waveguides was in use over 15 years

ago [77] to overcome birefringence in polarization sensitive integrated GaAs waveg-

uides and devices. Huang et. al. [77] utilized an asymmetric waveguide with one

sidewall vertically tilted inwards thus rotating the polarization axis of the waveg-

uide. With a specific choice of geometry and index contrast they showed that

it is possible to rotate the polarization axes within the angle faceted waveguide

by 45◦ with respect to the polarizations of the input rectangular waveguide. In

this way, when a TE polarized mode is incident on the angle-faceted waveguide,

its energy is distributed almost equally into the two hybrid polarizations of the

angle-faceted waveguide. The result is that after half a beat-length, the two hy-

brid polarizations will have rotated by 90◦ and the TE polarization will now be a

TM polarized mode when coupled back out to a rectangular waveguide. A maxi-

mum conversion efficiency of 96% was reported at a beat-length of approximately

750µm.

Continued improvements have been made in angle-faceted polarization rota-

tors in recent years. Yamauchi et. al. [78] proposed an exaggerated angle-faceted

waveguide designed in the shape of a triangle that is inline with a SOI square

waveguide. Through optimization of the ratio between the input waveguide width

and the triangular waveguide height, the insertion loss due to the mode mismatch

between these two structures could be theoretically reduced to 0.5dB. It was also

shown that the device length could be as little as about 2µm. Angle faceted

waveguides, however, are not simple to fabricate due to the difficulty of ensuring
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the correct slope and dimension of the angled waveguide edge.

The same principle of introducing asymmetry to a waveguide structure so as to

rotate the polarization axis of the hybrid modes by 45◦ over a half-beat length has

been applied in different ways but with emphasis on simplifying the asymmetric

waveguide structure. This includes the staircase design where a small square

section on a waveguide edge is etched away to from a staircase-like pattern [79, 80].

Jia et. al. [79] demonstrated a staircase design on a silicon waveguide with a

square profile of 340nm width and surrounded by SiO2 cladding. A small square

section with a width of 180nm was partially etched into the edge of the waveguide.

It was shown that a smaller partially etched section would decrease the insertion

loss but would also increase the overall device length. Their device length of

3µm had a measured TM-TE polarization extinction ratio (PER) of 14.8dB and

TE-TM PER of 13.3dB with an insertion loss 2.5dB.

Wakabayashi et. al. [80] proposed a similar staircase structure but applied

at two opposite edges of a SOI waveguide which could potentially have even

higher extinction ratios of more than 20dB. However, this means than one of the

partially etched waveguide edges will be sitting under the waveguide which could

be quite complex to try and fabricate. Velasco et. al. [81] also demonstrated

polarization rotation using nano-slots of varying heights placed close to the edge

of a SOI waveguide. The performance of their device with a length of 10µm was

a PER of 16dB which is approximately similar to what was observed in the other

publications. Fukuda et. al. [82] on the other hand added more material to the

waveguide rather than etching it away so as to induce asymmetry and rotate

the polarization axis of the waveguide. Their waveguide structure consisted of a

transition from a square silicon core with a width of 200nm into a larger square

silicon oxy-nitride core with a width of 840nm. While this structure addresses

the issue of easier planar fabrication, the conversion efficiency was only 50% and

the polarization rotation achieved was only 72◦ rather than the complete 90◦ for

TE-TM or TM-TE.

The main advantage observed in these asymmetric waveguide structures for

polarization rotation are the very short device lengths that can be achieved.

However, the complexity of implementing such asymmetric modifications to sil-

icon waveguides which already have nano-scale dimensions makes them difficult
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to fabricate reliably. The bandwidth is also limited due to the half-beat length

requirement of the polarization rotator which is wavelength dependent.

3.2.3.2 Mode evolution

Mode evolution is a technique first proposed by Watts and Haus in 2005 [83] as

a technique for using tapered planar waveguide structures to adiabatically twist

the polarization axis of a waveguide thus achieving polarization rotation. The ex-

ample they utilized to illustrate this principle was two square 400nm waveguides

sitting ontop of each other effectively forming a single waveguide into which a TM

mode is launched. The lower square waveguide was horizontally flared outwards

over the length of the structure until it formed a rectangular waveguide with a

800nm width while the height remained constant. The upper waveguide was in

one instance tapered inwards and in another instance tapered inwards and sepa-

rated from the lower waveguide. In both instances, the TM mode that initially

occupied both waveguides transitioned into a TE polarized mode confined within

the lower rectangular 800nm waveguide. The length of the structure determines

the degree of polarization rotation that is observed, however, beyond a certain

critical length, complete polarization rotation occurs. A significant finding from

their simulations is that beyond this critical length, the wavelength dependence

of the polarization rotation becomes insignificant. Therefore these types of mode

evolution based polarization rotators can have a wide bandwidth of operation.

Chen et. al. [84] confirmed mode evolution polarization rotation using the

same structure as in the Watts and Haus paper [83] but using a flared out silicon

waveguide at the bottom. The upper waveguide was of Si3N4 which was inwardly

tapered and shifted in a horizontal direction away from the the lower silicon

waveguide. They demonstrated predominantly wavelength independent TM to

TE polarization rotation as predicted with conversion efficiency of more than 90%

across a 100nm bandwidth in a device 250µm long.

Zhang et. al. [85] demonstrated polarization rotation using mode evolution

in strip and horizontal slot type SOI waveguides thus removing the necessity for

the silicon nitride upper waveguide that was used in [84]. They demonstrated

polarization rotation for both TM to TE and TE to TM with extinction ratios
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greater than 14dB which is average from what has been reported in the publica-

tions discussed thus far. This conversion efficiency was only achievable for device

lengths greater than 100µm.

A unique type of mode evolution was proposed by Chen et. al. [86] in 2014

where they utilized two ring resonators of different radii. The small ring resonator

is positioned ontop of a larger ring resonator and it is offset so as to overlap

with the bottom larger ring over part of its circumference. The structure thus

forms a horizontal slot waveguide along part of its circumference where the rings

overlap and this transitions to just the bottom resonator on the other half of the

structure where they don’t overlap. A TE mode can be evanescently coupled

into the bottom ring resonator via a strip waveguide adjacent to the bottom

ring resonator where there is no overlap. The TE mode in the bottom ring is

then rotated into a TM polarized mode in the horizontal slot waveguide formed by

both rings as it propagates around the dual ring structure. The now TM polarized

mode can then be evanescently coupled out to a similar horizontal slot waveguide

which forms the drop-port. Because of the ring structure, it is shown that the

transmission spectrum of this polarization rotator has the characteristic repeating

resonance peaks instead of a flat bandwidth. The PER as well as the insertion

loss was shown to be relatively proportional to the slot gap and a gap of 20nm or

less is necessary to achieve acceptable device performance. While this structure is

rather complex, it is a novel example of mode evolution polarization rotation that

manages to achieve both polarization rotation and polarization splitting within

the same ring structure that is about 7µm in diameter.

The types of structures proposed for mode evolution are quite complex due to

the necessity of ensuring adiabatic tapering of the hybrid mode and because of this

can be relatively long with the exception of the ring resonator based polarization

rotator [86].

3.2.3.3 Hybrid plasmonic waveguides

Hybrid plasmonic (HP) waveguides exploit the field confinement that occurs be-

tween a high index dielectric waveguide and a metal-dielectric interface to confine

a field within a lower index dielectric region that separates the two guiding layers.
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The benefit of this is tight field confinement with low loss dielectric propagation

of the optical field compared to surface plasmon polaritons.

Hybrid plasmonic (HP) waveguides have been successfully utilized for polar-

ization rotation. Caspers et. al. [87] utilized a HP waveguide composed of a

silicon strip waveguide with a silver layer covering the waveguide and a low in-

dex silica film separating the two. The silver covering layer is initially deposited

across the entire 180nm width of the silicon waveguide and is then tapered side-

ways until it is no longer atop the silicon waveguide. It was shown that a TM

mode launched into this waveguide structure excites the hybrid plasmonic mode

whose polarization axis is slowly twisted as the silver layer is tapered away. This

is because the electric field remains orthogonal to the metallic interface. Conse-

quently the mode emanating from this waveguide structure will be twisted into

the TE mode of the silicon waveguide. While this device is similar in principle

to the mode evolution method and was infact shown to have a wide bandwidth,

the polarization rotator length was very short at 3.7µm.

Xu et. al. [88] simulated the use of a hybrid plasmonic waveguide based on

the same principle as asymmetric waveguides to rotate the polarization axis of a

slot waveguide. Using an aluminium strip carefully positioned at the top right-

hand corner of the slot waveguide, they were able to excite hybrid polarization

modes in the slot waveguide rotated by 45◦. These hybrid polarizations were

then propagated over a half-beat length so as to rotate the original waveguide

polarization in the slot waveguide by 90◦. The overall device length was 11.6µm

with an efficiency of 97%.

Hybrid plasmonic waveguides have the potential of achieving very short po-

larization rotation device lengths as well as wide operational bandwidths if en-

gineered well such as in the case of [87]. However, they require very careful

placement of the metallic structures relative to the waveguide core to achieve the

desired polarization rotation. This fabrication process can be difficult, leading to

poor yields. Further, the introduction of metals to the waveguide structures can

significantly increase absorption and scattering losses.
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3.2.4 Summary

The plethora of current works in integrated polarization rotators found in the lit-

erature indicates that there is continued interest in the manipulation of polariza-

tion, particularly polarization rotation, in optical waveguides. This is especially

important for the high birefringence introduced by the strong index contrast of

the silicon platform. In the analysis of the current state of the art, it is apparent

that there are some main aims in the development of polarization rotators. One

is compactness of the device such that it occupies a smaller footprint on a silicon

chip. Tolerance to fabrication errors is also of importance. High polarization

extinction ratios and also low insertion loss are properties of good polarization

rotators. A wider bandwidth of operation over which the device is functional is

also preferred. Of significant importance is also the ease of design and fabrication

of the polarization rotator as this can complicate and slow down the fabrication

process. This gives preference for single rather than multilevel waveguide struc-

tures and it was found that single level polarization rotators were primarily those

employing the mode coupling technique.

In light of this background on the importance of polarization rotation, the phe-

nomenon of lateral leakage was considered for its intrinsic TM to TE polarization

coupling characteristics. The lateral leakage process occurs without the need for

hybrid integration with other materials or any other intricate manipulations of

waveguide geometries which is characteristic of the majority mode hybridization

techniques. The investigations in this chapter look into how one can efficiently

couple between the TE and TM polarizations through the exploitation of the

lateral leakage coupling effect in thin-ridge SOI waveguides. Through a search of

existing research works, no similar report on this type of investigation has been

done. Therefore, this is considered the first time this work is being reported.
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3.3 Challenges in converting a TE polarized beam

into the TM polarization

In the investigations of Chapter 2, it became apparent that in thin-ridge SOI

waveguides, polarization conversion occurs when guiding a TM mode. At the

waveguide walls the TM guided mode couples to TE slab radiation on both sides

of the waveguide, which propagates at a specific angle to the waveguide. Since

this TE slab radiation is highly coherent, it should be possible to couple to the

TM guided mode if the waveguide is illuminated with a TE slab mode. This is

simply because the mode coupling process is reciprocal.

However, a TE slab mode is an infinitely wide construct which is not practical

in a real system. Generally, beams of finite spatial width are more practical forms

of unguided propagation of light in a slab waveguide. So the question becomes

whether one can couple a TE beam into the TM mode of a thin-ridge waveguide

through the lateral leakage effect. A finite TE beam would have a finite angular

spectrum and therefore the TE components propagating at angles not phase

matched to the TM mode of the waveguide would not be expected to coupled

into the waveguide. Therefore, only partial coupling from a TE beam into the

TM mode of a waveguide with a specific width may be achievable in this manner.

In [14], Dalvand et. al. investigated how a thin-ridge waveguide taper guiding

a TM mode could radiate bi-directional TE beams, of finite width, from both

walls of the taper. In true reciprocity, if one wanted to couple backwards into the

TM guided mode of the taper, it would mean two TE beams would simultaneously

need to be incident on the waveguide taper. This is certainly not a trivial problem.

The efficiency of this method would be dependent on factors difficult to control

such as having the same TE beam profile launched towards the taper as that

which the taper excites. The phase of both TE beams incident on the waveguide

taper may also need to be precisely controlled.

In addressing this issue of practicality, a simpler approach was considered for

coupling a TE beam into the TM polarization. Referring back to the idea dis-

cussed in Section 2.4.2 that a TE beam has a finite angular spectrum, it stands to

reason that the efficiency of converting this TE beam into the TM polarization is

dependent on converting a majority of the angular components contained within
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the TE beam into the TM polarization. Since a single TM waveguide can only

couple to one specific TE angular component, as was discussed in Chapter 2, a

possible alternative would be to utilize several waveguides that span the range

of angular components contained within the incident TE beam. However, in [13]

it was shown that cascading even two TM waveguides to couple to the TE po-

larization is not a trivial task requiring precise control of the separation between

waveguides. It was shown that the waveguides would need to be more than 5µm

apart to reduce evanescent coupling between waveguides which affects the phase

velocity of the TM mode in the waveguides and consequently the coupling angle

to the TE slab radiation. This can lead to an overly large device footprint if mul-

tiple waveguides are required. Therefore, cascading several waveguides, enough

to cover the angular spectrum of an incident TE beam can become an intractable

problem using this approach.

However, a different approach would be to split the constraint of coupling a

TE beam into the TM polarization in a thin ridge waveguide into two separate

problems. One problem is the conversion of the TE beam into the TM polarization

utilizing the lateral leakage effect. The other is efficiently coupling this new TM

polarized light into a waveguide or some thin-ridge waveguide structure. In fact,

in some cases, an unbound TM polarized field could be utilized without necessarily

coupling into the guided mode of a waveguide. An example includes evanescent

field sensing as was discussed in Chapter 2. A laterally unbound TM field would

for example cover a larger surface area than a guided mode in a waveguide hence

enhancing its interaction with surface environment perturbations. This TM field

could also propagate without interacting with any etched silicon and thus should

have exceptionally low propagation losses.

In this Chapter, the focus will be on the first problem of efficiently converting

a TE polarized beam into the TM polarization. Structures for coupling unguided

beams in a slab waveguide into a waveguide mode already exist [43] and will not

be dealt with in this chapter.
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3.4 Efficient conversion of a TE polarized beam

into the TM polarization

This section starts with the question: how is it possible to efficiently convert a TE

polarized beam into the TM polarization? The idea that a finite TE beam has

a finite angular spectrum, highlighted in Section 3.3, is brought up again here.

Each of these angular components of the TE beam can be thought of, through

Fourier decomposition, as a TE slab mode with a specific angle of propagation.

And all together these paraxial TE slab modes form the TE beam. This is simply

restating the well known paraxial wave approximation [41]

Now consider a structure whereby as the TE beam propagates through it,

each of the component TE slab modes in the TE beam are coupled into a phase

matched TM slab mode. Since these two polarizations have different phase ve-

locities in the slab they would have to be oriented at specific angles relative to

each other in order to be phase matched. One can therefore imagine that each

of the new TM slab modes generated from the TE components would be rotated

by this same angle and together would also form a TM beam similar to the TE

beam that traversed our conceptualized structure. This conceptual structure can

be thought of as simply converting a TE beam into a similar phase matched TM

beam. If this structure can rotate a majority of the angular components within

the TE beam into the TM polarization, it would be expected to be very efficient.

A method for designing this conceptual structure that efficiently scatters an

input light field into a preferential and predetermined output light field is not a

new problem. Consider the interference pattern formed between an image/object

beam and a reference beam. If it is preserved in some persistent medium, then

illumination of this preserved interference pattern with the reference beam alone

has the effect of regenerating the image/object beam including both its amplitude

and phase in all three dimensions. This process is called holography. Holographic

principles have been used for the design of planar integrated optic structures pre-

viously [89]. Peroz et. al. demonstrated how the transfer function of a spectrom-

eter could be digitized and replicated using a 2D computer-generated hologram

etched onto a planar waveguide. The spectrometer’s spatial transfer function was

essentially replicated by effective refractive index changes on the planar waveg-
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uide. Illumination of the digitized hologram with an input field yielded the desired

spectroscopic response. In this example the transfer function, or the effective re-

fractive index perturbation that is the hologram, was obtained by taking the

overlap integral between the input and output light fields. It is proposed that

these holographic principles can be used to design a TE to TM converter based

on lateral leakage.

Now consider two Gaussian beams confined to a silicon slab as depicted in

Figure 3.1. One beam is confined vertically in the fundamental TE mode of the

silicon slab, but is an unbounded Gaussian beam laterally, as shown in the lower

and upper images of Figure 3.1 (a), respectively. The other beam is confined

vertically in the fundamental TM mode of the slab but is an unbounded Gaus-

sian beam laterally, as shown in the lower and upper images of Figure 3.1 (b),

respectively. If the propagation axes of the two beams are oriented such that

they remain in phase along the axis of the TM beam (the z-axis), the z-directed

E field components will have a non-zero overlap where the two beams intersect.

The product of the two fields will appear as the interference pattern shown in

Figure 3.1 (c). Vertically along the y-axis , the pattern is strongest at the top and

bottom silicon surfaces with a null near the center of the silicon slab. Along the

z-axis the interference pattern has a Gaussian amplitude profile, however, along

the x-axis the pattern has sinusoidal fringes with the Gaussian envelope of the

two original beams.

Drawing on holographic concepts, it can be predicted that if a perturbation

were implemented resembling Figure 3.1 (c), then illumination of this perturba-

tion with a TE Gaussian beam with the same properties and angle of incidence

as shown in Figure 3.1 (a) should generate a TM beam similar to Figure 3.1 (b).

3.5 Simplification of the holographically derived

interference pattern

To test the hypothesis that illuminating a waveguide structure resembling the

interference pattern in Figure 3.1 (c) with a TE beam would generate a TM

beam, a rigorous numerical simulation first needs to be performed. The common
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Figure 3.1: (a) The Ez field component of a TE Gaussian beam propagating at
an angle. (b) The Ez field component of a TM Gaussian beam propagating in
the z-axis direction in a SOI slab waveguide. (c) Shows the product of the two
fields when they are phase matched along the z-axis.

options for modeling optical waveguide structures includes the finite difference

time domain (FDTD) method, conventional and wide angle beam propagation

methods (BPM) and the eigenmode expansion (EME) [42]. As was explained in

Chapter 2, EME is advantageous for efficiently simulating TE-TM coupling in

thin-ridge waveguide structures. It is computationally very efficient which is a

problem when using FDTD for large 3D structures with fine features. The EME

method also has no problems modeling fields with wide propagating angles as is

the case for the BPM method. These advantages have made EME the preferential

method for simulating lateral leakage in thin-ridge waveguide structures [14] and

will be the simulation technique used in this chapter as well.

However, numerical simulation of a perturbation with the exact structure of

the interference pattern of Figure 3.1 (c) would be challenging. This is because in

EME the field within a waveguide structure is discretized into a finite set of eigen-

modes that exist within the boundaries of the structure. Any field propagating

within the waveguide structure can be decomposed into this set of eigenmodes
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provided a sufficient number of eigenmodes are used. If there are variations in

the waveguides direction of propagation, then the waveguide has to be subdivided

into longitudinally invariant subsections. This is because each subsection has a

different set of eigenmodes from the next. Therefore, the interference pattern

seen in Figure 3.1 (c), which has continuous amplitude variations in the z-axis

would have to be discretized. The accuracy of such a model would therefore be

dependent on the resolution of this discretization. A high resolution discretiza-

tion would consequently undermine the efficiency that EME provides over other

simulation methods such as FDTD.

Thus, a number of approximations were made to simplify the waveguide per-

turbation based on the interference pattern in Figure 3.1 (c) to make it simpler

to simulate using EME. The result is presented in Figure 3.2 (a). Firstly, the

location of the perturbation was limited to the top silicon surface. The sinusoidal

interference fringes were then approximated using a square function of two levels

as shown in Figure 3.2 (c). It should be noted that these two levels are equally

above and below the thickness of the open silicon slab. This is done to ensure

that the average refractive index in the structure and the open slab are equal in

order to minimize the effects of reflection and refraction. The envelope of the

interference pattern was approximated as a simple rectangular step function as

shown in Figure 3.2 (b).

The structure of Figure 3.2 appears to have the form of a grating. However,

the grating is not periodic along the direction of propagation of the desired TM

beam, but is rather periodic across the beams width. This is as expected since the

TE and TM beams are inherently phase matched along the z-axis [10], however,

the two beams are not phase matched along the x-axis. For efficient coupling

to occur, the two beams should be completely phase matched across the entire

interaction area and the grating oriented along the x-axis provides this additional

phase matching. In order to be phase matched along the z-axis, the angle between

the two beams should be

θ = arccos(
NTM

NTE

) (3.1)
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Figure 3.2: (a) 3D render of the device illustrating how a TE beam when launched
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where NTE and NTM are the effective indexes of the TE and TM slab modes

respectively. At this angle, phase matching along the x-axis would require a

grating of period

Λ =
λ√

N2
TE −N2

TM

(3.2)

where λ is the free space wavelength.

In hindsight one may deduce that it is possible to arrive at an equivalent solu-

tion for the grating parameters using conventional grating design methodologies

by exploiting a k-space diagram. However, the grating orientation and profile

would not be immediately obvious as was observed using the holographic design

approach in Section 3.4. In a conventional grating, the periodicity of the grating

is typically oriented in the propagation direction of the mode being coupled to.

However, it was found in Section 3.4 that the grating profile required for a lat-

eral leakage based polarization rotator is in fact oriented perpendicularly to the

propagation direction of the mode being coupled to. This may not be immedi-

ately obvious or intuitive when using a k-space diagram approach in the grating

design. Analysing the grating from a k-space diagram approach may yield addi-

tional insights but it appears that the design of the grating is more suited to a

holographic design approach.

3.6 Simulation of a simplified holographically

derived TE to TM coupler

Having predicted that a holographic grating similar to the pattern of Figure 3.1 (c)

should convert a TE beam into a TM beam, and having simplified this pattern as

shown in Figure 3.2, so that it could be effectively simulated in a SOI platform,

this section uses rigorous numerical modeling to investigate the actual effect that

the simplified grating would have on an incident TE beam.

Figure 3.3 (a) illustrates the cross-section of the grating. With NTE=2.8058

and NTM=1.8223 [10], the angle of incidence of the TE beam on the grating was

calculated from Equation (3.1) as θ=49.5◦. The grating period was calculated
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from Equation (3.2) as Λ=726.5nm with λ=1.55µm. The width was set to 80µm

to accommodate 32µm wide beams and thus the grating had 110 periods. The

electromagnetic response of the grating structure was simulated using an in-house

implementation of the fully vectorial eigenmode expansion (EME) method [90].

This is the same simulation method introduced in Section 2.4.2 for modeling

lateral leakage radiation in a thin-ridge waveguide taper, which was covered in

Section 2.4.3. To launch the TE beam into the simulation window, a canonical

Gaussian TE beam profile rotated at an angle was expanded into the eigenmodes

of the input slab waveguide structure.

Figure 3.3 (b) shows the x-directed component of the electric field, which

corresponds to the TE polarization. Before interacting with the grating, the

Gaussian TE beam remains unperturbed and well collimated. After entering

the grating region the amplitude of this TE beam decays rapidly over the first

few ridges and a pair of narrow reflected and transmitted TE beams appear to

be generated when the grating terminates. Figure 3.3 (c) shows the y-directed

component of the electric field, which corresponds to the TM polarization. There

is no evidence of the TM beam until the TE beam strikes the grating. However the

TM field is excited once the TE beam does interact with the grating. This is clear

evidence of the conversion from TE-polarized field to TM-polarized field due to

the grating. This TM beam is strong at the point where the TE beam strikes the

grating, but rapidly decays within the grating region. The generated TM beam

within the grating region continues to propagate once the grating terminates, but

is very narrow and has an asymmetric profile causing it to diverge strongly when

propagating over a long distance as shown in the inset of Figure 3.3 (c).

It is proposed that the narrow aperture of the TM beam is due to the strong,

uniform grating used. When the TE beam is incident onto the grating, there is a

sudden coupling of the TE field to the TM field. The amplitude of the TM field

continues to increase due to continuous coupling from TE to TM. However, after

a few periods, the TE field amplitude has reduced dramatically, due to strong

conversion, causing the drop of TM field amplitude.

The apparent reflection of the TE beam in Figure 3.3 (b) is surprising as care

was taken to keep the effective index of the grating equal to the slab. The most

common cause of reflection is generally Fresnel reflection. This is caused when
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the TE beam launched at 49.5◦; (c) y-directed E field, corresponding to TM
beam, Inset: TM beam propagating 1mm; (d) Angular spectrum of TM beam.
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light propagates across an interface between regions of different refractive indices.

However, the reflection strength seems too strong to be due to Fresnel reflection.

An alternative is that the observed reflection could be due to Bragg reflection

but this hypothesis would need further analysis which is deferred to the end of

this Chapter. Yet another alternative explanation is that the observed reflected

TE beam could be due to cascaded conversion of the TE beam to a TM beam

(which are phase matched) and then back, from TM to TE (which are also phase

matched). The fact that the reflected TE beam is narrower than the incident TE

beam and is more like the generated TM beam supports this hypothesis. The

fact that there is also an equivalent narrow beam propagating as a mirror image

to the reflected beam also supports this hypothesis. This unexpected behaviour

is of great interest, but is deemed peripheral to the current investigation. Hence,

a rigorous examination of the cause of this observed reflection, is deferred to

Chapter 4.

The collimation of the generated TM beam can be analyzed by examining its

angular spectral properties. The total TM field propagating through the uniform

slab region can be expressed as a weighted superposition of the eigenmodes of the

slab. The effective index of each eigenmode can be interpreted as a propagation

angle [14]. The eigenmode with an effective index equal to the effective index

of the silicon slab corresponds to a 0◦ propagation angle relative to the z-axis.

Figure 3.3 (d) shows the normalized TM field amplitude as a function of the angle

of propagation exhibiting a broad peak centered at 0◦. Like the field profile itself,

the spectrum is also slightly asymmetric. The 3dB angular width was measured to

be ∆θ=1.36◦. The slope of the angular spectrum is also quite gradual with some

noisy spectral components observed at around 5◦ on either side of the peak. This

gradual slope indicates that the TM beam generated from the grating has a fairly

wide angular spectrum in that a large proportion of its energy is propagating at

relatively wide angles.

The results of Figure 3.3 show that, in principle, the grating of Figure 3.2

could convert a Gaussian TE beam into TM radiation, however, the TM beam

produced was narrow and asymmetric leading to high divergence when propagat-

ing over a long distance. These qualities of the generated beam were attributed

to the rapid conversion of the TE beam into TM within the space of only a few
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periods of the holographically derived grating. Thus, only a small portion of the

interference pattern encoded into the grating was actually experienced by the in-

cident and converted beams. It is proposed that if the conversion can be achieved

more gradually across the grating then the TM beam should be generated over a

broader aperture and should hence have lower divergence.

3.7 Linear apodization of a TE to TM coupler

In Section 3.6 it was shown numerically that a TE beam can be converted into

a TM beam using a uniform grating structure, but the generated beam was

highly divergent due to the conversion occurring in a very confined region in the

grating. It was proposed that the beam quality could be improved by apodizing

the grating strength [91] such that conversion was distributed across all of the

periods of the grating. This apodization would allow both beams to experience

the full extent of the holographically derived grating, and thus create the expected

broad, canonical aperture for excitation of the TM beam illustrated in Figure 3.1.

Such apodization techniques have been used previously on many optical coupling

structures including tapers, gratings and dispersion compensators [14, 91, 92].

It should be possible to vary the coupling strength of the grating by changing

the duty cycle [91]. The ideal profile to achieve a collimated beam would be a

Gaussian window. However it would not be effective to simply set the grating

strength to match a Gaussian. This is because the excitation of the TM beam will

be the product of both the grating strength and the amplitude of the TE driving

beam which is reducing throughout the conversion process. As shown in [14],

taking into account the fact that the excitation aperture will be the product of

the profiles of the grating strength and the input optical beam, an approximately

Gaussian aperture can be achieved using a simple linear increase in coupling

strength. It is proposed that simply linearly increasing the grating strength will

also produce an effective Gaussian apodization for the TM beam.

To test whether a linear apodization would improve the collimation of the

generated TM beam, the uniform grating of Figure 3.3 (a) was replaced with

an apodized grating. The coupling strength of the grating was apodized by

linearly varying the duty cycle across the grating as illustrated in Figure 3.4 (a).
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The grating period and width of the grating were kept as 726.5nm and 80µm,

respectively. The duty cycle of the grating was linearly increased from 0% duty

cycle to the maximum coupling strength at 50% duty cycle. The same approach

described in Section 3.6 (utilsing the EME approach introduced in Section 2.4.2)

was used to simulate the effect of illuminating the apodized grating when a TE

beam is incident upon it at an angle of 49.5◦.

Figure 3.4 (b) shows the x-directed component of the electric field. Unlike

Figure 3.3 (b), the amplitude of the TE beam does not drop abruptly when

the TE beam strikes the grating. Instead, it slowly decays as it propagates

through the grating. At the end of the grating, very little power is left in the

TE beam. Figure 3.4 (c) shows the y-directed component of the electric field,

which corresponds to the generated TM field. Similar to the case of the uniform

grating of Figure 3.3 (c), inside the grating structure, most of the power from

the TE beam is converted into a TM beam. However, unlike Figure 3.3 (c),

the TM field slowly increases in amplitude to a peak, then slowly decreases. The

generated TM beam using the linear grating is much broader than that generated

from the uniform grating. Also, unlike Figure 3.3 (c) the generated TM beam of

Figure 3.4 (c) appears to be relatively symmetric and approximately Gaussian.

The resulting TM beam can propagate over a long distance parallel to the z-axis

in the silicon slab with low divergence as shown in the inset of Figure 3.4 (c).

The angular spectrum of the TM beam was evaluated using the same method

as described in Section 3.6 (treating the effective indices of each of the modes

excited as the angular spectrum of the beam). Figure 3.4 (d) shows the y-directed

(TM) electric field amplitude as a function of the angle of propagation. The 3dB

angular width was measured to be ∆θ=0.83◦. In comparison to Figure 3.3 (d), a

far narrower angular spectrum of the TM beam is seen to be launched from the

apodized grating. It is also observed that the narrow spectral peak has rapidly

varying, low level out of band features, which upon closer inspection appear to

be sidelobes on both sides of the central peak.

Figure 3.4 (b) also shows that while most of the input TE beam has been

converted to TM, there is still some small residual TE polarized light appearing

as both transmitted and reflected TE beams. These beams are far broader and

weaker than those observed in Figure 3.3 (b) which seems to indicate that the
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apodization has had the desired effect. The reflected and transmitted TE beams

appear to originate from within the grating, where the TM beam is strongest

supporting the hypothesis discussed at the end of Section 3.6 that this may be

due to cascaded conversion of the TM beam back to TE. Again, a more thorough

investigation of these TE beams is deferred until Chapter 4. However, it would

seem that the apodization has reduced the strength of these reflections. Hence, it

may be possible to fully suppress these transmitted/reflected TE beams if the full

form of the holographic apodization window of Figure 3.1 (c) were implemented.

Testing this hypothesis would be difficult with eigenmode expansion and may be

better suited to finite difference time domain. This simulation is proposed as

future work.

In spite of this, the significantly improved TM beam proves the effectiveness of

this simple apodization strategy. By utilizing an apodized grating structure, it is

possible to generate a Gaussian-like collimated TM beam which propagates with

minimal divergence when launched from the grating aperture. This is possible due

to the the linear apodization of the grating which yields the Gaussian-like beam

profile. This TM Gaussian-like beam was shown to be capable of propagating

over a relatively long distance through the silicon slab waveguide.

3.8 Reduced strength linearly apodized TE to

TM coupler

The simple apodization technique presented in Section 3.7 showed that a broad

Gaussian-like TM beam can be generated from a grating coupler that is launched

with minimal divergence from the grating’s aperture. However, it was noted that

the TM beam was generated almost entirely from the top half of the structure,

with almost no interaction occurring in the bottom half of the structure. This

would have the consequence of broadening the beam due to an effectively smaller

aperture. It was also noted that the TM beam was a bit lop-sided with most of

its intensity originating still from the top part of the grating structure, this may

mean that the step response at the input edge of the grating may result in some

spectral features (such as the broad spectrum shoulders observed in Figure 3.4).
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It may be possible to avert this broadened beam and the broad shoulders by

broadening the aperture over which the TM beam is generated and positioning

the generated TM beam at the center of the grating away from the abrupt edges

of the grating. This can be achieved by decreasing the apodization gradient such

that the TE beam is coupled to the TM beam even more gradually.

In order to widen the aperture over which the TE to TM conversion would

occur, the strength of the apodized grating was reduced by scaling the duty

cycle proportionally across the whole grating aperture. The starting duty cycle

remained unchanged at 0% but the maximum duty cycle at the end of the grating

was decreased from 50% to a value of 30%. This effectively should decrease the

slope of the change in duty cycle and therefore the apodization gradient. The

conversion of a TE polarized Gaussian beam with this reduced strength grating

was simulated in exactly the same manner as the investigation of Seciton 3.6 and

the results are presented in Figure 3.5.

Figure 3.5 (a) shows the x-directed component of the electric field correspond-

ing to the TE polarization. Figure 3.5 (b) shows the y-directed component of

the electric field, which corresponds to the generated TM field. Similar to Fig-

ure 3.4 (c), it is evident that a Gaussian-like TM beam is generated in the grating

coupler, which is shown in the inset figure to propagate with minimal divergence

over a distance of 1mm. However, unlike Figure 3.4 (c), the TE and TM beams

are seen to interact over almost the full width of the grating, and the TM beam

is observed to be broader and centered midway between the walls of the grating

coupler.

The angular spectrum of this TM beam is plotted in Figure 3.5 (c), which

shows the y-directed (TM) electric field amplitude as a function of the angle of

propagation. In comparison to Figure 3.4 (d), the pedestal of the central peak is

smooth without any observable noise. The closest sidelobes to the central peak

are 27dB below the main lobe. The 3dB beam width was found to be ∆θ=0.73◦.

Both the sidelobe level and the beam width are much lower than those of the TM

beam generated from the uniform grating as shown in Figure 3.3 (d).

The reduction in the grating strength therefore caused the conversion of the

TE beam to the TM polarization to occur at a slower rate. This resulted in a

generated TM beam which has its peak located at a centralized position within the
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Figure 3.5: (a) x-directed E field, corresponding to TE beam launched at 49.5◦;
(b) y-directed E field, corresponding to TM beam, Inset: TM beam propagating
1mm; (c) Angular spectrum of TM beam.
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grating coupler. Consequently, the TM beam at the grating aperture is broader

resulting in less diffraction and a narrower beam.. Hence the TM beam would be

expected to be more collimated when launched from the grating aperture.

3.9 Preliminary investigation of the grating’s strong

reflection behaviour

In this section, the reflection behaviour observed particularly in Figure 3.3 is

revisited again. In Section 3.6 two possibilities were considered as to the likely

causes of this reflection behaviour. One explanation is that the observed reflection

could be due to Bragg reflection. An alternative explanation is that the observed

reflected TE beam could be due to cascaded conversion of the TE beam to a TM

beam (which are phase matched) and then back, from TM to TE (which are also

phase matched). The latter hypothesis of cascaded conversion will be looked at

in chapter 4. Here, the Bragg reflection question is explored briefly.

If the TE beam reflection in Figure 3.3 is a bragg effect, then the important

requirement of phase-matching should exist for coupling to occur. A simple tool

for analyzing the phase matching that a grating provides in k-space is conveniently

illustrated using a k-space diagram [93]

Figure 3.6 shows a k-space diagram of the grating coupler whose k-vector

Kgr is perpendicular to the gratings periodicity. The grating k-vector and conse-

quently the gratings period is calculated from the grating equation;

kTEty = kTEqy − qKgr (3.3)

where Kgr is the grating’s k-vector oriented in the y-axis, kTEty is the k-vector of

the transmitted TE beam in the y-axis, kTEqy is the k-vector of the qth diffracted

beam in the y-axis where q = 0,±1,±2, .... The grating period is evaluated from

the grating k-vector as;

Kgr =
2π

Λ
(3.4)
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Figure 3.6: A K-diagram depicting the phase matching that the grating provides
for an incident TE field. A TE beam kTEi incident on the grating at an angle
θi is shown to transmitted at an angle θt, equal to θi. The grating provides
phase-matching in the y-direction to the first kTE1 and second kTE2 diffraction
orders.
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where Λ is the grating period.

Figure 3.6 illustrates that when a TE beam kTEi is incident on the grating

at an angle θi, it is transmitted at an angle θt which in this case is equal to θi

since both are propagating within the silicon slab. The grating provides phase-

matching in the y-axis to the first kTE1 diffraction order where q = −1 and the

second kTE2 diffraction order where q = −2. Although the grating provides phase-

matching to the diffracted TE beam kTE1 in the y-direction, coupling would not

be expected to occur to this diffraction order since it has a greater phase velocity

in the z-direction and thus not phase matched in the z-direction. However, the

TM beam kTM is inherently phase matched to the TE beam in the z-direction

by choice of the launching angle of the TE beam. Consequently, the TE beam

is phase matched to the z-directed TM beam in the y-axis by the grating and

inherently in the z-direction by the TE beam’s launch angle, and as seen in

this Chapter, coupling does occur between the incident TE beam kTEi and the

z-directed TM beam kTM .

Interestingly, the second order diffraction kTE2, is observed to also be phase

matched to the incident TE beam inherently in the z-direction and via the grating

in the y-direction. Therefore, one can deduce from the k-space diagram that the

grating provides phase-matching not only to the z-directed TM beam kTM but

also to the second order diffracted beam kTE2, which is effectively a reflected

beam.

Although the phase matching condition is met, this does not necessarily mean

that bragg reflection would occur. A non-zero overlap is also required and the

unit-cells of grating should couple in-phase to the reflected beam. An easy method

for validating whether this grating would successfully provide coupling to the

reflected TE beam via bragg reflection would be to perform a semi-vectorial

simulation where only the TE polarization is used. Bragg reflection of the TE

beam should be independent of the TM polarization.

Figure 3.7 (a) shows a TE beam launched towards the grating structure,

similar to that of Section 3.6 at the same phase matching angle using a fully-

vectorial simulation where TE-TM coupling is allowed. In this simulation, the

grating structure is not truncated as in Section 3.6 but runs the full width of
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the simulation window. It is evident from Figure 3.7 (a) that the TE beam is

completely reflected.

Figure 3.7 (b) shows an identical scenario to that of Figure 3.7 (a), but this

time using a semi-vectorial simulation where TE-TM coupling is prohibited by

only utilising TE slab modes in the mode-solver. It is evident from Figure 3.7 (b)

that the TE beam is not reflected as in Figure 3.7 (a).

It was expected that if bragg reflection had been the cause of the observed

reflection behaviour, then the TE beam reflection would have occurred in both

the fully and semi-vectiorial simulations since the Bragg reflection would occur

independently of the TM polarization. However, this is not what was observed

in Figure 3.7.

The result of Figure 3.7 therefore shows that the reflection behaviour exhibited

by the thin-ridge grating structure is not due to Bragg reflection. This leaves the

likely possibility that the reflection may be due to a TE-TM cascaded coupling

phenomenon which will be the focus of Chapter 4.

3.10 Discussion

Comparing the proposed thin-ridge waveguide based grating polarization rotator

to the state of the art.

Bandwidth

Interpretation: The wavelength range over which the polarization rotator main-

tains close to maximum efficiency.

• Grating polarization rotator: Is dependent on the wavelength range over

which phase matching can be maintained between the incident TE beam

and the excited TM beam within the grating region.

• State of the art polarization rotators: In mode coupling polarization conver-

sion techniques, bandwidth is also determined by the coupling strength and

coupling length of the structure which are interdependent parameters. For

mode hybridization techniques, the bandwidth is dependent on the wave-

length range over which the beatlength between the excited hybrid modes
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maintains quadrature phase.

In summary, for conventional gratings, bandwidth is dependent on the grating

strength or the grating length depending on the type of grating. One could

hypothesize that the bandwidth of the proposed grating polarization rotator could

also be dependent on the same parameters of length and strength of the grating.

These parameters for controlling bandwidth could include the number of periods

in the grating, duty-cycle and even apodization.

Efficiency

Interpretation: Is defined by the extinction ratio between the energy of the polar-

ization entering the device to the remainder of the energy in the same polarization

that was unconverted.

• Grating polarization rotator: A limitation to efficiency in the proposed po-

larization rotator was observed to be the topology of the polarization rota-

tor. The rectangular topology used resulted in some back conversion from

the generated TM beam back into the TE polarization.

• State of the art polarization rotators: In mode coupling as well as mode

hybridization techniques the efficiency is generally highest at the center

wavelength but decays away from resonance.

There may be the possibility of engineering the efficiency of the grating to

have a flat response across its bandwidth based on the analogy to bragg grating

structures since gratings can be designed to have a flat response over a broad

wavelength range.

Polarization Splitting and Rotation

Interpretation: The ability of a device to perform both functions of rotating

polarization as well as spatially separating the TE and TM polarizations.

• Grating polarization rotator: It is expected that the grating structure would

not perturb an incident TM polarization but would rotate an incident TM

polarization propagating in a different direction. There is thus a possibility

here for both polarization rotation and splitting.
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• State of the art polarization rotators: Mode coupling polarization rotators

exhibit both the ability rotate as well as to split polarizations. Mode hy-

bridization techniques generally exhibit only polarization rotation since the

conversion occurs within a single hybrid waveguide.

There is therefore the opportunity here for additional research looking into

the potential of simultaneous polarization conversion and splitting based on the

proposed polarization rotator.

3.11 Conclusions and Future Work

At the beginning of this chapter, by reviewing existing literature, it was found that

there is significant interest in polarization control particularly in integrated silicon

photonic devices where birefringence is high. It was then proposed that the in-

trinsic TE to TM polarization conversion present in thin-ridge silicon waveguides

could be exploited for the design of efficient polarization converting structures.

The concept of holography was used to devise a structure that, potentially, could

efficiently couple between phase matched TE and TM beams in a silicon slab

waveguide based on the interference pattern formed between both polarizations.

The holographic interference pattern was implemented using thin-ridge struc-

tures on the surface of the silicon waveguide and it was observed that this pattern

resembled a grating-like structure. A binary approximation of the interference

pattern was made so as to simplify the complexity of the interference pattern

to make it more suitable for numerical modeling of the structure. The eigen-

mode expansion technique was employed to simulate the coupling characteristics

of the resulting grating structure. It was found that the grating structure did

behave as predicted and successfully coupled an incident TE beam into a TM

polarized beam. However, it was observed that the simulated grating structure

which closely resembled the ideal interference pattern yielded a narrow and highly

divergent TM beam.

It was proposed and shown through simulation that an apodization of the grat-

ing structure could be implemented to broaden the generated TM beam by slowly

coupling the TE beam into the TM polarization. After reducing the steepness of
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the apodization gradient, it was possible to generate a well collimated TM beam

that could propagate for long distances within the slab waveguide with minimal

divergence.

Following this proposal of a polarization rotator based on the latarel leakage

effect, it would be important to first experimentally verify the behaviour of such a

grating structure. The characterization of the lateral leakage based polarization

rotator is also an important future work, both through simulation and experi-

mentation. The investigation thus far has looked at a very specific state whereby

the incident TE beam is launched at a precise angle toward the grating where it

is phase matched perfectly to the TE slab modes of the structure. Therefore an

important question is raised here. What effect does angular variation of the inci-

dent TE beam have on the polarization rotators efficiency? Similarly, what effect

does wavelength variation in the incident TE beam have on the conversion effi-

ciency? Also, what effect does the incident TE beam’s spatial and spectral width

have on the grating’s conversion efficiency? Although the grating is designed to

convert an incident TE beam to a TM beam,it is useful to also characterise the

gratings behaviour when a TM beam, instead of a TE beam, is launched towards

the grating. Similarly, what would happen if a TM beam was launched towards

the output aperture of the grating? Would the grating’s behaviour be reversed

resulting in coupling to a TE beam in the same way that the TE beam was con-

verted to a TM beam in the grating? Answering these additional questions would

provide excellent material to analyse in a journal article on this new technique.

This analysis is proposed for work in the very near future.

One application of this grating structure is as a polarization rotator of a TE

beam into a TM beam. It may also be possible for this device to be used as

both a polarization splitter and rotator (PSR). As shown in this chapter, the TE

polarized beam would be strongly coupled to a TM polarized beam propagating

at a different angle to the incoming beam. However, it is expected that if a

TM beam is incident on this grating coupler at the same angle as the the TE

beam, the TM beam should remain unaffected and should propagate through the

grating mostly unperturbed. Consequently, it is expected that a TE and TM

beam simultaneously incident on this grating structure could be split and the

TE polarization rotated into the TM polarization resulting in two TM polarized
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beams propagating in different directions.

Another application of such a device could be for evanescent field sensing

as an enhancement to the structures investigated in Chapter 2. The sensitivity

of the TM polarization to surface refractive index perturbations, as shown in

Section 2.3, would be expected to significantly alter the TE-TM coupling charac-

teristics within the grating. This would provide a means of probing environmental

refractive index changes using the highly evanescent TM polarization in the grat-

ing excited by an incident TE polarized beam.

With regards to improvements to the grating structure, it should be noted

that the structures investigated so far have been three-level waveguide structures.

The grating structure contained both ridges above the nominal slab waveguide

thickness and trenches which dipped below the nominal slab waveguide thickness.

This multilevel waveguide structure could make the fabrication process more com-

plicated by introducing several etch steps which also increases the likelihood of

fabrication errors. The fabrication of a polarization rotating grating could be

greatly simplified if a two-level grating structure could be devised that can be

realized in a single etch step. Means for achieving such a two level grating can be

conceived, but the investigation of these structures is proposed as future work.

Another avenue for improvement is the enhancement of the bandwidth over

which this polarization rotator can function. As pointed out in Section 3.4 it

is imperative to the operation of the polarization rotator, that the incident TE

beam is phase matched to the TM beam. Due to the dispersive nature of the

waveguide, significant changes in the wavelength of the incident TE beam could

result in significant changes to its phase velocity which the grating coupler may

not be able to compensate for. However, this can be mitigated by utilizing a more

robust grating designed to cater for a larger bandwidth of the incident TE beam.

One possible way of achieving this, still based on the holographic approach, would

be to design the grating as was done in Section 3.4 but by including within the

overlap integral wavelength variations of the input TE field as was done in the

holographic spectrometer example [89]. Such an approach may yield complex

grating patterns requiring the use of computer generated digitized holograms.

Perhaps the most surprising finding of this chapter is strong reflections of the

TE beam observed in Section 3.6. It was shown that these could be reduced, but
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not entirely suppressed through apodization. It was reasoned that this reflection

could be due to cascaded conversion from TE to TM and then back to TE again,

however further investigation would be required in order to be conclusive. Under-

standing how this reflection occurs will be of significant academic interest. Being

able to harness, enhance and engineer this reflection could create new possibil-

ities for integrated silicon photonic applications. Chapter 4 is dedicated to the

understanding and exploitation of this reflection behaviour.
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Chapter 4

Thin-ridge waveguide resonators

and filters

4.1 Introduction

In Chapter 3, the inherent TE-TM coupling exhibited by the lateral leakage effect

of thin ridge waveguides was considered as a possible avenue for realizing a po-

larization rotating device. Based on the principles of holography, it was proposed

that a possible waveguide structure for achieving this polarization rotation could

be derived from the interference pattern formed between a phase-matched TE

slab beam and TM slab beam. It was found that a grating structure resembling

this interference pattern could be used to convert a TE polarized beam into a TM

polarized beam. A peculiar observation made during this exercise was a surpris-

ingly strong reflection when the TE beam was incident on a uniform grating and

to a lesser extent on an apodized grating. A good example of this unexpected

reflection can be found in Figure 3.3. The unexpectedness of this reflection was

due to the fact that the grating was designed to have an average refractive index

similar to that of the slab in which the TE beam was propagating thus mitigating

conventional Fresnel reflection. In the conclusion of Chapter 3, it was discussed

how this reflection behaviour could likely be caused by resonant coupling from

the incident TE beam to the TM beam in the grating structure and back into a

TE beam due to the reciprocity of the coupling process. This reflection behaviour
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was identified as a promising avenue for further research. To investigate this be-

haviour further, it is necessary to ask two questions. Firstly, what is responsible

for the strong reflections observed in Chapter 3? Is it indeed resonance? And

then, assuming that it is a resonance effect, what are the important applications

of resonators and what features must these resonators have in order to be effec-

tive? To justify the investigation of this effect, the second question is explored

first through use of a literature survey.

4.1.1 Applications of resonators

The significance of resonators in optics today can be identified by the multi-

tude of applications that rely on optical resonators. One of the more common

applications of resonators is in lasers where they form an integral part of the

oscillation process [41, 94, 95] since they facilitate re-circulation of specific wave-

lengths of light providing resonant enhancement of the interaction photons at

these resonant wavelengths with the excited gain medium. As sensors, optical

resonators have been shown to be useful for biomolecular sensing [27, 96–98] as

well as for monitoring biomolecular interactions [99] with applications in clinical

diagnostics, drug discovery as well as detection of food-borne pathogens. Op-

tical ring resonators [100–102], microdisk resonators [103] and photonic crystal

cavities [104] have been shown to play a key role as optical filters for wave-

length division multiplexing which is critical in telecommunications for achieving

high spectral efficiency and throughput. Non-linear optical processes such as

third-harmonic generation have been demonstrated in micro-resonators to enable

wide-bandwidth continuous-wave generation of light [105]. Four-wave mixing has

also been demonstrated in ring resonators for achieving all-optical wavelength

conversion [106–108] as well as for optical signal regeneration [109] which are use-

ful for fast optical signal processing. Optical modulation has also benefited from

the use of optical resonators due to their smaller physical dimensions and en-

hanced efficiency for the specific resonant wavelengths [110, 111]. Of final note is

the use of optical resonators for optical switching which can enable signal routing

between single or multiple input and output optical interconnects [112, 113] for

applications in wavelength selective switching or reconfigurable optical add-drop
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multiplexing (ROADM). There are therefore a myriad of applications which have

exploited the benefits of optical resonators.

However, the scope of this thesis is SOI thin-ridge waveguides and their appli-

cations. If it is possible that SOI thin-ridge waveguides behave resonantly, then

the applications one could consider investigating are therefore those that best

suit this SOI waveguide platform.

One could consider looking at SOI resonators for laser cavities because of the

several advantages of using SOI as a platform for photonic circuits [114]. Devel-

oping lasers in silicon in comparison to other materials such as GaAs, InP and

GaN is made very difficult by the fact that silicon has an indirect bandgap [95].

However, research into lasers for integrated SOI photonics has progressed over

the years with demonstrated success using primarily hybrid integration tech-

niques [115, 116] or through Raman amplification [117, 118]. The primary prob-

lems with SOI lasers appears to be focused more on how to achieve gain in silicon

and less on the actual resonator cavities.

In optical sensing, the primary benefit of SOI resonator sensors has been iden-

tified as the compactness achieved while still remaining sensitive which allows

dense integration of sensors on a chip as well as the possibility for opto-electronic

integration [18]. However, in terms of sensitivity and detection limit, which are

the primary parameters of importance in sensors, SOI ring resonators are outper-

formed when compared to other technologies such as dielectric microspheres [18]

and silica microtoroids [119]. In addition to this, highly sensitive optical detec-

tion, for example in microtoroids, is performed typically at visible wavelengths

around 600nm [120] where absorption from the normally water based sensing en-

vironment is minimal [121, 122]. However, at these visible wavelengths silicon is

not-transparent [123] hence SOI sensors typically operate at telecommunication

wavelengths [22, 28] where water absorption is higher [122].

Resonators for non-linear applications such as wavelength conversion in SOI

appear to be of interest for signal processing purposes [107]. However, the main

limiting factor for using silicon for non-linear applications is the two-photon ab-

sorption that occurs at the commonly used telecommunication wavelengths [124].

This has necessitated the consideration of other CMOS compatible platforms for

non-linear applications [108, 124].
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In optical modulation on SOI, resonators have been shown to minimize the

physical size of modulators for more compact integration on the SOI platform

in comparison for example to Mach-Zehnder modulators (MZM) [125]. However,

one finds that the modulation speed performance of ring resonators [126] and

MZM [127] are closely matched. With the advent of the Silicon Insulator Silicon

CAPacitor modulators (SISCAP) [128] it is possible to achieve compact, non-

resonant Mach-Zehnder modulators that can be driven with TTL voltages and

this negates the need for further improvements in efficiency that might be offered

by ring resonators.

For optical switching, The main types of integrated optical switches are those

that use resonators [129] or those that utilize Mach-Zehnder Interferometers(MZI) [130]

or both [113]. Similar to optical modulators it is observed here that ring-resonator

based switches provide spatial efficiency due to their compactness. However, in

terms of performance the switching speeds are not significantly different between

the MZI and ring resonator optical switches. In addition to this, it has also

been identified that ring resonator switches have to be tuned to compensate for

fabrication errors and temperature variations [130].

Optical filtering is also an area of interest for SOI resonators particularly in

wavelength division multiplexing (WDM) for high speed on-chip communication

in the future [104]. At the moment, there are primarily four kinds of optical

devices capable of WDM which are ring-resonators, lattice form filters, arrayed

waveguide gratings (AWGs) and Echelle gratings [131]. Of these, ring-resonators

have been identified as providing the most compact on-chip filtering solutions

suitable for dense photonic circuit integration. A recent review paper paper [131]

concluded that the main limiting factor of using SOI for WDM lies in the fab-

rication errors which limits cross-talk. Coupled resonator optical waveguides

(CROW) were identified as an avenue for breaking this low cross-talk limitation,

however, CROW devices may present their own challenges in terms of practical

fabrication and environmental tolerance.

From the listed applications of resonators, it appears that the exploitation

of resonators for laser cavities as well as for non-linear applications is not of

paramount importance since the fundamental problems lie in other areas such as

indirect bandgaps and two-photon absorption respectively. Optical sensors are
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of possible interest but the high absorption of water at telecommunication wave-

lengths where silicon is transparent is a major limiting factor to attaining higher

Q-factors and hence more sensitivity for silicon resonators. This leaves optical fil-

tering, optical modulation and optical switching. Optical modulators and optical

switches have been shown to mainly benefit in terms of compactness when using

resonators. In fact, high speed and relatively compact modulators and switches

in silicon have already been demonstrated using mach-zehnder interferometers.

As for optical filtering, integrated SOI resonators are having a big impact in

wavelength division multiplexing (WDM). They provide the most compact op-

tical filters compared to other technologies such as gratings, which is important

for dense integrated photonic circuits. Although fabrication of silicon resonators

is error prone, current ring resonator technologies provide a means for enhanced

filtering performance by cascading several resonators to form coupled resonator

optical waveguides (CROW) with improved spectral performance. However, it

is expected that the sensitivity of rings and the interfacing directional couplers

creates challenges for their practical implementation. In summary, one can see

that optical filtering for WDM is quite an important application for integrated

optical resonators especially looking into the future.

With this in mind, we need to reflect back to the goal of the chapter which

is to investigate the peculiar strong reflections observed in the SOI thin-ridge

waveguide grating structures of chapter 3. Is it a resonance effect? If so, what

are the implications or potential applications? It has been identified that optical

filtering for WDM is an important applications of resonators worth investigating.

Therefore, to guide this research, one must first consider what are the charac-

teristics of a good filter or what are the important features in a filter? In light

of this, what role do resonators play in optical filtering and what features must

resonators have in order to be effective optical filters?

4.1.2 Review of integrated optical filtering

The four main types of integrated optical filters used for WDM are arrayed waveg-

uide gratings (AWG), Echelle gratings (EG), lattice form filters composed of

cascaded asymmetric Mach-Zehnder interferometers (AMZI) and ring resonators
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which also encompasses cavity resonators [131]. It is evident from the above

groups that there are filters that utilize resonant structures which is the ring

resonator class and those that are non-resonant which are the rest. To identify

what are the important features of optical filters one could first look at the non-

resonant filters. Then to identify the role and effectiveness of resonators as filters

one could then compare resonant filters to the non-resonant type of filters.

4.1.2.1 Non-resonant optical filters

In the paper [131] classifying integrated optical filters, Okamoto begins by high-

lighting an important fact which is that the free spectral range (FSR) of all the

filters listed is inversely proportional to the path length difference parameter ∆L.

∆L in the AWG is the path length difference between adjacent waveguides in

the array. In the EG ∆L is measured between two light beams reflected from

adjacent reflection facets and in AMZI it is the minimum path length difference

in the cascaded MZIs. Interestingly, although this is a slight digression, the ring

resonator (RR) FSR bears a similar resemblance where ∆L or simply L is the

ring circumference. This similarity is in fact not surprising if one considers that

all the above filters utilize either spatial (AWG and EG) or temporal (AMZI and

RR) interference effects [131]. The important point Okamoto highlights here is

that this path-length difference is inversely proportional to the FSR.

For example, Takada et. al. demonstrated [132] a silica-based AWG with a

heroic ∆L of 1.26cm. The FSR was only 16GHz and they could fit 16 1GHz(8pm)

channels within this range with about -16dB of crosstalk between adjacent chan-

nels. The key to this achievement was that they utilized silica-based waveguides

with a refractive index difference of 1.5% which allowed a tighter bend radius of

2mm. In the end, the device footprint occupied an entire four inch silicon wafer.

This is obviously one extreme. A similar 1.5% refractive index difference silica

waveguide platform was utilized by Hida et. al. [133] where they fabricated an

AWG with a ∆L of 27.7mum yielding an FSR of 7.27THz. With a spacing of

25GHz they were able to fit 256 channels in this range with far-end cross-talk

of -40dB and adjacent channel crosstalk of -20dB. Their device footprint was

74mm x 50mm. It is important to note here that the channel wavelength spacing
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in an AWG is also inversely proportional to to the path length difference in an

AWG but can also be changed by adjusting the star coupler dimensions [134].

Silica AWGs became industry standard filter devices for optical communications

because of their several identified advantages [134] of design flexibility, stability,

mass-producibility, low fiber coupling losses and low propagation losses.

Echelle grating (EG) filters in silica were also of research interest for WDM.

Janz et. al. for example demonstrated a 256 channel EG demultiplexer with a

25GHz channel spacing which are the same specifications as Hida’s AWG men-

tioned earlier [133]. In comparison, the EG device size was 20mm x 40mm which is

almost a quarter the size of Hida’s AWG but the insertion loss was -10dB which is

5dB worse. Interestingly, the adjacent channel crosstalk was -30dB which is 10dB

better than in Hida’s AWG. So why were Echelle gratings not highly adopted by

industry if they performed equally if not better to AWGs experimentally?

This question is answered by looking to another important property of filters

known as phase error [135]. Phase error is an intrinsic property of interferometric

optical filters such as AWGs that adversely affects crosstalk performance. Phase

error is identified as being caused by imperfections in a waveguide due to fabri-

cation errors which causes fluctuations in the waveguide core size, the refractive

index in the core and cladding as well as the actual waveguide length. This

phase error is also referred to as effective index fluctuations [131]. In regards to

Echelle gratings, Okamoto [131] indicates that the position of the reflection facet

contributes to an Echelle gratings phase error. While experimentally it was pos-

sible to more precisely control fabrication errors, it was not the case in industry

due to the lower fabrication resolutions used. Consequently, the actual achiev-

able crosstalk in Echelle gratings was worse by more than 10dB in comparison to

AWGs which led to an industry preference for AWG based WDM systems.

Inspite of these advancements in silica based WDM, Hibino pointed out [134]

that to advance to high density integration of photonic circuits, it is imperative

that the waveguide bending radius must be reduced. One approach identified

for doing this was to transition to higher refractive index contrast waveguide

structures. InP and SOI waveguides were both options for doing this. Barbarin

et. al. for example [136] demonstrated an InP AWG with physical dimensions

of 230x330µm2. However, with an FSR of 12.8nm (1600GHz) they could only
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fit four channels with 3.2nm (400GHz) spacing at 1550nm with crosstalk of just

-12dB. In SOI Sasaki et. al. compressed an AWG to 70x60µm2 using 450nm

silicon wire waveguides with a path length difference of 6.06µm. They were able

to achieve an FSR of about 85nm(10THz) with 11nm(1.4THz) channel spacing

and cross talk of -13dB. It appears that although the physical size is significantly

decreasing, in comparison to the silica AWGs, the spectral resolutions are getting

much worse for these higher index contrast platforms. Even in 2013, 12 Channel

SOI AWGs with channel spacing of 400GHz, dimensions of 560x350µm2 and

achievable crosstalk of -17dB is still normal [137].

Okamoto [131] explained these observations very well in his review for why

this spectral resolution penalty is observed in the physically smaller but higher

index contrast AWGs. Although the bending radius in silicon is 700 times smaller

in silicon than silica, the device size cannot scale down by the same amount and

still have the same spectral characteristics. This is because, for an interferometric

filter such as an AWG, the device size is determined by the path length difference

needed between the arms of the array as well as the number of WDM channels.

If the AWG spectral characteristics are to stay the same, the requirement is that

the optical path length difference must also stay the same. However, because the

propagation length in silicon is about 50 times smaller than in silica, this means

that the physical length can also be about 50 times smaller. Okamoto identified

that another penalty of transitioning to the higher index SOI platform is that

the path-averaged effective index fluctuation is 300-500 times larger than in silica

waveguides which is why silicon AWG crosstalk is experimentally observed to be

15 to 20 times worse than silica AWGs.

Reflective AWGS (R-AWGs) in silica were first proposed in [135] as a way of

addressing phase-error problems, which predicted about -40dB crosstalk in sil-

ica AWGS using techniques that agreed well with experimental results. In SOI,

R-AWGs have also been implemented to try to improve on size and cross talk

limitations [131, 138]. Using straight lower-loss rib waveguide R-AWG arms ter-

minated with bragg reflectors [131] -20dB crosstalk could be achieved, which was

good but in fact not better than existing SOI AWGs. However, R-AWGs have

been identified as being the most compact topology for AWG filter implementa-

tions.
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Echelle gratings (EG) in SOI also benefited significantly in size. Horst et.

al. [139] demonstrated an SOI EG with a size of 600x170µm2, 8 channels, a

1.8nm channel bandwidth and a channel separation of about 3nm( 400GHz). The

reported adjacent channel crosstalk was -19dB. More recently Lycett et. al. [140]

demonstrated how chirped echelle gratings, with an area of about 800x500µm2,

can be utilized to engineer the filter passband for a flat response with a 1.2nm

bandwidth. This is a significant improvement from previous echelle gratings that

had a Gaussian-like passband response [139, 141, 142]. However, the drawback

of this technique was that the roll-off factor remained the same and therefore the

effect of flattening the spectral passband adversely affected the crosstalk between

wavelength channels.

Lattice form filters using asymmetric MZIs (AMZIs) were also investigated in

silica and then in higher index silicon waveguides. Kamei et. al. [143] for example

fabricated a silica 4 channel AMZI filter with a chip size of 55x22mm2 and was

able to obtain 0.4nm (50GHz) channel spacing with crosstalk greater than -28dB.

What is interesting about the AMZI filter is that the passbands are flat-topped

and not Gaussian which means there is a relatively equal attenuation across all

wavelengths in a given filter channel. In silicon, Horst et. al. [144] demonstrated

an 8 channel AMZI demultiplexer with a size of 500x400µm2. The passband was

relatively flat within 0.7dB across a channel bandwidth of 2.4nm (320GHZ) at a

wavelength of 1500nm. The reported crosstalk was only about -15dB but here

again we observe the flat-topped box-like wavelength channel shape.

In summary, a number of important filter characteristics have been identi-

fied. Firstly, both the FSR and the filter bandwidth parameters are inversely

proportional to the path length difference in the interfering optical paths in the

filter. Silica is characterized by low waveguide losses but also large bending radii

requirements which makes the filters quite large. Consequently, filters with small

FSR and very narrow bandwidths are common since it is possible to implement

very large path length differences in the interfering optical paths. The SOI plat-

form, due to its high index contrast, provides a means for making these filters

much smaller and suitable for dense integration purposes. However, the penalty

of making the filter smaller is that the optical path length difference possible in

the filters is also reduced due to lack of space. This results in SOI filters with
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much wider FSR and bandwidths but much smaller physical size. By using SOI

waveguides it is also observed that the reported crosstalk in the filter channels

was worse and this was attributed to higher effective index fluctuations in the

SOI waveguides. It was also found that AMZI filters have a flatter response in

the passband which was seen as being more suitable than a Gaussian-shaped

filter spectrum since the in-band wavelength attenuation can be kept relatively

constant. With this in mind, one can now consider the characteristics of resonant

filters and how they differ from or improve on non-resonant wavelength filters.

4.1.2.2 Resonant optical filters

So what role do resonators played as optical filters and what makes them effective

at optical filtering? Integrated resonator topologies used for optical filtering can

be categorized into whispering gallery mode resonators also called microdisk res-

onators [145], photonic crystal slabs [146] and cavities [147], ring resonators [100]

and coupled resonator optical waveguides [148].

The filtering effect of ring resonators was proposed as far back as 1969 by Mar-

catili [149]. By the 1990’s silicon based ring resonators had been fabricated with

ring radii of 3µm and a wide FSR of 24nm (3THz at 1550nm wavelength) [150].

In 2008 an even smaller SOI ring resonator with 1.5µm radius was demonstrated

by Xu et. al. [100] having an FSR of 62.5nm (7.8THz at 1550nm wavelength).

These large FSR measurements are due to the small optical path length around

the circumference of the ring resonator made possible by the high index con-

trast of SOI [131]. A significant advantage of the ring resonator topology is that

the Quality factor (Q-factor) and hence the bandwidth of the resonator can be

controlled by changing the coupling coefficient between the input waveguide and

the resonator [151]. High-Q and narrow bandwidth resonators have been demon-

strated in silicon [152] With such a wide FSR in these small rings, does it mean

there is significant spectral room to fit as many narrow wavelength channels as

one would like by controlling the Q-factor? Chu et. al. [153] showed that in

practice the channel spacing is limited by the difference in cavity lengths between

individual resonator filters that can be achieved. This is because each resonator

filter should be resonant at a different wavelength to the other channels. Chu et.
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al. [153] utilized 8 ring resonators of different radii and were able to obtain about

a 5.7nm channel spacing for a 50nm increment in the ring radius. The bandwidth

of each resonator was approximately 1nm and the FSR was approximately 20nm.

The benefit of such a wide channel spacing between the narrow bandwidth filter

channels was that the reported crosstalk was less than -30dB. Fabrication errors

have been identified as a significant problem in controlling the resonance wave-

length of ring resonators particularly in filters where the wavelength channels

may be closely spaced. Consequently techniques such as thermal tuning [101]

have been exploited to better control the resonance of a ring.

Microdisk resonators which are sometimes referred to as whispering gallery

mode resonators have also been used as optical filters and closely resemble the ring

resonator. Microdisk resonator filters have been demonstrated in SOI [103, 154]

and even with radii as small as 1.5µm [145]. However, the major drawback of

microdisk resonators as illustrated in [103, 154] is that the resonator supports

higher order lateral modes. They indicate that although the coupling efficiency

is highest for the fundamental mode, resonant coupling of higher order modes

can still occur albeit with lower efficiency. Consequently, the spectrum of a mi-

crodisk resonator has several resonance peaks which could possibly interfere with

other channels. Another important issue Soltani et al. [154] highlights, which is

attributed to traveling wave resonators such as microdisks, is the phenomenon

of resonance mode splitting which results from coupling between clockwise (CW)

and counter-clockwise resonant modes. This is caused by surface roughness due

to fabrication errors and leads to a double peak observable at the resonant wave-

length.

Photonic crystal based structures are the third type of resonator based filters

that were identified. The photonic crystal (PhC) structure, first proposed in the

seminal paper by Yablonovitch [155], is a dielectric periodic lattice structure that

supports a so called photonic bandgap within which optical field propagation

is prohibited. By introducing defects, such as a line defect [156], in the lattice

structure it was shown that so called defect modes could propagate at wavelengths

inside the stopband of the photonic crystal A photonic crystal cavity can be

introduced as a point defect. This can be done for example by removing periodic

structures [147, 157] or by moving adjacent periodic structures further apart[104,
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158]. Another method for creating a photonic crystal cavity resonator is to loop

a photonic crystal waveguide to form a ring resonator structure [159, 160]. A

significant advantage of photonic crystal cavities is their small size and can be

even smaller than the operating wavelength [104]. Manzacca et. al. demonstrated

a 3 channel WDM system in 2007 utilizing photonic crystal cavities albeit far

away from the telecomm wavelengths at 3.2µm. More recently, with improved

fabrication methodologies, optical filtering at telecomm wavelengths (1.55µm)

has been demonstrated for example in a 4 channel photonic crystal based WDM

system [104].

The Photonic crystal slab has also been shown to be resonant in some specific

instances. It has been shown [146] that while a photonic crystal slab does in fact

support guided modes that are completely confined within the slab, there also

exist guided resonances. Guided resonant modes of a photonic crystal slab differ

from normal guided modes by the fact that they can couple to a continuum of

radiation modes outside the slab resulting in a leaky guided mode. In fact, it has

been shown that an externally incident optical field on the photonic crystal slab

structure exhibits interesting resonance lines in the transmission and reflection

spectrum [161] which could be useful for filtering purposes. What is interesting

about this phenomenon is the resonance behaviour in a photonic crystal slab

that is due to coupling from a medium with continuum of radiation modes to the

guided mode of the photonic crystal. In fact, this phenomenon is analogous to

the proposal of this chapter which states that it is possible for an incident TE

beam to be reflected from a thin-ridge waveguide due to the coupling that exists

between the continuum of TE slab modes in the slab and the waveguide’s TM

mode, and that this behaviour would exhibit resonance effects.

A significant factor evident when utilizing the aforementioned individual res-

onators as add-drop filters is that a single resonator has been shown to have a

Lorentzian shaped frequency response [60, 145, 147, 162]. This means that the

roll-off factor at resonance is fixed and could be a limiting factor in how close

wavelength channels can be positioned due to crosstalk. In addition to this, the

decaying frequency response round the resonance wavelength would also mean

that the attenuation is not constant within the filter bandwidth.

The concept of utilizing several coupled resonators to improve spectral filtering
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properties of the single resonator was proposed by Little et. al. in their ground

breaking work published in the mid 1990s [162, 163]. They showed that increasing

the number of resonators in a series or parallel coupled resonator topology could

flatten the passband attenuation of the filter while significantly enhancing the

extinction ratio. A few years later Yariv et. al. proposed the idea of coupling

resonators together to form a new type of waveguiding structure called the coupled

resonator optical waveguide(CROW) [164]. While designs of CROWs based on

photonic crystal cavities have been proposed and theoretically investigated [165–

168], these recent publications indicate that this research area is still in its infancy

in comparison to ring resonator CROWs. Silicon ring resonator CROWS were

first demonstrated around 2006 by various groups [148, 169–171]. Xia et. al. [169]

demonstrated how, with 16 coupled resonators, an extinction ratio of >40dB

could be practically realized across a bandwidth of 4nm. However, their results

also showed that there was a significant presence of ripples in the passband. The

peak to peak amplitude of the ripples in the passband decreased as the filter order

increased. The drawback was that also the insertion loss of the filter increased

with the filter order. To overcome this problem, the same group demonstrated

that by tapering the coupling coefficients of the ring resonators, it is possible

to significantly reduce the ripple effect observed in CROWs [170]. However,

in practice this apodization approach does not seem to completely remove the

presence of inband ripples as was shown in the Cooper et. al. paper [172] where

they fabricated CROWS of 35 up to 235 ring resonators. In spite of using state

of the art fabrication methods, their results showed that increasing the number

of resonators in a CROW also increases the in-band ripples. By using filter

design techniques derived from microwave filter synthesis methods, it has been

shown that it is possible to predictably design a higher order filter with pre-

determined spectral characteristics such as a maximally flat (Butterworth) filter

response [173].

An identified problem with SOI resonators is the low tolerance to fabrication

errors For example it has been shown that a deviation of just 1nm in the waveguide

width of a ring resonator can result in a resonance wavelength shift of 1nm which

is equal to 125Ghz at a 1550nm wavelength [174]. This would be intolerable

for example in Dense-WDM where channel spacing can be between 50GHz to
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100GHz. To counter this fabrication intolerance problem of silicon, a common

approach has been to fabricate tunable CROWS, where the large thermo-optic

coefficient of silicon is exploited to be able to adjust the resonance characteristics

of individual resonators [175]. Another severe limiting factor of ring resonators

in particular which arises from surface roughness during fabrication is coherent

backscattering [176], which is the coupling to the counter-propagating resonant

mode. This firstly leads to resonance splitting. Morichetti et. al. [176] also

showed that the intensity of backscattered light increases with the filter order

and can dramatically alter the spectral response of cascaded ring resonators.

4.1.3 Summary

In summary it can be deduced from the reviewed literature that a significant

amount of research has been done particularly on ring resonator filters and that

they provide the most compact device topology for integrated optical filtering.

Resonators provide flexibility in terms of bandwidth since they can be easily

tuned by controlling the coupling strength to the bus waveguide. Particularly

in silicon, small resonators can yield very wide free spectral ranges. However,

fabrication errors in silicon introduce many challenges. The impact of fabrication

errors can be overcome through thermal tuning of the resonance wavelength of

the ring. Coherent backscattering is also a problem in resonators that is induced

by fabrication errors. An avenue for improving the spectral characteristics of

resonators, such as the roll-off steepness, has been to couple several to form cou-

pled resonator optical waveguides (CROWs). CROWs also enable the flattening

and broadening of the filter passband. However, the sensitivities to fabrication

errors and the environment that plague individual resonators are worsened when

coupling several resonators together.

In light of these observations on resonators, one finds that there has been

significant advancements made but also there is room for improvement in the

design of integrated resonant optical filters. Also, in the review of existing liter-

ature, no reports have been found that investigate resonance effects in thin-ridge

waveguides in relation to the lateral leakage effect. It is therefore considered

that there is great incentive in carrying out this research into the reflection be-
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haviour observed in Chapter 3 and it would be the first time this research is being

reported.

The investigations presented in this chapter thus tackle a number of questions.

Firstly, the investigation begins by asking if a reflection of similar strength would

be observed in a single thin-ridge waveguide as was observed in the grating of

chapter 3. If so, this would likely indicate a resonance effect. Therefore, does

this resonance effect have the typical Lorentzian spectral response with a peak

reflection response at the resonance wavelength? If it does, can the Q-factor and

therefore the bandwidth of resonance be controlled or adjusted and how could

this control be achieved? On this basis, one could then ask whether a higher

order filter could be designed by cascading several of these potential resonators

together? How exactly would this be achieved and what topology would the filter

have? How would the filter response relate to that of an ideal higher order filter?

These are the main questions that will be investigated in this chapter? Finally,

the findings of these investigations will be summarized at the end of this chapter.

New research opportunities will be identified and discussed primarily towards the

realization of thin-ridge waveguide devices that can be usefully adopted by the

silicon photonics community.

4.2 Resonant behaviour of a single thin-ridge

waveguide

In the literature review of Section 4.1 it was found that integrated optical res-

onators are important and useful particularly for optical filtering and that there

are several challenges that face the implementation of resonators and coupled

resonator optical waveguides (CROWs) in the silicon platform of today. It would

therefore be of significant benefit to explore new types of optical resonators and

filters. This justifies the search for new resonance effects that may or may not be

occurring in thin-ridge waveguides. In Chapter 3, an observation was made that

when a TE beam was incident on a grating structure it appeared to be strongly

reflected. This occurred even when the index perturbation caused by the waveg-

uide structure was minimized to remove any significant Fresnel reflection. It was
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proposed that this reflection may be due to resonant coupling from the incident

TE field to a guided TM mode in the grating, which is then coupled back to a re-

flected TE field (TE-TM-TE coupling). The grating can be considered as several

adjacent thin-ridge waveguides. Assuming that it is resonant coupling then it

would be expected that this reflection behaviour would occur not only in a grat-

ing structure but also in a single thin-ridge waveguide, at a similar level to that

of observed for the grating. This would indicate that the observed reflection is

due to a resonance effect and not due to some periodic grating-like phenomenon.

In this section the behaviour of an individual thin-ridge waveguide is inves-

tigated when it is illuminated with an infinitely wide TE beam. It is expected

that if the infinitely wide TE beam is propagating at a specific angle to be phase

matched to the waveguide TM mode, then TE-TM-TE coupling should also occur

resulting in strong reflection of the incident TE beam. To investigate if it is Fres-

nel reflection, the infinitely wide TE beam is launched at an offset angle where

it is not phase matched and not expected to couple to the TM waveguide mode.

The wavelength dependence of this TE-TM-TE coupling is also investigated and

its influence on the coupling interaction.

4.2.1 Infinitely wide TE beam incident on a thin-ridge

waveguide

It has been shown that when a TM mode is launched into a thin-ridge waveguide

it couples to a TE slab mode propagating at a specific angle [14, 15] Consider the

case where this process is reversed and an infinitely wide TE beam is launched

towards a thin ridge waveguide, shown in Figure 4.1 (a), at the same angle where

it is phase matched to the TM guided mode of the waveguide.

Such a scenario is depicted in Figure 4.1 (b) and (c). It is expected that

when the TE slab wave (TEi) is incident on the waveguide walls, it would be

coupled to the guided TM wave provided they are phase matched. This conversion

process can occur at the first and second waveguide walls (labelled (w1) and (w2)

respectively in Figure 4.1 (b) and (c)). Conversely, the TM wave excited in the

waveguide should couple back to TE slab waves propagating from both waveguide

walls. The TE fields transmitted through the waveguide are labelled as TEt and
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those reflected as TEr.

Therefore, if a TE slab wave, is incident on a thin-ridge waveguide at an angle

where it is phase matched to the guided TM wave, then it is expected that a sig-

nificant portion of the incident TE slab wave would be reflected as a result of this

TE-TM-TE coupling interaction. If the incident TE slab wave is not propagating

at a phase-matched angle, then it would be expected that no significant reflected

fields would be generated since the TM mode does not build up coherently and

thus doesn’t couple strongly back into the TE polarization. However, some Fres-

nel reflection could still occur due to the effective index difference between the

slab and core regions of the waveguide.

Since this waveguide is assumed to have no longitudinal variations as depicted

in Figure 4.1, it is thus possible to use a TE plane wave excitation which is also

longitudinally invariant. This was done using the eigenmode expansion method.

A description and justification of using the eigenmode expansion method for

modeling TE to TM coupling structures has been covered in Section 2.4.2. Two

simulations were performed in this investigation. One simulation for an incident

infinitely wide TE beam that is phase matched to the guided TM mode of the

waveguide and another when it is not phase matched. The phase matching angle

between the incident TE beam and the guided TM mode can be calculated as

θ = arccos(
NTM

NTE

) (4.1)

where NTM is the the effective index of the guided TM mode and NTE is the

effective index of the TE slab mode. For a waveguide with the geometries of

width w=420µm, etch depth h=20nm and slab thickness t=200nm, the mode

matching technique as discussed in Section 1.1.4 was used to evaluate NTM and

NTE as 1.76 and 2.76 respectively. The incident angle θ was hence evaluated

as 50.32◦. For the control simulation, where the infinitely wide TE beam is not

phase matched to the waveguide TM mode, the launch angle for the TE beam

was set to 41◦.

Figure 4.2 shows a crosssectional representation of the field which is invariant

along the length of the waveguide since the waveguide is longitudinally invari-
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Figure 4.1: (a) Cross sectional profile of a thin-ridge waveguide of width w, etch
depth h and slab thickness t. Plan view of the thin-ridge waveguide showing a
simple ray-diagram depiction of an infinitely wide TE beam incident on (b) the
first and (c) the second waveguide walls, where cascaded TE to TM conversion
can occur resulting in reflected TEr and transmitted TEt TE fields.
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Figure 4.2: Shows the magnitude of the x-component (TE) of the electric field for
(a) the phase-matched and (b) not phase-matched cases respectively. Shows the
magnitude of the y-component (TM) of the electric field for the (c) phase-matched
and (d) not phase-matched cases respectively.

ant and the excitation is a TE plane wave. The infinitely wide TE beam was

launched from z=0, at the left-hand side of the simulation window, towards the

waveguide. Figure 4.2 (a) shows the x-directed electric field corresponding to the

TE polarisation in the case where the infinitely wide TE beam was launched at

a phase-matching angle (θ=50.32◦). An interference fringe pattern is observed in

the slab region on the left of the waveguide which is where the incident TE beam

was launched from. On the right hand side of the waveguide it is observed that

no TE fields are transmitted beyond the waveguide. For the non-phase-matched

waveguide scenario (θ=41◦), the x-directed (TE) electric field is shown in Fig-

ure 4.2 (c). It is observed that the launched TE field is slightly perturbed at

the waveguide in the center of the simulation window but is mostly transmitted

through the waveguide.
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Figure 4.2 (b) shows the y-component of the electric field corresponding to

the TM polarisation when the incident TE beam is phase-matched (θ=50.32◦). It

can be seen that a TM field is excited in the waveguide by the incident TE beam

which resembles the fundamental TM mode of the waveguide. Figure 4.2 (d)

shows the y-component of the electric field corresponding to the TM polarisation

when the incident TE beam is not phase-matched (θ=41◦). No TM fields are seen

to be excited in Figure 4.2 (d) for the non-phase-matched waveguide scenario.

From these results it is evident that at the wavelength of 1.55µm there is

a very strong reflection of the incident TE field when it is launched at a phase

matching angle to the waveguide TM mode. This is evidenced by the interference

fringe pattern observed in Figure 4.2 (a) which is caused by the superposition of

the launched infinitely wide TE beam and a reflected TE beam. The dark null

fringes of the interference pattern also indicate that the forward and backward

propagating fields are of relatively equal amplitude meaning that the reflection

observed was strong. This is similar to what was observed in the TE field reflec-

tion from the grating in Section 3.6

In the example where the infinitely wide TE beam is not phase matched to

the waveguide TM mode, as shown in Figure 4.2 (c) and (d), no interference

fringes were observed and thus it can be concluded that no significant reflected

fields were generated. This means that any Fresnel reflected fields generated

due to the TE beam traversing the waveguide refractive index perturbation were

negligible. It is believed that this reflectivity, when the TE and TM modes are

phase-matched, must therefore be due to the coupling between the infinitely wide

TE beam and TM guided mode. Given that the coupling process is bi-directional,

the TM guided mode would then couple all of its energy back into the TE beam.

Nevertheless, it was predicted that the TM guided mode in the waveguide

would couple to TE radiation on both sides of the waveguide as observed in other

investigations on lateral leakage [15]. However, Figure 4.2 (a) shows that the

TE field only exists on one side of the waveguide which raises the question of

why we do not see TE radiation on both sides of the waveguide. This appears

similar to a ring resonator waveguide when coupled to two bus waveguides [151]

in an add-drop waveguide topology. At resonance, the field coupled to the ring

resonator from the input bus waveguide is observed to exit at the drop port of
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the other bus waveguide. This is due to destructive field interference occurring

at the through port of the input waveguide at resonance, whereas at all other

wavelengths the field exits from the through port [151]. Therefore, one possible

interpretation is that when the infinitely wide TE beam is coupled to the waveg-

uide TM mode, there is destructive interference occurring on the transmission

side of the waveguide.

These results clearly show that a TE slab beam undergoes strong reflection

when incident on a thin-ridge waveguide at an angle where it is phase matched

and can therefore couple to the resonant or trapped TM mode of the waveguide.

The strength of this reflection is similar to that observed in Chapter 3 when a

TE beam was incident on a grating structure in Section 3.6. This supports the

hypothesis that this strong reflection is due to resonant coupling from the incident

TE beam, to the guided TM mode and back.

4.2.2 Wavelength response of a TE beam reflection from

a thin-ridge waveguide

It was shown in Section 4.2.1 that an infinitely wide TE beam can be completely

reflected when incident on a thin-ridge waveguide if it is phase-matched to the

TM mode of the waveguide. This behaviour seems typical of a conventional

resonator if the infinitely wide TE beam is considered as the input field and the

waveguide TM mode is the resonant mode which it can couple to. As discussed

in Section 4.1.2, resonators are particularly useful because of their wavelength

selectivity for applications such as filtering. It would therefore be interesting to

explore the wavelength dependence of this resonance-like behaviour observed in

thin-ridge waveguides.

As discussed in Section 4.2.1, for there to be resonant coupling between the

incident TE beam and the waveguide TM mode, the incident angle needs to be

such that phase matching is achieved. In Section 2.4.5, the wavelength depen-

dence of this phase matching angle was explored and it was found that while

there is indeed a wavelength dependence, it is not very strong, having a 3dB

bandwidth of as much as 12nm. Therefore, if we launch an incident infinitely

wide TE beam toward a thin-ridge waveguide, at an angle that gives resonant

111



4. Thin-ridge waveguide resonators and filters

interaction, as seen in Figure 4.2 (a) and (b), one might then expect the coupling

strength to change with wavelength. However, would this wavelength dependent

reflection be similar or different to that observed in Section 2.4.5?

The same 2D eigenmode expansion technique that was used in Section 4.2.1

was utilised to evaluate the reflection and transmission coefficients when an in-

finitely wide TE beam is incident on a thin-ridge waveguide. The reflection and

transmission coefficients were evaluated as a function of wavelength. The same

waveguide was used as in Section 4.2.1 and the infinitely wide TE beam was

launched at the same angle of 50.32◦. As illustrated in Figure 4.3 (a), the reflec-

tion and transmission coefficients were evaluated as

Reflection : Γ =
TEr

TEi

(4.2)

Transmission : T =
TEt

TEi

(4.3)

where Γ is the reflection coefficient and T is the transmission coefficient. TEi is

the incident TE beam amplitude, TEr is the reflected TE beam amplitude and

TEt is the transmitted TE beam amplitude.

Figure 4.3 (b) shows the amplitude of the reflection and transmission co-

efficients as a function of wavelength from 1.48µm to 1.62µm. The reflection

coefficient response shows that at the central wavelength of 1.55µm there is 100%

reflection of the TE beam. As the wavelength increases or decreases away from

this central wavelength the reflection coefficient decays exponentially. The trans-

mission coefficient curve shows the opposite trend. At the central wavelength of

1.55µm there is almost zero transmission of the TE field. Away from the cen-

tral wavelength the transmission coefficient asymptotes to unity, meaning 100%

transmission.

Similar to the wavelength response in Section 2.4.5, the decay in this reflec-

tion coefficient occurs because the further away one shifts from the center wave-

length, the phase-matching between the incident TE beam and the TM mode

of the waveguide also changes. The reflection and transmission of the thin-ridge

waveguide illuminated by an infinitely wide TE beam indeed appears to have a
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Figure 4.3: (a) 2D thin-ridge waveguide schematic illustrating the TE incident
(TEi), reflected (TEr) and transmitted (TEt) beams. (b) Amplitude of the re-
flection and transmission coefficients as a function of wavelength
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wavelength dependent response. This response is far sharper, with a bandwidth

of 3nm, than the broad wavelength response observed in Section 2.4.5 which had

a bandwidth of about 12nm. This response instead looks rather like the sharp

wavelength response of the ring resonators [152] discussed in Section 4.1.2.2.

This result has therefore shown that a thin-ridge waveguide, when illuminated

by an infinitely wide TE beam, has a wavelength dependent reflectivity. At

the resonant wavelength, strong coupling between the incident TE field and the

resonant TM waveguide mode results in complete reflection. A shift in wavelength

away from resonance results in a decay of the observed reflectivity resulting in a

sharp resonance peak in the reflection spectrum similar to that of a ring resonator.

4.2.2.1 Lorentzian wavelength response of the thin-ridge waveguide

resonator

As reviewed in Section 4.1.2.2, resonators such as optical microring resonators

are know to have a canonical Lorentzian frequency response when observed for

example from the drop port [60]. If a thin ridge waveguide, which has been shown

to have a wavelength dependent reflectivity, has a typical resonance response, then

it should be Lorentzian.

Near resonance, a Lorentzian function can be approximated as [41]

L(f) ≈ (∆f/2)2

(f0 − f)2 + (∆f/2)2
(4.4)

where the function has been normalized to have a maximum value of one when

f = f0. ∆f is the full width at half maximum (FWHM) bandwidth and f0

is the center frequency. The reflected amplitude of Figure 4.3 was squared to

obtain the reflected intensity. This reflected intensity is presented in Figure 4.4.

Equation (4.4) was then plotted as a function of wavelength instead of frequency

over this simulated reflected intensity. The parameters of bandwidth and center

wavelength were then adjusted to provide the best fit.

It is evident that the intensity of the reflection coefficient of the thin-ridge

waveguide has a similar form to a Lorentzian function. This result therefore af-

firms that a thin-ridge waveguide behaves as a typical resonator when illuminated
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Figure 4.4: Thin-ridge waveguide reflection coefficient squared (| Γ |2) as a func-
tion of wavelength compared to a Lorentzian function of equal bandwidth.

by a TE slab beam. It is thus possible to conclude that the thin-ridge behaves as

a resonator of some sort. However it is still perhaps surprising that the line-width

of the resonator is so much narrower than the frequency response observed for

the lateral leakage analysed in Section 4.2.1.

4.2.3 Comparison of a thin-ridge waveguide resonator to

a conventional lumped element resonator

In Section 4.2.2 it was shown that a thin-ridge waveguide resonator has a wave-

length dependent reflectivity and that that this response is Lorentzian in shape.

Only the amplitude response of the reflectivity was considered. However, is the

spectral response of a thin-ridge waveguide identical to that of conventional res-

onators? A lumped element (LC) resonator is an ideal canonical resonator com-

posed of ideal loss-less capacitors and inductors whose spectral response can be

mathematically evaluated [177]. In fact, the lumped element resonator represents
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the basic resonator prototype used in the synthesis of higher order filters in mi-

crowave [177] and optical frequencies [173]. Therefore, is the resonance response

of a thin-ridge waveguide similar to a canonical LC resonator in both amplitude

and phase?

The spectral response of a thin-ridge waveguide resonator observed in Sec-

tion 4.2 indicates that it behaves as a bandstop filter since at resonance, the

incoming field is completely reflected and thus no power is transmitted past the

waveguide. If the thin-ridge waveguide indeed behaves as a canonical resonator

and has a Lorentzian bandstop filter response, then it should be possible to find

prototype parameters for a lumped element filter that will provide exactly the

same response.

To show this, the reflection (Γ) and transmission (T ) response of the 550nm

thin-ridge waveguide resonator was considered. A waveguide of 550nm width was

chosen for this investigation but any waveguide dimension would be suitable for

this analysis. As in Section 4.2.2, the TM mode and TE slab mode effective index

of the 550nm wide waveguide was first evaluated. This was then used to evaluate

the TE phase-matching angle from Equation (4.1). An infinitely wide TE beam

was launched at this angle towards the waveguide and the reflectivity evaluated

over a range of wavelengths. From this spectral response, the FWHM could be

evaluated.

For the lumped element resonator, there are two ways to achieve a bandstop

filter response using LC components. There is the series inductor and capacitor

which is placed in parallel with the load as shown in Figure 4.5 (b). Another

topology is an inductor and capacitor in parallel which is placed in series with

the load as shown in Figure 4.5 (c). Both these circuits are derived from the first

steps of filter synthesis as shown in [177]. For the series LC resonator placed in

parallel with the load, the element values were calculated from [177] as

L =
RL

2πf0g(B/f0)
(4.5)

C =
g(B/f0)

2πf0RL

(4.6)
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Figure 4.5: (a)Thin ridge waveguide resonator with W=550nm, h=20nm and
t=200nm. (b) The and series LC resonator circuit in parallel with the load.
(c) The parallel LC resonator circuit in series with the load. (d) The evaluated
magnitude of the reflection coefficient and (e) the evaluated magnitude of the
transmission coefficients for the three resonators shown in a,b and c.
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where the load resistor isRL, f0 represents the center frequency, B is the frequency

bandwidth and g is the single element low pass prototype filter value. For a

single resonator, the filter prototype parameter value from [177] is g=2. One

can assume that the load impedance is normalised so RL=1. From Figure 4.5,

it is seen that the centre wavelength is λ0 = 1.55µm, and this corresponds to a

frequency of f0=193.55THz. The line width of the resonant response of Figure 4.5

is approximately 0.94nm and this corresponds to a frequency of 0.117THz.

For the series LC resonator placed in parallel with the load shown in Fig-

ure 4.5 (b), the evaluated inductor value was therefore 6.75×10−13H and the

capacitor value was 1×10−18F. For the parallel LC resonator in series with the

load, shown in Figure 4.5 (c), the Equations (4.5) and (4.6) simply change over

to now represent the capacitor and inductor respectively. Therefore, for the par-

allel LC resonator in series with the load, the inductor value was evaluated from

Equation (4.6) as 1×10−18H while the capacitor value was evaluated from Equa-

tion (4.5) as 6.75×10−13F.

On the basis that the source impedance also has a normalized value of 1 as

did the load impedance RL, the reflection response of the LC resonator circuit

was evaluated by first calculating the circuit’s input impedance Zin, which is

evaluated from the RL, L and C values [177]. From the circuit’s input impedance,

the reflection and transmission coefficient response could then be calculated as

Γ =
Zin − 1

Zin + 1
and T = 1 + Γ (4.7)

Figure 4.5 (d) shows the magnitude of the reflection coefficient as a function

of wavelength for the waveguide resonator and the LC resonators. The waveg-

uide resonator and the two LC resonators are observed to have nearly identical

reflection amplitude responses. Figure 4.5 (e) shows the transmission coefficient

magnitude as a function of wavelength. Similar to the reflection coefficient, it is

observed that the transmission response of the waveguide is nearly identical to

that of the two LC bandstop resonators.

Figure 4.6 (a) shows the reflection coefficient phase response of the waveguide

and the two LC resonator circuits. From this figure it is evident that the reflection

phase response of the thin-ridge waveguide is only similar to that of the parallel-
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LC resonator but not the series-LC resonator. Shown in Figure 4.6 (b) is the

phase of the transmission coefficient for the waveguide resonator and the LC

resonator circuits. It is seen here that the transmission phase response of these

three resonators are nearly identical. From these results it is evident that only

the parallel-LC resonator illustrated in Figure 4.5 (c) is similar in amplitude

and phase, for both the reflection and transmission response, to the waveguide

resonator.

Consequently, one can conclude that the reflection and transmission response

of the thin-ridge waveguide resonator, both in terms of amplitude and phase, can

be modeled using a lumped element filter prototype formed as parallel LC circuit

that is in series with the load as illustrated in Figure 4.5 (c). Therefore, it may be

possible to consider the fact that if higher order filter responses can be synthesized

from the canonical LC resonators, then given the equivalency shown above, it

may be possible to also synthesize higher order filter responses using thin-ridge

waveguide resonators. However, it would be valuable to first analyse the factors

that impact the Q-factor of the observed thin-ridge waveguide resonance.

4.2.4 Factors determining the Q-factor of the thin-ridge

resonator

It was observed in Section 4.2.3 that a thin-ridge waveguide behaves just like

a canonical Lorentzian resonator. At the resonant wavelength, an incident TE

beam is completely reflected due to resonant coupling to the TM mode of the

waveguide. Away from resonance, the magnitude of this reflection was shown

to decay following the Lorentzian function of Equation (4.4). This rate of decay

represents the resonators bandwidth or quality factor (Q-factor). The Q-factor

can be defined as a ratio between the frequency at which the resonance occurs

divided by the 3dB width (FWHM) of the resonance [151]. This is a measure of

how much energy is stored within the resonator. In order to achieve a high Q-

factor, it is necessary to minimize cavity losses, including the loss associated with

coupling into and out of the resonant cavity, and also maximise the length of the

cavity [151]. For a thin-ridge waveguide, it has been shown that the waveguide

lateral leakage loss is dependent on the waveguide dimensions, particularly the
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width [15]. The waveguide height can also be changed to increase or decrease the

lateral leakage rate [14]. It was also shown in Section 4.2.1 that through the lateral

leakage effect resonant coupling can occur between an incident TE beam and the

resonant TM mode. The lateral leakage loss could therefore be interpreted to

be the loss associated with coupling in and out of the resonant TM mode. It is

expected that if the waveguide dimensions influence the degree of lateral leakage

and that this in turn determines the cavity losses of the resonant TM mode in

the waveguide, then the waveguide dimensions should also influence the thin-ridge

waveguides Q-factor. This section, looks at whether the waveguide dimensions,

both width and height, do influence the thin-ridge waveguides Q-factor.

4.2.4.1 Dependence of Q-factor on waveguide width

If the Q-factor of the thin-ridge waveguide resonator is determined by the degree

of lateral leakage, then adjusting the width of the waveguide should significantly

alter this lateral leakage and hence should have a significant impact on the Q-

factor of the thin-ridge waveguide resonator.

To test this hypothesis, two simulations were done. Firstly, the reflection

coefficient response of three thin-ridge waveguides with different widths was sim-

ulated when an infinitely wide TE beam was incident on the waveguides as shown

in Figure 4.7 (a). The second part was to vary the waveguide width over a wide

range of values and to plot the Q-factor as well as the waveguide lateral leak-

age loss as a function of the waveguide width. The same eigen mode expansion

simulation technique was used as was described in Section 4.2.1. For the first

simulation the three waveguides have identical core thickness of 200nm and etch

depth of 20nm. The waveguide width w was chosen for the three waveguides to

be 400nm, 550nm and 720nm. These were selected from [15] such that the 400nm

waveguide had the strongest coupling between the infinitely wide TE beam and

TM guided mode; the 720nm waveguide had the weakest TE-TM coupling; and

the 550nm waveguide was selected to be around the middle point of these two

extremes.

It should be noted that as the waveguide width increases from 400nm to

720nm, the effective index of the TM mode also increases as the waveguide size
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Figure 4.7: (a) 2D Simulation window of the SOI thin-ridge waveguide with a slab
thickness t=200nm and etch depth h=20nm. (b) The amplitude of the reflection
coefficient as a function of wavelength for three values of the waveguide width
w = 400nm, 550nm and 720nm. (c) Waveguide resonator Q-factor and loss as a
function of waveguide width.
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increases [10]. Therefore, the angle of the infinitely wide TE beam required to

phase-match to the TM mode at a wavelength of 1550nm would be different for

each width. It therefore became necessary to re-evaluate the phase-matching an-

gle of the infinitely wide TE beam for each of the three waveguides when centered

at 1550nm. Based on the aforementioned waveguide dimensions the effective in-

dex of the guided TM mode and the infinitely wide TE beam was evaluated using

the mode matching technique discussed in Section 1.1.4. From the mode effec-

tive indices, the phase-matching angle could be evaluated from Equation (4.1) for

each waveguide. The infinitely wide TE beam phase-matching angle was found

to be 50.42◦, 49.82◦ and 49.2◦ for the 400nm, 550nm and 720nm waveguides re-

spectively. These were the angles at which the TE beam was launched for each of

the three waveguide simulations to evaluate the reflection wavelength response.

The 3dB bandwidth of the resonator can be evaluated from the reflection

coefficient response and the Q-factor could then be calculated from the band-

width [151] as

Q =
λ0
B

(4.8)

where Q is the Q-factor of the resonator, λ0 is the resonance wavelength and B is

the full width half maximum bandwidth. For a wide range of waveguide widths,

the Q-factor of each resonator was evaluated and plotted as a continuous function

of the waveguide width together with the waveguide lateral leakage loss. The lat-

eral leakage loss was evaluated from the imaginary part of the TM mode effective

index obtained from the mode matching technique described in Section 1.1.4.

Figure 4.7 (b) shows the amplitude of the reflection coefficient for the three

waveguides with widths 400nm, 550nm and 720nm. By design, the resonance of

the three waveguides are centered at 1.55µm. It is observed that the wavelength

response of the 400nm waveguide has the widest bandwidth and consequently the

lowest Q-factor. The 720nm waveguide has the narrowest bandwidth and hence

the highest Q-factor while the bandwidth and Q-factor of the 550nm waveguide

resides in the middle.

Figure 4.7 (c) shows the Q-factor and the lateral leakage loss as a function
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of the waveguide width. It is observed that the highest Q-factor corresponds to

the lowest lateral leakage loss and the lowest Q-factor corresponds to the highest

lateral leakage loss.

It is therefore clear from Figure 4.7 (b) that by changing the waveguide width

it is possible to change the resonance bandwidth which is related to the Q-factor.

However, a consequence of changing the waveguide width is that the TM mode

effective index also changes, which means the coupling angle needs to be re-

evaluated if the resonance wavelength is to stay the same. Figure 4.7 (c) highlights

the relationship between the Q-factor and the waveguide width showing that it

can change over a wide range from less than 1000 to over 100,000 theoretically.

Figure 4.7 (c) also highlights that the waveguide lateral leakage loss has an inverse

relationship to the Q-factor. A high lateral leakage loss indicates a low-Q and

low lateral leakage loss indicates a high-Q. This supports the proposal that the

lateral leakage loss could be considered to be the loss associated with coupling in

and out of the resonant TM mode.

In summary, these results support the hypothesis that the Q-factor observed

in the reflection response of the thin-ridge waveguide can be significantly altered

by adjusting the waveguide width.

4.2.4.2 Dependence of Q-factor on waveguide height

The second waveguide dimension that has an effect on the lateral leakage rate or

loss is the waveguide height [14]. If the ridge height can alter the lateral leakage

rate then it should also alter the resonator Q-factor based on the relationship

observed between loss and Q-factor in Section 4.2.4.1

To test this, the waveguide Q-factor and lateral leakage loss was investigated

as a function of the waveguide’s ridge height. Using the same simulation method

as highlighted in Section 4.2.4.1, both the Q-factor and the waveguide loss were

evaluated for waveguides of varying ridge-height. A fixed waveguide width of

550nm was chosen and the ridge height was varied from 5nm to 105nm. The

maximum value was set to 105nm which is about half the waveguide core thick-

ness. This maximum height was chosen to minimise Fresnel reflections. It is not

unreasonable to assume that in silicon, an incident TE field on an abrupt transi-
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Figure 4.8: Waveguide resonator Q-factor and loss as a function of the waveguide’s
ridge height.

tion of half the waveguide thickness may cause significant Fresnel reflections. In

fact, strong reflective mirrors for Echelle gratings [141] are fabricated in silicon

by simply etching through the silicon layer. It is desirable that Fresnel reflections

are minimized when studying the resonance effects in thin-ridge waveguides since

they both cause reflection of an incident field. A 15nm etch depth on a silicon

waveguide would exhibit a fresnel reflection coefficient of less than 1% which is

negligible

Figure 4.8 shows the Q-factor and waveguide loss as a function of the ridge

height. What is notable is that the gradient of the Q-factor curve is decreasing

with increase in ridge height. The highest rate of change of the Q-factor is

observed at the smaller ridge heights. There is also a significant change in the

lateral leakage loss as the waveguide height increases.

One can observe the same trend in these results which indicated that the Q-

factor is inversely related to the lateral leakage loss similar to what was observed

in Section 4.2.4.1. The conclusion is that the ridge height also has a significant

effect on the thin-ridge waveguide’s Q-factor.
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4.2.5 Resonators of varying Q-factor but resonant at the

same wavelength and angle of incidence

In Section 4.2.1 it was shown that the infinitely wide TE beam must propagate

at a specific angle that allows it to couple to the TM guided mode of the thin-

ridge waveguide as was expressed in Equation (4.1). However, in Section 4.2.4

it was discovered that the Q-factor of the resonator is related to the waveguide

loss which is dependent on the geometry of the waveguide. If the width is varied

in order to adjust the Q-factor of a waveguide resonator, then it was seen in

Section 4.2.4 that the TM mode effective index would also change. Consequently,

for the resonance wavelength to remain the same, it was found that the infinitely

wide TE beam angle of excitation had to be changed as well.

If one were to try to use the thin ridge structure as a resonator with a partic-

ular TE beam, then it would be advantageous to be able to adjust the resonator

Q-factor without changing the resonant frequency or angle of incidence. This

leads to the question: is it possible to change a thin-ridge waveguide’s Q-factor

by altering the waveguide dimensions while the resonance wavelength remains

fixed and the angle of excitation also remains fixed? Such flexibility would enable

even more control of a thin-ridge waveguide’s resonance characteristics. Given the

very different forms of the relationship between resonator Q and the waveguide

width and height found in Section 4.2.4, it is proposed that this could be possible

on the basis that not only the waveguide width changes but also the waveguide

height. It is believed that if both of these dimensions of freedom are used, width

and height, it could be possible to maintain the same TM mode effective index,

which determines the TE phase-matching angle, while the Q-factor is altered.

To test this hypothesis, waveguides of varying Q-factor but a constant TM

mode effective index needed to be found and their wavelength response simulated.

The same simulation method described in Section 4.2.4.1 was used to evaluate the

waveguide Q-factor as a function of the waveguide dimensions. The waveguide

width was varied from 0.3µm to 1.5µm while the ridge height was varied over a

small range of 5nm to 30nm. The maximum ridge height value was decreased

from 105nm to 30nm since the maximum rate of change in Q-factor occurred at

the lower ridge heights as seen in Figure 4.8. Fresnel reflections would also be
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Figure 4.9: (a)Thin ridge waveguide resonator with dimensions t=200nm, width
w and height h. (b) 2D plot of the waveguide Q-factor as a function of the
waveguide dimensions of width and height. The contour lines show points of
constant guided TM effective index. (c) shows the amplitude of the reflection
coefficient as a function of wavelength for three waveguides with different Q-
factor but equal TM effective index (1.8).

127



4. Thin-ridge waveguide resonators and filters

minimal at smaller ridge heights. The slab waveguide thickness remained fixed

at 200nm.

In the simulation of Section 4.2.4.1, the imaginary part of the TM mode

effective index was used to find the lateral leakage loss. Therefore, the data of the

real part of the TM mode effective index was at hand. The TM mode effective

index data was therefore plotted as contour lines ontop of the 2D waveguide

Q-factor plot to highlight waveguide dimensions having a constant TM mode

effective index. The result of this process is shown in Figure 4.9 (b). It shows

that the contour lines of constant TM effective index traverse regions of varying

Q-factor.

For the second step three waveguides were selected from Figure 4.9 (b) having

the same TM effective index (NTM=1.8) but different Q-factors. The first waveg-

uide, selected from the lowest Q-factor region, had a width w1=400nm and height

h1 = 29.6nm. The second waveguide, selected from the median Q-factor region

had dimensions w2=550nm and h2=23.5nm. The third waveguide,selected from

the high Q-factor region, had dimensions w3=700nm and h3= 19.9nm. To simu-

late the wavelength response of these waveguides, the same eigen mode expansion

method was used as done before in Section 4.2.2. The phase-matching angle was

evaluated from Equation (4.1) since the TM mode and TE beam effective indices

had been obtained from the mode matching simulations. An infinitely wide TE

beam was therefore launched towards the three waveguides at the same angle of

49.29◦.

Figure 4.9 (c) shows the reflection coefficient amplitude as a function of wave-

length for the waveguides selected from Figure 4.9 (b). It shows that the three

waveguides are resonant at the same wavelength of 1.55µm when excited by the

infinitely wide TE beam propagating at 49.29◦. However, the three waveguide res-

onators have different Q-factors. The waveguide w1h1 has the widest bandwidth

of the three waveguides at 11nm and therefore the lowest Q-factor (Q=140).

Waveguide w3h3 has the narrowest bandwidth of 0.024nm and therefore the

highest Q-factor (Q=64583). Waveguide w2h2 has a bandwidth in the middle

of 2.7nm and whose Q-factor is also in the middle (Q=574). It should be noted

that Figure 4.9 (c) looks very similar to Figure 4.7 (b). The significant difference

is that in Figure 4.7 (b), the angle at which the infinitely wide TE beam was

128



4. Thin-ridge waveguide resonators and filters

launched towards the waveguide was different for each of the three waveguides

having different Q-factors. In Figure 4.7 (b), by changing the angle of excita-

tion, the resonance wavelength could then remain fixed. On the other hand, in

Figure 4.9 (c), all three waveguides of varying Q-factor were excited at the same

angle of incidence and the resonance wavelength remained fixed.

This shows that by selecting waveguides of varying width and height and

therefore loss, yet still having a fixed TM effective index, the waveguide band-

width or Q-factor can be varied while the TE coupling angle and the resonance

wavelength remain fixed.

4.2.6 Summary

In Section 4.2.3 it was shown that the thin-ridge resonators were effectively similar

to classical Lorenzian resonators, which could be modelled as LC circuits. In

Section 4.2.4.1 it was shown that the resonant properties of these thin-ridges

could be achieved by adjusting the waveguide width, but it was also necessary

to adjust the incident angle in order to keep the incident TE beam and TM

mode phase matched. In Section 4.2.5 it was shown that by introducing two

independent variables to the waveguide geometry - the waveguide width and

height, it was possible to adjust the waveguide Q-factor while keeping both the

resonant wavelength and the incident angle constant. These findings are very

significant. It is now possible to conceive a system with a single infinitely wide

TE beam that interacts with a sequence of parallel thin-ridge resonators that are

all designed to resonate at the same frequency but with Q-factors that can be

engineered by adjusting the waveguide width and height. In this situation, all of

the resonators would be coupled to each other via similar TE beams propagating

in the forward and backwards directions. This is a very similar arrangement

to a coupled resonator optical waveguide (CROW) or more generally a classical

elliptical filter prototype. The opportunity to design such a filter will be explored

in the next section.
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4.3 Optical filter design using thin-ridge waveg-

uide resonators

It has been shown in Section 4.2 that a thin-ridge waveguide behaves as a res-

onator when illuminated by an infinitely wide TE beam. It was also shown that

the Q-factor of a thin-ridge waveguide resonator is dependent on the waveguide

width and height dimensions. The possibility of being able to adjust the Q-factor

or bandwidth of a resonator opens up opportunities that can exploit the ad-

justable spectral filtering properties of a single resonator. A common application

of resonators is in the synthesis of filters as discussed in Section 4.1.2.2; especially

higher order filter responses. An individual thin-ridge waveguide resonator be-

haves as a filter of the first order. By cascading several resonators in a prescribed

topology it is possible to realize more complex higher order filter responses such

as Butterworth, chebyshev or elliptic filter functions [173, 177]. These filter func-

tions have desirable spectral features such as extremely sharp transitions from

the pass-band to the stop-band as well as minimal attenuation in the pass-band.

The synthesis of higher-order filters has been well established in microwave

electronics and can be done abstractly independent of the implementation of the

resonator [177]. The resonator can take any form such as a capacitor-inductor

lumped element resonator, a quarter-wavelength microstrip line, a dielectric cav-

ity resonator or an optical ring resonator. Provided the fundamental individual

resonator response is present, then conventional synthesis methods [177] can be

used to design a higher order filter response using any type of resonator. Some

of the optical filter synthesis methods that have been used [173] are indeed based

on the conventional microwave filter synthesis techniques. It was shown in Sec-

tion 4.2.3 that a thin-ridge waveguide has a fundamental resonator response sim-

ilar to that of canonical lumped element resonators.

The proximity of the resonators in a filter is also an important factor and de-

termines the type of filters that can be synthesized since the spacing between the

resonators strongly influences the out-of-band characteristics of the filter [177].

Optical ring resonators are large structures relative to the wavelength of oper-

ation. Cascading ring resonators together requires that the minimum center to

center separation has to be twice the ring radius without even taking into ac-
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count the evanescent coupling between the rings, which increases this separation

requirement further. For example, a ring resonator of 10µm radius requires a min-

imum separation of more than 20µm between cascaded resonators. This has been

identified as a limiting factor in the synthesis of filters using ring resonators [173].

It was shown in Section 4.2.3 that it is possible to design an individual thin-

ridge resonator to have equivalent properties to an LC resonator. Given that it

is possible to independently adjust the resonant properties of each of an array of

thin-ridge resonators while still having them coupled via the same infinitely wide

TE beam, the question arises: can the process used to design microwave filters,

and which has been used to design higher order optical filters [173], be used to

also design higher order thin-ridge waveguide based filters?

To synthesize a filter requires the selection of a specific number of resonators,

each having a specific Q-factor [173]. The filter order N specifies the number

of resonators required. The Q-factor of each resonator in the filter is obtained

from the low-pass prototype filter element values, also called g-values. These

g-values represent the relative Q-factors between the individual resonators in the

filter. The g-values are readily available from filter tables for either Butterworth

or chebyshev filters in most microwave filter synthesis books [177, 178]. As shown

in [173] the g-value directly corresponds to the Q-factor of each resonator by the

relationship;

Qq =
FSR

gq.B
(4.9)

where Qq is the Q-factor of the resonator q, in which q = 1...N . The FSR is the

free-spectral range. The g-value gq is the low-pass prototype element g-value for

each resonator and B is the filter bandwidth. The Q-factor Qq of each resonator is

evaluated at the same wavelength of resonance. It was found that the bandwidth

of each resonator q could hence be evaluated as

Bq =
1

2
gq.B (4.10)

If the separation between the resonators is set to an odd multiple of quarter

wavelengths [173] when cascaded, the response of the cascaded resonators to a
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specified input will result in a specific predetermined filter response. It was shown

shown in Section 4.2.5 that by using waveguides of varying width and height it

is possible to have thin-ridge waveguide resonators with varying Q-factors that

are coupled to an infinitely wide TE beam at the same angle. This also means

that they are resonant at the same wavelength. On this basis, it is proposed

that it should be possible to design complex higher order filters using thin-ridge

waveguide resonators.

4.3.1 Third-order Chebyshev filter

In this section it is investigated whether it is possible to design a very simple

higher order filter from thin-ridge waveguide resonators. The simplest filter to

synthesize after a single resonator filter is a third order filter because a second

order is actually more complex to design [177]. If the correct thin-ridge waveguide

resonators for a third-order filter can be obtained and cascaded in a parallel filter

topology, it is expected that the response should be similar to that of an ideal

third-order filter.

The filter synthesis method used in this section is the same method presented

in [173], which is an adaptation of the conventional microwave filter synthesis

approach. As an example, a third-order Chebyshev filter with a bandwidth of

1nm and a ripple size of 0.5dB in the pass-band was chosen. The 0.5dB ripple was

selected since the filter prototype values are readily available in a filter synthesis

book [177]. The 1nm bandwidth was selected because it is in a range similar to

those found for the thin-ridge waveguide resonators simulated in Section 4.2.5 and

should therefore be attainable. For the third order Chebyshev filter with 0.5dB

ripple and 1nm bandwidth the gq values obtained were g1 = 1.5963, g2 = 1.0967

and g3 = 1.5963. The corresponding resonator bandwidths were calculated from

Equation (4.10) and were found to be B1 = 0.798nm, B2 = 0.548nm and B3 =

0.798nm.

The next step was to find the three waveguide dimensions that have the same

TM mode effective index, meaning same resonance wavelength and angle, but

each with their own bandwidths B1, B2 or B3. To do this a search algorithm,

presented in Appendix A, was written which takes a given TM mode effective
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index and bandwidth. It then searches the 2D plot of Figure 4.9 (b) to find

waveguide dimensions on the contour line having the specified TM mode effec-

tive index evaluated using the mode matching technique. In this case, the TM

mode index of the waveguides in the third order filter was chosen to have a value

NTM=1.8. This effective index contour was seen in Figure 4.9 (b) to traverse a

range of widely varying waveguide Q-factors. Once the contour line of constant

TM mode effective index is found the algorithm then searches for the waveguide

height and width dimensions along this contour line that gives a resonance re-

sponse with the specified bandwidth. The response is evaluated using the eigen

mode expansion method and the bandwidth of this response is evaluated by fit-

ting the filter response to a Lorentzian function. A more detailed step-by-step

description of this algorithm is given in Appendix A. The width and height dimen-

sions that were found for the third order Chebyshev filter resonators are shown

alongside Figure 4.10 (a).

In the cascaded filter topology, the center to center separation between the

resonators must be equal to an odd multiple of quarter wavelengths [173]. There-

fore, the wall to wall separation (S) between two resonators was evaluated using

the technique outlined in Appendix A. Evanescent coupling can affect the reso-

nance response of the individual resonator by altering the individual resonators

TM mode effective index [13] and thus the wall to wall separation was made larger

than 5µm to minimize evanescent coupling.

The TE beam angle was evaluated as 49.29◦ as described in Section 4.2.5

and using the eigen mode expansion method the TE beam was launched at an

angle of 49.29◦ towards the three cascaded waveguide resonators illustrated in

Figure 4.10 (a).

As a comparison, the response of an ideal lumped element third-order Cheby-

shev filter, composed of parallel LC resonators as shown in Figure 4.10 (b), was

also simulated. The synthesis process that was used for designing this ideal LC fil-

ter is the conventionl microwave filter synthesis method [177]. The LC resonators

were separated by an ideal impedance inverter which is essentially a 90◦ phase

shifter. The response of this filter was evaluated by finding the input impedance

of the filter and evaluating the reflection and transmission coefficients [177]. A

comparison was then made between the transmission coefficients of the lumped
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Figure 4.10: (a) Waveguide topology of 3rd order Chebyshev filter composed of
three waveguides. (b) Schematic of a 3rd order lumped element (LC) Chebyshev
filter. (c) Shows the evaluated transmittance of the waveguide and LC filter
topologies and (d) highlights the ripple in the range between 0dB to -5dB.
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element Chebyshev filter and the thin-ridge waveguide Chebyshev filter.

Figure 4.10 (c) shows the transmission coefficient for the waveguide Chebyshev

filter and the ideal LC Chebyshev filter. Figure 4.10 (d) highlights the region from

0dB to -5dB. The ideal LC filter response has an exact ripple size of 0.5dB and

1nm bandwidth as was the design criteria for the filter. There appears to be a

very good agreement between the ideal LC filter response and the response of the

waveguide based Chebyshev filter.

There are some minimal differences observed in the two filter responses in

the ripple region and these could be numerical or phase errors. Nonetheless,

these results show that indeed it is possible to synthesize, with a high degree of

accuracy, a simple third-order Chebyshev filter utilizing thin-ridge waveguides.

It would be useful to investigate the minimal errors observed in the filter ripple,

whether they are phase related and increase with the filter order.

4.3.2 Fifth-order Chebyshev filters

The synthesis of a simple third-order Chebyshev filter using thin-ridge waveguide

resonators was shown to be possible in Section 4.3.1. The agreement between

the third-order response of the ideal Chebyshev filter response and the thin-ridge

waveguide filter was very good. However minor discrepancies were observable in

the waveguide filter response. It is important to investigate whether these minor

errors are constant and not dependent on the filter order or whether they scale

up with the increase in filter order.

A fifth order Chebyshev filter was synthesized using thin-ridge waveguide res-

onators. The target filter had a 1nm bandwidth and a ripple size of 0.5dB similar

to Section 4.3.1. The same method as described in Section 4.3.1 was used to

find the corresponding resonators for the filter and also to determine waveguide

separations in the filter topology shown in Figure 4.11 (a). For the fifth order

Chebyshev filter with 0.5dB ripple and 1nm bandwidth, the gq values obtained

were g1 = 1.7058, g2 = 1.2296, g3 = 2.5408, g4 = 1.2296 and g5 = 1.7058.

The corresponding resonator bandwidths were therefore evaluated from Equa-

tion (4.10) asB1 = 0.853nm, B2 = 0.615nm, B3 = 1.27nm, B4 = 0.615nm and

B5 = 0.853nm. The waveguide dimensions obtained for the resonators are shown
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alongside Figure 4.11 (a). As a comparison, an ideal fifth-order Chebyshev filter

was synthesized using lumped element resonators as was done in Section 4.3.1

and whose configuration is shown in Figure 4.11 (b).

Figure 4.11 (c) shows a comparison of the transmission coefficient for the

ideal fifth-order lumped element Chebyshev filter and the fifth-order thin-ridge

waveguide filter. From this perspective there is quite a good similarity between

the two responses. However, Figure 4.11 (d) highlights the 0dB to -5dB range

showing the ripples near the band edge of the two filter responses. The Chebyshev

filter was designed to have a 0.5dB ripple which is true for the ideal lumped

element filter but not for the thin-ridge waveguide filter. The ripple for the thin-

ridge waveguide filter reaches about 0.8dB in size which is an error of about 0.3dB.

This accounts for about a 60% error in the ripple size which is much greater than

what was observed in the third-order Chebyshev filter in Figure 4.10 (d). It

should also be noted that this error is observed in the second set of ripples rather

than in the first set which are closer to the band edge.

Since the algorithm used was the same for the third and fifth order filters,

the increase in error must be due to the increase in the number of resonators.

The main difference to consider between the third and fifth order filters is the

separation distance between the first and last resonators. As mentioned in Sec-

tion 4.3.1, the individual resonators are well separated by a distance greater that

5µm so as to minimize evanescent coupling between the waveguides which may

otherwise affect their individual resonance response.

Therefore, as the filter order increases the separation from the first to last res-

onator also increases. The separation between resonators is supposed to have an

optical length equal to an odd multiple of a quater wavelength (90◦) at resonance.

However, the optical length of the slab waveguide separating the resonators is a

function of wavelength. Therefore, the separation would acquire a slightly dif-

ferent optical length when the wavelength changes, which is essentially a phase

error. The larger the wavelength shift the larger this phase error would become.

This may explain why the error is bigger in the outer ripple of the filter response

rather than in the inner ripple nearer to the band edge.

This phase error is not observed in the LC filter response because the ideal

separation between the resonators is set to a 90◦ phase shift at all wavelengths,
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Figure 4.11: (a) Waveguide topology of 5th order chebyshev filter composed of five
waveguides. (b) Schematic of a 5th order lumped element (LC) Chebyshev filter.
(c) Shows the evaluated transmittance of the waveguide and LC filter topologies
and (d) highlights the ripple in the range between 0dB to -5dB.
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referred to as an ideal impedance inverter [177]. In fact wavelength dependent

phase error due to the separation between the resonators is a common problem

in microwave filter implementations when utilizing transmission line separations

between resonators in a filter [177]. In microwave engineering, there are ad-

vanced circuit design alternatives to using transmission line separations between

resonators [177]. For now, the thin-ridge waveguide filter is designed to use these

waveguide separations between the resonators. However, this provides room for

future work on how to ingeniously implement optical filters to overcome this phase

error problem.

In summary, this thin-ridge waveguide fifth-order Chebyshev filter response

can be considered to be realizable. However, there were errors in the pass-band

ripple which resulted in the 1nm bandwidth filter having a 60% error in the

ripple. It is believed that this error may be due to the use of separations between

the resonators which results in a phase error that is wavelength dependent. It

would be interesting to investigate if there are other alternatives to using wide

separations between the resonators as has been done in microwave electronics.

4.3.3 Effect of the separation between resonators on filter

response

It was shown in Section 4.3.2 that for a waveguide based fifth order Chebyshev

filter, an error exists in the ripple of the filter response. It was proposed that

this may due to a phase error caused by the wavelength dependent nature of

the optical length between the resonators. Since the separation is set to have

an optical length equivalent to a 90◦ phase shift at resonance, the phase error

becomes larger as the wavelength shifts further away from resonance. If this is

indeed the case, then an equivalent lumped element Chebyshev filter which has

similar transmission line separations between the resonators should have the same

response as the thin-ridge waveguide filter observed in Section 4.3.2.

To test this, the filter response of the fifth-order thin-ridge waveguide filter

observed in Figure 4.11 (c) and (d) was compared to an LC filter where the sepa-

ration between the LC resonators had been replaced with transmission lines. The

transmission lines had a fixed propagation constant over the entire wavelength
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range. The transmission line separations between the LC resonators were made

to be of equal length, and therefore phase delay, to those of the thin-ridge waveg-

uide filter. This topology is shown in Figure 4.12 (a). The separation values are

labeled as S1 and S2 which are equal to the center-center waveguide separation

in the filter topology of Figure 4.11 (a).

Figure 4.12 (b) shows the transmission coefficient of the thin-ridge waveguide

Chebyshev filter as well as that of the LC filter with transmission line separations

between the resonators. Similar to what was observed in Figure 4.11 (b), there

is very good agreement across the overall filter spectral response. Figure 4.12 (c)

highlights the 0dB to -5dB range, which shows more closely the ripple of the

Chebyshev filter response which was designed to be 0.5dB. There is a very good

similarity in the ripple of the thin-ridge waveguide filter and the LC filter which

has transmission line separations between the resonators. There are still some

minor differences similar to what was also observed for the third-order Chebyshev

filter of Section 4.3.1.

This small difference may be due to the dispersion of the waveguide mode

effective indices. This means that the mode effective index of both the incident

TE beam and the waveguide mode is not constant but varies slightly with wave-

length. The LC filter on the other hand was simulated with a transmission line

having a constant propagation constant at all wavelengths. This dispersion in

the waveguide is not in emulated in the LC filter and may be causing the slight

discrepancies between the two filters in Figure 4.12 (c).

From the results of Figure 4.12 (c), it is clearly evident that the error in

the ripple size that was observed for the fifth-order waveguide Chebyshev filter in

Figure 4.11 (d) is similar to that observed for the ideal LC filter with transmission

line separations. This affirms that this phase error is due to the transmission line

separations present between the resonators. Also, the phase error affecting the

ripple only has significant consequence farther away from the resonant frequency.

Limiting or reducing the bandwidth of the filter may be one way of decreasing

the effect of the transmission line phase error on the ripple.
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4.3.4 Narrowband Fifth-order Chebyshev filters

It was shown in Section 4.3.3 that the separation between the thin-ridge waveg-

uide resonators in a fifth order Chebyshev filter caused the errors seen in the

ripple of the filter response in Figure 4.11 (d). This phase error was shown to be

due to the wavelength dependence of the optical length in the separation between

the resonators. Farther away from resonance this phase error becomes larger since

there is a greater shift from the resonance wavelength. It would stand to reason

that reducing the bandwidth of the filter should therefore reduce this phase error

and therefore improve the accuracy of the filter response.

To investigate this hypothesis the bandwidth of the fifth-order 0.5dB-ripple

Chebyshev filter was decreased from 1nm to 0.3nm. The same simulation method

as in Section 4.3.1 was used to synthesize the filter. Exploiting Equation (4.9), the

bandwidths of the 0.3nm fifth-order Chebyshev filter resonators were simply eval-

uated by multiplying the 1nm fifth-order Chebyshev filter resonator bandwidths

of Section 4.3.2 by a factor of 0.3. Therefore, The individual resonator band-

widths changed to B1 = 0.256nm, B2 = 0.185nm, B3 = 0.381nm, B4 = 0.185nm

and B5 = 0.256nm.

From the resonator bandwidths, the waveguide dimensions of the thin-ridge

waveguide resonators were evaluated as in Section 4.3.1. The first and fifth waveg-

uide resonators had dimensions of w1=651.5nm and h1=20.8nm. The second and

fourth waveguide resonators had dimensions of w2=661nm and h2=20.6nm. The

third waveguide resonator had dimensions of w3=638nm and h3=21.1nm. The

waveguide separations S1 and S2 as depicted in Figure 4.10 were evaluated as

5.426µm and 5.433µm respectively. The filter wavelength response was then sim-

ulated when a TE beam was launched at an angle of 49.29◦ using the eigen mode

expansion technique. A comparison was made to the wavelength response of

the equivalent LC filter with ideal and transmission line separations between the

individual resonators.

Figure 4.13 (a) shows the overall transmission coefficient response for the

thin-ridge waveguide filter, the ideal LC filter and the LC filter with transmis-

sion line separations between the resonators. Figure 4.13 (b) highlights these

filter responses in the 0db to -5dB range. The maximum difference between the
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Figure 4.13: (a) Shows the transmittance of the 0.3nm waveguide filter as well as
that of the LC filter with ideal and transmission line separations. (c) Highlights
the filter response in the range between 0dB to -5dB.
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waveguide and ideal LC filter response in the ripple is approximately 0.1dB. In

comparison to the 0.3dB error seen in the 1nm Chebyshev waveguide filter in

Figure 4.11 (d), there is about a 60% reduction in the phase error. This is ap-

proximately equal to the 60% reduction in the bandwidth from 1nm to 0.3nm,

which means the improvement in phase error is almost proportional to the de-

crease in bandwidth. It is also noted that there is a slight difference between

the waveguide filter response and that of the LC filter with transmission line

separations.

As discussed in Section 4.3.3, the difference between the waveguide filter and

the LC filter with transmission lines is likely due to waveguide dispersion. How-

ever, the LC filter with transmission lines has a fixed propagation constant at all

wavelengths.

These results show that decreasing the filter bandwidth has reduced the phase

error observed in the ripple. This reduction in phase error in the filters ripple

is due to the fact that within the reduced bandwidth of the filter the transmis-

sion line separations between the resonators have an optical length very close

to 90◦. Therefore the transmission line separations behave as almost ideal (90◦)

separations between the resonators within this narrow filter bandwidth.

However, there is clearly a trade-off that must be made when designing higher

order filters from thin-ridge waveguide resonators when using waveguide separa-

tions. Increased bandwidth comes at a cost of increased phase errors. Smaller

bandwidths on the other hand result in a more accurate filter response.

4.4 Discussion

It should be emphasized again that the investigations of Chapter 4 on the thin-

ridge waveguide resonators and filters all used the approximation that the exci-

tation took the form of a slab mode. This slab mode is essentially a slab beam

of infinite width such that in the longitudinal direction of propagation, the TE

excitation that is incident on the waveguide structure is invariant. This approx-

imation is useful when analysing the resonance effect but is not realistic. In

practice, the excitation would take the form of a beam of finite width. It is ex-

pected that the frequency response characteristics such as the line width of the
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thin-ridge waveguide resonators and filters would be dependent on the shape of

the excitation beam used. Investigating the response of the proposed resonator

and filter structures of Chapter 4 using realistic finite width beam profiles would

be a recommended next research step before trying to experimentally demonstrate

the thin-ridge resonance effect.

Further, to improve the filter synthesis techniques used for designing thin-

ridge waveguide based filters, one important hurdle needs to be overcome. In

Section 4.3, a filter was synthesized by finding it’s constituent resonators hav-

ing specific Q-factors through a numerical approach described in Appendix 1.

Summarily, this numerical approach manually scans through a range thin-ridge

waveguide dimensions and evaluates their Q-factors to find the specific resonator

dimensions that give the desired resonator Q-factors of the filter. While this

process has been shown to work, it is not an analytic method and is not easily

scalable. A more desirable analytic approach would be to design the filter from

its fundamental basis, possibly describing it in poles and zeros form, and then

finding the necessary resonator coupling coefficients that would give the desired

filter response. An additional step would then be to relate the resonator coupling

coefficients to the physical thin-ridge waveguide dimensions. Such an analytical

synthesis approach would not only be elegant but also be easily scalable and

flexible.

The thin-ridge resonator has highlighted some advantageous characteristics

due to its topology that can be highlighted by comparing the proposed thin-ridge

waveguide resonator to the state of the art.

Free Spectral Range (FSR)

Interpretation: The spectral separation between resonance peaks. This is in-

versely proportional to the cavity length.

• Thin-ridge waveguide resonator: Is determined by the cross sectional width

of the waveguide since the resonant cavity is defined by the waveguide walls.

• State of the art waveguide resonators: In ring and disk resonators, the free

spectral range is dependent on the radius of the microcavity.

The small cross section of the waveguide means that the resonant TM mode
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of the waveguide has a very short optical path length or round trip within the

resonator resulting in a wide free spectral range. Unlike a ring resonator, a thin-

ridge waveguide resonator can have sub-micron dimensions per round trip, which

could potentially yield a much wider FSR than is possible for example with ring

resonators whose minimum radius is limited by bending loss.

Q-factor / Bandwidth

Interpretation: The Q-factor refers to the lifetime of a trapped photon within the

resonant cavity. The bandwidth is inversely proportional to the Q-factor.

• Thin-ridge waveguide resonator: The Q-factor of a thin-ridge resonator de-

pends on the TE-TM coupling coefficient of the waveguide. The coupling

coefficient is determined by the waveguide width as well as the etch depth

or height of the waveguide walls. Scattering loss from any random inhomo-

geneity such as sidewall roughness can also limit the resonator Q-factor.

• State of the art waveguide resonators: The Q-factor is dependent on the

coupling coefficient between the bus waveguide and the ring/disk resonator

which is controlled by their physical separation. Cavity losses such as scat-

tering loss and bending loss are factors that also limit Q-factor.

Q-factors in excess of 1,000,000 have been demonstrated for rings these have

very small coupling cooficients between the bus waveguide and the ring and the

Q-factor is limited by scattering loss. Conversely, the scattering loss in a ridge

resonator will be very low due to the very shallow ridge and the primary inter-

action of the TM mode with the polished top and bottom surfaces of the silicon

slab. The Q of the ridge resonator is rather limited by the length of the ridge

waveguide and thus it would be hard to imagine achieving Q-factors in excess of

about 1000 for a ridge with length in the millimeter regime.

Non-linearity

Interpretation: Refers to the ability of a resonator to enhance, inhibit or influence

non-linear phenomena within the resonant cavity which is dependent on field

intensity within the resonator.
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• Thin-ridge waveguide resonator: Is dependent on the length of the waveg-

uide resonator since the optical intensity is distributed along the waveguides

length.

• State of the art waveguide resonators: In ring and disk resonators, the

optical intensity is dependent not only on the size/radius but also on the

Q-factor due to the recirculation of light within the cavity.

The relatively low Q-factor that could be expected for ridges will ensure optical

intensity can be kept moderately low along the length of the thin-ridge waveguide

resonator thus minimizing non-linear effects. In rings, the much higher Q-factor

in the closed loop of ring/disk resonators can lead to intensity build up which

can enhance susceptibility to non-linear effects. In the case where nonlinearity is

desired a higher optical power could be used. In the case of a ridge resonator, the

optical power is delivered by a distributed TE beam only becoming concentrated

into a mode when interacting with the ridge resonator. This will ensure that

nonlinearity only occurs in the ridge itself. In the case of a relatively low Q-

factor ring, the nonlinear response of the nanowire waveguide interfacing the ring

might be significant.

Sensitivity to fabrication tolerance and environmental parameters

Interpretation: Refers to changes in resonator characteristics under the influence

of physical changes from fabrication or environmental effects.

• Thin-ridge waveguide resonator: Waveguide height and width, waveguide

separation and waveguide evanescent coupling are all dimensional prop-

erties that can affect the resonance characteristics of single or coupled

resonators. Temperature fluctuations are also expected to alter the TE-

TM phase matching conditions in the resonator thus shifting the resonance

wavelength. However, the resonant TM mode guided in the cladding would

not be expected to experience a significant thermal change due to the sili-

cons high thermal coefficient.

• State of the art waveguide resonators: A similar set of three properties in a

ring/disk resonator can also affect resonance characteristics. These are bus-
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ring waveguide separation, length of the bus waveguide between adjacent

resonators and the proximity of adjacent resonator waveguides such that

the two resonators are evanescently coupled. Temperature has a significant

effect in ring resonators by altering the rings optical length resulting in

a shift of the resonance wavelength. The coupling coefficient can also be

varied by temperature. There is a greter susceptibility in ring resonators to

thermal fluctuations since a TE mode is utilized which is strongly confined

in the silicon waveguide.

The generally lower Q-factor of ridges will lead to less sensitivity to envi-

ronment and dimensional variations than high Q-factor rings. However, even for

similar Q-factor rings, it is anticipated that ridge resonators would offer improved

robustness when compared to rings. Firstly, the susceptibility of the thin-ridge

resonator to temperature fluctuations may not be as significant as in ring res-

onators since the resonant TM mode in the thin-ridge waveguide has a significant

portion of its power in the evanescent field in the cladding (air) as opposed to the

resonant TE mode often used in ring resonators that is confined mostly in the

silicon. Secondly, the coupling between the TE beam and the TM resonance for

a ridge resonator is distributed over the length of the ridge, hence any geometric

or environmental variations will be averaged over this entire length. Conversely,

the coupler in the ring resonator is highly localized and thus small variations can

make a significant difference to the resonant properties of the ring. The coupler

for a ring also often relies on very precise and fine features in the gap which can be

subject to fabrication errors. Hence, rings often require active and independent

tuning of both the ring effective index and the directional coupler. This active

control may not be required for the ridge resonator.

Control of coupled resonator filter characteristics

Interpretation: This refers to the geometric parameters of a coupled resonator

system that can be exploited for engineering filter characteristics such as band-

width, FSR and extinction ratio.

• Thin-ridge waveguide resonator: Waveguide dimensions, which alter the

lateral leakage coupling strength, vary the amplitude of coupling in a cou-
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pled resonator system as well as the FSR. Independently of the waveguide

dimensions, the separation between resonators alters the phase of coupling

in a coupled resonator system.

• State of the art waveguide resonators: In ring coupled resonator systems,

the dimensions of the resonators determines the filter characteristics such

as the FSR, but also impacts the separation or phase of coupling that can

be obtained between adjacent resonators.

In coupled thin-ridge resonators, the resonator dimensions and separations

can be independently tuned to engineer the filter response which offers signifi-

cant flexibility when synthesizing coupled resonator filter systems especially when

compared to coupled ring resonators whose ring dimensions and separations can-

not be independently adjusted for filter synthesis due to their interdependence.

4.5 Conclusions and Future Work

This chapter was motivated by an observation made in Chapter 3 where a TE

beam incident on a thin-ridge waveguide grating structure appeared to be strongly

reflected in spite of a weak index perturbation at the interface of the grating

structure. In this chapter this reflection effect was analysed in a simple scenario

where the waveguides are well separated and not evanescently coupled unlike

the grating of Chapter 3. This effect was directly linked to a resonant TE-TM

coupling effect in the thin-ridge waveguide that results in a strong and sometimes

complete reflection of an Incident TE beam. An analysis of this periodic bandgap

structure ranging from closely-spaced evanescent coupling to long range coupling

via TE lateral leakage would constitute an entire investigation in its own right and

is proposed for future work. This section summarizes the findings and potential

applications of this resonant reflection effect.

In this chapter it has been shown that when an infinitely wide TE beam

is incident on a thin-ridge waveguide at an angle where it is phase matched to

the TM mode of the waveguide, it can be resonantly coupled to the TM mode

of the waveguide resulting in a strong reflection of the incident TE beam. It

was shown that this resonant reflection is wavelength dependent and that the
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spectral response in Lorentzian in shape. The Lorentzian resonance response of

the thin-ridge waveguide was also shown to be identical to that of an ideal LC

resonator in both amplitude and phase. It was also shown that the Q-factor

of the resonance response is dependent on the waveguide dimensions of width

and height. However, as a consequence of changing either the waveguide width

or height dimensions, there was an observable shift in the resonance wavelength

of the waveguide resonator. It was shown that in order to vary the thin-ridge

waveguide’s Q-factor without altering the resonance wavelength, it is necessary

for both the waveguide width and height dimensions to be adjusted such that

the TM mode effective index remains constant and consequently the angle and

wavelength of resonance also remains constant.

A significant benefit of being able to adjust the resonators Q-factor while

maintaining a fixed wavelength of resonance and angle of incidence is that it

is possible to consider the synthesis of higher order filters that require multiple

resonators to be cascaded or coupled together. It was shown that it is possible to

cascade thin-ridge waveguide resonators to synthesize higher order filter responses

such as third and fifth order Chebyshev responses. The cascaded resonators were

sub-wavelength in cross section and had a very small separation of about 5µm

between resonators resulting in a small filter cross section. As such it is believed

that it is possible to cascade a large number of thin-ridge waveguide resonators

into a small area on a chip.

A drawback that was identified is the fact that the bandwidth is also limited

for high order filters due to phase-errors that exist further away from the reso-

nance wavelength. It is believed that these phase errors can be further mitigated

if a technique is devised for cascading resonators with even smaller separations be-

tween adjacent waveguides. Such a technique would have to contend with strong

evanescent coupling between resonators which could alter the TM effective index

of the waveguide resonator.

It is also evident that the proposed approach of varying the waveguide height

and width to maintain constant TM effective indices in all the waveguide res-

onators makes fabrication of such devices more difficult due to the multiple waveg-

uide etch depths required. A proposed future investigation is to devise a different

approach for maintaining a constant TM effective index in the waveguides while
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still being able to adjust the Q-factor of the resonator. This new approach should

rely on using waveguide structures of a uniform height and can consequently be

fabricated in a single etch step.
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Chapter 5

Thesis conclusions and future
work

Summarizing the key points you can find in Sections 2.5 3.10 and 4.4, the main

motivation for this research was to investigate possibilities of exploiting the lat-

eral leakage radiation phenomenon, which is a TM-TE coupling effect present in

SOI thin-ridge waveguides. One primary goal was to investigate if the TM-TE

coupling could be used as a biosensor. This is due to the difference in the evanes-

cent field strengths between the TE and TM polarizations, which could be used

to sense refractive index changes on the waveguide surface. It was found that

the proposed taper sensor that utilises the lateral leakage effect was characteristi-

cally very similar to Mach-Zehnder Interferometric sensors. The main difference

was the fact that in the taper sensor, while the sensing arm is the TM mode of

a thin-ridge waveguide, the reference arm is coherent TE radiation that can be

collected and measured.

Another goal was to show that this inherent TM-TE coupling phenomenon

could be utilized for polarization conversion between the TE and TM polariza-

tions. The proposed grating polarization rotator was shown to be effective for

polarization conversion and that potentially its bandwidth and efficiency, like in

a conventional grating, could be controlled via the gratings parameters such as

number of periods, duty-cycle and even apodization. It was also identified that

there is a potential in the proposed grating for both polarization rotation and

splitting.

A consequence of the investigation on polarization conversion was that strong
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reflections were observed when a TE beam was incident on a thin-ridge waveg-

uide grating structure. It was believed that this behaviour was due to a resonance

effect. It was proposed that the thin-ridge waveguide, when illuminated by a TE

beam, fundamentally behaves as an optical resonator and that several of these

resonators could be cascaded to form higher order filters. Although long, one

benefit of thin-ridge waveguide resonator is its small lateral dimension which can

be sub-wavelength in width allowing realization of laterally compact coupled res-

onator topologies. This also means that the confined optical intensity, which is

distributed over the entire length of the waveguide can be kept moderately low

potentially minimizing non-linear effects. In addition to this, the small lateral

dimension of the waveguide means that the resonant TM mode of the waveguide

has a short optical path length which could potentially yield a much wider free

spectral range than is possible with other resonator types such as ring resonators.

Another significant benefit of thin-ridge waveguide resonators would be the small

height of the ridge sidewall which minimizes side-wall scattering loss and conse-

quently could enable higher Q-factor resonators to be realized. In addition the

susceptibility of the thin-ridge resonator to temperature fluctuations may not be

as significant as in ring resonators since the resonant TM mode in the thin-ridge

waveguide has a significant portion of its power in the evanescent field in the

cladding (air) as opposed to the resonant TE mode often used in ring resonators

that is confined mostly in the silicon.

5.1 Specific Outcomes

In Chapter 2 the biosensing capability of the lateral leakage phenomenon in thin

ridge waveguides was explored through simulation. The main finding was that

simulated biomolecules deposited on the surface of a TM propagating thin-ridge

waveguide had the effect of altering the angle of the TE radiation generated by

the waveguide. This was due to the fact that the TM mode, which is much more

evanescent than the TE slab mode, was more strongly perturbed leading to a

greater change in its phase velocity. The result was that the angle at which the

TM guided mode was phase matched to the TE slab mode, which is the angle
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that the TE radiation is launched at, also changed. The greatest rate of change

in the TE radiation angle was observed to occur for biomolecular deposition

near the surface. This rate of change decayed as the thickness of the simulated

biomolecules increased. This is not surprising since the evanescent field also de-

cays further away from the waveguide surface. However, this means that the

sensitivity of the TM-TE coupling effect is highest nearer to the waveguide sur-

face. A thin-ridge waveguide taper together with a lens structure was proposed

as a possible sensor topology for observing refractive index changes caused by

biomolecular deposition. It was shown through simulation that the TE radiation

from a radiating thin-ridge waveguide taper could be collected via the integrated

lens structure which focuses the TE radiation to an output waveguide positioned

at its focal plane. The main observation here was that a varying TE radiation

angle, caused by biomolecular deposition on the taper, shifted the focal point lo-

cation where the TE beam was focused to. This consequently altered the amount

of power coupled to the output waveguide. This provided a practical means

for observing refractive index changes caused by biomolecules at the waveguide

surface which altered the amount of power measured at the output waveguide.

However, measurement of absolute power can be unreliable due to its potential

susceptibility to fluctuations. It was proposed instead that the wavelength re-

sponse of the waveguide taper should be observed instead. It was shown that the

power coupled into the output waveguide was wavelength dependent. Maximum

output power was observed at a specific wavelength and decayed as the wave-

length shifted away from this central position. It was shown that this peak power

wavelength position would shift when biomolecules were deposited on the taper

surface. Consequently, it was possible to measure the wavelength shift associated

with the maximum power coupled to the output waveguide. This would provide

a more robust measurement technique for such a sensor topology.

Chapter 3 focused on the polarization conversion capabilities inherent in the

TM-TE coupling relationship of a thin-ridge waveguide. The primary objective in

this chapter was to devise a structure that could couple an incident TE beam into

the TM polarization. It was proposed that by using a holographic approach it

would be possible to design a polarization converting structure by overlapping the

incident TE beam to the TM beam which it should couple to. It was shown that
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if a TE and TM slab beam are superimposed, the resultant sinusoidal interference

pattern resembles a grating. This interference pattern had a Gaussian envelope

both along and across its profile. It was therefore expected that if such a structure

could be designed on a silicon slab waveguide, then illuminating this structure

with the original TE beam should generate the desired TM beam. To simplify

such a grating structure, a binary approximation was used where the period was

equal to that of the interference pattern but the grating height was uniform rather

than Gaussian-shaped. Such a binary grating profile would be more practical

to implement. The simulation of this structure using the eigenmode expansion

technique showed that an incident Gaussian TE beam was successfully converted

into the TM polarization. However, this conversion process occurred only within

the first few periods of the grating indicating that the conversion process was

occurring rapidly. Consequently, the TM beam launched from the grating had

a narrow aperture and was therefore highly divergent. It was proposed that

to generate a collimated Gaussian-like TM beam, similar to the incident TE

beam, the binary grating structure would need to be apodized. Apodization

was achieved by varying the duty cycle of the grating periods linearly. It was

shown that when a TE beam was launched towards this apodized grating, it was

efficiently converted into an equally collimated TM beam.

In Chapter 4, a subtle observation from Chapter 3 was investigated in which

strong reflection occurred when a TE beam was incident on the thin-ridge grating

structure. This reflection was greater than would be expected from conventional

Fresnel reflection. It was believed that this behaviour was caused by resonant cou-

pling between the incident TE field and the TM mode of the thin-ridge waveguide

structure. It was hypothesized that a similar reflection phenomenon would oc-

cur even when a single thin-ridge waveguide was illuminated by a TE slab mode

propagating at the correct angle to couple to the guided TM mode. A signifi-

cant finding of this investigation was that not only was strong reflection observed

when a thin-ridge waveguide was illuminated by a TE slab mode, but also vary-

ing the excitation wavelength resulted in a Lorentzian reflection response. This

spectral response was observed to be identical in amplitude and phase to that of a

conventional resonator of equal bandwidth. Another significant finding was that

the resonance quality-factor (Q-factor), which also corresponds to the resonance
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bandwidth, could be tuned by varying the waveguide width or height. However,

as a consequence of changing either the waveguide width or height dimensions,

it was necessary to adjust the incident angle to ensure that the TE beam re-

mained phase matched to the TM mode with different effective index due to

the change in either width or height. It was shown that in order to vary the

thin-ridge waveguide’s Q-factor without altering the required incident angle, it

was necessary for both the waveguide width and height dimensions to be adjusted

simultaneously, such that the TM mode effective index remains constant and con-

sequently the required incident angle and wavelength of resonance also remains

constant. Given the tunability of an individual thin-ridge waveguide resonator, it

was believed that it would be possible to design cascaded coupled resonators to

synthesize higher order filters with significantly sharper spectral responses than

is possible with individual resonators. Using traditional microwave-based filter

synthesis techniques, it was hypothesized that if resonators with the correct Q-

factors were cascaded and then illuminated with a TE field propagating at a

specific angle, it would be possible to obtain a higher order filter response such

as a Chebyshev response. A third-order and fifth-order Chebyshev filter were

synthesized by cascading thin-ridge waveguide resonators together. It was shown

through simulation that the third and fifth order Chebyshev filter responses of

cascaded thin-ridge waveguides were similar to that of an ideal filter. However,

another finding was that increasing the filter order from three to five had the

effect of distorting the observed filter response. It was shown that the distortion

in the fifth order filter response was due to phase errors away from the resonance

wavelength due to the wide filter bandwidth. It was shown that by keeping the

filter bandwidth narrow, the thin-ridge waveguide fifth order filter response kept

in good agreement with the ideal filter response.

5.2 Opportunities and future work

In all three chapters of this thesis, integrated optical structures were proposed

that exploit the lateral leakage effect in thin-ridge waveguides. Of immediate rel-

evance would be the fabrication and verification of these results through practical
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experiment.

While the biosensor topology investigated in chapter 2 could work in princi-

ple, the research work in Chapter 3 and Chapter 4 availed the opportunity to

develop much more sensitive and more compact potential biosensor topologies.

One example could be to investigate the utilization of the thin-ridge waveguide

filters in Chapter 4 as evanescent field biosensors due to their much sharper and

narrower wavelength response than those observed for the waveguide taper in

Chapter 2.

The polarization converting grating structure of Chapter 3 would be an inter-

esting structure to fabricate and test. However, it is a three-levelled waveguide

structure which would require multiple etch steps to fabricate. To make it easier

to fabricate, it is proposed that investigations should be first directed at simpli-

fying the grating structure into a two levelled structure that can be fabricated

in a single etch-step. It is also believed that this grating could be investigated

as both a polarization splitter and a rotator simultaneously. This is because if a

TE beam and TM beam are simultaneously incident on the grating structure at

an angle, it is expected that the TM beam should not interact with the grating

at all and should be transmitted with minimal perturbation. The TE beam, as

shown in Chapter 3, would be converted into the TM polarization and would be

ejected parallel to the grating which is in a different direction to the incidence

angle.

The work in Chapter 4 also opens up a significant opportunity for future re-

search due to the fundamental resonance behaviour observed in the thin-ridge

waveguide and the inherent advantages of such a resonator topology. Although

long, one benefit of thin-ridge waveguide resonator is its small lateral dimension

which can be sub-wavelength in width allowing realization of laterally compact

coupled resonator topologies. This also means that the confined optical intensity,

which is distributed over the entire length of the waveguide can be kept moder-

ately low potentially minimizing non-linear effects. In addition to this, the small

lateral dimension of the waveguide means that the resonant TM mode of the

waveguide has a short optical path length which could potentially yield a much

wider free spectral range than is possible with other resonator types such as ring

resonators. Another significant benefit of thin-ridge waveguide resonators would
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be the small height of the ridge sidewall which minimizes side-wall scattering loss

and consequently could enable higher Q-factor resonators to be realized. Thin-

ridge waveguide resonators also have several mechanisms for controlling coupling

in a coupled waveguide structure such as the physical dimensions of width and

height as well as the separations between resonator. This highlights the sev-

eral degrees of freedom that can be utilized when engineering coupled thin-ridge

waveguide resonator structures.

In regards to further investigations into this topic of resonance, it would be

important to verify the resonance behaviour of thin-ridge waveguides through

experiment. Another shortcoming identified is that varying the resonator Q-

factor by altering the waveguide width and height makes the fabrication of these

devices challenging. It would be more practical to develop a technique that varies

the Q-factor of thin-ridge waveguide resonators while keeping the waveguide etch-

depth constant. If a technique can be devised to vary a thin-ridge waveguide

resonator’s Q-factor while maintaining a constant waveguide etch depth, it would

be beneficial to investigate through experiment the proposed optical filters in

Chapter 4 using these uniform etch-depth resonators.

The ability to cascade several resonators together opens up several opportuni-

ties outside the scope of optical filtering for wavelength division multiplexing. As

was found in the literature survey of Section 4.1.1, optical resonators have been

exploited for various applications including optical sensing, lasers, non-linear de-

vices, delay lines, optical modulation and optical switching. It should be possible

to examine the thin-ridge waveguide resonator in these contexts.

In conclusion, the goal of this thesis was to investigate ways in which the

lateral leakage phenomenon in thin-ridge waveguides could be exploited for ap-

plications in photonics. Through simulation, it was found that the lateral leakage

phenomenon could be used for evanescent field sensing, polarization rotation and

for resonant optical filtering. Several opportunities have been identified for future

research but the most paramount would be the experimental verification of the

applications of lateral leakage radiation presented in this thesis. In light of this,

it is believed that the discoveries made within this thesis and the proposed future

directions should provide fertile ground for several future PhD studies.
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Appendix A

Filter synthesis using thin-ridge

waveguide resonators

In this appendix the filter synthesis methods used to design the chebyshev filters

in Chapter 4 are presented in more detail. The process of filter synthesis has

been well developed in the field of electronics and microwave engineering [177].

In optical engineering the filter synthesis methods from microwave engineering

have been exploited to design optical filters [173]. The common implementation

of optical filters has been with the use of ring resonator structures [179]. The

same synthesis approach from [173] was used to design higher order chebyshev

filters in Chapter 4 using thin-ride waveguide resonators.

The first step taken in the filter synthesis process was to select the desired

filter bandwidth and spectral shape. The filter shape is defined mathematically

by the commonly known butterworth, chebyshev or elliptic filter functions [177].

These filter functions differ from each other in terms of the steepness of the roll-off

from pass-band to stop-band as well as the ripple in these bands. The next step

was to select the required filter order N . The order of the filter N is equivalent

to the number of resonator elements that need to be included in the filter so as

to obtain the desired filter response. Generally, the higher the filter order the

steeper the spectral slope between the pass-band and stop-band. This enhanced
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steepness may come at a cost of more ripples in the passband or stopband [177]. A

detailed analysis of the filter functions and the filter orders is given in [177, 178].

Once the filter bandwidth, the filter function and the filter order had been

selected then the individual resonator parameters of bandwidth or Q-factor could

be determined. Obtaining the bandwidths of the N individual resonators that

comprise the N-order filter will be covered in the first section of this appendix.

The next subsection deals with the determination of the physical separation be-

tween the individual resonators in the overall filter topology.

A.1 Resonator selection

In Chapter 4, a third order N = 3 and a fifth order N = 5 filter were synthesized.

From the desired filter of order N , one obtains from traditional filter synthesis

the so called low-pass prototype filter element values commonly denoted as g

values. Each element q in the low-pass prototype filter has an ascribed gq value

where q = 1, 2..., N . These values were readily obtained from a corresponding

filter table for butterworth or chebyshev filters [177, 178]. As shown in [173] the
′g′q value directly corresponds to the Q-factor of each resonator. The bandwidth

of each resonator was evaluated as

Bq =
1

2
gq.B (A.1)

where Bq is the resonator half power bandwidth, gq is the low-pass prototype

element value and B is the half power bandwidth of the filter response.

Using the low-pass prototype filter tables in [177], the third order chebyshev

filter with 0.5dB ripple in Section 4.3.1 was found to have gq values of g1 =

1.5963, g2 = 1.0967 and g3 = 1.5963. Therefore, for the filter of 1nm bandwidth

in Section 4.3.1, the corresponding resonator bandwidths were evaluated using

Equation (A.1) as B1 = 0.798nm, B2 = 0.548nm and B3 = 0.798nm.

Similarly, for the fifth order chebyshev filter with 0.5dB ripple and 1nm band-

width in Section 4.3.2, the gq values obtained were g1 = 1.7058, g2 = 1.2296, g3 =

2.5408, g4 = 1.2296 and g5 = 1.7058. The corresponding resonator bandwidths
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were therefore B1 = 0.853nm, B2 = 0.615nm, B3 = 1.27nm, B4 = 0.615nm and

B5 = 0.853nm.

For the fifth order chebyshev filter with 0.5dB ripple and 0.3nm bandwidth

in Section 4.3.4, the gq values remained unchanged as g1 = 1.7058, g2 = 1.2296,

g3 = 2.5408, g4 = 1.2296 and g5 = 1.7058 because only the filter bandwidth

had been changed. Based on Equation (A.1), because the filter bandwidth B

changed, the individual resonator bandwidths also changed to B1 = 0.256nm,

B2 = 0.185nm, B3 = 0.381nm, B4 = 0.185nm and B5 = 0.256nm.

As discussed in Section 4.3, it is necessary for all the resonators of a filter to

be resonant at the same wavelength for a given input excitation. For thin-ridge

waveguide resonators this meant that all the waveguides needed to be coupled to

the TE slab mode at the same angle of incidence. It was shown in Section 4.2.5

that in order to alter the waveguide Q-factor, while still resonant at the same TE

slab mode angle of incidence, it is necessary to adjust both the waveguide width

and height. This approach was shown to be successful because it maintains

a constant value for the waveguide TM mode index and therefore a constant

coupling angle to the TE slab mode while the resonator bandwidth can be varied.

By working backwards, the known resonator bandwidth values could be used to

determine the required thin-ridge waveguide dimensions of height and width that

correspond to that specific Q-factor or bandwidth. To do this, an algorithm was

written to search and find the waveguide dimensions that yield a given Q-factor

or bandwdith for a fixed waveguide TM mode effective index.

Figure A.1 shows a plot of the waveguide TM mode Q-factor as a function

of the dimensions of height and width that was presented in Section 4.2.5. The

plot of Figure A.1 shows that there is a wide range of waveguide Q-factors and

therefore waveguide bandwidths that can be obtained with small changes in the

waveguide dimensions.

The green contour line on Figure A.1 shows the constant TM mode effective

index line TMNeff = 1.8, which contains a wide range of waveguide dimensions

of varying Q-factor and bandwidth. Therefore, waveguides having width and

height dimensions on this constant TM index line would not only have a range

of bandwidths but would also be resonant at the same TE slab mode angle of

incidence. From Equation 4.1, the resonant coupling angle was evaluated as
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Figure A.1: (a) Thin ridge waveguide resonator of width w, etch depth h and a
waveguide slab thickness t of 200nm. (b) 2D plot of the waveguide Q-factor as a
function of the waveguide dimensions of width and height. The green contour line
shows the waveguide dimensions corresponding to a constant TM mode effective
index.

49.29◦ for TMNeff = 1.8. An algorithm was written to automatically search this

constant TMNeff line for any of the required resonator bandwidths (or Q-factor)

to be used in the filters.

The logic used for the algorithm was based on the bisection method, which is

essentially a root-finding method. The method is described as follows. The first

step in the algorithm was to select a starting waveguide width W1 from the x-

axis of Figure A.1. Then two ridge heights (h1 and h2) were selected which reside

on either side of the TMNeff = 1.8 contour line. For these two waveguides of

similar width W1 but different heights h1 and h2, the magnitude of the reflection

coefficient was evaluated for each waveguide when an infinitely wide TE beam was

launched towards the waveguide at the angle of 49.29◦. The reflection coefficient
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was evaluated using the eigen mode expansion method described in Section 4.2.2.

Because the chosen waveguide dimensions would not necessarily have a TM mode

effective index of TMNeff = 1.8, the evaluated reflection coefficient should be less

than 100%. This is because only for the waveguide height where the TM mode

effective index is equal to TMNeff = 1.8 would the the reflection coefficient of a

TE slab mode launched at 49.29◦ equal 100%.

From these two starting points of W1,h1 and W1,h2, the gradient of the re-

flection coefficient magnitude was evaluated. This was done by changing the

waveguide height h by a very small offset. For example from W1,h1 to W1,h
′
1,

where the difference between h1 and h′1 is an order of magnitude less than h1. The

reflection coefficient was then evaluated at this second point W1,h
′
1. From the

original point W1,h1 and the slightly offset point W1,h
′
1, the reflection coefficient

gradient can be evaluated by taking the difference between the two reflection co-

efficients. It was either a a positive or negative value depending on which side of

the contour line the two points resided. Since both the points W1,h1 and W1,h2

were chosen to lie on either side of the TMNeff = 1.8 contour line, the reflection

coefficient gradients at these points were opposite to each other; this means that

one was negative and the other positive.

At this stage, the bisection method was used to find the midpoint between

W1,h1 and W1,h2. This was done by dividing the W1,h1 and W1,h2 interval into

two equal sub-intervals at a specific mid-point W1,h3. The reflection coefficient

and gradient was then evaluated at the mid-point W1,h3. From this result, one

of the two sub-intervals was selected as the new interval to be bisected again.

The interval selected, either W1,h1 to W1,h3 or W1,h2 to W1,h3, was determined

based on which one of the two points W1,h1 and W1,h2 had an opposite gradient

to W1,h3. Provided the two points defining the interval had opposite gradients,

the target waveguide height hx where TMNeff = 1.8 and the reflection coefficient

is 100% would be expected to lie within this new interval.

This process of bisection was repeated several times until the maximum re-

flection coefficient point was obtained with a high level of accuracy. This point

represented the waveguide dimensions W1,hx where TMNeff is approximately

equal to 1.8 and the reflection coefficient was close to 100%.

After having obtained the waveguide dimensions W1,hx, the next step was to
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determine its resonance bandwidth. This evaluated bandwidth could be used to

gauge the approximate range from the target bandwidth of the resonator being

sought. To evaluate the bandwidth of the resonator W1,hx, the assumption was

taken that the resonator’s reflection coefficient response was a Lorentzian function

as was investigated in Section 4.2.3. The Lorentzian function used was shown in

Equation 4.4. The reflection coefficient at two different wavelengths points was

evaluated, which was then used to simultaneously evaluate the bandwidth of the

Lorentzian function which represents the resonators bandwidth.

Now that the resonator bandwidth had been obtained atW1,hx where TMNeff =

1.8, this process was repeated for a new waveguide of width W2. Once the band-

width at W2 had been evaluated using the same aforementioned method, then it

could be determined whether the target bandwidth of the resonator gq resided

between W1 and W2. If not, a different width was chosen so that the target

bandwidth would reside between W1 and W2. At this stage one would now have

the bandwidths at two points on the TMNeff = 1.8 line and the desired target

bandwidth of the resonator would lie in between these two positions. The next

step was to again use the bisection method to subdivide this interval between

W1 and W2 and find the resonator bandwidth at the midpoint W3. After this,

one could determine in which sub-interval the target bandwidth resides, either

between W1 and W2 or between W2 and W3. This way, the bisection algorithm

was used to converge on the target bandwidth within a few repetitions with a

fairly high level of accuracy.

This was how the waveguide resonator dimensions were obtained having the

specific bandwidths needed for the third and fifth order chebyshev filters synthe-

sized in Chapter 4.

A.2 Evaluating resonator separation

In the synthesis of coupled resonator filters the separation between the resonators

has to be equal to an odd multiple of a quarter wavelength across the entire

frequency range of the filter [173].
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This can be expressed as

Sc =
π

4
(2m+ 1) radians (A.2)

where m is a positive integer.

In actual filter synthesis, this separation needs to be kept as close as possible

to an odd multiple of a quarter of the resonance wavelength λ0 over the entire

filter bandwidth. This minimizes phase error due to the wavelength dependent

nature of the phase delay for a specific separation distance. Therefore the com-

mon practice is to minimize the separation distance to minimize this phase error.

In the thin-ridge waveguide filters of Chapter 4, the minimum acceptable dis-

tance between the resonators was found to be around 5µm in order to minimize

evanescent coupling between the TM modes of the waveguide resonators [13].

The evaluated separation Sc between the thin-ridge waveguide resonators

specifies the center to center separation between two adjacent resonators. The

center to center separation between resonators needs to be an odd multiple of a

quarter wavelength at resonance. Therefore, the wall to wall separation which

is smaller than the center to center separation between two adjacent waveguides

needs to be evaluated to be around 5µm to minimize evanescent coupling.

Air 

Si 

SiO2 

Resonator 1 Resonator 2 

h1 h2 

w1 w2 

Sc 

y 

x 

Sw 

Figure A.2: Schematic of two cascaded waveguide resonators in a thin-ridge
waveguide filter topology highlighting the separation distance between the waveg-
uides.
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As shown in Figure A.2 the wall to wall separation between adjacent waveg-

uides Sw is therefore less than the center to center separation by half the waveg-

uide width of both adjacent waveguides. However, the TE phase velocity in

the core region of the waveguides is different from the TE phase velocity in the

slab. Hence, the phase contributions of the TE propagation within the core and

the slab regions need to be accounted for. Once this was done the wall to wall

phase separation was evaluated and then converted to a physical slab waveguide

separation. This is expressed in the equation below.

Sc = (kxTE1
w1

2
) + (kxTE2

w2

2
) + (kxTEslabSw) radians (A.3)

where kxTE1 is the x-axis wave-number of the TE slab mode in waveguide 1. kxTE2

is the x-axis wave-number of the TE slab mode in waveguide 2. kxTEslab is the x-

axis wave-number of the TE slab mode in the slab region between the waveguides.

From Equation (A.3) the wall to wall separation between adjacent waveguides Sw

was evaluated. This separation was adjusted by varying Sc through the parameter

m in equation A.2 so that Sw would be about 5µm wide to minimize evanescent

coupling between the resonators.
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Appendix B

Polarization converter

manuscript

This appendix shows the manuscript for some of the research work in this the-

sis that is in waiting for submission. This work is specifically related to the

polarization converter research that was the subject of Chapter 3.
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 

Abstract— We propose and numerically validate a new 

concept for conversion between TE to TM polarized beams using 

an array of thin shallow ridges on a SOI slab. Uniform and 

apodized arrays are analyzed and it is found that a linearly 

increasing array can effectively convert between collimated TE 

and TM beams. A small residual TE field was observed after 

conversion.  It is expected that suppression of this residual field 

could be achieved with more sophisticated apodization.  

 
Index Terms—silicon-on-Insulator (SOI) waveguides, apodized 

grating couplers, optical polarization conversion, lateral leakage. 

I. INTRODUCTION 

hin shallow ridge silicon-on-insulator (SOI) waveguides 

support strongly evanescent transverse magnetic (TM) 

polarized modes. These can be desirable for a number of 

sensing and hybrid photonic applications. However, these TM 

modes exhibit strong lateral leakage loss unless the waveguide 

widths are at one of the so-called ‘magic’ widths [1]. The 

lateral leakage is due to mode coupling between the guided 

TM mode and laterally radiating TE slab modes at the ridge 

boundaries [2]. It should be noted that lateral leakage radiation 

is not random radiation but is rather highly coherent. It has 

been proposed previously that this lateral leakage behavior 

could be utilized to achieve new photonic devices [3-5].   

 Practical integrated optic circuits require external interfaces. 

Grating couplers are gaining popularity; however, efficient 

TM grating couplers are generally complex and require deep 

etching [6]. Further, waveguide tapers are normally required 

to interface the large grating couplers to compact waveguides, 

but simple linear tapers exhibit strong lateral leakage [5]. 

The lateral leakage loss due to mode coupling at the 

waveguide boundaries can be avoided if TM-polarized light is 

transmitted in the form of an unguided collimated beam and is 

only coupled into ‘magic’ TM waveguides when necessary. If 

the collimated TM beam can be generated from a collimated 

TE beam, then it is possible to efficiently couple light in and 

out using a TE grating coupler together with lens structure [7].  

 In this letter, we propose and numerically test thin shallow 

ridge SOI structures that exploit lateral leakage to convert 

between TE and TM collimated beams within the silicon slab 

and show that a linearly apodized grating can be effective. 

 
The authors are with the Centre for Ultrahigh Bandwidth Devices for 

Optical Systems (CUDOS), School of Electrical and Computer Engineering, 

RMIT University, Melbourne, Australia. This work was supported in part by 

the Australian Research Council (ARC) under grant DP1096153 and in part 
by the ARC Centre of Excellence. 

  

II. PRINCIPLE OF OPERATION 

If the interference pattern formed between an image/object 

beam and a reference beam is preserved in some persistent 

medium, then illumination of this preserved interference 

pattern with the reference beam alone has the effect of 

regenerating the image/object beam including both its 

amplitude and phase in all three dimensions. This process is 

called holography. Holographic principles have been used for 

the design of planar integrated optic structures previously [8]. 

It is proposed that these principles may be used to design a TE 

to TM converter based on lateral leakage [1-2].  

Consider two Gaussian beams confined to a silicon slab as 

depicted in Fig. 1. One beam is confined vertically in the 

fundamental TE mode of the silicon slab, but is an unbounded 

Gaussian beam laterally, as shown in the lower and upper 

images of Fig. 1(a) respectively.  The other beam is confined 

vertically in the fundamental TM mode of the slab but is an 

unbounded Gaussian beam laterally, as shown in the lower 

and upper images of Fig. 1(b) respectively. If the propagation 

axes of the two beams are oriented such that they remain in 

phase along the axis of the TM beam (the z-axis), the z-

directed E field components of each beam will have a non-

zero overlap where the two beams intersect and the product of 

the two fields should appear as shown in Fig. 1(c). Vertically, 

the pattern is strongest at the top and bottom silicon surfaces 

with a null near the center of the silicon slab. Laterally, the 

pattern has constant amplitude along the z-axis (due to phase 

matching) but exhibits sinusoidal fringes along the x-axis and 

has the Gaussian envelope of the two original beams.  

A TE-TM Beam Polarization Converter 

for Silicon-on-Insulator Slab Waveguides   

Kiplimo Yego, Thach G. Nguyen, and Arnan Mitchell 

T 

 
Fig. 1. (a) The Ez field component of a TE gaussian beam propagating at an 

angle. (b) The Ez field component of a TM gaussian beam propagating in the 

z-axis direction in a SOI slab waveguide. (c) The Ez field component of the 

overlap between the TM and TE gaussian beams. 
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Drawing on holographic concepts, we predict that if a 

perturbation were implemented resembling Fig. 1(c), then 

illumination of this perturbation with a TE Gaussian beam 

with the same properties and angle of incidence as shown in 

Fig. 1(a) should generate a TM beam similar to Fig. 1(b). 

 We wish to test this hypothesis via rigorous numerical 

simulation, however, numerical simulation of a perturbation 

with the exact structure of the pattern of Fig. 1(c) would be 

challenging.  Thus, a number of approximations were made to 

simplify the structure of the perturbation with the result 

presented in Fig. 2. Firstly, we limited the location of the 

perturbation to the top silicon surface. We then approximated 

the sinusoidal interference fringes using two levels as shown 

in Fig. 2(b).  It should be noted that these two levels are 

equally above and below the thickness of the open Si slab in 

order to ensure that the average refractive index in the 

structure and the open slab are equal in order to minimize the 

effects of reflection and refraction. The envelope of the 

interference pattern was approximated as a simple rectangular 

step function as shown in Fig. 2(a).  

The structure of Fig. 2 appears to have the form of a 

grating.  However, the grating is not periodic along the 

direction of propagation of the desired TM beam, but is rather 

periodic across the beam’s width. This is as expected since the 

TE and TM beams are phase matched along the z-axis, 

however, the two beams are not phase matched along the x-

axis. For efficient coupling to occur, the two beams should be 

completely phase matched across the entire interaction area 

and the grating oriented along the x-axis provides this 

additional phase matching.  In order to be phase matched 

along the z-axis, the angle between the two beams should be  

 TETM NN1cos         (1) 

where NTE and NTM are the effective indexes of the TE and TM 

slab modes respectively. At this angle, phase matching along 

the x-axis would require a grating of period 

22

TMTE NN 



        (2) 

III. UNIFORM GRATING COUPLER  

Having predicted that a grating similar to that of Fig. 2 

should convert a TE beam into a TM beam, this Section uses 

rigorous numerical modeling to investigate the actual effect 

that such a grating will have on an incident TE beam.  

Fig. 3(a) illustrates the cross-section of the grating. With 

NTE=2.8058 and NTM=1.8223 [1], the angle of incidence of the 

TE beam on the grating was calculated from (1) as 49.5°. 

The grating period was calculated from (2) as 726.5nm 

with =1.55µm. The width was set to 80um to accommodate 

32um wide beams and thus the grating had 110 periods. 

The electromagnetic response of the grating structure was 

simulated using an in-house implementation of the fully 

vectorial eigenmode expansion (EME) method [9]. This 

simulation method has been previously used to model the TM 

to TE coupling behavior in thin-ridge silicon waveguide tapers 

[5]. The simulation window as shown in Fig. 2 was bounded 

in the x-y plane by perfect electrically conducting (PEC) 

walls. In EME, the field within a waveguide structure is 

discretized into a finite set of eigenmodes that exist within the 

boundaries of the structure. Any field propagating within the 

waveguide structure can be decomposed into this set of 

eigenmodes provided a sufficient number of eigenmodes are 

used. A full-vector mode matching method [2] was used to 

calculate the eigenmodes of each waveguide segment. To 

launch the TE beam into the simulation window, a canonical 

Gaussian TE beam profile rotated at an angle was expanded 

into the eigenmodes of the input slab waveguide structure. 

Fig. 3(b) shows the x-directed component of the electric 

field, which corresponds to the TE polarization. Before 

interacting with the grating, the Gaussian TE beam remains 

unperturbed and well collimated. After entering the grating 

region the amplitude of this TE beam decays rapidly over the 

first few ridges and a pair of narrow reflected and transmitted 

TE beams appear to be generated when the grating terminates.  

Fig. 3(c) shows the y-directed component of the electric 

field, which corresponds to the TM polarization.  There is no 

evidence of the TM beam until the TE beam strikes the 

grating. However the TM field is excited once the TE beam 

does interact with the grating. This is clear evidence of the 

conversion from TE-polarized field to TM-polarized field due 

to the grating. This TM beam is strong at the point where the 

TE beam strikes the grating, but rapidly decays within the 

grating region. The generated TM beam within the grating 

region continues to propagate once the grating terminates, but 

is very narrow and has an asymmetric profile causing it to 

diverge strongly when propagating over a long distance as 

shown in the inset of Fig. 3(c). 

The narrow aperture of the TM beam is a direct result of the 

strong, uniform grating used. When the TE beam is incident 

onto the grating, there is a sudden coupling of the TE field to 

the TM field. The amplitude of the TM field continues to 

increase due to continuous coupling from TE to TM. 

However, after a few periods, the TE field amplitude has 

reduced dramatically causing the drop of TM field amplitude. 

 
Fig. 2. (a) Plan view and (b) cross section view of the 3D simulation 
window. Here t1=220nm, t2=205nm and tslab=212.5nm. The perturbation 

structure was designed to resemble the interference pattern of Fig. 1(c). The 

TE beam within the silicon slab had a Gaussian form with a width of 32m 

and was launched towards the grating at an angle θ. 

 

 
\ 
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 The apparent reflection of the TE beam in Fig. 3(b) is 

surprising as care was taken to keep the effective index of the 

grating equal to the slab. To test whether this reflection could 

be conventional Fresnel reflection, an equivalent multilayer 

model was implemented. This showed that conventional 

Fresnel reflection from an infinitely long, equivalent index 

contrast grating would be negligible. Alternately, the observed 

reflected TE beam could be due to cascaded conversion of the 

TE beam to a TM beam and then back again.  The fact that the 

reflected TE beam is narrower than the incident TE beam and 

is more like the generated TM beam supports this hypothesis.  

The collimation of the generated TM beam can be analyzed 

by examining its angular spectral properties. The total TM 

field propagating through the uniform slab region can be 

expressed as a weighted superposition of the eigenmodes of 

the slab. The effective index of each eigenmode can be 

interpreted as propagation angle [5]. The eigenmode with 

effective index equal to the effective index of the silicon slab 

corresponds to a zero propagation angle. Fig. 3(d) shows the 

normalized TM field amplitude as a function of the angle of 

propagation exhibiting a broad peak centered at 0°. Like the 

field profile itself, the spectrum is also slightly asymmetric. 

The 3dB beam width was measured to be Δθ =1.3°. Some 

noisy spectral components are also observed at the wider 

angles and these are only 6dB below the central peak.  

The results of Fig. 3 show that, in principle, the grating of 

Fig. 2 could convert a Gaussian TE beam into TM radiation, 

however, the TM beam produced was narrow and asymmetric 

leading to high divergence when propagating over a long 

distance. These qualities of the generated beam were attributed 

to the rapid conversion of the TE beam into TM within the 

space of only a few periods of the grating. It is proposed that if 

the conversion can be achieved more gradually across the 

grating then the TM beam should be generated over a broader 

aperture and should hence have lower divergence.  

 

IV. APODIZED GRATING COUPLER 

In Section III it was shown numerically that a TE beam can 

be converted into a TM beam using a uniform grating 

structure, but that the generated beam was highly divergent 

due to the conversion occurring in a very confined region in 

the grating. It was proposed that the beam quality could be 

improved by apodizing the grating strength such that 

conversion was distributed across all of the periods of the 

grating creating a broad, canonical aperture for excitation of 

the TM beam. Such apodization techniques have been used 

previously on many optical coupling structures including 

tapers, gratings and dispersion compensators [5,10-11].  

It should be possible to vary the coupling strength of the 

grating by changing the duty cycle. The ideal profile to 

achieve a collimated beam would be a Gaussian window, 

however it would not be effective to simply set the grating 

strength to match a Gaussian since the excitation of the TM 

beam will be the product of both the grating strength and the 

amplitude of the TE driving beam which is reducing 

throughout the conversion process. As shown in [5], taking 

this effect into account an approximately Gaussian aperture 

can be achieved using a simple linear increase in coupling 

strength.  It is proposed that simply linearly increasing the 

grating strength in the current case will also produce an 

effective Gaussian apodization for the TM beam. 

 To test whether a linear apodization would improve the 

collimation of the generated TM beam, the uniform grating of 

Fig. 3(a) was replaced with a grating with linearly increasing 

coupling strength as illustrated in Fig. 4(a). The grating period 

and width of the grating were kept as 726.5nm and 80um, 

respectively. The duty cycle of the each grating period was 

linearly increased from zero to a maximum value, chosen so 

that at the end of the grating structure, all power in the TE 

beam has converted to TM beam. It was found that this 

condition can be met if the duty cycle of the last grating period 

is larger than 30%, and thus this was the duty cycle used on 

the last grating period. Using the method of Section III, we 

simulated the effect of illuminating the apodized grating when 

a TE beam is incident upon it at an angle of 49.5°.  

Fig. 4(b) shows the x-directed component of the electric 

field. Unlike Fig. 3(b), the amplitude of the TE beam does not 

drop abruptly when the TE beam strikes the grating. Instead, it 

slowly decays as it propagates through the grating. At the end 

of the grating, very little power is left in the TE beam. 

 
Fig. 3. (a) Uniform grating profile; (b) x-directed E field, corresponding to 

TE beam launched at 49.5°; (c) y-directed E field, corresponding to TM 

beam, Inset: TM beam propagating 1mm; (d) Angular spectrum of TM beam. 
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Fig. 4(c) shows the y-directed component of the electric 

field, which corresponds to the generated TM field. Similar to 

the case of the uniform grating of Fig. 3(c), inside the grating 

structure, most of the power from the TE beam is converted 

into a TM beam. However, unlike Fig. 3(c), the TM field 

slowly increases in amplitude to a peak at approximately the 

middle of the grating then slowly decreases. At the aperture of 

the grating, the generated TM beam using the linear grating is 

much broader than that generated from the uniform grating. 

The generated beam also appears to be relatively symmetric 

and approximately Gaussian. The resulting TM beam can 

propagate over a long distance in a silicon slab with low 

divergence as shown in the inset of Fig. 4(c). 

The angular spectrum of the TM beam was evaluated using 

the same method as described in section III. Fig. 4(d) shows 

the y-directed (TM) electric field amplitude as a function of 

the angle of propagation. Compared to Fig. 3(d), a far 

narrower angular spectrum of the TM beam is launched from 

the apodized grating. The TM beam mainly propagates along 

the z-axis. The sidelobes are 27dB below the main lobe. The 

3dB beam width was found to be Δθ = 0.74°. Both the 

sidelobe level and the beam width are much lower than those 

of the TM beam generated from the uniform grating as shown 

in Fig. 3(d).  This significantly improved TM beam proves the 

effectiveness of this simple apodization strategy.  

Fig. 4(b) shows that while most of the input TE beam has 

been converted, there is still some small residual TE polarized 

light appearing as both transmitted and reflected TE beams.  

These beams are far broader and weaker than those observed 

in Fig. 3(a) which could be attributed to the improved 

apodization. The beams appear to originate from the center of 

the grating, where the TM beam is strongest supporting the 

hypothesis that this is due to cascaded conversion of the TM 

beam back to TE. It may be possible to suppress this back 

conversion if the full form of the holographic apodization 

window of Fig. 1(c) were implemented. Testing this 

hypothesis would be difficult with eigenmode expansion and 

may be better suited to finite difference time domain. This 

simulation is proposed as future work.    

V. CONCLUSION 

We have proposed and numerically verified that a periodic 

array of thin shallow ridges can convert optical beams within a 

SOI slab between TE and TM polarizations. In order to 

achieve a highly collimated output TM beam, it is necessary to 

apodize the array of ridges. A linear increase in coupling 

across the grating proves quite effective.  We have observed 

unusual reflection of the input TE beam that we attribute to 

cascaded conversion of TE to TM and then back again. 

Further investigation of this effect is proposed as future work.  
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