
Detection of Illicit Behaviours and Mining for Contrast Patterns

 A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

David Savage

Bachelor of Mathematics and Statistical Science, La Trobe University

School of Science

 College of Science, Engineering and Health

RMIT University

July 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by RMIT Research Repository

https://core.ac.uk/display/98662675?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Declaration

I certify that except where due acknowledgement has been made, the work is that of the author alone;
the work has not been submitted previously, in whole or in part, to qualify for any other academic
award; the content of the thesis is the result of work which has been carried out since the official
commencement date of the approved research program; any editorial work, paid or unpaid, carried
out by a third party is acknowledged; and, ethics procedures and guidelines have been followed.

I acknowledge the support I have received for my research through the provision of an Australian
Government Research Training Program Scholarship.

David Savage

20 July 2017

Contents

Abstract ii

1 Introduction 1

1.1 General overview of example problem domains 2

1.2 Network analysis . 8

1.3 Contrast pattern mining . 9

1.4 Overall contribution . 10

1.5 Thesis structure . 11

2 Related work 13

2.1 Money laundering . 13

2.2 Opinion spam . 16

2.3 Detection of illicit behaviour in networks . 18

2.4 Contrast pattern mining . 20

3 Supervised learning for detection of suspicious financial communities 23

3.1 Network model . 23

3.2 Supervised learning applied to financial communities 31

3.3 Summary . 34

4 Detection of opinion spam through anomalous rating deviation 36

4.1 Detection of opinion spammers through consideration of majority opinion . . 37

4.2 Evaluation . 42

4.3 Summary . 51

1

5 Distributed mining of contrast patterns 52

5.1 Contrast Pattern Preliminaries . 53

5.2 Distributed CP-Growth . 60

5.3 Experiments with real data . 64

5.4 Summary . 70

6 Deriving item-based features from networks for analysis using contrast

patterns 72

6.1 Patten based clustering of networks . 73

6.2 Representation of networks as item-sets . 73

6.3 Applications to real data . 76

6.4 Summary . 84

7 Discussion and conclusions 86

7.1 Summary of research findings . 86

A Anomaly detection in online social networks 92

A.1 Introduction . 92

A.2 Related Work . 94

A.3 Problem domains for the application of anomaly detection in social networks 95

A.4 Definitions . 96

A.5 Characterisation of anomalies . 98

A.6 Methods for anomaly detection . 101

A.7 Discussion . 110

Bibliography 136

i

Abstract

This thesis describes a set of novel algorithms and models designed to detect illicit behaviour.

This includes development of domain specific solutions, focusing on anti-money laundering

and detection of opinion spam. In addition, advancements are presented for the mining and

application of contrast patterns, which are a useful tool for characterising illicit behaviour.

For anti-money laundering, this thesis presents a novel approach for detection based on

analysis of financial networks and supervised learning. This includes the development of a

network model, features extracted from this model, and evaluation of classifiers trained using

real financial data. Results indicate that this approach successfully identifies suspicious

groups whose collaborative behaviour is indicative of money laundering.

For the detection of opinion spam, this thesis presents a model of reviewer behaviour

and a method for detection based on statistical anomaly detection. This method considers

review ratings, and does not rely on text-based features. Evaluation using real data shows

that spammers are successfully identified. Comparison with existing methods shows a small

improvement in accuracy, but significant improvements in computational e�ciency.

This thesis also considers the application of contrast patterns to network analysis and

presents a novel algorithm for mining contrast patterns in a distributed system. Contrast

patterns may be used to characterise illicit behaviour by contrasting illicit and non-illicit

behaviour and uncovering significant di↵erences. However, existing mining algorithms are

limited by serial processing making them unsuitable for large data sets. This thesis advances

the current state-of-the-art, describing an algorithm for mining in parallel. This algorithm is

evaluated using real data and is shown to achieve a high level of scalability, allowing mining

of large, high-dimensional data sets. In addition, this thesis explores methods for mapping

network features to an item-space suitable for analysis using contrast patterns. Experiments

indicate that contrast patterns may become a valuable tool for network analysis.

ii

Acknowledgements

Thank you to my supervisors, Xiuzhen Zhang, Pauline Chou and Xinghou Yu. During my

time at RMIT I have been greatly inspired by your depth of knowledge and your commitment

to this project. I would especially like to thank Xiuzhen Zhang for the many interesting

conversations and for always supporting me as I tried out new ideas.

Thanks also to Qingmai Wang, who has been an excellent source of knowledge and ca-

maraderie.

The research presented in this thesis was undertaken with an industry partner, the Aus-

tralian Transaction Report and Analysis Centre. I would like to take this opportunity to

thank Claude Colasante for making this project possible and for his ongoing support. I

would also like to thank Francesca Jobson, Emma Young, Ajendra Dwivedi, Kimberly Day

and Mitko Stoyanov for their friendly advice and assistance.

Finally, I wish to thank my partner, Chantel, whose constant support and encouragement

has been invaluable in completing this project.

iii

Publications

Parts of the research described in this thesis have been published as peer-reviewed articles.

These publications correspond to thesis chapters as follows.

• Chapter 3: Savage, D., Wang, Q., Chou, P., Zhang, X. and Yu, X. Detection of Money

Laundering Groups: Supervised Learning on Small Networks. AAAI - AI and OR for

Social Good (2017)

• Chapter 4: Savage, D., Zhang X., Yu, X., Chou P., and Wang, Q. Detection of opinion

spam based on anomalous rating deviation. Expert Systems with Applications (2015)

• Chapter 5: Savage, D., Zhang X., Yu, X., Chou P., and Wang, Q. Distributed Mining

of Contrast Patterns. Transactions on Parallel and Distributed Computing (2017)

• Appendix A: Savage, D., Zhang X., Yu, X., Chou P., and Wang, Q. Anomaly detection

in online social networks. Social Networks (2014)

iv

1. Introduction

This thesis describes a set of novel data mining algorithms and domain models intended for

use in detecting illicit behaviour. Detection of illicit behaviour is a challenging area of research

due to the adversarial nature of the relevant problem domains. Entities that exhibit illicit

behaviour often attempt to mask their intent, hiding their illicit activities amongst legitimate

activity. In many situations, these entities have multiple options for achieving their goals,

with each option leading to quite di↵erent types of observable behaviour. Moreover, entities

may modify their activities over time, possibly in response to detection systems that target

particular behaviours.

Two problem domains are explored in this thesis as motivation for detection of illicit

activities; money laundering and opinion spam. Illicit activities associated with these problem

domains impose significant financial costs and, particularly in the case of money laundering,

significantly impact the wellbeing of society (further described in Sections 1.1.1 and 1.1.2,

respectively). Both of these problem domains continue to be active areas of research, with

data mining seen as a valuable tool for detection of the relevant behaviour. While these two

domains form the major focus of this thesis, the work conducted has lead to more general

advancements in data mining capabilities, and these advancements are also presented in this

thesis.

In some situations, detection of illicit behaviour may be trivially reduced to detection of

individual illicit actions. In these situations, actions may be linked to the entity performing

the action, and detection of an illicit action implies that the linked entity exhibits illicit

behaviour. For example, individual spam reviews may be identified by considering the text

of the review and comparing this to other known spam reviews (e.g. [141]). Obviously,

by identifying a spam review, the spam reviewer is also identified and action may be taken

against that reviewer. However, illicit behaviour may involve multiple actions that are only

1

identified as illicit when the full set of actions is considered as a whole. For example, a

single cash transaction slightly below the minimum reporting threshold may not be deemed

illicit. However, several such transactions by the same entity on the same day provides strong

evidence of illicit behaviour (this is referred to as structuring). In this thesis, focus is given

to detection of illicit behaviour, rather than illicit actions.

1.1 General overview of example problem domains

In developing solutions for detecting illicit behaviour this thesis considers anti-money laun-

dering and detection of opinion spam as example problem domains. Both money laundering

and opinion spam impose significant economic and societal burdens, and detection of illicit

behaviour within these domains continues to be an active area of research. A broad overview

of the two domains is given in the following sections, while chapter 2 provides an extensive

review of previous research directly relevant to this thesis.

1.1.1 Money laundering

Money laundering is the process by which criminal groups attempt to obfuscate the original

source of funds derived from illegal activity. Money laundering is a global problem, and has

numerous detrimental e↵ects on society. In particular, laundering of funds allows criminal

groups to realise a profit from their crimes, providing free capital that may then be used to

finance further criminal activity. In addition, money laundering can significantly undermine

confidence in financial systems and financial institutions, and damage local economies.

The term money laundering stems from the use of laundrettes as a front business for

organised criminal groups operating in the USA during the prohibition era [179]. However,

the act of obfuscating the source of funds, or the true owners of these funds, has a far longer

history [162].

In Australia, money laundering is defined as a criminal act with penalties set out in Section

2

400 of the Criminal Code. Provisions in the criminal code relate to both the proceeds and

instruments of crime, with severity of the crime dictated by the amounts involved and the

extent to which implicated parties were aware of the source or purpose of the illicit funds.

In recent years data mining and machine learning techniques have been shown to be

highly suited for detection of money laundering, owing to the large volumes of data and the

complex nature of transaction relationships (e.g. [90, 42, 100, 89, 188]). This thesis advances

the current state-of-the-art by modelling financial data as a transaction network and treating

small communities extracted from this network as observations for data mining and machine

learning. Since money laundering is inherently a group activity, evidence of money laun-

dering will often include multiple transactions and multiple interacting parties (individuals,

businesses, etc.). By analysing small communities it is anticipated that suspicious activity

may be uncovered that is not apparent when parties are analysed in isolation. This thesis

contributes models and novel algorithms for performing this type of analysis.

While money laundering is a global problem, this thesis will at times consider money

laundering from an Australian perspective. This reflects the fact that the research described

was conducted in collaboration with Australia’s financial intelligence unit, the Australian

Transaction Reports and Analysis Centre (AUSTRAC).

1.1.1.1 Scale and impact

Given the clandestine nature of money laundering, it is di�cult to estimate the extent of

the problem. In 2003, the World Bank estimated that at least US$1 trillion was laundered

each year. The US Drug Enforcement Administration (DEA) has estimated that at least

US$600 billion was laundered in 2003 (see [180, 21]). However, methods used to obtain these

estimates have been criticised [154], and it has been suggested that there is an over-emphasis

on estimating the amount of money laundered while more important measures are ignored

[105, 154]. One argument is that the various estimates are meaningless since they cannot

be compared; changes in estimates from one year to the next are likely to reflect di↵erences

3

in the estimating process rather than actual changes in amounts laundered [154]. However,

the more conservative estimates put forward by these critics still place the total amount

laundered at several hundreds of billions (US) each year.

While the extent of money laundering is disputed, it is widely accepted that unchecked

money laundering can severely damage economies and impose significant burdens on society

[155, 21].

At a local-scale, since successful laundering of illicit funds results in additional crime,

money laundering can be said to negatively impact on individuals’ health and wellbeing. In

addition, money laundering operations can have significant impacts on legitimate businesses,

who may be forced to compete with front businesses with no need to turn a real profit

[121]. Furthermore, since devices used for money laundering are often minor variations on

devices used by legitimate businesses, money laundering can impact consumer confidence in

businesses that use these products, and financial institutions that provide them 1 [17].

At the macro-scale, high levels of money laundering can distort economic data, making

it di�cult for policy makers and investors to make sound decisions [150, 161, 21]. Moreover,

money laundering syndicates may lobby for reduced regulation of certain financial services or

the introduction of new products that are suitable for laundering [17]. When combined with

high levels of corruption, such lobbying is likely to result in highly vulnerable economies.

In addition, increases in crime that follow from successful money laundering may negatively

impact consumption [8] and impose significant costs for health services and law enforcement.

1.1.1.2 The money laundering process

Organised criminal groups have shown themselves to be highly inventive in developing money

laundering typologies2. Any means by which funds can legitimately change hands can be

1For example, following release of the ‘Panama papers’ significant e↵ort was made to explain that the
individuals or corporations making use of o↵shore tax-havens were not necessarily criminals

2Typologies describe the relationships between various parties involved in a money laundering operation,
the flow of funds between them, and the specific channels and mechanisms used to transfer value. See for
example, [11]

4

corrupted for use by money launderers, leading to a multitude of options for transferring illicit

funds [60]. However, despite the diversity of typologies, the process of money laundering is

generally considered to follow three main stages; placement, layering and integration [10].

The placement stage of money laundering represents the introduction of funds obtained

through criminal activities into the financial system. Typically, this involves deposits that

are spread over time and geographical locations. Once the funds have been placed into the

financial system, layering is undertaken in order to hide the original source of the funds.

This stage includes numerous transactions, and often involves o↵shore accounts and complex

investment vehicles. In the final stage, integration, funds (or equivalent value) are transferred

to the actual owners, often in the form of investments or tangible goods (e.g. jewellery, high-

end cars, etc.).

Traditionally, criminals are considered to be most vulnerable during the placement stage.

This is because large volumes of cash can be di�cult to move and financial institutions are

typically quite sensitive to unusual behaviour relating to cash deposits 3 Moreover, those

parties involved in placement are more likely to be directly involved in predicate crimes, and

are therefore more likely to be identified through discovery of these crimes.

Once illegally obtained funds enter the formal banking system, layering and integration

can be achieved through the vast range of services that are available for movement of legit-

imate funds [10]. Traditionally, anti-money laundering programs have had limited success

in detecting money laundering during these later stages. However, it is hoped that further

research into the application of data mining techniques will improve detection capabilities in

these later stages.

In addition to the three stages of money laundering, AUSTRAC has identified four key

behaviours relating to money laundering activity in Australia [10].

3The financial action task force (FATF) recommends that anti-money laundering programs include manda-
tory reporting by remitters of cash deposits above a certain threshold and the submission of reports relating
to any suspicious behaviour. This includes behaviour observed by sta↵ at the time that the deposit is made.
In Australia, financial institutions must alert AUSTRAC to suspicious behaviour within 3 days (24 hours if
the matter relates to terrorism financing).

5

1. Criminal groups intermingle illicit and legitimate activity

2. Criminal groups engage professional expertise (lawyers, accountants, etc.)

3. Criminal groups engage specialist money laundering syndicates

4. Organised crime in Australia has strong links with international organisations

While data mining techniques hold much promise for detection of money laundering,

these four behaviours suggest that reliable detection poses a significant challenge. Clearly,

criminal groups actively seek to hide their money laundering activities, and the mingling of

illicit funds with legitimate funds means that suspicious behaviour will often look extremely

similar to non-criminal behaviour unless viewed in a suitable feature space. Moreover, the

engagement of finance professionals and money laundering specialists means that the layering

and integration stages are likely to involve complex financial instruments and investments

within a global market. This supports the notion expressed above, that evidence of money

laundering will necessarily include multiple transactions and multiple parties, requiring a

network-based approach for detection through data mining.

In this thesis, Chapter 3 describes a system for detecting suspicious behaviour in a finan-

cial network. This system provides an example for detection of illicit behaviour that results

from the coordinated activities of multiple individuals.

1.1.2 Opinion spam

Online product reviews, reporting others experience with a given product, can be extremely

useful for consumers making purchasing decisions. Given the bounty of choice available

in online stores, product reviews provide a helpful aid for consumers attempting to gauge

product quality and decide between di↵erent brands and di↵erent product models. However,

in recent years, opinion spam, consisting of fake reviews published by individuals with vested

interests, has become a major problem for consumers [84, 98, 72]. Opinion spam typically

6

involves the publication of fake product reviews for the explicit purpose of influencing a

buyers’ perceptions of quality and utility [84, 98]. By publishing numerous fake reviews,

opinion spammers attempt to artificially inflate consumers’ confidence that previous buyers

are satisfied with their purchase. Alternatively, spammers may attempt to create an artificial

belief that previous buyers of a competitors’ product have come to be dissatisfied with their

purchase.

Previous approaches to detecting opinion spam have tended to focus on analysis of re-

view text (see Heydari et al. [72] for a comprehensive survey of existing methods). These

approaches rely on the identification of duplicated passages of text occurring in multiple

reviews (e.g. Jindal and Liu [84], Lau et al. [101], Mukherjee, Liu, and Glance [131], and

Mukherjee et al. [132]), or consider multiple text-based features, using manually identified

opinion spam to train classifiers (e.g. Ott et al. [141], Li et al. [106], Ramkumar, Rajasekar,

and Swamynathan [151], and Fusilier et al. [53]). While these text-based approaches have

been used with success, they su↵er three major drawbacks [2]. First, detection of repeated

text requires expensive comparisons, and without first narrowing down the selection of can-

didates the number of comparisons required may quickly become infeasible. Second, new

training data is often required for di↵erent product domains (e.g. hardware products vs

restaurant reviews), and third, manual identification of opinion spam for use in training can

be an expensive and time-consuming undertaking. Moreover, many rating systems in use

today require only a rating (typically expressed as a binary good/bad or as 1 � 5 stars),

with a text-based review optional (e.g. the Apple App Store), or not possible at all (e.g.

the Facebook ‘like’ system). Thus, there is a need to develop methods for detecting opinion

spam based solely on ratings [2].

Many online shopping services display the mean rating for available products, and this

has been shown to be a key piece of information used by consumers in making their purchas-

ing decisions [32]. Thus, one way in which opinion spammers attempt to alter consumers’

perception of quality is to manipulate the mean rating for a target product. By generating

7

multiple reviews that appear to have originated from di↵erent users, spammers are able to

significantly distort the mean rating [2, 131]. However, in doing so, spammers are often

required to post ratings that are at odds with those of honest reviewers, and consequently

opinion spammers can be expected to have an abnormal number of reviews that significantly

di↵er from the mean rating.

In this thesis, a novel approach to detection of opinion spam is proposed that focuses on

review ratings (e.g number of stars). This approach detects opinion spammers by identifying

anomalous patterns of rating behaviour. Consequently, this approach is suitable for use in

rating systems where a text review is not provided.

1.2 Network analysis

In chapters 3 and 6 machine learning is applied to information-rich networks. The term

information-rich4 refers to networks that include multiple edge and vertex attributes describ-

ing the entities in the network and the relationships between them.

A key challenge in applying machine learning to information-rich networks is the develop-

ment of features that capture both structural and non-structural information. In chapter 3,

the structure of financial networks is represented through invariants such as diameter, girth,

clustering coe�cient, etc., while information held in the network attributes is represented

through a separate set of features. Separating the structural and non-structural features

in this way provides a simple, easily calculated summary of the networks. However, this

approach fails to capture the relationships between local structural elements and attribute

values within these elements. In Chapter 6, an alternative method for generating network

features is explored, which attempts to capture some of the information held in these rela-

tionships.

4Alternatively, information network [57], heterogeneous information network [175], complex network [19],
or multi-dimensional network [200]

8

1.3 Contrast pattern mining

Contrast patterns (also known as emerging patterns) are mined in order to identify significant

di↵erences between two contrasted sets of data. Contrast patterns are able to capture highly

discriminative information, and have previously been shown to be useful for wide range of

data analysis tasks, including exploratory analysis, supervised and unsupervised learning and

outlier detection [39, 46, 108, 197, 37]. Moreover, contrast patterns are easily interpretable,

providing a succinct, easily understandable description of the di↵erences between contrasted

sets. This makes contrast patterns particularly useful for mining illicit behaviours such

as money laundering, where analysts are expected to further investigate candidate cases.

Contrast patterns provide a clear indication of how the particular entity di↵ered from the

normal population, providing a starting point for further analysis.

To date, advances in contrast pattern mining have come in the form of highly-optimised

data-structures (e.g. [38, 46, 111]), additional constraints for pruning the search-space (e.g.

[198, 177]), or extensions to particular types of data (e.g. [94]). For sparse, relatively low

dimensional data, the resulting algorithms are extremely e�cient; able to identify highly-

discriminating contrast patterns in a matter of seconds. However, existing algorithms are

designed to run in a sequential manner on a single machine. Consequently, these algorithms

do not have the scalability required for mining next-generation databases. With the growing

trend towards Big Data and cloud based systems, algorithms for contrast pattern mining must

be able to scale with the underlying system and be able to handle high density, high volume

and high dimensionality. Since existing algorithms are unable to meet these requirements,

there is a substantial need for development of new algorithms to meet ongoing demands.

There are two main challenges to mining contrast patterns in large databases, relating

to both the volume and the dimensionality of the database. First, high volume databases

are likely to be stored in a distributed fashion, typically optimised for use with distributed

analytics platforms based on map-reduce. Existing approaches for mining contrast patterns

9

do not support these types of systems, relying on a global access to the underlying database.

Second, even if the target database sits on a single machine, high-dimensional databases are

likely to result in a search-space that is prohibitively large if processed in a sequential manner.

In mining for contrast patterns, dimensionality, rather than volume of records, determines

the size of the search-space. Small increases in dimensionality lead to large increases in the

number of possible patterns, greatly increasing the time required for mining to be completed.

In this thesis, both of these issues are addressed, and a novel algorithm is developed that

enables mining of contrast patterns to be performed in a distributed manner.

1.4 Overall contribution

The project was undertaken in collaboration with an industry partner, the Australian Trans-

action Reports and Analysis Centre (AUSTRAC). As such, the models and algorithms de-

veloped are largely intended to address AUSTRAC’s specific capability requirements and

some of the outputs from this project are directly applicable within AUSTRAC’s intelligence

environment.

The specific contributions of this thesis include:

1. Development of a system for detecting suspicious communities in a financial network.

This system models transaction reports submitted to AUSTRAC as a typed, attributed

network and extracts communities from this network using a method that incorporates

AUSTRAC business knowledge. Supervised learning is then applied to detect com-

munities exhibiting suspicious behaviour. Evaluation of this system indicates that the

resulting classifier performs well and is able to identify suspicious communities with

high precision.

2. Development of a novel method for detecting opinion spam in online product reviews.

Previous methods for detecting opinion spam have focused on analysis of review text,

however text is not always available, and many review systems consider only numeric

10

rating (e.g. 5-star rating systems). The developed method considers only ratings,

and applies statistical anomaly detection to identify reviewers with unusual rating be-

haviour. Evaluation indicates that this method is e↵ective in identifying spam reviews.

3. Design and implementation of a distributed algorithm for mining contrast patterns.

Contrast patterns are a valuable tool for knowledge discovery, describing the significant

di↵erences between related sets. However, existing methods are designed to run on

a single computing device, limiting their application to large data sets. As part of

this project, a novel algorithm has been developed which is capable of running on a

distributed system. Timing experiments with AUSTRAC data show that this algorithm

provides significant improvements over existing solutions and demonstrates a high level

of scalability.

4. Consideration of contrast patterns as a tool for network analysis. Contrast patterns

provide an extremely flexible tool for analysing sparse data, however previous applica-

tions have tended to focus on non-network problem domains. This thesis presents an

exploration contrast patterns as a tool for network analysis. This includes mapping of

networks to a suitable item-space that captures relationships between network struc-

ture and the information held in edge and vertex attributes. Experiments with real

data demonstrate the potential for using contrast patterns in this way.

1.5 Thesis structure

The remainder of this thesis is structured as follows.

• Chapter 2 provides a survey of related work. This chapter provides a detailed explo-

ration of the current state-of-the-art that serves as a basis, and point of comparison,

for the novel data mining algorithms and domain models presented in this thesis.

• Chapters 3 - 6 describe the major work undertaken as part of this thesis.

11

• Chapter 7 provides an overall summary of the thesis, including suggestions for future

work.

• Appendix A presents a survey on anomaly detection in networks. This survey stems

from the work presented in Chapter 3, which considers analysis of networks using

supervised learning. Anomaly detection can be considered as an alternative approach

that is highly applicable to the money laundering problem domain. In order to better

understand this alternative approach, a survey of available literature was conducted.

Since this survey covers a broad range of issues outside the main topics of this thesis,

it is included as a separate appendix.

12

2. Related work

This chapter provides a review of current literature related to the detection of money laun-

dering and opinion spam, and to contrast pattern mining.

2.1 Money laundering

Existing literature relating to money laundering research can be roughly divided into three

categories; (1) quantification, (2) evaluation and (3) methods for detection.

Category 1 consists of a large body of work devoted to quantifying the extent of money

laundering and it’s impacts on society (e.g. [183, 184, 160]). Within this category, there is

significant debate regarding the methods used and whether or not there is actually any value

in attempting to estimate the amounts laundered (e.g. [154, 105]).

Category 2 contains those studies that attempt to evaluate existing anti-money laundering

policies and programs (e.g. [112, 134, 34, 36, 119, 182]). Clearly, this work is closely related

to that in Category 1, as any evaluation must consider how these programs are reducing

the extent and impact of money laundering. This category contains significant criticism

of existing approaches (e.g. [112, 155]), suggesting that the cost imposed by anti-money

laundering regimes is disproportionate to the level of demonstrated success. In part, this

stems from the high diversity of channels available to criminals for laundering illicit funds;

attempts to closely monitor one channel may simply result in criminals switching to another

[179]. In addition, recent reports have criticised the strong focus on predicate crimes (i.e.

the crime that generates funds to be laundered), suggesting that resources may be better

allocated by focusing directly on detection of money laundering [34, 119].

Finally, Category 3 deals with the actual detection of money laundering by law-enforcement

and intelligence agencies. This includes studies of money laundering typologies (e.g. [11, 78,

13

69]), emerging threats (e.g. [130, 20, 171]) and the use of computational techniques for au-

tomated detection (e.g. [88, 40, 58, 93, 89]). The work presented in this thesis falls within

this third category, contributing novel methods and algorithms for detection.

2.1.1 Automated detection

Traditionally, discovery of a predicate crime has often resulted in simultaneous discovery of

the mechanisms used for laundering the proceeds of these crimes. However, more recently,

these two aspects of organised crime have become increasingly separated (e.g. use of money

laundering syndicates [10]). In response, an increased emphasis has been placed on detecting

money laundering without knowledge of the predicate crime [48, 34]. Similarly, there is

an increased focus on terrorism financing, where the funds in question are an instrument

of crime, rather than the proceeds of crime. Consequently, detection of money laundering

per se has become a major goal for intelligence and law enforcement agencies [17]. Given

the volumes of data involved, data mining is seen as a necessary component of investigative

procedures [88, 89].

One of the earliest reports of an automated system for detecting money laundering applied

rule-based evaluation to identify suspicious parties [165]. The rules used by this system were

derived from expert knowledge and encoded in an evaluation module that was run each time

the target database was updated. Parties matching the provided rules would then be further

investigated by analysts using an interactive query interface and a variety of visualisation

tools provided by the system. More recently, Wang et al. have described an alternative

rules-based system, where rules are encoded using a decision tree [186].

While rule-based systems may be highly accurate, they are dependent on expert knowl-

edge, and cannot be used to uncover new typologies (i.e. modes of operation). Given the

wide variety of money laundering typologies, and the potential for rapid evolution, this is

a major drawback for these types of systems [56]. Later systems have addressed this issue

by applying more flexible approach based on a combination of supervised and unsupervised

14

learning. Many of these systems follow a basic premise, first embraced by Kingdon [93],

which centres on the notion of ‘know your customer’ and the use of anomaly detection for

identifying money laundering behaviour.

In these later systems, two main contexts have been considered for deriving models of

normal, non-suspicious behaviour. The first context is provided by the transaction history

for a given party, while the second context is provided by sets of parties exhibiting similar

behaviour. In the original system described by Kingdon, grouping of parties into related sets

was based on a small number of superficial features such as the use of similar banking prod-

ucts, or sets of businesses providing the same service. Later systems have greatly improved

on this scheme, applying distance-based clustering across a far broader range of features (e.g.

[203, 88, 196, 152]).

In contrast to an anomaly detection approach, a number of systems apply supervised

learning to identify suspicious behaviour (e.g. [113, 71]). In general, these systems are

expected to provide a higher degree of precision than those based on anomaly detection, since

anomalous behaviour does not necessarily translate to money laundering activity. However,

unlike those based on anomaly detection, these systems can only identify suspicious behaviour

that is similar to that observed in previous investigations.

To date, the majority of systems reported in the literature have focused on individual

parties, considering amounts transacted, frequency of transactions, etc. However, more recent

studies have begun to adopt a network-based approach, considering features derived from the

structure of a transaction network.

For example, the system described in [41] uses role assignment to augment a more tra-

ditional approach based on anomaly detection (described in [42]). Using bank statements,

a social network is constructed with parties linked by transactions. For each party in the

network a number of invariants (betweenness centrality, page rank, etc.) are calculated. A

role is then assigned to the party depending on the values of these invariants. Examples of

roles include insulators, who act as a bu↵er between a core group of parties and the larger

15

network, and communicators who act as a conduit for movement of funds between two oth-

erwise unconnected parties. Assigned roles are then taken into account when considering the

normality of a given parties transactions, with parties having the same role expected to show

similarities in their transaction histories.

Taking the structural considerations even further, the systems described in [15, 123] aim to

identify subgraphs within a network that closely match known typologies . In these systems,

the use of fuzzy matching means that subgraphs may deviate in some way from the given

typology, providing greater flexibility than a simple motif search.

2.2 Opinion spam

Previous approaches for detection of opinion spam have typically involved supervised or

unsupervised learning based largely on text-based features [72]. While many of these ap-

proaches include some non-text-based features, the major focus to date has been on features

such as n-gram counts and cosine similarity. Using these types of features, a wide variety

of supervised and semi-supervised classifiers have been described [106, 141, 109, 53]. These

classifiers are able to successfully identify spam with a high degree of accuracy, however,

in order to perform required training, these studies rely on manual labelling of reviews by

domain experts, which is a time-consuming and costly endeavour.

To overcome the di�culties associated with manual labelling, an unsupervised approach

has been proposed that applies an unsupervised Bayesian framework to detection of opinion

spammers [131, 132]. In this framework, the spamicity of each reviewer is modelled as a

latent variable in a hierarchical model including both text- and non-text-based features.

Experiments with real data sets showed that this approach is able to accurately identify

opinion spammers, with posterior analysis suggesting that discrimination between spammers

and non-spammers is largely driven by text-based features. However, we note that this

posterior analysis also showed that rating deviation was an important aspect of spammer

16

behaviour, and suggested that rating deviation may be more useful in separating spammers

from non-spammers than consideration of early reviews and reviews consisting of extreme

ratings.

While the vast majority of previous work has focused on text-based features, one excep-

tion is the FraudEagle algorithm [2], which has been shown to successfully detect of opinion

spammers using only product ratings. The FraudEagle algorithm uses a graph-based repre-

sentation of the product-review system, with reviews represented as edges between reviewers

and products. FraudEagle applies an iterative approach to spammer detection, whereby the

inter-dependency between perceived product quality and the spamicity of reviewers is re-

solved by updating scores for a given vertex, and then propagating this update along edges

in the graph, converging when the scores for each vertex becomes consistent with its neigh-

bours’ scores. A similar approach is also proposed in Wang et al. [185], however this study

deals with reviews of retail stores, which can change in quality over time, requiring the timing

of reviews to be taken into account by the detection algorithm.

In detecting opinion spammers, the FraudEagle algorithm relies on a set of parameters

describing the di↵erent behaviour of honest reviewers and spammers. These parameters are

di�cult to estimate a priori, and are consequently set to arbitrary values [2]. In this the-

sis, a significantly di↵erent approach is taken to that of FraudEagle, which eliminates the

requirement for these parameters, and does not require a graph representation of the system.

Instead a binomial model of reviewer behaviour is fit to the target set of product ratings,

resulting in a more accurate representation of reviewer behaviour, and at the same time

greatly reducing the computational requirements.

In addition to those works focusing on opinion spam, related work is also found across a

wide range of problem domains through the shared use of statistical anomaly detection. For

example, statistical anomaly detection has previously been employed for detecting unusual

movement in crowds [95], network intrusion [45], spam phone calls through VoIP [86], and

17

threats to operating system security [97]. A comprehensive review of anomaly detection in

general is given in Chandola, Banerjee, and Kumar [26], with statistical anomaly detection

discussed alongside alternative methods. Similar approaches are also discussed by Markou

and Singh [117] in their review of statistical novelty detection.

2.3 Detection of illicit behaviour in networks

In recent years, network analysis has become an extremely active area of research [19],driven

in part by the significant increase in available network data. The digitisation of many forms of

communication, and advances in chemical and biological sciences, have led to masses of data

being generated that capture the various interactions between people, organisations, genes,

proteins, machines, etc. The availability of large data sets, and the desire to turn these into

useful, or marketable, information has led to the development of highly-detailed models and

an ability to identify complex behaviours representative of highly-specific concepts.

Network analysis has previously been applied to a number of problem domains that

constitute illicit behaviour. This includes detection spam [169], detection of sexual predators

in online social networks [49], anti-money-laundering and terrorism financing [41, 153, 96],

and detection of online fraud [142, 28]. Similarly, previous research has considered a broad

range of analysis techniques, including anomaly detection (see [6, 158] for current reviews),

and pattern / motif matching (e.g. [169, 49, 43, 44]).

2.3.1 Development of network features

In applying network analysis to the detection of illicit behaviour it is assumed that evidence

for the illicit behaviour is apparent in the network model (i.e. the manner in which enti-

ties are connected is somehow important). For example, evidence may take the form of a

distinguishing sub-structure (i.e. a specific subgraph) or a relationship between structural

and non-structural elements (i.e. entities with specific attributes are connected in a specific

18

way). However, traditional data mining algorithms are unable to handle the extremely high

dimensionality of network objects. Thus a key challenge in applying network analysis is the

development of a mapping between the network and a lower dimensional feature space that

maintains a suitable level of detail regarding the network structure [158].

Clearly, the complexity of this mapping will depend on the particular application, and

the level of detail required for analysis. For example, a relatively simple mapping may

construct a feature space based on a small number of graph invariants (e.g. size, diameter,

transitivity, etc. [5, 114]). A more complex mapping may consider features that capture

complex relationships between the network structure and relevant attributes of the entities

and relationships being modelled (e.g. [41]).

As described in Savage et al. [158] (see Appendix A), the mapping from a network model to

a tractable feature space begins with a basic unit of analysis. For example, the work presented

in Chapter 3 considers k-step neighbourhoods as the basic unit of analysis. Alternative

units include connected components, communities (identified through traditional community

detection algorithms), cliques, dyads or triads, etc. Each instance of the basic unit are

mapped to the feature space, where they are represented as vectors that are suitable for

analysis using traditional methods.

A reasonably simple mapping from networks to a Euclidean feature space can be achieved

through the use of graph invariants. For example, Akoglu, McGlohon, and Faloutsos [5]

take ego-nets (1-step neighbourhoods) as a basic unit of analysis, and map these to a two-

dimensional feature space based on the number of parties and the number of edges. Within

this two-dimensional feature space, anomaly detection is applied to identify those ego-nets

exhibiting an unusual structure. Other invariants include the weight of ‘heavy edges’ [5], and

the ‘fine structure’ of the network captured by leadership, diversity and bonding [114].

A more complex mapping, which captures information relating to local structures, is the

use of subgraph features. Using subgraph features, each graph is described in terms of the

presence or absence of particular subgraphs. The subgraphs considered are typically identified

19

through frequent subgraph mining (e.g. [163, 75, 172, 192, 24, 139]). This mining process

identifies a set of subgraphs that are likely to provide high discriminatory power within the

set of graphs to be analysed. As with graph invariants, subgraph features have previously

been used to embed networks as vectors in a Euclidean space, allowing distances between

graphs to be measured using a Euclidean metric.

For some forms of data mining, a non-Euclidean distance function may be specified as an

alternative to mapping the networks to a Euclidean space. One example of this is clustering

of networks based on their structure. Many clustering algorithms can be provided with a

custom distance function that, in this case, allows them to operate on higher-dimensional

objects. For example [164] develop a self-organising map that relies on edit-distance to update

neurons as a means of clustering simple networks. Related ideas are presented in [85, 73],

with di↵ering methods used to determine a local median network, which acts as a centroid,

and to iteratively shift neighbouring networks towards the closest median as measured by a

specified edit-distance. A review of di↵erent approaches to calculating edit-distances between

networks is given in [57].

2.4 Contrast pattern mining

Contrast patterns were introduced by Dong and Li in their seminal paper in 1999 [38]. Since

then, the utility of contrast patterns has been widely recognised, particularly their use for

building high-quality classifiers (e.g. [39, 46, 197]).

Dong and Li originally proposed to mine contrast patterns using set intervals for e�cient

representation of large numbers of item-sets, and manipulation of interval borders to identify

contrast patterns. The main idea behind this approach is that intervals with highly di↵erent

borders contain contrast patterns. This approach was later advanced by Bailey et al. [13]

who used a tree-based structure to limit the transactions considered by each border-based

operation.

20

A major limitation of border-based approaches is the need to perform two separate runs

to identify useful contrast patterns. For two data sets D1 and D2, these algorithms must

be run once to discover patterns from D1 to D2 (i.e. frequent in D1 and infrequent in

D2) and then again to discover patterns from D2 to D1. CP-Tree [46] was developed to

overcome this problem, adapting the FP-Tree data structure [66, 67] previously described

for e�cient mining of frequent patterns in a single data-set (see Section 5.1 for di↵erences

between frequent and contrast patterns).

As an alternative to CP-Tree, zero suppressed binary decision diagrams (ZBDDs), have

also been proposed for use in mining contrast patterns [111]. The major advantage of ZBDDs

is their suitability for mining disjunctive as well as conjunctive contrast patterns. However,

mining using ZBBDs su↵er from the same limitation as earlier approaches, requiring two runs

to discover patterns from D1 to D2 and from D2 to D1. In this thesis, focus is on conjunctive

patterns, thus CP-Tree is used as the underlying data structure.

Contrast patterns are closely related to frequent patterns and the respective mining al-

gorithms share many similarities. Unlike contrast-patterns however, a number of parallel

algorithms for frequent pattern mining have been developed [80, 83, 104, 107, 129, 174, 201,

202]. Of particular interest is the PFP-Growth algorithm [107], which uses a map-reduce

framework to parallelise mining operations. Many of the related publications following PFP-

Growth represent variations addressing load balancing and the characteristics of particular

types of cluster architectures.

The main idea behind PFP-Growth is the fact that a set of transactions with sorted

items (forming a sequence of items) may be projected to a smaller subset by conditioning on

short su�xes. Each projection may then be independently mined for frequent patterns [107].

Unfortunately, this same approach cannot be applied to mining of contrast patterns due to

di↵erences in the mining process.

Frequent pattern mining di↵ers from contrast pattern mining in the order that candi-

date patterns are generated and evaluated. Frequent pattern mining first considers patterns

21

occurring as su�xes, consisting of items that occur infrequently in the database. Longer

patterns are generated by adding successively higher frequency items (see Section 5.1 for

definitions). Projection of the database using these low-frequency su�xes results in small,

largely disjoint, subsets of transactions. However, in mining for contrast patterns, the oppo-

site approach is taken, with patterns containing high-frequency items considered first, and

extensions to longer patterns made by adding lower frequency items [46]. This is a necessary

condition for e�cient pruning of the search-space. Consequently, low-frequency su�xes can-

not be used for projection because the resulting subsets cannot be mined independently. The

equivalent approach for contrast pattern mining would be to project using prefixes, however,

since prefixes contain high-frequency items, projection onto prefixes would result in large

overlapping subsets. In many cases the largest subsets would be only marginally smaller

than the full dataset. Consequently, projection in this manner would introduce a high-level

of redundancy, and require large amounts of data to be shu✏ed over the network. For this

reason an alternative approach to that used by PFP-Growth is required for distributed mining

of contrast patterns.

22

3. Supervised learning for detection of suspi-

cious financial communities

This chapter describes an automated system for the detection of illicit behaviour indicative

of money laundering in financial data. As discussed in Section 1.1.1, money laundering re-

quires coordinated activity between multiple parties. Therefore, the system described in this

chapter takes a network-based approach, detecting suspicious groups, rather than suspicious

individuals or transactions.

The first part of this chapter describes the network model used to represent the AUSTRAC

data, and the process used to extract meaningful communities. The second part of this

chapter then describes the treatment of these communities as the basic unit of analysis for

supervised learning. This includes a description of the features used for learning and an

evaluation of a trained classifier.

3.1 Network model

3.1.1 Networks as graphs

Networks describe systems of interacting entities. Networks are typically represented using

a graph, which is a pair (V,E) where V is a set of vertices, representing the entities in the

system, and E is a set of edges, representing the relationships between these entities. Edges

are typically modelled as a pair of vertices, thus E ✓ V ⇥ V .

A network may take a bipartite structure, in which case the set of vertices may be par-

titioned into two subsets, V = V1 [V2, V1 \ V2 = ;. Edges in a bipartite network occur only

between pairs of vertices where each vertex is in a di↵erent partition, E ✓ V1 ⇥ V2.

Depending on the modelling requirements, the entities and relationships in a network may

23

be be additionally described by some set of attributes (sometimes referred to as labels). In

this case the network is represented using a graph (V,E, FV , FE), where FV : V ! A maps

a vertex v 2 V to an attribute vector a 2 AV , and FE : E ! AE provides an equivalent

mapping from edges to some attribute space AE.

In practice the terms graph and network are used interchangeably, and this convention is

followed throughout this thesis.

3.1.2 AUSTRAC reports

AUSTRAC collects transaction reports from entities regulated under the Australian Anti-

Money Laundering/Counter Terrorism-Financing (AML/CTF) Act, 2006. This includes fi-

nancial institutions, other remittance providers, bullion dealers, and gambling service providers.

Three types of reports are considered in this thesis; those relating to deposits above a des-

ignated threshold (TTRs), international funds transfer instructions (IFTIs), and suspicious

matter reports (SMRs).

Each report (for the purposes of this thesis) includes a set of ordering customers, a set

of beneficiary customers, the amount transacted, and the transaction date. Reports also

contain information relating to the bank accounts used in the transaction and the details of

any identification presented by the ordering or beneficiary customers.

Transaction reports describe four di↵erent relationships between parties.

1. Reports describe the movement of funds between parties. Thus a pair of parties may

be linked by a transaction relationship, indicating that funds were transferred from one

of the parties to the other.

2. Reports may include multiple customers and multiple beneficiaries. This may occur, for

example, when an individual conducts a transaction as part of a businesses operations.

In this case, both the individual and the business will be listed as ordering customers.

3. Reports associate parties with supplementary evidence such as bank accounts and iden-

24

tification (e.g. passports, licences, etc.). Thus a pair of parties may be linked through

a supplementary relationship, which indicates a shared use association with the sup-

plementary evidence. For example, a report may provide details of a transaction in

which party A transfers funds from account X. A second report may indicate that a

di↵erent party, B, also transferred funds from account X. In this case A and B are

linked through account X. Note that the recipient of these funds is irrelevant for the

purposes of defining the relationship between A and B.

4. Reports relating to threshold transactions (TTRs) may include an agent relationship,

where the agent party deposits funds on another’s behalf.

Given the fact that multiple parties may be connected through the same piece of evidence,

a bipartite structure is employed for the network model, with parties and evidence forming

the respective vertex types. Note that edges connecting parties to evidence are typed to

indicate the particular relationship (e.g. an agent relationship between a party and a TTR

report). Similarly, evidence vertices include a subtype attribute, indicating whether they

represent a report, an account, or identification. An example network is given in Figure 3.1,

showing each of the possible edge and vertex types.

3.1.3 Financial communities as near-k-step neighbourhoods

Money laundering involves multiple transactions between di↵erent parties. For this reason,

there is significant interest in identifying small sets of interacting parties whose collective

behaviour is suspicious. Since the system described in this thesis employs supervised learning,

small groups of interacting parties must be extracted from the larger network and treated

as observations. There are two main-options for this, community detection (top-down) or

an ego-centric approach (bottom-up) based on k-step neighbourhoods. For our particular

purposes, existing community detection algorithms (see [51] for a comprehensive review)

su↵er from a number of issues, leaving the ego-centric approach as the favoured option.

25

Party

Identification

Transaction Report

Account

Ordering Customer
Beneficiary Customer
Agent
Owner

Figure 3.1: Example financial network with bipartite structure. Each circle represents
a di↵erent party, and each square represents a transaction, with di↵erent colours showing
the di↵erent transaction types. Coloured edges are used to distinguish the various roles for
parties involved in transactions.

A major drawback of existing methods is that they often result in excessively large com-

munities [102, 99]. In general, meaningful communities are thought to contain less than 150

individuals [102, 7], and published typologies indicate that investigation of money laundering

operations often focuses on a relatively small number of key parties [11]. Using traditional

community detection algorithms, smaller communities tend to be found only at the extrem-

ities of a network [102, 99]. Typically, these communities consist of entities that have only

recently been added to the network. However, within the core of the network, where the

vast majority of interactions take place, many of the detected communities are exceedingly

large. For this reason, we take an ego-centric approach, building communities as a bottom-up

process.

To avoid the large communities resulting from community detection algorithms, com-

munities in the presented system are defined using a bottom up approach. As part of this

process, the bipartite network described in Section 3.1.2 is projected onto the party vertices.

26

The resulting graph is then simplified, so that a pair of parties may be connected only by a

single weighted edge. Figure 3.2 demonstrates this process for an example network.

Weights for projected edges are calculated based on the following assumptions.

1. Links through transaction reports are more important than links through supplemen-

tary evidence

2. Supplementary evidence that is shared by many di↵erent parties is weak evidence

3. Parties that are associated with many pieces of supplementary evidence have weak links

to other parties

4. The strength of a link between two parties is decided by the weaker association with

the relevant evidence

Edge weights are calculated as a two step process. First the strength of a relationship

between two parties p1, p2 through each linking piece of evidence e is calculated. This step

corresponds to the projection from the bipartite network to a party to party network, so that

e corresponds to a node in the bipartite network, and to one or more edges in the projected

network. Weights for edges resulting from the projection of e are calculated as follows. If e

is a report, then wp1,p2,e = 1, otherwise wp1,p2,e = min(wp1,e, wp2,e) where

wpi,e =
1

d(pi)(d(e)� 1)

Here d(pi) is the number of pieces of supplementary evidence that pi is associated with and

d(e) is the number of parties associated with e. The value wpi,e may be interpreted as the

smallest probability that a two-step random walk beginning from p1 would traverse evidence

e and finish at p2, or begin at p2 traverse through e and finish at p1.

For the second step, projected edges are summarised as a single link for each connected

pair of parties. The aggregated weight for this summarised edge is calculated as

27

A B C

Figure 3.2: Projection and simplification of bipartite financial network. (A) Bipartite
network. (B) Projection onto parties. (C) Simplification to weighted edges, representing the
strength of the relationship based on the number of transactions, and the number of shared
accounts, identification, etc.

wp1,p2 =
1

|E|
X

e2E

wp1,p2,e

where E denotes the set of evidence shared by p1 and p2. The value of wp1,p2 represents the

average strength of the connections between p1 and p2.

If the weight wp1,p2 is smaller than a specified threshold, denoted wmin, the link is removed

from the network. In this case the evidence supporting the link is not considered strong

enough, and should not be considered in further analysis.

3.1.3.1 Extraction of financial communities

Using the projected network, communities are extracted as near-k-step neighbourhoods. A

k-step neighbourhood is obtained by selecting a subject party p0 (also referred to as the seed)

and all parties having a distance of k or less from this seed (i.e. there is a path from the

subject p0 to the candidate party p containing k or less edges). The subgraph induced by

these parties is the k-step neighbourhood. We say near-k-step, as two additional constraints

are applied beyond that imposed by the parameter k. These additional constraints further

limit the parties and relationships included in the neighbourhood.

28

full graph connected
components

small
components

large
components

seed parties

components as
communities

near k-step
neighbourhoods

labelled
communities

Figure 3.3: Overview of community extraction process.

This allows us to remove low quality/confidence transactional links (for the purpose of

financial community extraction).

The first constraint is controlled by a parameter, Nmax, which gives the maximum num-

ber of transaction neighbours for a party (i.e. the maximum number of parties that have

conducted at least one transaction with the subject, note that this is not the degree of the

corresponding vertex). Parties having a number of neighbours that exceeds this threshold

are treated as gates. Unless linked to other parties within the k-step neighbourhood, the

transaction neighbours of these parties are not included in the community. This allows low

quality report based links to be removed prior to community extraction. For example, where

many parties have transacted with a large retailer but are otherwise unrelated. The second

constraint parameter, wmin, gives the minimum weight for supplementary edges to be in-

cluded in the community. Note that each of these parameters may be specified as a vector

of dimension k, so that constraints may vary with distance from the subject party. Figure

3.3 shows a schematic overview of the community detection process.

For the purposes of this thesis parameters were set to k = 3, Nmax = 40, and wmin = 0.01.

These values were selected in consultation with domain experts. In particular, reasoning for

taking k 3 stems from the fact that vast majority of transactions in the network are

international transfers. By considering up to 3 steps, a seed party in the source country

is obtained, along with associated parties in the destination country, additional parties in

the source country transacting with these same associates, and finally, related parties in the

29

destination country. In other words, if k = 3 then parties in both the source and destination

countries are obtained that are not directly associated, but are linked through a third party.

As shown in Figure 3.3, extraction of communities is achieved by first splitting the net-

work into discrete connected components. Those components that are below a threshold

size (diameter 2k) are treated as communities, with no need to extract the near-k-step

neighbourhoods. For those components having size greater than the specified threshold, near-

k-step neighbourhoods are extracted for any subject parties within the component (selection

of subject parties is described in Section 3.2.2). This process is implemented using a parallel

architecture, allowing millions of communities to be extracted in short period of time.

Treatment of communities as near-k-step neighbourhoods can introduce a significant de-

gree of overlap between communities. From an intelligence standpoint, this is a useful char-

acteristic of our approach, as it means the classifier is exposed to numerous views of the same

underlying signal, placed within a di↵erent context. When assessing a new community, train-

ing in this way will mean that the classifier is able to correctly identify suspicious activity

even if it is only seeing a small portion of the relevant transactions. One drawback however,

is that multiple overlapping communities may be classified as suspicious, and steps must be

taken so that analysts are not presented with large numbers of highly similar networks.

For example, suppose that two transactions occur within a short time frame, and that

these transactions involve parties whose distance from one another in the network is less than

three. For each transaction, a community is extracted using the sending party as the seed.

However, since the parties involved are less than three steps from each other, the resulting

communities will overlap. If both of these communities are classified as suspicious then

without intervention they would both be passed to an analyst (or to two di↵erent analysts)

for further investigation. Clearly this situation is undesirable, thus a post-processing step

may be employed, which evaluates the degree of overlap between communities deemed to be

suspicious. For example, if the overlap is above a certain threshold, then the union of the

communities could be taken, and this result could then be passed to an analyst.

30

category description
Demographic Aggregate features describing parties in the net-

work (e.g. mean age)
Network Invariants describing the network structure (e.g.

transitivity)
Transaction Aggregations over transactions included in the

community (e.g. total cash amount)
Dynamic Features derived from time-series analysis (e.g.

num. unusually high amounts)

Table 3.1: Feature categories.

3.2 Supervised learning applied to financial communities

This chapter describes the outcome of machine learning performed on a set of financial

communities. The main purpose of this is to assess the viability of a monitoring system

based on machine learning and the previously described network model.

3.2.1 Description of features

Machine learning was undertaken using a broad set of features derived from extracted commu-

nities. Design of this feature set was guided by expert knowledge (AUSTRAC, unpublished

data), and a broad survey of literature related to detection of illicit behaviour and to gen-

eral network analysis. This feature set was designed to represent di↵erent aspects of the

transaction network, with features divided into four main categories, as shown in Table 3.1.

Calculation of dynamic features includes the use of burst analysis, which provides an

indication of transaction regularity and is used to identify abnormal behaviour. A wavelet-

based algorithm was used for this, which has previously been shown to outperform alternative

algorithms in detecting both local and global bursts [187].

31

3.2.2 Evaluation

Evaluation of the system was performed using a subset of AUSTRAC’s financial transaction

reports. Note that this evaluation only considers the performance of the proposed system.

Comparisons with other systems designed to identify money laundering activity are not

possible, since the details of such systems are not publicly available.

Supervised learning was undertaken using a support vector machine (SVM) and a random

forest, as implemented in the R libraries e1071 and randomForest, respectively. For the

SVM we considered a linear and polynomial kernel, using default values for the respective

parameters. For the random forest we set the number of trees to one hundred and used

default values for all other parameters.

Since the total number of communities that could be extracted from the transaction

network is extremely large, training and evaluation was undertaken using a sample of the full

set. This sampling, and the assignment of labels, was undertaken as follows.

For the labelled true positives, a set of parties was provided by AUSTRAC as examples of

suspicious behaviour. The neighbours of these parties were then identified in the transaction

network. The provided parties and their neighbours were treated as positive seeds. For the

labelled true negatives, a uniform random sample (without replacement) was taken from

the remaining parties. Near-k-neighbourhoods were then extracted for each of the positive

and negative seeds. Resulting communities were then assigned the same label as their seed.

Note that in certain situations, this process can result in duplicate communities, thus a

post-processing step was employed to remove these duplicates.

To obtain a robust estimate of classifier performance, a method similar to k-fold cross

validation was employed. In each of the k evaluations, the full set of positive labelled com-

munities was combined this with a randomly sampled (without replacement) set from the

negative communities. For each of the k iterations, the resulting set was randomly partitioned

into training and evaluation sets, with 70% of the observations used for training and 30%

used for evaluation. In each iteration the F-score was calculated using three values for the

32

num. parties

fre
qu

en
cy

0 50 100 150 200

0e+00

2e+04

4e+04

6e+04

8e+04

1e+05

Figure 3.4: Distribution of size for extracted communities.

weighting factor, �1 = 0.1, �2 = 0.5, �3 = 1. These values were selected as we are interested

in the ability of the classifier to achieve a high-precision. An ROC curve was also calculated

in each iteration and a parameter ⌧ was determined from this curve giving the threshold

value for classifier scores that maximised the F-score for a given value of �. Precision and

recall were then calculated for this value of ⌧ . Mean performance in F-score, precision, recall

and area under the ROC curve was then calculated across the k iterations.

3.2.2.1 Financial communities

After removing duplicates, a total of 758, 271 communities were extracted from the network.

Figure 3.4 shows the distribution of size (number of parties) for extracted communities.

Additional statistics are provided in Table 3.2. As shown in Figure 3.4, the vast majority of

extracted communities have more than 5 and less than 50 parties.

3.2.3 Classifier performance

Table 3.3 gives the mean performance for a set of classifiers evaluated using the sampling

process described in Section 3.2.2, taking k = 10. Example ROC curves are shown for a

classifier of each model type. The results shown in Table 3.3 and Figure 3.5 indicate that

33

total positive 69, 328 (all positive)
total negative 688, 943 (random sample)
mean num. parties 33
mean num. supplementary rela-
tionships

47

mean num. transactions 124
mean diameter 3.5

Table 3.2: Community statistics.

model AUC � ⌧ F-score recall precision
random forest 0.92 0.1 0.93 0.96 0.31 0.98

0.5 0.68 0.86 0.73 0.90
1.0 0.47 0.85 0.88 0.82

SVM 0.86 0.1 0.89 0.90 0.22 0.93
0.5 0.63 0.80 0.70 0.83
1.0 0.32 0.80 0.87 0.74

Table 3.3: Mean performance of random forest classifiers over ten samples. Each random
forest consisted of 100 trees. Parameters � and ⌧ refer to the weighting used in the calculation
of F-scores and threshold used for classification, respectively.

both the random forest and SVM classifiers are able to achieve a level of performance that is

suitable for use in a live environment. The random forest gives slightly better performance.

While the average recall of the classifiers is quite low, both models exhibit an extremely

high precision. This means that a high classification threshold (⌧) can be selected, so that

the classifier can operate with low rates of false positives. This is an important characteristic

for real-world application of our system, as any communities classified as suspicious will be

further investigated by human analysts. Since this is a time-consuming task, only minimal

levels of false-negatives can be tolerated.

3.3 Summary

This chapter has described an automated system for detecting money laundering operations

in transaction networks. This system advances the current state-of-the-art by analysing both

explicit transaction relationships and implicit relationships derived from supplementary in-

34

false positive rate

tru
e

po
si

tiv
e

ra
te

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

random forest
support vector machine

Figure 3.5: ROC curve for random forest
and SVM classifiers.

formation. The system extracts small, meaningful communities from this network in manner

that allows existing business knowledge to be considered in the process. Supervised learning

is then applied to these communities to obtain trained classifiers. Evaluation of the system

shows that a suitable level of accuracy is achieved at high levels of precision. This is an

important characteristic for our system, as use in a live environment necessitates a low rate

of false positives.

35

4. Detection of opinion spam through anoma-

lous rating deviation

This chapter presents a novel method for detecting opinion spammers attempting to manip-

ulate mean ratings. This method significantly di↵ers from previous approaches in two main

ways. First, the presented method characterises reviewer behaviour in a manner that allows

detection of opinion spammers using only ratings, without resorting to text-based analy-

sis. Second, a binomial model is fit to the set of reviews for each candidate reviewer, and

spammers are identified as those reviewers exhibiting anomalous behaviour under this model.

Consequently, the method accurately reflects the observed patterns of reviewer behaviour for

the particular system under consideration, rather than relying on assumed parameter values

describing this behaviour.

To demonstrate the utility of our approach experiments were conducted using both real

and synthetic data. These experiments show that the presented method can successfully

identify opinion spammers. As part of these experiments, comparisons are made with the

FraudEagle algorithm presented in [2], which is also capable of detecting opinion spammers

based only on ratings. FraudEagle has previously been shown to outperform alternative ap-

proaches and can therefore be considered the current state of the art for detection of the type

of spammer discussed in this chapter. Using a combination of real and synthetic data the

presented approach is demonstrated to achieve a similar level of performance to FraudEa-

gle while providing a conceptually deeper, but computationally simpler, characterisation of

spammer behaviour.

Please note that the presented approach considers deviation in ratings from the majority

opinion. As discussed in section 4.1, the mean rating is used as a measure of majority opinion,

as this is the measure most often shown to consumers. However, alternative measures of

36

majority opinion have previously been studied in the context of decision making and decision

theory (see for example Pasi and Yager [145] and Vańıček, Vrana, and Aly [181]).

4.1 Detection of opinion spammers through considera-

tion of majority opinion

The proposed method for detecting opinion spammers stems from two overarching assump-

tions regarding reviewer behaviour. (1) The majority of reviews are posted by honest review-

ers, and as a consequence, distributions taken over large samples of the reviewer population

will overwhelmingly reflect the behaviour of honest reviewers. (2) Honest reviewers will typ-

ically have similar expectations and perceptions of quality, such that the set of reviews for a

given product will tend to exhibit a small degree of variance.

Assumption 1 is taken as given, since if this is not the case then the whole system of

online peer reviews is completely broken. As justification for assumption 2, Figure 4.1 shows

the distribution of the standard deviation, and also the maximum deviation from the mean

rating over approximately 272,000 products reviewed in the Amazon online store. For the

majority of products, review scores appear to be relatively tightly clustered around the mean,

rather than spread across the possible range of 5 stars.

Based on Figure 4.1, it is suggested that honest reviewers tend to come to a similar

opinion about a product, so that reviews that disagree with the mean rating will be relatively

infrequent. Clearly such reviews may exist for legitimate reasons, for example the purchaser

may happen to receive a defective version of an otherwise quality product, or a particular

book or film generates a highly polarised response. However, it is unlikely that the same

purchaser will consistently receive faulty models or review polarising products. Therefore,

it is reasonable to suggest that having a high proportion of reviews that disagree with the

mean rating is a strong indicator that a reviewer may be a spammer.

Consider a product p targeted by an opinion spammer (or a group of opinion spammers),

37

max. deviation

fre
qu

en
cy

0 1 2 3 4

0

20000

40000

60000

std. deviation

0.0 0.5 1.0 1.5 2.0

0
10000
20000
30000
40000
50000
60000

Figure 4.1: Distribution of maximum and standard deviation from the mean rating for the
Amazon data set.

who wishes to influence the average rating of the product. In manipulating the average rating,

the spammer attempts to create an overall perception of either satisfaction or dissatisfaction

on the part of previous purchasers. Assuming a 5-star rating system, this manipulation can

be modelled by taking the midpoint rating � = 3, and assuming that products having a

mean rating �p � 3 will be perceived as good while those having �p < 3 will be perceived

as bad. The spammers objective is to drive the mean rating in a particular direction so

that the product in question will be perceived as good or bad by prospective purchasers.

For a given reviewer r, a published rating �r,p can be considered as agreeing (�r,p � 3 and

�p � 3 or �r,p < 3 and �p < 3) or disagreeing (�r,p � 3 and �p < 3 or �r,p < 3 and �p � 3)

with the majority opinion. Note that a 5-star system is assumed in this chapter, however

the presented method could equally be applied to a binary system, taking � = 0.5 as the

midpoint and considering a mean rating �p � 0.5 indicative of a good product and �p < 0.5

as indicative of a bad product. Depending on the particular situation, � may also be set to

an alternative value. For example, a value of � = 3.5 may be considered as the point where

consumers become far more likely to purchase particular products. Alternatively, it may be

assumed that spammers are willing to post ratings of 3-stars in order to negate 5-star ratings

of a product, attempting to drag the mean rating down without being too obvious. In this

case, a value of � = 4 may be used so that these types of spammers would still be detected.

For the purposes of this thesis, the mean rating is considered as the measure of majority

opinion. This is because the mean rating is displayed to consumers in many online stores (e.g.

Amazon, Apple App Store, Google Play, see also Chevalier and Mayzlin [32]). It is therefore

38

reasoned that spammers’ manipulation of consumer perception requires them to alter the

mean rating. For a particular situation, consideration of alternative measures, such as the

median rating, may be beneficial. As described below, the presented approach considers

a weighted mean, thus alternative measures that can be naturally weighted can be easily

substituted.

Using the rating model outlined above, the proportion of reviews for a given reviewer r

that disagree with the mean rating for their respective products can be determined. Whether

or not this proportion is considered to be excessive depends on how often a random honest

reviewer is expected to post such a review. Since the overwhelming majority of reviewers

are assumed to be honest, an estimate of this frequency can be easily calculated from the

available data by considering the proportion of reviews that disagree with the mean rating

across all available observations � = nD/n. Taking � as the probability that a random review

�r,p will disagree with the mean, the spamicity for each reviewer can be estimated using a

binomial distribution.

A binomial distribution models the outcome of independently repeating a random process

a set number of times, where the random process results in a binary value success or failure.

The distribution can be used to determine whether or not the observed proportions of success

and failure across the repeated trials di↵er significantly from the expected proportions, given

a known probability of obtaining success. In applying the binomial distribution to opinion

spam, the number of reviews posted by a given reviewer nr is treated as the number of trials,

and the number of reviews that disagree with the mean rating kr is treated as the number

of trials having an outcome sucess. The probability r of observing kr or more disagreeing

reviews out of nr by random chance alone can then be calculated, taking � as the probability

of success.

39

 r = P (X � kr;nr,�)

= 1� P (X < kr;nr,�)

=
kr�1X

i=0

✓
nr

i

◆
�i(1� �)nr�i

The value of r is considered to be a measure of the reviewers honesty. A value of r that

is close to one indicates that the proportion of disagreeing reviews is within the expected

bounds, while a value close to zero indicates that the proportion of disagreeing reviews

is unexpectedly high. An estimate of the reviewers spamicity can then be calculated as

sr = 1� r.

In calculating the number of reviews that disagree with the majority it is important to

remember that the mean rating reflects both the contributions by honest reviewers, and the

deliberate manipulations by spammers. If a spammer successfully drives the mean rating

above or below the midpoint, then honest reviewers would appear to disagree with the ma-

jority opinion, and may consequently be considered by the algorithm as candidate spammers

[2, 190]. To correct for this situation an iterative process is applied, whereby the contribution

from each reviewer to the average rating for each product is successively reduced based on

their proportion of non-majority reviews.

The iterative process used for correcting mean ratings begins by assuming that all reviewers

are honest, and defining ur,i to be an estimated measure of whether reviewer r is honest (i.e.

not a spammer) derived from the ith iteration. For each reviewer, ur,0 = 1 is taken as the

initial value. In each iteration i > 1 the mean rating �p,i for each product p is calculated as

a weighted arithmetic mean, with the contribution of each rating weighted using the values

of ur,i�1 from the previous iteration. Using this updated mean rating, the weights for the

next iteration ur,i are calculated as ur,i = 1� dr,i
nr

where dr,i refers to the number of reviews

40

for reviewer r that disagree with the weighted mean rating for the respective products in

iteration i and nr is the total number of reviews published by that reviewer. The iterative

process stops when a maximum number of loops have occurred or the observed change in

the proportion of non-majority reviews becomes less than some threshold ⌧ for all reviewers.

Once the iterative process is complete, a binomial test is applied to each reviewer as described

above.

For the experiments described in this chapter, a value of ⌧ = 1 ⇥ e�5 was used for

the threshold parameter and a maximum number of 10 iterations were performed. It was

found that 10 iterations were enough for the algorithm to e↵ectively correct mean ratings,

and convergence was often achieved well before reaching this maximum. However, in some

situations, updating the estimated honesty score for a small number of reviewers caused the

weighted means of some products to flip back and forth from > 3 to < 3. Consequently, the

proportion of reviews that disagree with the majority did not converge for these reviewers,

and the maximum number of iterations was reached.

A step-by-step description of the presented approach is given as Algorithm 4.1. Lines

3 � 13 relate to the iterative process used to correct the mean rating. Lines 5 � 7 calculate

the weighted mean for each product, and lines 9�12 calculate the proportion of reviews that

disagree with this updated mean. Lines 15� 18 relate to the assignment of a spamicity score

using the binomial test.

The presented algorithm scales linearly as a function of the number of reviewers and the

number of reviews, O(imax(nreviews + nreviewers) + nreviewers), where imax is the number of

iterations completed. Although the mean rating is calculated for each product, the total

number of operations is dependent on the number of reviews for each of these products, thus

this part of the algorithm scales with the number of reviews. The proportion of non-majority

reviews is then calculated, meaning the number of operations depends on the number of

reviewers. Since an iterative process is employed, the number of operations is multiplied by

the number of iterations. Finally, the number of operations required for the binomial test is

41

added, and this is also a function of the number of reviewers.

Memory required to run the presented algorithm also scales linearly with the number of

reviewers, the number of reviews and the number of products. For each reviewer, the algo-

rithm maintains the current and previous proportion of disagreeing reviews ur,i and ur,i�1.

The algorithm also needs to maintain the score for each review, and the mean score for each

product. Thus the space complexity of the algorithm is O(2nreviewers + nreviews + nproducts).

4.2 Evaluation

Evaluation of the proposed method included comparison with the recently proposed FraudEa-

gle algorithm [2] and application to a real data set consisting of product reviews published

on Amazon.com. The FraudEagle algorithm is a network-based approach to the detection of

opinion spam that considers network structure as well as rating scores as part of an iterative

message passing algorithm. FraudEagle has been evaluated against synthetic and real data

sets, and has been shown to outperform a number of similar network-based approaches.

4.2.1 Comparison with FraudEagle using synthetic data

FraudEagle models product reviews as a bipartite graph, with reviewers and products rep-

resented as vertices and reviews as edges linking reviewers to products. Reviews of products

are assumed to have a binary rating, good or bad. Products are similarly given a binary label,

good or bad, depending on the number of good and bad reviews. FraudEagle also assigns a

binary label to each reviewer, being either honest or fraudulent. FraudEagle takes a set of a

parameters describing the probability that a reviewer with a given label will give a good or

bad review of a product that is inherently good or bad (e.g. the probability that an honest

reviewer will give a good product a bad review). FraudEagle applies an iterative message

passing algorithm, whereby the labels on products and reviewers are updated in a manner

42

1 Function Binomial Detection
input : reviewers, products, reviews, �, ↵, ⌧ , maxIterations
output: For each reviewer r, a spamicity score sr

2 foreach r 2 reviewers do
3 ur,0 1// Assume all reviewers are honest

4 end

5 for i in [1,maxIterations] do
6 foreach p 2 products do

// Calculate the weighted mean

7 Rp reviewers(p);
8 �p

P
r2Rp

�r,pur,i

|Rp| ;

9 end

10 foreach r 2 reviewers do
// Calculate proportion of disagreeing reviews

11 dr,i count(�r,p 2 reviews(r); �r,p < 3 ^ �p,i � 3 _ �r,p � 3 ^ �p,i < 3);

12 ur,i 1� dr,i
nr

13 end

// Break if convergence is achieved

14 if |ur,i�1 � ur,i| < ⌧ 8i then
15 break ;
16 end

17 end
18 forall the reviewers r do
19 kr count(�r,p 2 reviews(r); �r,p < 3 ^ �p � 3 _ �r,p � 3 ^ �p < 3);
20 r P (X � kr;nr,�);

// Apply the binomial test

21 sr 1� pr;
22 end
Algorithm 4.1: Algorithm for detecting opinion spammers from review ratings in a 5-star
system. Inputs for the algorithm are the set of products, reviewers and reviews in the
form of product ratings, a required significance level for the binomial test ↵, the maximum
number of iterations to be run, and the tolerance threshold ⌧ for terminating the iterative
process. Outputs are a p-value (probability reviewer is honest) for each reviewer and a
label honest or spammer based on the calculated p-value and the given significance level

43

that maximises the likelihood of the network configuration (i.e. which reviewers and products

have which labels) under the given probabilities. In this way, FraudEagle also considers de-

viation from majority opinion and attempts to discount the contribution of likely spammers.

See Akoglu, Chandy, and Faloutsos [2] for further details.

To compare the presented approach with FraudEagle, two synthetic data sets were gener-

ated, using two di↵erent models of spammer behaviour. Since FraudEagle considers product

reviews as a bipartite graph, these data sets were generated using a random graph generator,

RTG [4]. FraudEagle has been previously evaluated using synthetic data produced using

RTG, thus RTG was seen as a suitable generator for the comparison. Using RTG two sets

of random bipartite graphs were generated, and for each graph a rating score for each edge

(vi, vj) was also generated, representing a review of product j by reviewer i. In generating

these ratings two di↵erent models of spammer behaviour were applied (described below),

giving two test sets of synthetic data. For both of these test sets, the presented approach

and the FraudEagle algorithm were applied to all graphs, combining the results within each

set. A receiver operating characteristic (ROC) curve was then calculated for both sets, and

the area under the curve (AUC) used as a metric for performance.

In the context of this chapter, the false positive rate for the ROC curve refers to honest

reviewers that are misidentified as spammers, while the true positive rate refers correctly

identified spammers. Both the presented approach and FraudEagle calculate a spamicity

score for each reviewer, and reviewers having a spamicity score above some threshold are

assumed to be spammers. By varying this threshold, di↵erent false positive rates and true

positive rates may be achieved. The ROC curve shows the e↵ect of varying this threshold

on the accuracy of each approach. For a given rate of false positives (misidentified honest

reviewers), the ROC curve shows the expected rate of true positives (correctly identified

spammers). In attempting to counter opinion spam, the cost of false positives is likely to be

higher than false negatives, as flagging accounts honest reviewers as spam is likely to cause

o↵ence and significant public backlash. Consequently, performance at a low rate of false

44

positives is important for detection of opinion spam.

Each of the synthetic test sets used for evaluation consisted of 30 random bipartite graphs

generated using RTG. Multiple graphs were generated for each data set to minimise the

possibility of skewed results stemming from the use of a random process. Previous evaluation

of the FraudEagle algorithm also used RTG generator, and the same parameter values were

used for this comparison; W = 5000, k = 5, q = 0.4 and � = 0.6 (see Akoglu, Chandy,

and Faloutsos [2] and Akoglu and Faloutsos [4] for details). The mean edge count for the

resulting graphs was 1359. For each of the 30 graphs, the 7 products with the highest degree

were deemed to be ‘famous’. The purpose of the famous products was to simulate spammers

attempts to disguise their behaviour by publishing honest reviews of well known products.

For the first test set, spammer behaviour was modelled using the same process outlined

in Akoglu, Chandy, and Faloutsos [2]. In each graph the inherent value of all products was

assigned to be ‘good’ and then 4 reviewers were randomly selected to represent spammers.

Ratings posted by the selected spammers were set to ‘bad’ unless the review happened to

be directed towards one of the famous products, in which case it was set to ‘good’. For the

remaining reviewers, deemed to be honest, all ratings were set to ‘good’.

For the second test set an alternative model of spammer behaviour was applied, which

was felt to be a more realistic representation of spammer behaviour. For this test set the

distribution of ratings from the available set of Amazon product reviews was calculated, and

a random rating was sampled for each edge in each graph using this distribution to represent

the generated reviews. After rating scores had been sampled for all edges, five reviewers

were randomly selected to represent spammers, and the ratings for these five reviewers were

flipped, so that, for example, an initial rating of 5 would be transformed to a 1, a rating of

2 would be transformed to 4, while a rating of 3 would remain unchanged. It was reasoned

that flipping the scores in this way would simulate spammers posting reviews that attempt to

drive the average rating away from the majority opinion. Because FraudEagle only considers

45

a binary rating system we treated ratings of �r,p � 3 to be ‘good’ and ratings of �r,p < 3 to

be ‘bad’ as described in Akoglu, Chandy, and Faloutsos [2].

For each of the test sets the iterative process was run on each network. The binomial

test was then performed to obtain a spamicity score for each reviewer. FraudEagle was also

run for each network in each test set. Within each results from all 30 graphs were combined,

giving two sets of spamicity scores, one for each test set. For each of these two sets an ROC

curve was calculated based on the spamicity scores reported by the presented approach and

by FraudEagle.

Results of the comparison with the FraudEagle algorithm are given in Figure 4.2, showing

the respective ROC curves. These results show that the presented approach out-performed

FraudEagle on both sets of synthetic data, achieving a higher AUC. While this improvement

over FraudEagle is marginal for both data sets, the comparison clearly demonstrates the

viability of the presented approach, particularly considering the simplicity of this approach

compared to the FraudEagle algorithm. Note also that the ROC curve shows that presented

approach achieves a high rate of true positives for low rates of false positives; an important

characteristic given the high cost of false positives in detection of opinion spam.

4.2.2 Application to Amazon product reviews

The Amazon product review data set was downloaded from http://liu.cs.uic.edu/download/

data/ (password required, a link is provided on this page to obtain access, please see Jin-

dal and Liu [84]). After removing all reviews with missing fields, this data set consists of

5,838,041 reviews of 1,230,915 products, published by a total of 2,146,057 reviewers.

To ensure that the data contained a reasonable set of connected reviewers and products,

a bipartite network was constructed from the product review data and the largest connected

component was extracted. All reviewers having less than 3 or more than 5000 reviews and

all products having only a single review or more than 1000 reviews were then removed from

this component. It was reasoned that reviewers having more than 5000 reviews are already

46

False positive rate

Tr
ue

 p
os

iti
ve

 ra
te

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

False positive rate

Tr
ue

 p
os

iti
ve

 ra
te

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

Figure 4.2: ROC for the presented approach (blue, solid) and FraudEagle (red, dashed)
applied to synthetic data sets using two di↵erent models of spammer behaviour. The left panel
represents a binary review system where all products are good, honest reviewers always give
good ratings and spammers always give bad ratings unless reviewing a ‘famous’ product. The
AUC is 0.964 for our approach and 0.940 for FraudEagle. The panel on the right represents
behaviour where honest review ratings were drawn from the global distribution and spammer
review ratings were then flipped so that any ratings greater than 3 were transformed to be
less than 3 and vice versa. The AUC is 0.992 for our approach and 0.975 for FraudEagle.

somewhat suspicious and those having less than 3 reviews require di↵erent methods to de-

tect (e.g. clusters of single positive review, see [190]). For products having more than 1000

reviews, the mean rating is less likely to be strongly influenced by fake reviews. Products

having a single review obviously prevent any deviation from the majority. After removing

products, some reviewers can become orphaned, therefore reviewers having zero reviews were

removed as a final pre-processing step. The final data set consisted of 5,018,344 reviews of

570,606 products by 1,859,242 reviewers.

To evaluate the performance of the presented approach, the iterative process described

in section 4.1 was run on the Amazon data set. The binomial test was then applied using

a significance value of ↵ = 0.05, and those reviewers having a significant number of non-

majority reviews were selected as candidate spammers. Since the test is applied multiple

times (once for each reviewer), Bonferonni correction was applied to the significance level,

↵ = 0.05/nreviewers. After applying the binomial test the candidate spammers were further

47

filtered by removing those candidates having more than 50 reviews. This process resulted in

187 reviewers being identified as candidate spammers.

Evaluation of candidate spammers was performed by considering a set of alternative fea-

tures shown in other studies to be strong indicators of opinion spam [84, 131, 132, 2]. This

included features relating to content similarity (repeated review text), numerous extreme

ratings (1-star or 5-star), and posting of multiple reviews on the same day. Note that calcu-

lation of content similarity is possible in the Amazon data-set, but in many rating systems

review text would not be present and this feature could not be relied on for identification of

spammers.

Figure 4.3 shows the aggregate behaviour of reviewers for the alternative features, taken

across a random sample of reviewers (panel A) and the 187 candidate spammers identified

by our approach (panel B). Also shown is the p-values resulting from a proportional test,

described in detail below. This p-value indicates the statistical significance of the di↵ering be-

haviour between the random sample of reviewers and those reviewers identified as spammers

using the presented approach.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

min. z

pr
op

. c
an

di
da

te
s

A

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

min. z

pr
op

. c
an

di
da

te
s

B

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

min. z

p−
va

lu
e

C

same day extreme rating content similarity

Figure 4.3: Aggregate behaviour of random spammers (A) and candidate spammers iden-
tified using deviation from majority opinion (B), with p-values indicating the significance of
observed di↵erences between the two groups (C). The dashed line in (C) indicates a signifi-
cance of 0.05. Features considered measure reviewers tendency to post reviews on the same
day, use of extreme ratings, and degree of content similarity.

To generate the random sample of reviewers, 100 reviewers were uniformly sampled and

48

scores and proportions were then calculated for this sample. It was reasoned that a sample

size of 100 provided a good representation of a set of reviewers identified by some process as

high-quality candidate spammers. To get a reasonable estimate of the average behaviour, the

sampling was repeated 100 times, and the mean proportions were taken across these samples.

Three scores were calculated for each candidate; the maximum content similarity between

any two of their reviews, the proportion of reviews occurring with the same date, and the

proportion of reviews having extreme ratings. The proportion of reviewers having respective

scores greater then a threshold value z was then calculated for each of the two groups. A

proportional test was then applied for each value of z to determine whether or not the

observed di↵erences between the two groups was statistically significant.

As shown in Figure 4.3, the proportion of reviewers that exhibit high content similarity is

significantly increased (p < 0.05) amongst those reviewers identified using the presented ap-

proach. The proportion of reviewers publishing reviews on the same day is also significantly

increased (p < 0.05) amongst these reviewers. Both groups exhibit similar behaviour with

respect to use of extreme ratings, with significant di↵erences only occurring for minimal or

maximal values of z.

In addition to the analysis of aggregated behaviour, a more detailed investigation was

undertaken for 20 candidates deemed to be the most likely spammers. Candidate spammers

were ranked according to the proportion of non-majority reviews (reviewers with a greater

proportion ranked higher) and the top 20 were selected for further investigation. Similar to

the analysis of aggregate behaviour, this investigation considered review text, rating scores,

product categories and the timing of posted reviews. Previous studies have shown that

repeated text, numerous extreme ratings (1-star or 5-star), and posting of multiple reviews

on the same day, particularly within a narrow range of highly similar products, are strong

indicators of spam [84, 131, 132, 2]. Therefore occurrences of these markers were taken as

evidence of opinion spam.

49

Rank # reviews # 1? # 5? Similarity Rep. text Rep. dates Comment
1 42 40 2 F F T Sentiment of text

doesn’t match rating
2 37 35 2 T F T
3 27 27 0 T F T
4 42 40 0 T F T Clearly dislikes style of

music, but numerous re-
views

5 27 25 2 T F T Multiple (10) reviews of
same product with dif-
ferent text

6 43 42 1 T T T
7 32 23 2 F F T
8 21 21 0 T F T
9 44 31 6 F F T Username is ’United

Federation of Trolls’,
reviews no longer on
Amazon website

10 34 29 3 T T T
11⇤ 31 16 3 F F F
12 42 16 0 T F F 1? only on recent pop

albums, reviews no
longer on Amazon
website

13 39 29 6 T F F Verified purchase only
on 5? reviews

14⇤ 53 11 2 F F T
15 31 22 9 T F T
16 29 22 6 T T T Numerous 1? reviews

directed at single musi-
cian

17 37 15 5 T T T Multiple reviews of
same product

18⇤ 52 22 12 F T F
19 51 45 5 T T T Strong bias in review

text
20 31 22 7 T F T Strong bias in review

text

Table 4.1: Results of manual investigation of top 20 ranked reviewers. Reviewers were
evaluated based on the number of extreme ratings (1-star or 5-star ratings) awarded, targeting
of highly similarly product groups (e.g. numerous 1? ratings for a particular author), presence
of repeated text in multiple reviews (at least an entire sentence), and posting of multiple
reviews within a short period of time. Reviewers marked with a star showed little or no
corroborating evidence of spam.

50

Table 4.1 describes the results of manual investigation for the top 20 candidate spammers.

It was found that of these top 20, at least 17 were highly likely to be opinion spammers, hav-

ing some combination of repeated text, numerous reviews posted on the same day, or large

numbers of extreme reviews focused on particular product groups.

The average running time for the presented approach was 191 seconds (⇠5 million edges,

average over 5 runs, single execution thread on an i5 2.4GHz processor with 8GB RAM). For

comparison, note that FraudEagle is reported to require ⇠100 seconds to perform a single

iteration over a graph containing approximately 1 million edges [2].

4.3 Summary

Opinion spam is a continuing problem for consumers looking to be guided by online product

reviews in making their purchasing decisions. In this chapter, a novel method has been

proposed for detecting opinion spam based only on reviewer ratings. This method takes into

account spammers’ desire to drive mean ratings in a particular direction, and the consequent

di↵erences in spammers’ and honest reviewers’ behaviour. Presented results indicate that

this method is highly e↵ective. The algorithm is able to successfully identify spammers in

a real data set, and shows marginally better performance than FraudEagle using synthetic

data. However, the simplicity of the proposed method means it runs faster than FraudEagle,

and is extremely suitable for use with the large volumes of data typically considered for

opinion spam.

51

5. Distributed mining of contrast patterns

This chapter describes a distributed algorithm for mining contrast patterns in large databases.

As described in Chapter 1, contrast pattern mining is a useful tool for identifying significant

di↵erences between two sets. For detection of illicit behaviour, contrast patterns can obvi-

ously be used to compare normal behaviour with known instances of illicit behaviour. Used

in this way, contrast patterns can assist with exploratory analysis, feature selection, and can

also form the basis for supervised or unsupervised learning [37].

The algorithm presented in this chapter allows mining for contrast patterns to be un-

dertaken using a distributed system. This means that mining for contrast patterns may be

undertaken in a scalable manner, and allows application to larger, higher-dimensional data

sets than previously possible. Considering the volume of data and the feature sets used in

previous chapters, the benefits of a scalable approach are abundantly clear.

The proposed algorithm employs a map-reduce-like framework and uses CP-Tree [46] (a

form of prefix tree, described in Section 5.1.2) as the basic underlying data structure. The

advances presented in this chapter are as follows.

1. A method for constructing independent CP-Trees from a distributed database

2. An initial breadth-first processing of a CP-Tree that allows it to be further split into

smaller, independent subtrees

3. Combining (1) and (2), a highly parallel algorithm for mining contrast patterns in a

distributed system

Existing approaches to contrast pattern mining use a depth-first traversal of the search space

(represented using a tree-like structure), as this enables a more e�cient use of memory.

However, as described in Section 5.2 an initial breadth-first processing enables a high degree

52

of parallelism to be achieved, allowing the proposed algorithm to scale with the number of

computing cores available.

To demonstrate the scalability of the algorithm, a version was been implemented using the

Spark distributed computing platform [195]. In developing the algorithm, Spark was found to

be an extremely accessible platform, providing abstractions and functionality that simplified

the reasoning about distributed algorithms. Moreover, Spark is designed to improve running

times of distributed algorithms by keeping data in memory as much as possible [194, 195].

This provides Spark with a clear advantage over alternative platforms.

Using the Spark implementation, a series of timing experiments were performed using

three di↵erent data sets. In these experiments, the required running time was observed as a

function of the number of records, the number of dimensions, and the number of processors

(cores) available. The proportion of available cores used by the algorithm over the course of

a run was also observed.

5.1 Contrast Pattern Preliminaries

The purpose of contrast pattern mining is to compare two databases D1 and D2, and to

identify patterns that are frequent in one and infrequent in another.

In the following sections a number of definitions are provided that are required to describe

the mining of contrast patterns. The CP-Tree data-structure is then described, as well as the

sequential algorithm used for mining CP-Trees, CP-Growth [46]. The proposed distributed

algorithm makes a number of significant changes to CP-Growth to enable distributed pro-

cessing of large databases. This algorithm is presented in Section 5.2.

53

5.1.1 Definitions

Item An item is simply an attribute-value pair i = (attr, value), specifying that some at-

tribute with name attr takes the value value. In some situations, an attribute takes a binary

value, indicating presence or absence of a particular characteristic. In this case, the item

may be given as a single token i = (attr) to indicate that the characteristic is present for a

given object. The single token can be thought of as shorthand for the attribute-value pair

i = (attr, true). Where the particular characteristic is not present, a corresponding item

i = (attr, false) may be specified, or the item may be dropped from the representative set.

Item-Set As the name implies, an item-set is simply a set of items z = {i1, · · · , in}. Given

a global ordering for the set of items in the underlying database, an item-set may be treated

as an ordered-set or a sequence.

Transaction A transaction t is an item-set representing a record in a database. We di↵er-

entiate between a transaction and an item-set because an item-set does not necessarily refer

to a particular record.

Count The count for an item-set z in database D is given as follows. Let Tz = {t 2 D : z ✓

t}, countD(z) = |Tz|.

Support The support for an item-set z is given as suppD(z) = countD(z)/ |D|.

Frequent Pattern Given a minimum threshold ✏, a frequent pattern in a database D is an

item-set z satisfying countD(z) > |D| · ✏. Equivalently, this condition may be expressed in

terms of support, suppD(z) > ✏.

Contrast Pattern Given a minimum threshold ↵ and a maximum threshold �, a con-

54

trast pattern from a database D1 to a contrasted database D2 is an item-set z having

countD1(z) > |D1| · ↵ in D1 and countD2(z) |D2| · � in D2. Note that if � = 0 the

resulting contrast patterns are also known as jump emerging patterns.

Minimal Pattern For a set of contrast patterns P , a contrast pattern p 2 P is minimal if

@q 2 P s.t. q ⇢ p.

The problem of mining for contrast patterns in a database D = D1 [D2 requires finding

all minimal contrast patterns from D1 to D2 and from D2 to D1.

Mining for contrast patterns is an NP-hard problem, with the size of the search space

growing exponentially with the number of dimensions. The naive approach to contrast pat-

tern mining would generate all possible patterns in D and calculate their respective counts

in D1 and D2. Each pattern would then be evaluated to determine whether or not it is a

minimal contrast pattern. Clearly, this approach will generate an extremely large number of

candidates for any reasonably sized database, and enumeration of these candidates becomes

infeasible.

To mine contrast patterns in a reasonable amount of time, heuristics must be employed

that allow the number of candidates to be reduced. Current state-of-the-art approaches

represent the search-space of candidate patterns using tree-like structures (or more generally,

directed, acyclic graphs). These structures are designed so that traversal along acyclic paths

generates candidates in a specific order, so that a pattern p will be generated before any

of its descendants q � p. By representing the search-space in this way, large portions may

be removed through pruning of branches that satisfy certain conditions. Such branches are

found by first evaluating p, and then determining whether or not the descendants also need

to be evaluated. In particular, if p is not frequent in at least one of D1 or D2, then q cannot

be a contrast pattern, and if p is a minimal contrast pattern then q cannot be a minimal

contrast pattern. In either case, the branch representing all q � p can be pruned from the

55

search-space.

While pruning of the search-space can greatly reduce the number of candidate patterns,

evaluating those patterns that remain can still take considerable time. In developing a

distributed algorithm, the aim is to further decrease this running time by partitioning the

search-space into independent units that can be mined in parallel.

5.1.2 CP-Tree

CP-Tree [46] is a form of prefix tree that provides a compact representation of a database

of transactions (recall that the items within each transaction may be ordered, so that each

transaction may be treated as a sequence and two transactions may share a common prefix).

CP-Tree maintains a count at each node giving the number of times that the corresponding

prefix occurs in each of two data sets being contrasted (an example CP-Tree is shown in

Figure 5.1). By representing a database of transactions as a CP-Tree, a minimal number of

candidate patterns are generated as part of the mining process.

Given two data sets D1 and D2, a CP-Tree can be constructed by first merging the two

datasets to form a single database D, retaining a label indicating the source database for each

transaction. From this single database, the full set of items is identified and these items are

sorted in descending order according to the number of times they occur. Each transaction is

then sorted so that the items contained match this ordering. Table 5.1 shows two example

databases, the result of merging these databases and the item counts and the corresponding

sorted transactions.

Having obtained a set of sorted transactions, a CP-Tree is constructed by adding each

transaction one at a time. For each transaction to be added, if the first item matches an

existing node, the count for this node is updated according to the source database for the

current transaction. The next item is then matched to the children of this node and so on

until all items in the transaction have been considered. If no match is found for an item,

then a chain of nodes is added to the tree, corresponding to the unmatched item and all

56

Data Transactions
D1 BDFG, DFG, ACD, BDGE
D2 CF , DEFG, ACF , BCEF
D = D1 [D2 (BDFG, 1), (DFG, 1), (ACD, 1), (BDGE, 1), (CF , 2),

(DEFG, 2), (ACF , 2), (BCEF , 2)

Item Counts F = 6, D = 5, C = 4, G = 4, B = 3, E = 3, A = 2
Ordering BDFG ! FDGB, DFG ! FDG, ACD ! DCA, BDGE !

DGBE
CF ! FC, DEFG ! FDGE, ACF ! FCA, BCEF !
FCBE

Table 5.1: Item counts and ordered transactions for two example databases D1, D2.

subsequent items in the transaction. Figure 5.1 shows the resulting CP-Tree for the example

database described in Table 5.1.

5.1.3 CP-Growth

Sequential mining of contrast patterns (CP-Growth) involves a depth-first traversal of the

CP-Tree. At each node, the corresponding counts represent the number of times the prefix

z, extending from the current node back to the root, occurs in the two contrasted data

sets. These counts can be used to determine if this prefix represents a contrast pattern. If

countD1(z) > |D1| · ↵ ^ countD2(z) |D2| · � then the corresponding prefix is a contrast

pattern. If z is not a contrast pattern, but countD1(z) > |D1| · ↵ _ countD2(z) > |D2| · ↵

extensions to z may be contrast patterns, so the depth-first search is continued. If neither of

these conditions is satisfied, then the prefix z is not a contrast pattern and no extension of

the prefix pattern can be a contrast pattern. Branches extending this prefix can therefore be

pruned from the tree, and do not need to be visited as part of the traversal. Note that this

pruning is a key part of the CP-Growth algorithm, greatly reducing the required computation.

After the initial construction of the CP-Tree, the counts at each node do not include

instances where the same sequence of items as the corresponding prefix occurs in the database

as a non-prefix subset. For example, in Figure 5.1, the highest level node representing the

57

Figure 5.1: Example CP-Tree constructed from a database D = D1 [D2. Each path
through the tree gives a sequence of items that occur together in transactions from D. The
two numbers under each letter give the number of transactions containing the corresponding
set of items in D1 and D2 respectively.

item D contains only counts for sorted transactions that start with D (i.e. do not contain

item F). The same holds for all o↵spring of D. However, the item-set FDGB (represented

by the left-most chain) contains DGB as a subset, but not as a prefix. Thus the counts in

the right-most chain (D-G-B-E) must be corrected to reflect this additional occurrence of

DGB.

Correction of counts is achieved through the use of a merge procedure, performed for each

node as the first step when visited in the depth-first traversal. This merge step takes the

children from the target subtree and adds them as siblings, merging with existing siblings as

required. Figure 5.2 shows the e↵ect of merging the subtree extending from F (highlighted),

adding subtrees extending from its children D0 and C 0 as siblings. Since F already has a

sibling D, the child D0 and the sibling D are merged. Since no sibling C exists, the subtree

extending from C 0 is replicated as is. Later, when the depth first traversal reaches node D,

the subsequent merge of D’s children will require merging with this new subtree. Algorithm

5.1 provides high-level pseudo code for CP-Growth. Please see [46] for further details.

58

1 Function CP-Growth
input : D1, D2 - databases to be contrasted, ↵, � - threshold parameters
output: P - set of contrast patterns

2 begin
3 D D1 +D2;
4 N1 = |D1|, N2 = |D2|;
5 P mine-CP-Tree(T , ;, ;, ↵, �, N1, N2);
6 end

7 Function mine-CP-Tree(T , P , , ↵, �, N1, N2)
input : T : CP-Tree, P : found patterns, : current prefix, (↵, �): frequency

thresholds, (N1, N2): size of contrasted databases
output: P - set of contrast patterns

8 begin
9 for item i in T do

10 T merge(T, i);
11 0 [i;
12 if isContrast(i, ↵, �, N1, N2) then
13 P P [0;
14 else if !canPrune(i, ↵, N1, N2) then
15 T 0 subtree(T , i);
16 P mine-CP-Tree(T 0, P , 0, ↵, �);
17 end
18 return P

19 end

Algorithm 5.1: Basic outline of CP-Growth algorithm. The functions isContrast and can-
Prune evaluate support for the given item (and corresponding prefix) against the threshold
parameters ↵ and �.

, ,

�1

Figure 5.2: Result of merging the highlighted subtree (corresponding to the item F). Note
that the highlighted subtree remains unchanged while the rest of the tree is modified.

59

5.2 Distributed CP-Growth

Distributed CP-Growth (DCP-Growth) uses a map-reduce like framework to enable dis-

tributed mining of contrast patterns. Rather than build a single large CP-Tree, as is the

case for CP-Growth, DCP-Growth constructs multiple independent CP-Trees. These CP-

Trees are constructed by first building local trees in each process and then merging these

trees in a reduce step. This enables DCP-Growth to operate on a previously distributed

database of transactions. In addition, DCP-Growth performs a breadth-first processing of

the seperate CP-Trees, which enables splitting of the CP-Tree into independent subtrees.

In this way, DCP-Growth partitions the large search-space into independent units that are

mined in parallel.

It is assumed that the database to be mined includes transactions from two contrasted sets

(merged in no particular order), and is distributed across a number of compute nodes. The

full DCP-Growth algorithm is listed in Algorithm 5.2, while Figure 5.3 provides a schematic

overview.

When searching a CP-Tree, the merge-step performed in CP-Growth pulls information

relating to prefix counts from the target subtree into the parent (Figure 5.2). In CP-Growth,

the target subtree is mined immediately after performing this merge (Algorithm 5.1, lines 10

- 16), as dictated by the depth-first traversal. However, note that once merged, mining of

the target subtree can be undertaken independently from the rest of the tree. Subsequent

merge operations performed under a depth-first traversal have no e↵ect outside the target

subtree. In addition, merging a given subtree only a↵ects sibling subtrees that correspond to

an item that is lower in the ordering. For example, in Figure 5.2, having merged the subtree

extending from F , the subsequent merging of D has no impact on the subtree extending

from F , as no chain of descendants extending from D can contain an item F . Consequently,

merge steps for sibling subtrees can be performed in sequence to create a set of subtrees that

can be mined independently. Figure 5.4 shows an example of one such sequence of steps.

60

1 Function DCP-Growth
input : D1, D2 - databases to be contrasted; ↵, � - threshold parameters;

Nsplits,�H - parameters controlling the splitting of CP-Trees
output: P - set of contrast patterns

2 begin
// Preliminary calculations

3 D D1 +D2;
4 I {i : 9t 2 D s.t. i 2 t};
5 Nj2{1,2} |Dj|;
6 C {(i, count(i, D)) : i 2 I};

// Item count used to order items in each transaction

7 �D order(I, C);
8 D0 map(D) [t: sort(t, �D)];

// Construct the CP-Trees and split those that are too large to

mine

9 L map-partitions(D0) [Dk: build-local(Dk)];
10 S reduce-by-key(L);
11 for i 0; i < Nsplits do
12 ⌧ max (map(S)[s : height(s)])��H ;
13 (Ssmall, Slarge) part(S) [s: size(s) ⌧];
14 Ssplit map(Slarge)[s : split(s, tau)];
15 S Ssmall [Ssplit

16 end

// Mine the CP-Trees and find the minimal patterns

17 Q flat-map(S) [(r, s): mine-CP-Tree(s, ;, r,↵, �, N1, N2)];
18 P {q 2 Q : q 6⇢ p 8p 2 Q \ q};
19 end

20 Function build-local(Dk)
input : Dk - database of transactions in partition k
output: Sk - set of key-value pairs (item i, subtree extending from i)

21 begin
22 Tk new CP-Tree(Dk);
23 for item i in items(Tk) do
24 Tk merge(i, Tk)
25 end
26 Sk {subtree(i, Tk) : i 2 items(Tk)};
27 return Sk;
28 end

Algorithm 5.2: DCP-Growth algorithm. The databases D1 and D2 are assumed to be
partitioned and distributed across multiple compute nodes.

61

…

…T1 T2 TN

…M1 M2 MN

…R1 R2 RK

…T1,2 TK,L

…P1,1 P1,2 PK,L

Minimal Patterns

D1 D2

Global Item Counts

T1,1

�1

Figure 5.3: Schematic outline of DCP-
Growth. Control flow moves from top to
bottom. A CP-Tree (Ti) is constructed lo-
cally within each partition. For each of
these trees, a breadth-first processing step
is performed, with the first level of subtrees
being merged into the top node (Mi). Af-
ter merging, each CP-Tree is split into sub-
trees and then reduced to obtain a single
tree for each item in the dataset (Ri, note
K is the total number of unique items). Re-
duced trees are then further split according
to Nsplits and �H to obtain a set of sub-
trees with relatively uniform height. Each of
the resulting subtrees (Ti,j) corresponds to a
prefix present in the database. These sub-
trees are mined independently to discover
contrast patterns beginning with the corre-
sponding prefix (Pi,j). Finally, discovered
patterns are combined and subset of mini-
mal contrast patterns is extracted.

Splitting the CP-Tree into independent subtrees allows mining to be performed in parallel.

However, in a distributed system, splitting alone is unlikely to be of benefit, as a single large

CP-Tree is still required to begin the process. If a large database is distributed across a

number of machines, then construction of a single CP-Tree would require the transfer of all

transactions to the driver program, where the CP-Tree is built and merged, before individual

subtrees are pushed back to the worker nodes.

To avoid building a single large CP-Tree, it is noted that the transformation of a set

of transactions to a CP-Tree is an additive function (i.e. CP -Tree(X) + CP -Tree(Y) =

CP -Tree(X + Y)). This means that local trees can be built using the transactions held

on each machine, and these trees can be added together to obtain the full representation.

62

Figure 5.4: Sequential merging of sibling
subtrees. CP-Tree I is the initial CP-Tree
(shown only to depth 2). Trees II - IV show
CP-Trees corresponding to sequential merg-
ing of subtrees extending from D, C and G
respectively. The final CP-Tree (IV) may
be split into individual subtrees extending
from each item in the top level. The re-
sulting subtrees can be mined for contrast
independently.

Moreover, each local CP-Tree can be merged and split, and the resulting independent subtrees

can be summed with their counterparts from other nodes. In performing these operations,

each local subtree is represented as a key-value pair of the form (item,CP -Tree), where item

gives the root item from which the subtree extends. For example, if the final CP-Tree in

Figure 5.4 represented a local CP-Tree, this would be split into five subtrees, respectively

keyed using F , D, C, G, B, A. Using a reduce-by-key operation, subtrees extending from a

given item are summed to obtain the full tree for each prefix item (Algorithm 5.2, lines 9 -

10).

Depending on the database in question, independent subtrees keyed by a single item may

still be quite large. Since large trees take a significant time to mine, it will often be beneficial

to further split the larger subtrees. This results in a more uniform distribution of heights

across the subtrees, and consequently, a more uniform distribution in the amount of work

required to mine the individual subtrees. In DCP-Growth, further splitting is controlled by

63

parameters Nsplits and �H . The parameter Nsplits specifies the number of rounds of splitting

that occur, while the parameter �H specifies the reduction in tree height that occurs in each

round. As described in Algorithm 5.2 (lines 11 - 14), each round of splitting a↵ects trees with

height greater than a threshold ⌧ = max{height(s) : s 2 S} � �H , where S is the current

set of subtrees. These trees are recursively split until no tree has height greater than ⌧ .

Splitting of subtrees is performed after the initial reduce. The reason for this is that the

process of merging and splitting subtrees is analogous to actually mining the tree for patterns.

Once merged, the prefix from which a target subtree extends can be evaluated as a contrast

pattern, and most importantly, may be pruned if the necessary criteria are met. This pruning

removes many large subtrees from consideration, saving significant computation. However,

evaluation of prefixes can only take place once the reduced CP-Trees are obtained, as counts

across the full database are required.

Merging and splitting subtrees results in key-value pairs of the form (prefix, CP -Tree),

where prefix represents the sequence of items linking the subtree back to the root in the

original CP-Tree. For example, in Figure 5.2 the subtree extending from F may be further

split into two subtrees extending from C 0 and D0. This would result in two key-value pairs,

(FD, extension-of-D) and (FC, extension-of-C). Having obtained a set of suitably sized

CP-Trees, these trees may be independently mined using CP-Growth. Any patterns found

are prepended with the prefix stored in the corresponding key. Once all trees have been

mined, results are combined and the subset of minimal patterns is extracted.

5.3 Experiments with real data

To determine the performance of the proposed algorithm a version was implemented us-

ing the Spark cluster-computing platform (http://spark.apache.org). Spark represents

distributed collections of data using an abstraction known as resilient distributed datasets

(RDDs) [194]. The spark API provides a set of functions for managing a distributed envi-

64

Data Transactions Items Dimensions Source
P12-01 2,499,394 120 30 AUSTRAC
mushrooms 8,124 72 22 UCI ML Repository
US census 1990 2,458,286 195 58 UCI KDD Archive

Table 5.2: Data sets used in timing experiments.

ronment and for creating, transforming, and querying RDDs within this environment. Using

Spark, the algorithm was implmented as a series of transformations and map-reduce like

operations on these RDDs.

The purpose of the presented experiments is to determine the real-world scalability of

the DCP-Growth algorithm, as implemented in Spark. Ideally, the time required to run

DCP-Growth will be inversely proportional to the number of cores available (i.e. doubling

the number of cores will roughly halve the run time). However, to achieve a high degree of

parallelism, DCP-Growth is required to split large subtrees and redistribute them across the

compute nodes. Once the time taken to perform this redistribution comes to dominate the

running time, addition of more cores will have little impact.

5.3.1 Experiment setup

Using the Spark implementation of DCP-Growth, contrast pattern mining was performed

on 3 real-world data sets. The first data set describes various features of di↵erent species

of mushrooms, and an indicator of whether or not the species is poisonous to humans. The

second data set was provided by AUSTRAC, and consists of a set of parties (individuals

and companies) divided into two distinct classes. The third data set consists of results from

the 1990 US census. Relevant statistics for these data sets are provided in Table 5.2. Note

that the US census data set does not contain a class variable partitioning the data into two

contrasting subsets. For the purposes of these experiments an arbitrary binary variable was

selected (military service) to split the data.

Each of the data sets used in the experiments consists of dense transactions, with each

transaction having a value for each dimension. Evaluations of previous algorithms for mining

65

contrast patterns have tended to use sparse data sets, where the total number of attributes

is much greater than the length of the longest transaction, and consequently, the depth of

the resulting CP-Tree. However, it is desirable to test the algorithm using data sets that give

rise to a large search-space, where the degree of parallelism becomes an important factor in

the time taken for the mining to complete.

Experiments were performed using Spark version 1.4.1. Code was compiled using Scala

2.10.5. The Spark environment consisted of 8 compute nodes, running a total of 16 workers.

Four of these nodes have dual Xeon hex core cpus, running at 3.0GHz. The other four nodes

each have a single hex core cpu, running at 4.8GHz. Each of the dual cpu nodes supports

3 workers, with 4 cores each, while each of the single cpu nodes supports a single worker

with 4 cores available. Each worker has 16GB RAM available. For the purposes of our

experiments, Spark was run with a set number of cores requested, but the distribution of

cores was not specified. Thus a run using 8 cores may involve two workers, or may involve

8 workers depending on how resources are allocated to other users. Reported results were

conducted using 8GB per worker. Some comparison was made of running times using 4G,

8GB and 16GB per worker respectively however no significant di↵erences in timing results

was observed.

5.3.1.1 Total running time

The 3 data sets used for evaluation consist of 22, 30 and 58 dimensions respectively. In-

creasing the number of dimensions extends both the width and the height of the resulting

CP-Tree, and is expected to have a significant impact on the time required for mining. To

evaluate the performance of DCP-Growth, each data set was mined for contrast patterns and

the running time recorded. For each combination of parameter values DCP-Growth was run

10 times, and the mean running time was then calculated across the 10 runs.

66

5.3.1.2 Frequency parameters

Identification of patterns in DCP-Growth depends on two parameters, ↵ and �. Based on

the values of these parameters, DCP-Growth will prune more or less subtrees as part of the

mining process, which a↵ects the amount of computation performed. To test the magnitude

of this e↵ect, DCP-Growth was run on the US Census data set using 32 cores and di↵ering

values of ↵ and �.

5.3.1.3 Use of available cores

To determine the level of parallelism achieved by the Spark implementation, the run time and

also the proportion of available cores used was measured over a series of runs with di↵ering

values for Nsplits and �H . As described in Section 5.2, Nsplits and �H control the process

by which large CP-Trees are further split into smaller subtrees to obtain a more uniform

distribution of sizes.

In the Spark model of computation, a series of transformations applied to a Spark RDD

are packaged as a single stage. Within each stage, the transformation of each element in

the RDD is represented as a task, and multiple tasks may be run in parallel. If some small

number of these tasks take significantly longer to run than others, the total run-time for the

stage is likely to be dictated by these tasks. Since Spark can’t move to the next stage until

all tasks in the previous stage are complete, many cores will sit idle while this small number

of long-running tasks are completed. In contrast, a larger number of smaller tasks may be

more evenly distributed across the available cores, leading to a greater level of parallelism.

Since the parameters Nsplits and �H influence the number and size of individual subtrees to

be mined, it is expected that di↵erent values for these parameters will significantly influence

the degree of parallelism achieved for a given run.

67

5.3.2 Results

Results of timing experiments for the mushroom, P12-01 and census data sets are shown in

Figure 5.5. These results indicate that the DCP-Growth algorithm exhibits good scalability

across a range of parameter values, and is capable of analysing large data sets in a reasonable

amount of time. Note that the running time for the mushroom data set using 1 core and

parameters Nsplits = 0 and �H = 0 represents the time required to run the serial version of

the algorithm. As shown, moving to the distributed version decreases the time required for

analysis.

For the parameters Nsplits and �H, results shown in Figure 5.5 indicate that splitting of

large subtrees is not required for low-dimension data, but is an important optimisation when

a higher number of dimensions is considered. As shown in the top-right plot of Figure 5.5,

setting Nsplits = 0 results in longer run times, particularly when the number of cores available

is high. In this situation, a small number (⌧ Ncores) of large trees account for the majority

of the running time. While these trees are being processed the vast majority of the cores sit

idle, hence the small reduction in running time with additional cores.

Results shown in Figure 5.5 indicate that the number of splits, Nsplits has a greater

impact on run-times than the change in height �H. For the particular setup described in

this chapter, a single round of splitting appears to be preferable when the number of cores

available is 32. However, with 48 cores available, two rounds of splitting performs (roughly)

equally well or better, depending on the value of �H. Moreover, with 48 cores available, the

sensitivity of the algorithm to Nsplits and �H is greatly decreased.

With respect to the frequency parameters ↵ and �, Table 5.3 indicates that variation

in these parameters can result in significant di↵erences in running time (a 85% decrease).

Increasing the value of ↵ means that a given pattern is less likely to be a contrast pattern

and is also less likely to be a subset of a contrast pattern. Consequently, more branches

may be pruned from the CP-Tree and the running time is decreased. For �, increasing the

value means that a given pattern is more likely to be a contrast pattern. Since any patterns

68

●

● ●

● ●

●
●●

●

●

●●
●

●

●

●●●
●

●

●●●●

●

●●●
●

●

●●●

●

●

●●
●

●

●

●●

●

●

●

●
●●

●

●

●●

●

●

●

●●

●

●

●

●
●

●

●

●

0

25

50

75

100

8 16 24 32 48

num. cores

m
ea

n
tim

e
(m

in
s)

●

●

●

●

●

●

●

●

●

●

●

●

●

0 / 0
1 / 6
1 / 8
1 / 10
1 / 12
2 / 6
2 / 8
2 / 10
2 / 12
3 / 6
3 / 8
3 / 10
3 / 12

●

●

●
● ● ●

●

●

●

● ● ●

●

●

●

● ● ●

●

●

●

● ● ●

0

1

2

3

2 4 8 16 24 32

num. cores

m
ea

n
tim

e
(m

in
s)

●

●

●

●

0 / 0
1 / 2
1 / 4
1 / 6

●

●

●

●
●

●

●

●

●
●

●

●

●

● ●

●

●

●

●
●

0.0

0.2

0.4

0.6

1 2 4 8 16

num. cores

m
ea

n
tim

e
(m

in
s)

●

●

●

●

0 / 0
1 / 1
1 / 2
1 / 4

●

●

●

●
● ●

●

●

●

● ● ●

●

●

●

● ● ●

●

●

●

● ● ●

0

25

50

75

100

2 4 8 16 24 32

num. cores

re
du

ct
io

n
in

 ru
n

tim
e

(%
)

●

●

●

●

0 / 0
1 / 2
1 / 4
1 / 6

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●
●

0

25

50

75

100

1 2 4 8 16

num. cores

re
du

ct
io

n
in

 ru
n

tim
e

(%
)

●

●

●

●

0 / 0
1 / 1
1 / 2
1 / 4

m
ea

n
tim

e
(m

in
s)

de
cr

ea
se

 in
 ru

n
tim

e
(%

)

number of cores number of coresnumber of cores

●

● ●

●
●

●

●●

●

●

●●

●

●

●

●●●

●

●

●
●

●
●

●

●●
●

●

●

●●●

●

●

●●

●

●

●

●●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●0

25

50

75

100

8 16 24 32 48

num. cores

re
du

ct
io

n
in

 ru
n

tim
e

(%
)

●

●

●

●

●

●

●

●

●

●

●

●

●

0 / 0
1 / 6
1 / 8
1 / 10
1 / 12
2 / 6
2 / 8
2 / 10
2 / 12
3 / 6
3 / 8
3 / 10
3 / 12

Figure 5.5: Results of timing experiments on using di↵erent values of Nsplits and �H
(legends show parameter values as Nsplits / �H). From left to right, plots show results for
the mushroom, AUSTRAC P12-01 and Census data sets respectively. The top row of plots
shows the mean running time. Note the changing scale on the vertical axis. The bottom row
of plots shows the reduction in running time relative to a baseline, indicated by the left-most
value on the horizontal axis.

containing a contrast patterns cannot be minimal, this also results in more branches being

pruned from the CP-Tree and a subsequent decrease in running time.

As further evidence of DCP-Growth’s scalability, Figure 5.6 shows the proportion of time

that at least a given proportion of cores are used for di↵ering values of Nsplits and �H.

As expected, these results indicate that more rounds of splitting (higher values of Nsplits),

result in a larger proportion of cores being used for a greater proportion of the running time.

Referring back to Figure 5.5, it is evident that this more e�cient use of the available cores

begins to o↵set the additional work required to shu✏e subtrees as the total number of cores

increases.

Compared to the P12-01 and US census data sets, the mushroom data set is quite small.

It is included in our experiments for comparative purposes, as it is a widely known data set

69

↵ � T ime(mins)
0.6 0.050 27.34
0.8 0.050 18.86
1.0 0.050 3.60
0.8 0.025 17.86
0.8 0.075 14.49

Table 5.3: Results of timing experiments on the US census data, using 32 cores and di↵erent
values of ↵ and �.

0.00

0.25

0.50

0.75

1.00

0 4 8 12 16 20 24 28 32

number of cores

pr
op

or
tio

n
of

 ru
nn

in
g

tim
e 0 / 0

1 / 6
1 / 8
1 / 10
1 / 12
2 / 6
2 / 8
2 / 10
2 / 12
3 / 6
3 / 8
3 / 10
3 / 12

Figure 5.6: Proportion of time that at least a given proportion of cores are used over a
series of runs using 32 cores with ↵ = 0.6 and � = 0.05 (legend shows parameter values as
Nsplits / �H).

and has previously been used for evaluation of sequential mining algorithms. For example,

previous work applying CP-Tree to this data set reported a running time of 2.7 minutes

[177]. As noted above, Figure 5.5 shows that a serial version of the algorithm, implemented

in Scala, can be used to analyse the mushroom data set in less than 24 seconds; a significant

improvement. However, it is noted that the running time reported in [177] involved mining

patterns from each class separately, and was run on hardware available in 2008.

5.4 Summary

This chapter presents a novel algorithm, DCP-Growth, for mining contrast patterns in a

distributed manner. This algorithm combines an initial breadth-first merging of subtrees,

70

with the traditional depth-first search used in CP-Growth. Using a recursive procedure,

subtrees are continually merged and split until a certain size is reached, at which point

sequential mining takes place. This design allows a high degree of parallelism, and resulting

scalability, to be achieved. The algorithm has been implemented using the Spark cluster-

computing engine and is available as open-source. Experiments applying this implementation

to real data clearly demonstrate that the presented algorithm is an e↵ective, scalable approach

for mining contrast patterns in large data sets.

71

6. Deriving item-based features from networks

for analysis using contrast patterns

This chapter explores the possibility of mapping networks to an item-based feature space,

allowing the application of pattern based data mining and analysis techniques. As discussed

in Chapter 3, some forms of illicit behaviour involve collaboration between multiple entities,

and are best modelled using a network-based approach. However, previous work (including

that described in Chapter 3) on mapping networks to a feature space for data mining have

tended to focus on Euclidean spaces (e.g. [5, 114]).

One of the major advantages of pattern based analysis is the ease in which results may

be interpreted. Pattern based analysis does not require a Euclidean space, thus mapping

networks to an item-space means less restrictions on how information is represented. The

example features developed in this chapter take advantage of this, capturing both structural

and non-structural information. This provides a more flexible, descriptive alternative to the

use of graph invariants.

Two online social networks are considered for the purposes of this chapter. The Slashdot

Zoo, which is a signed network representing slashdot users and their relationships (like /

dislike) and a subset of the Twitter network. Each of these networks is broken into discrete

components, and a set of features is developed that capture both structural and non-structural

information. These features are categorical in nature. Finally, we apply pattern based

clustering to the networks to evaluate the suitability of the developed features.

Results of this clustering demonstrate that the developed features are able to capture

relevant structural and non structural information. The resulting clusters are of a high

quality, and the meaning of each cluster can be easily interpreted.

72

6.1 Patten based clustering of networks

Clustering is a fundamental data mining problem, in which attempts are made to identify

meaningful groups of objects present in data. Clustering is frequently used for exploratory

analysis, and is often useful as a preprocessing step for model building, as further analysis

may be better targeted to each distinct class of objects. Similarly, identification of distinct

classes may allow for development and application of more targeted business rules on a class

by class basis. Clustering also plays a major role in many approaches to anomaly detection

and outlier analysis [Chandola2009].

In clustering information-rich networks, the goal is to identify similarities involving mul-

tiple interactions occurring between multiple entities. In choosing to model a system as a

network, it is implied that information held at the entity (or interaction) level is insu�-

cient for analysing the particular behaviours of interest [19]. Relevant information is instead

held within the complex relationships between entity states and their patterns of interac-

tion. Clustering a set of networks provides a means to identify groups of networks that share

similarities in these relationships.

6.2 Representation of networks as item-sets

One of the major benefits of using contrast patterns for clustering of networks is their high-

degree of flexibility. Many aspects of a network may be represented as items, allowing a

flexible combination of structural and non-structural information. A number of examples

are presented below, describing how network features can be very easily mapped to items.

Further examples are provided in the application of clustering to real data, described in

sections 6.3.1 and 6.3.2.

Suppose that entities in a network have some attribute attr, then interactions between

entities having particular values for attr can be directly represented as items, attr :val1 !

73

attr :val2. Here the attribute is labeled, a specific value is given for the two entities involved,

and the fact that a directed interaction occurred is indicated. Clearly, this idea can be ex-

tended to include edge attributes; for example, an item role:manager – communication:email

! role:CEO. Depending on the particular problem being addressed, this relationship may

be represented using two items, role:manager!role:CEO, communication:email. When us-

ing a single item to represent the relationship, it is clear that similarities between networks

may involve individuals in similar roles communicating in a similar manner. In contrast, use

of two items indicates that similarities may occur between networks based on the form of

communication or the roles of interacting individuals.

In the example given above, specific interactions were represented as a single token, in-

dicating that the interaction occurs at least once in the network. A more detailed view may

consider the frequency of each interaction, so that the corresponding item is represented as

a pair (role:manager ! role:CEO, 5) indicating that the network contains 5 interactions

between a manager and a CEO. Representing the relationship in this way would allow clus-

ters of networks to be identified having similar types of interactions occurring with similar

frequency.

Consider the set of triangles that may occur in a directed graph. There are nine possi-

bilities, which may be treated as items in the pattern-based representation of the network,

for example (triangle-isomorph-3, 5), where the value given is the number of times that the

isomorph appears. Triangles are extremely useful structures for analysing networks (see for

example [103]), and this example shows that they can be easily included in a pattern-based

representation. Of course, any subgraph could be represented as an item in this manner,

so that a pattern-based approach to clustering could involve mining of subgraphs for use of

features. Of course, in considering information-rich networks, features summarising relation-

ships between structure and attributes are more likely to be considered, rather than only

considering the structural information provided by subgraphs.

Suppose now that a particular network has two types of interactions, I1 and I2. Some

74

global network measure, diameter for instance, may be of interest, taken across each of these

two interaction types. This can be simply represented as an item (I1-diameter, 3). Here the

name of the feature being represented and the specific value as a pair is given. Note however,

that since a measure such as diameter is expected to vary greatly over di↵erent networks,

the value may be discretised, (I1-diameter, high). This item could then be included in

the representation of a network, along with the corresponding item for the second type of

interaction. In this way, traditional invariants may still be considered and represented in the

item-space.

6.2.1 Clustering of high-frequency patterns

For the allocation of patterns into high-contrast clusters, contrast pattern clustering (CPC)

is applied, as described in [50]. CPC is an iterative clustering algorithm, which first selects

k seed patterns, where k is the user supplied number of clusters. CPC then builds on these

clusters, adding one pattern at a time until no more patterns can be added.

Patterns are added to clusters in two stages. In the first stage, each iteration identi-

fies a candidate set of patterns for each cluster. Candidate patterns for a cluster Ci have

minimal overlap with the patterns already allocated to Ci (i.e. |mat(P) \ mat(Ci)|

� ⇤ min(|mat(Pi)|, |mat(Ci)|) for some threshold �). The best candidate is then selected

based on mutual pattern density, which describes the extent to which two patterns are over-

lapped by other frequent patterns (i.e. the supporting sets for each pattern both have large

intersections with supporting sets for many other patterns). The candidate having the highest

mutual density with those already allocated to the cluster is deemed to be the best candidate,

and this pattern is added to the cluster. This first stage converges when no more candidates

can be found, due to remaining patterns having high overlap with allocated patterns. In

the second stage of CPC these remaining patterns are added to the cluster that having the

greatest overlap. Patterns having equal overlap with multiple clusters are discarded. Once

all patterns have either been allocated or discarded, objects may be mapped to clusters based

75

on how well they match the patterns that make up each cluster. Further details of the CPC

algorithm may be found in [50].

6.3 Applications to real data

The following sections present two applications of the described approach, clustering networks

extracted from real data sets. These applications reflect a common use case for clustering

of networks, and serve to illustrate the flexibility and the e↵ectiveness of a pattern-based

approach. For the sake of clarity and brevity, two relatively simple applications have been

selected, considering only a small number of features. However, it should be noted that a

more involved analysis, considering a larger set of features, would follow a similar pattern to

that presented in these applications, although such analysis would obviously be informed by

a deeper level of domain knowledge.

A number of indices and scores for measuring cluster quality exist (e.g. silhouette, mutual

information), however these measures rely on distances for evaluating quality, and are thus

unsuitable for item-based features. An alternative quality index, CPCQ, has been developed,

which uses contrast patterns to score clusters [110]. However the CPC algorithm is specifically

designed to maximise this index [50], thus evaluation with this measure is not particularly fair

or meaningful. Given this limited ability to measure cluster quality, example applications

have been selected that can be evaluated to some degree through manual inspection. In

the first example, attempts are made to identify clusters corresponding to a known domain

concept, and results are checked against a ground truth. In the second example, a small

number of observations are considered using a relatively simple feature set. The resulting

clusters are manually inspected and conclusions drawn based on the patterns describing each

cluster. Despite the simplicity of these examples, both demonstrate the potential of patten

based approaches to network analysis. Moreover, it is clear from these applications that the

methods employed for generating features could be extended to more complex problems.

76

6.3.1 Clustering of trust networks

The notion of trust is often represented in social networks using signed edges. Trust networks

are directed networks having a binary edge attribute (+, -) that indicates whether or not the

source individual trusts (or likes) the target individual. The edge-sign prediction problem

involves allocating a binary label (i.e. a sign) to a target edge based on the known signs of

other edges present in the network [12]. Given that the sign of some network edges is assumed

to be known, this problem may also be approached as a supervised learning problem (e.g.

[12, 5]). However, for the purposes this thesis, it will be taken as an unsupervised learning

problem, that attempts to partition the set of target edges into two clusters. It is anticipated

that the chosen features will mean that these two clusters will correspond to positive and

negative signed edges.

Previous work on prediction of trust relationships has shown that the local structure

about each target edge contains su�cient information to make accurate predictions [103,

12]. If the neighbourhood around each target edge is considered (i.e. the set of adjacent

edges and related entities), a set of sub-networks is obtained that may be clustered using

a pattern-based approach. The following sections describe the process for selecting target

edges and extracting the corresponding neighbourhoods, and for deriving useful features from

each neighbourhood. Results of clustering are then presented and comparisons made with

alternative solutions to the edge-sign prediction problem.

6.3.1.1 Extraction of sub-networks for clustering

Data was obtained from three online communities, Epinions, Slashdot and Wikipedia de-

scribing the trust relationships between member individuals. Collection of these data has

previously been described [103] and the three data sets are freely available from the Stanford

Network Analysis Project (SNAP, http://snap.stanford.edu). Basic statistics for these three

networks are provided in Table 6.1.

77

network num. nodes num. edges
Epinions 131, 828 841, 372
Slashdot 82, 144 549, 202
Wikipedia Elections 7,029 98, 292

Table 6.1: Summary statistics for signed networks

-

+
+ -

? -
B

A

C

D -

+
+ -

?
B

A

C

D

I II

-

+

+

-
? BA

C

III

? BA

D

Figure 6.1: Process for extracting sub-networks from signed network data. (I) A signed
network consisting of eight individuals, expressing trust (+) or distrust (-) relationships.
Note not all edge signs are shown. A target edge with unknown sign is marked by ‘?’. (II)
The sub-network induced by the target edge A!B. (III) Triangles present in the induced
sub-network.

The process used for extracting sub-networks is illustrated in Figure 6.1. In each of the

three data sets 10,000 positive and 10,000 negative edges were selected, and the neighbour-

hood around each edge was then extracted. Target edges were selected as a uniform random

sample. For each target edge, the two individuals connected by the edge were identified

along with any common neighbours (i.e. entities having interactions with both of the enti-

ties connected by the target edge). The sub-network induced by these individuals was then

extracted, resulting in a total of 20,000 sub-networks. Note that these sub-networks are

somewhat equivalent to the notion of an ego-net, but are induced by a target interaction,

rather than a target individual.

Since target edges were selected at random, experiments were repeated 10 times for each

network. Results were then averaged over these ten repetitions.

6.3.1.2 Feature generation

Previous work on prediction of trust relationships has shown that the set of triangles to

which the target edge belongs contains important information for predicting the sign [103].

78

As shown in Figure 6.1, each triangle containing the target edge consists of two non-target

edges with known sign. For the purposes of clustering, consideration was given to those

triangles where the two non-target edges form an alternative path between the two vertices

at either end of the target edge (because the network is directed, a triangle may be one of nine

possibilities; here, triangles of the form (A!C, C!B, A!B) are of interest). Considering

this alternative path, each triangle can be unambiguously represented as a pair of signs taken

from the two non-target edges. This gives a total of four possible isomorphs, denoted as +/+,

+/�, �/+ and �/�. Taking each possible isomorph item, each network is represented as

an item-set that indicates the presence of particular isomorphs. For example, the induced

sub-network shown in Figure 6.1, would map to an item-set containing the two items +/�

and �/+.

In addition to the treatment of triangles as items, the mode sign of the outgoing and

incoming edges for the two individuals linked by the target edge were also considered. For a

target edge A!B, the value of mode(out� edges(A)) and mode(in� edges(B)) were treated

as an item. If there is an equal number of both signs, this is recorded in the item. Combining

this with the items representing triangles, the sub-network shown in Figure 6.1 would be

represented as the item-set {(out,+ : �), (in,+ : �), +/�, �/+}.

6.3.1.3 Clustering results

Having obtained an item-set representation of each sub-network, pattern based clustering

was applied with k = 2, using a minimum support for pattern mining of 3 (i.e. a pattern

supported by at least 3 objects is considered frequent). Results of clustering are shown in

Table 6.2. From these results, it is clear that the two clusters returned for each of the three

data sets considered closely resemble a partitioning of the sub-networks according to the true

sign of the target edges.

The patterns describing each cluster make it quite clear which cluster corresponds to

networks having a positive target edge, and which corresponds to networks having a negative

79

network cluster prop. trust prop. distrust
Epinions 1 0.95 0.05

2 0.37 0.63
Slashdot 1 0.66 0.34

2 0.21 0.79
Wikipedia 1 0.92 0.08

2 0.32 0.68

Table 6.2: Clustering results for trust networks. Columns prop. trust and prop. distrust
refer to mean proportions taken over ten samples.

target edge. For example, the pattern +/+ provides a strong indication that its member

cluster corresponds to a positive trust relationship. Consequently, a sign can be allocated to

the networks contained in each cluster based on this interpretation and evaluation made of

how well the clustering algorithm performs against the ground truth. Treating the clustering

as a way to label edge signs, the mean precision over the ten samples was 0.80, 0.76, and 0.79

for the Epinions, Slashdot and Wikipedia networks respectively. For comparison, trained

classifiers applied to the same three data sets in [12] were reported to give precision scores in

the range 0.85 - 0.9, while the classifier described in [103] achieved a precision of just over 0.9

on the Slashdot and Epinions data sets, and just under 0.8 for the Wikipedia data set. Given

that these classifiers are constructed using supervised learning, the unsupervised clustering

approach can be considered to perform extremely well. In addition, note that the structures

considered in [12] could also be included as items, which may improve the performance of

the clustering for this task. However this would necessitate expensive mining process be

performed as part of the feature generation.

6.3.2 Clustering of Twitter ego-nets

For the second application, patten based clustering was applied to a set of ego-nets derived

from political communication on Twitter. The data set used is that described in [33], collected

during the lead up to congressional elections held in the United States of America in 2010.

The full data set consists of ⇠22,000 Twitter members with ⇠78,000 interactions between

80

them. Interactions are typed as either a reply or a mention, with both interaction types

being directed. A reply interaction A –reply!B indicates that user A replied to a tweet by

user B. A mention interaction X –mention!Y indicates that user X mentioned user Y in a

tweet. Each interaction has a set of associated hash-tags.

Previous analysis of the political communication network included clustering of individu-

als based on their reply interactions [33]. Note that clustering in this context refers to a purely

structural consideration of the network, with entities being allocated to clusters so that con-

nections within each cluster are stronger than any connections between the clusters (see for

example [159]). Clustering of individuals in this manner was used to split the data into those

individuals having a ‘left’ political-a�liation and those having a ‘right’ political-a�liation.

For the presented experiment, mention interactions were considered. A pre-constructed

network including only these mention interactions is available from [35] and this version

of the data was used for this work. This network was split into ego-nets, and features

were extracted relating to patterns of interaction between individuals of di↵erent political-

a�liations. Clustering was then performed based on these features. The following sections

describes each of these steps in greater detail.

6.3.2.1 Preprocessing and extraction of ego-nets

Labels for political a�liation allocated to individuals in the political communication net-

work were determined through analysis of the reply interactions. Consequently, individuals

involved only in mention interactions did not have a label for political-a�liation. These

individuals were removed from the network, leaving 3904 individuals, with 9100 interactions.

From this network, ego-nets were then extracted for each individual. Those ego-nets having

a diameter of 1 were discarded, leaving a total of 1108 ego-nets to be clustered.

Each mention interaction present in the Twitter network includes a set of multiple hash-

tags. To assist in the feature extraction described below, each interaction was split into as

many edges as there were associated hash tags, with each edge corresponding to a single

81

L

L

L

R
X

Y
Y X

L

L

R

Z W

W

Y

L

Y

W
R

X

Z

III
Figure 6.2: Projection of a network onto a set of attributes. (I) Directed network represent-
ing political communication in Twitter. Individuals (nodes) have a single attribute giving
their political a�liation. Interactions (edges) have a single attribute representing a hash-tag.
(II) Projection of network onto (political-a�liation, hash-tag). Edge thickness represents the
count for each possible combination in the original network.

hash-tag. This process was applied to all ego-nets extracted from the original network.

6.3.2.2 Aggregated network edges

One way of summarising the information held in a network is to project the network onto a

particular set of attributes and to aggregate any remaining attributes [200]. This is equivalent

to a group by operation performed on tabular data. As shown in Figure 6.2, this operation

results in an aggregate network from which useful features may be extracted.

For clustering of the Twitter ego-nets, aggregate networks were constructed by projecting

each ego-net onto the vertex attribute political-a�liation and the edge attribute hash-tag.

This resulted in an aggregate network containing only two nodes, labelled left and right, and

multiple edges representing each combination of hash-tag and political-a�liations present in

the original network (see Figure 6.2). The aggregation applied was simply a count oper-

82

ation, so that each edge was assigned a new attribute N, giving the number of times the

corresponding combination was observed.

Many of the aggregated networks obtained from the projection contained a large number

of edges, due to the large number of unique hash-tags used in tweets. Therefore, the ten most

frequent edges from each aggregate network were considered. If an aggregate edge network

had less than ten edges to begin with, then all edges were considered.

For each aggregate network, each edge was taken as an item for use in clustering. Items

therefore took the form P : 1�#tag � P : 2, indicating that a user with political-a�liation

P : 1 mentioned a user with political-a�liation P : 2 in a tweet that included the hash-tag

#tag. Note that the count on aggregate edges was ignored, so that each item represents the

fact that an interaction of this type occurred at least once in the original ego-net.

The process described above is a transform from an ego-net to an item-set by way of an

aggregate network. At each step, structural information is combined with information held

in network attributes.

6.3.2.3 Results of clustering

Clustering was applied using k = 2. The minimum frequency was set so that patterns were

required to appear in at least 100 ego-nets to be considered frequent.

Patterns describing the two clusters that resulted from the presented experiment are

shown in Table 6.3. The majority of these patterns contain only a single item, and this reflects

the high value used for the minimum frequency. Reducing this value would result in longer

patterns (containing more items), describing more specific areas of the space. Summary

information for each cluster is shown in Table 6.4. From the information shown in these two

table, the following points are noted.

1. Cluster 1 is roughly half the size of cluster 2

2. Both clusters have similar proportions of left and right a�liations amongst inducing

83

individuals

3. Hash-tags #sgp, #ocra and #tlot are seen exclusively in cluster 1, and only occur in

tweets where both individuals have a right a�liation

4. Hash-tags #p2, #twisters and #gop are seen exclusively in cluster 2. Both #twisters

and #gop occur only in tweets where both individuals have a right a�liation

5. Hash-tags #tcot and #teaparty are seen in both clusters

Based on these observations, it may be suggested that the clustering has simply split

the ego-nets based on their use of a specific set of hash-tags. However, it is interesting to

note that those hash-tags shared by both clusters are split depending on the a�liations of the

individuals involved. It is therefore concluded that these shared hash tags are used di↵erently

by ego-nets in cluster 1, compared to those ego-nets in cluster 2. Moreover, Table 6.4 indicates

that the 2 clusters identified account for only 961 ego-nets, with 57 ego-nets not being assigned

to clusters. These 57 ego-nets may be considered somewhat anomalous, having relationships

between hash-tag use and political-a�liation not shared by the vast majority. Exactly what

this means in terms of U.S. politics would of course require further analysis, however this

application demonstrates the ability of item based features to di↵erentiate between networks

based on a combination of structural and non-structural information.

6.4 Summary

This chapter has explored the mapping of networks to an item-space for analysis using pat-

tern based approaches. The presented results clearly demonstrate the potential for network

analysis using pattern based approaches, with generated items capturing both structural an

non-structural information.

While the results presented in this chapter are extremely promising, there are a number

of challenges that may be addressed in future work. First, selection of patterns for cluster-

84

cluster freq. pattern
1 152 right-#sgp-right

113 left-#teaparty-left
162 right-#tcot-right right-#teaparty-right
120 right-#ocra-right
159 left-#tcot-left
113 right-#tlot-right

2 295 left-#p2-left
522 right-#tcot-right
162 right-#tcot-right left-#tcot-right
297 right-#teaparty-right
308 right-#tcot-left
115 right-#twisters-right
196 right-#p2-right
282 right-#p2-left
146 right-#gop-right
131 left-#teaparty-right
167 right-#teaparty-left
352 left-#tcot-right
243 left-#p2-right

Table 6.3: Allocation of patterns describing political communications in a set of Twitter
ego-nets.

cluster size prop. left prop. right
1 328 0.35 0.65
2 633 0.46 0.54

Table 6.4: Summary of clusters for ego-nets extracted from political communication net-
work. Columns prop. left and prop. right refer to the political a�liations of the individual
that induces each ego-net.

ing is currently undertaken using frequency as a measure of interest. However, alternative

measures should be explored, including, for example, consideration of pattern length, and

the density of patterns covering a particular set of networks. Selection of pattens based on

alternative criteria may improve clustering. Second, information-rich networks are often used

to represent dynamic systems, such that the network changes over time. It is suggested that

further study be undertaken in this area to determine how to represent network dynamics in

manner suitable for pattern based clustering. This would allow, for example, networks to be

clustered based on similarities observed in their evolution.

85

7. Discussion and conclusions

Research presented in this thesis clearly demonstrates the usefulness of data mining for de-

tection of illicit behaviour. For both of the example problem domains, the presented models

and data mining techniques were e↵ective in detecting the relevant target behaviours. More-

over, the presented solutions are amenable to parallel / distributed computing, providing the

required level of scalability for real-world use. This chapter draws together the major findings

presented in this thesis and outlines the overall contributions to the broader understanding

of how data mining may be applied to the detection of illicit behaviour.

7.1 Summary of research findings

7.1.1 Money laundering

In chapter 3, a novel system was proposed for detecting money laundering in financial net-

works. This system demonstrates an end-to-end analysis pipeline, starting with raw trans-

action reports, constructing a financial network that models di↵erent types of relationships,

extracting meaningful communities from this network, and finally, applying supervised learn-

ing. Evaluation of this system showed that it is capable of producing high-quality classifiers,

able to di↵erentiate between suspicious and non-suspicious communities with high precision.

The presented system, along with recent projects reported in the literature (e.g. Dreżewski,

Sepielak, and Filipkowski [41], Bershtein and Tselykh [15], and Michalak and Korczak [123]),

represent significant advancement over previous approaches focusing on individual parties.

Each of these projects clearly demonstrate the potential of network analysis for detection of

money laundering and financial crime. As described in Section 7.1.1.1, it is expected that

future work will continue to improve network-based systems, applying more sophisticated

network modelling and improving the feature set used for supervised learning.

86

7.1.1.1 Future work

The system described in this thesis provides a basic framework for identifying money laun-

dering activity in a transaction network. However, it is intended that future work will extend

and improve this basic framework, informed by feedback provided from its use in an actual

financial intelligence environment.

One limitation of the described approach is that network structure is represented solely

through graph invariants. Moreover, the particular invariants used can only describe the

global structure of each community. It may be that more localised descriptors, such as the

role assignment proposed in [41], provide a more informative view. It is expected that future

work will employ the types of approaches described in Chapter 6 for capturing relationships

between the structure and particular edge and vertex attributes.

In addition, since supervised learning is employed in the current system, there is little

scope for discovery of new typologies. To address this issue, future work will also consider

unsupervised approaches. In particular, this will include the use of network-based anomaly

detection, using approaches described in Appendix A (published as [158], see also Akoglu,

Tong, and Koutra [1]).

7.1.2 Opinion spam

In chapter 4, a novel method was described for identifying opinion spammers based on their

rating behaviour. This method was developed through consideration of spammers’ goal,

namely their desire to drive mean ratings in a particular direction. The proposed method

analyses rating behaviour and identifies those reviewers whose behaviour over multiple re-

views is suggestive of a deliberate attempt to manipulate average ratings. Application of the

proposed method to the Amazon data set indicates that the proposed method is successful

in identifying real-life opinion spammers.

As described in Chapter 2 a number of di↵erent approaches have now been suggested

87

for identifying opinion spam. The method proposed in this thesis is one of the more simple

methods, considering only rating behaviour and applying a simple statistical test to identify

significant deviation from normal behaviour.

This approach could easily be combined with other descriptors of spammer behaviour (e.g.

timing of reviews [191, 47], or, if available, text-based features) as part of a more complex

classifier, such as those proposed in Mukherjee, Liu, and Glance [131] and Mukherjee et al.

[132].

In undertaking the manual investigation of candidate spammers, an interesting phe-

nomenon was noted, that has not previously been discussed in the relevant research lit-

erature. Many of the reviews published by the top 20 spammers were highly derogatory and

were clearly aimed at a particular subset within particular product ranges. For example, one

reviewer had singled out 3 specific female pop artists, all having a similar style of music, and

had written highly negative reviews for multiple albums by each of these artists. From the

review text it is clear that this reviewer has an aversion to this particular style of music, and

it seems highly unlikely that this reviewer had genuinely purchased each of the target albums

expecting to enjoy them. Another reviewer displayed a strong political bias in their rating of

books, while another claimed that a particular video game was the greatest game ever made

and posted numerous 1 star reviews of other games in the same genre. This type of reviewer

is quite interesting, as the review text in no way attempts to disguise the reviewers bias and

pose themselves as an objective reviewer. This type of behaviour has been termed agenda

spam, whereby a particular reviewer appears to have a specific political or personal agenda

and uses product reviews as a kind of public (yet anonymous) forum in which to express

their views. Note that while these types of review may not be intended to derive financial

benefit, it can be argued that they still represent a form of spam, as they pollute the review

space with non-objective, highly-biased and largely unhelpful reviews.

88

7.1.2.1 Future work

While the approach presented in this thesis is able to identify opinion spammers, there are a

number of improvements that should be considered in future work.

1. The presented approach considers a global probability that a random review will di↵er

from the mean rating. This probability is estimated from available reviews. This means

that the estimate includes the contribution from spammer reviews. This probability

could instead be treated as a hyper-parameter, being updated after running the iterative

correction of the mean ratings. This is likely to improve the accuracy of the achieved

when applying the binomial test.

2. In the current model, the mean rating is used as a measure of majority opinion. Future

work could consider alternative models of majority opinion, and more detailed descrip-

tions of the distribution of rating scores over each product. Improvements in this area

may include analysis of reviewer bias (i.e. a reviewers tendency to give high or low

ratings; some reviewers never give a product 5 stars, while others frequently give 5 star

ratings).

3. The presented approach should be combined with alternative approaches to gain a

more comprehensive detection system. Spammers employ a wide range of strategies,

and particular strategies may be more easily detected using a particular approach.

Combining these di↵erent approaches in a flexible manner would provide an e↵ective

method for dealing with the multi-faceted nature of spammer behaviour.

In addition to the improvements outlined above, future work should also consider how

the type of approach presented in this thesis can be extended to detect groups of spammers

acting in a coordinated manner. Previous work has shown that detection of spammer groups

is possible by considering groups of reviewers having multiple products in common [132]. Co-

ordinated behaviour amongst reviewers is likely to be be relatively unusual, so that spammer

groups may be identified based on their deviation from normal, uncoordinated behaviour.

89

7.1.3 Pattern based analysis

In chapter 5 a novel algorithm was presented for mining contrast patterns in a distributed

manner. This is an important step forward for contrast pattern mining, making this type

of analysis a viable approach for detection of illicit behaviour in the large data sets that are

characteristic of relevant problem domains.

In particular, experiments using the described algorithm showed that contrast pattern

analysis could be successfully applied to the AUSTRAC data set, identifying significant

di↵erences between suspicious and non-suspicious behaviour in relation to money laundering.

With respect to network analysis, experiments presented in Chapter 6 suggest that con-

trast patterns may represent a useful tool for network analysis. These experiments show that

information-rich networks can be mapped to a sparse item-space that captures the relation-

ships between structural information and edge and vertex attributes.

7.1.3.1 Future work

As shown in the presented experiments, the DCP-Growth algorithm provides good scala-

bility and is able to achieve reasonable run times with large numbers of transactions and

high dimensionality. However, DCP-Growth should be seen as a good starting point only,

and further advances should now be considered. For example, following from Terlecki and

Walczak [177], it is expected that modification of DCP-Growth to consider only the top-k

contrast patterns would significantly improve running times, since this allows more aggressive

pruning of the underlying CP-Trees. In a similar vein, consideration of pattern length when

determining the required support [193] would also lead to improved run-times. Another pos-

sibility for improvement would be to consider alternative data-structures for contrast pattern

mining (e.g. ZBBDs [111]) and consider how these may be adapted to a distributed system.

Future work should also consider further applications of contrast patterns to network

analysis. Of particular interest, is the relationship between pattern-based analysis and the

90

use of frequent subgraphs to represent networks (e.g. [12, 44]). While the work presented in

this thesis has considered relatively simple item-spaces, more complex analysis may include

consideration of contrast subgraphs that clearly describe significant the structural di↵erences

between sets of networks.

91

A. Anomaly detection in online social networks

A.1 Introduction

Anomalies arise in online social networks as a consequence of particular individuals, or groups

of individuals, making sudden changes in their patterns of interaction or interacting in a man-

ner that markedly di↵ers from their peers. The impacts of this anomalous behaviour can be

observed in the resulting network structure. For example, fraudulent individuals in an online

auction system may collaborate to boost their reputation. Because these individuals have a

heightened level of interaction, they tend to form highly interconnected subregions within the

network [142]. In order to detect this type of behaviour, the structure of a network can be

examined and compared to an assumed or derived model of normal, non-collaborative inter-

action. Regions of the network whose structure di↵ers from that expected under the normal

model can then be classified as anomalies (also known as outliers, exceptions, abnormalities,

etc.).

In recent times, the rise of online social networks and the digitisation of many forms

of communication has meant that online social networks have become an important part

of social network analysis (SNA). This includes research into the detection of anomalies in

social networks, and numerous methods have now been developed. This development has

occurred over a wide range of problem domains, with anomaly detection being applied to

the detection of important and influential network participants (e.g. Shetty and Adibi [168],

Malm and Bichler [115], and Cheng and Dickinson [31]), clandestine organisational structures

(e.g. Shetty and Adibi [168], Krebs [96], and Reid et al. [153]), and fraudulent and predatory

activity (e.g. Phua et al. [147], Fire, Katz, and Elovici [49], Chau, Pandit, and Faloutsos

[28], Akoglu, Chandy, and Faloutsos [2], and Pandit et al. [142]).

Since anomaly detection is coming to play an increasingly important role in SNA, the

92

purpose of this chapter is to survey existing techniques, and to outline the types of challenges

that can be addressed. To our knowledge this chapter represents the first attempt to examine

anomaly detection with a specific focus on social networks. The contributions of this chapter

are as follows

• provide an overview of existing challenges in a range of problem domains associated

with online social networks that can be addressed using anomaly detection

• provide an overview of existing techniques for anomaly detection, and the manner in

which these have been applied to social network analysis

• explore future challenges for online social networks, and the role that anomaly detection

can play

• outline key areas where future research can improve the use of anomaly detection

techniques in SNA

In drafting this review we did not set out to consider particular problem domains. Rather,

we aimed to identify tools specifically designed for detection of anomalies, regardless of the

particular social networks they were designed to analyse. However, as we conducted our

survey we found that relevant work was predominantly published in the area of computer

science, and consequently, many of the applications of anomaly detection that we encountered

were focused on anomalies in online systems. Therefore, unless specifically stated otherwise,

the term social network will be used throughout this chapter to mean an online social network.

Within the social sciences literature, we found a number of papers focusing on the concept

of network change (see for example McCulloh and Carley [120], Arney and Arney [9], and

Tambayong [176]), which attempts to characterise the evolution of social networks. We see

anomaly detection as being a subset of change detection, as anomaly detection could be used

to identify change points where an evolving social network undergoes a rapid change, however

a network that evolves in a consistent fashion over an extended period of time is unlikely to

93

be deemed anomalous. We have therefore elected to limit the scope of our review to those

methods that deal specifically with anomaly detection.

A.2 Related Work

Previous reviews of anomaly detection have provided an overview of the general, non-network

based problem, describing the use of various algorithms and the particular types of problems

to which these algorithms are most suited [74, 26, 117, 118]. A workshop on the detection of

network based anomalies was also held at ACM 2013 [3]. The most recent review of general

anomaly detection [26], expands on previous works to define six categories of anomaly detec-

tion techniques; classification (supervised learning), clustering, nearest neighbour, statistical,

information theoretic, and spectral analysis.

As well as categorising anomaly detection techniques, previous reviews describe a number

of challenges for anomaly detection, mainly associated with the problem of defining normal

behaviour, particularly in the face of evolving systems, or systems where anomalies result

from malicious activities [26, 74]. In particular, Chandola, Banerjee, and Kumar [26] note

that the development of general solutions to anomaly detection remains a significant chal-

lenge and that novel methods are often developed to solve specific problems, accommodating

the specific requirements of these problems and the specific representation of the underlying

systems. As discussed in Section A.7, this has also been the case for some methods focused

on anomaly detection in social networks.

In addition to the major reviews of anomaly detection described above, other works

have considered anomaly detection as part of methodological surveys for particular problem

domains. For example, methods for performing anomaly detection have been discussed as

part of more general reviews in areas of fraud detection [18, 147], network intrusion [87, 63,

146], and the deployment of wireless sensor networks [199, 79]. While significant overlap exists

94

between the analysis of computer and sensor networks and social networks, there are also

a number of di↵erences that must be taken into account. In particular, social networks are

typically composed of many inter-connected communities, which has important consequences

for the distribution of node degree, and the transitivity of the network [138]. Moreover,

anomaly detection in both sensor and computer networks is typically required to occur online

in (soft) real-time, and while this constraint may also apply in some SNA scenarios, it is not

typically required. In addition, anomaly detection in sensor networks generally requires

algorithms that reduce network tra�c and have a low computational complexity [199].

A.3 Problem domains for the application of anomaly de-

tection in social networks

Anomalies in social networks are often representative of illegal and unwanted behaviour. The

recent explosion of social media and online social systems, means that many social networks

have become key targets for malicious individuals attempting to illegally profit from, or

otherwise cause harm to, the users of these systems.

Many users of online social systems such as Facebook, Google+, Twitter, etc. are regularly

subjected to a barrage of spam and otherwise o↵ensive material [169, 49, 5, 68]. Moreover,

the relative anonymity and the unsupervised nature of interaction in many online systems

provides a means for sexual predators to engage with young, vulnerable individuals [49].

Since the perpetrators of these behaviours often display patterns of interaction that are

quite di↵erent from regular users, they can be identified through the application of anomaly

detection techniques. For example, sexual predators often interact with a set of individuals

who are otherwise unconnected, leading to the formation of star like structures [49]. These

types of structures can be identified by examining a range of network features [5, 169, 68],

or through the use of trained classifiers [49].

Online retailers and online auctions have also become a key target for malicious individ-

95

uals. By subverting the reputation systems of online auction systems, fraudsters are able to

masquerade as honest users, fooling buyers into paying for expensive goods that are never

delivered. This process is facilitated by the use of Sybil attacks (the use of multiple fake

accounts) and through collaboration between fraudulent individuals to artificially boost rep-

utation to a point where honest buyers are willing to participate in large transactions [28,

142]. In many online stores, opinion spam, in the form of fake product reviews, is used in

an attempt to distort consumers’ perceptions of product quality and to influence buyer be-

haviour [2]. Again, the malicious individuals who engage in these types of behaviour often

form anomalous structures within the network, as their patterns of interaction can be quite

di↵erent from regular users.

In addition to the social networks supported by dedicated online systems, mining of the

social networks induced by mobile phone communications, financial transactions, etc. can

also be used to identify illegal activities. Detection of anomalies in these types of networks

have previously been used to identify organised criminal behaviour, including insurance fraud

[173], and terrorist activities [153, 96]. Given the highly detrimental impact of these types

of behaviour, anomaly detection in social networks can be seen as an extremely important

component in the growing tool-box for performing social network analysis (SNA).

Outside of criminal or malicious behaviour, anomaly detection has also been used to

detect important and influential individuals [168], individuals fulfilling particular roles within

a community [189], levels of community participation [16], and unusual patterns in email

tra�c [44].

A.4 Definitions

Anomalies are typically defined in terms of deviation from some expected behaviour. A recent

review of general, non-network based anomaly detection defined anomalies as ‘patterns in

data that do not conform to a well defined notion of normal behaviour’ [26]. Another recent

96

review defines anomalies as ‘an observation (or subset of observations) which appears to

be inconsistent with the remainder of that set of data’ ([14], cited in [74]). We note two

important aspects of these definitions.

First, the definitions given above highlight the importance of defining expected behaviour,

but are somewhat imprecise in terms of exactly how the anomaly deviates from this expecta-

tion. This imprecision stems from the fact that the magnitude of any deviation will depend

on the specific problem domain [26].

Second, these definitions presuppose an understanding of what exactly should be ob-

served in order to di↵erentiate normal and anomalous behaviour. In order to detect real-life

behaviour of interest we must observe the underlying system through a suitable set of fea-

tures, and determining which features will provide the greatest separation of normal and

anomalous behaviour is in itself a key challenge in anomaly detection [26]. This can be es-

pecially di�cult in adversarial problem domains as the behaviour of anomalous entities may

change over time in direct response to the detection methods employed.

For the detection of anomalies in social networks, we are concerned with the pattern

of interactions between the individuals in the network. Thus, following [26, 74] we define

network anomalies simply as patterns of interaction that significantly di↵er from the norm.

As is the case for general anomaly detection, this definition is highly imprecise, and for a

given domain, the specific meaning of ‘pattern of interaction’ and ‘significantly di↵er’ will

reflect the particular behaviour of interest. For example, one analysis of emails between

employees of the Enron corporation considered ‘patterns of interaction’ to simply be the

number of emails sent by an individual over a given period of time [149]. For this particular

study, this metric was deemed to be a suitable feature for identifying the real-life anomalous

behaviour of interest. However, for a di↵erent study, concerned with a di↵erent aspect of

employee behaviour, a di↵erent metric may be considered in order to capture the appropriate

‘patterns of interaction’.

97

In this chapter, we focus on the detection of anomalies resulting from patterns of in-

teraction that di↵er from normal behaviour within the same social network. However, for

completeness, we note here that another form of anomaly exists, termed horizontal anoma-

lies [54]. Horizontal anomalies occur when the characteristics or behaviours of an entity vary

depending on the source of the data [54, 143]. For example, a user of social media may have

a similar set of friends or followers across a number of platforms (e.g. Twitter, Facebook,

etc.), but for one particular platform (Google+ for example) has a markedly di↵erent set

of acquaintances. Methods for detecting this type of anomaly are beyond the scope of this

chapter. However, given the highly diverse nature of the systems from which social network

data is currently being extracted, we believe that the detection of horizontal anomalies will

become extremely important in the near future, and suggest that further research in this

area will be extremely fruitful.

A.5 Characterisation of anomalies

In analysing social networks it is the interactions between individuals that form the main ob-

ject of study. Focus is given to the manner in which interactions between pairs of individuals

influence interactions with and between other individuals in the system, and the relationship

between these interactions and the attributes of the individuals involved (see Brandes et al.

[19] and Getoor and Diehl [61] for discussion of network analysis in general). This di↵er-

entiates anomaly detection in social networks from traditional, non-network based analysis,

where individual’s attributes are assumed to follow some population level distribution that

ignores interactions and the resulting relationships between individuals and their peers.

Typically, social networks are represented using a graph with vertices (nodes) represent-

ing individuals (or groups, companies, etc.) and edges (links, arcs, etc.) between the vertices

representing interactions. In some instances, nodes may be partitioned into multiple types,

and such networks can be represented using bipartite (or tripartite, etc.) graphs.

98

Depending on the type of analysis being performed, networks can be characterised as being

either static or dynamic, and as being labelled or unlabelled. Obviously, dynamic networks

change over time, with changes occurring in the pattern of interactions (who interacts with

who), or in the nature of these interactions (how X interacts with Y). Labelled networks

include information regarding various attributes of both the individuals and their interactions.

It could be argued that all social networks are dynamic, however it is often useful to

analyse social networks as if they were static. As an example, consider the Enron email

data set (analysed in Priebe et al. [149], Akoglu, McGlohon, and Faloutsos [5], Eberle and

Holder [44], and Eberle and Holder [43]), which consists of a dynamic network, representing

the emails sent between Enron employees between 1998 - 2002. This network changes over

time as di↵erent groups of individuals send and receive emails at di↵erent times. If employee

A sends five emails to employee B, a dynamic representation of the network would track

these five emails as links between A and B occurring only in the appropriate time-steps. If

the properties of each email are considered (e.g. length, subject, etc.) then the network is

treated as being labelled. By considering a dynamic representation of the network, Priebe

et al. [149] were able to detect anomalous time-steps where a particular individual suddenly

increased the number of emails they sent relative to previous time-steps.

In contrast to a dynamic representation of the Enron network, if consideration is given

to the total set of emails sent by each employee over the full time period, the time at which

each email is sent is no longer deemed important and the network can be treated as static.

In reducing the network from a dynamic to a static representation, multiple interactions

occurring at di↵erent points in time may be combined in some way, and represented by a

single link. This link may be labelled with the number of interactions it represents, and with

some aggregation of the properties of these interactions (e.g. mean email length), or it may

be that only the fact that an interaction took place is important, and the network can be

treated as being unlabelled. For example, a static, unlabelled representation of the Enron

99

email network was used in the analysis by [5], where the formation of an anomalous star like

structure was identified, indicative of a single individual (Ken Lay, a former CEO) sending

emails to large numbers of individuals who were not otherwise connected (i.e. they did not

send emails to one another). Thus, so long as the information is actually available, a network

can be easily represented in a number of di↵erent ways, depending on the requirements of

the analysis.

Exactly how a social network is chosen to be represented will depend of course on the

type of anomalies to be detected. As with the networks themselves, the anomalies that occur

in social networks can also be characterised as being dynamic or static, and as labelled or

unlabelled. A dynamic anomaly occurs with respect to previous network behaviour, while

a static anomaly occurs with respect to the remainder of the network. Labelled anomalies

relate to both network structure and vertex or edge attributes, while unlabelled anomalies

relate only to network structure (see Akoglu and Faloutsos [3]).

In addition to the characterisation as dynamic or static and labelled or unlabelled, anoma-

lies can be further characterised as occurring with respect to a global or local context and as

occurring across a particular network unit, which we refer to as the minimal anomalous unit.

A global or local context simply describes whether an anomaly occurs relative to the entire

network, or relative only to its close neighbours. For example, an individual’s income may

be globally insignificant (many people have similar income), however if the income of their

friends (defined by their links within the network) are all significantly higher, they may be

considered a local anomaly [55, 81]. The minimal anomalous unit refers to the network struc-

ture that we consider to be anomalous. If we are interested in changes made by individuals,

a sudden change in the medium of communication for example, we might consider a single

vertex to be the minimal anomalous unit. However, if we are interested in larger groups of

individuals, perhaps a group of fraudulent individuals collaborating to boost their reputation

in an online auction system [142], the minimal anomalous unit of interest scales to that of a

sub-network. In this situation, the behaviour of any given vertex may not be anomalous, but

100

taken together as a group, the pattern of communication may be anomalous with respect to

other groups of vertices in the network. Throughout this review, we will consider how the

di↵erent approaches to anomaly detection relate to each of these four characteristics.

A.6 Methods for anomaly detection

In Section A.5, we defined four characteristics that can be used to categorise anomalies; static

or dynamic, labelled or unlabelled, local or global context, and the minimal anomalous unit.

In this section we outline various approaches for detecting these di↵erent types of anomalies.

In practice we found that characterisation as static or dynamic and labelled or unlabelled

best di↵erentiates the various approaches, thus the following section is organised according

to characterisation along these two axes.

Note that we have considered here only methods that have previously been used to anal-

yse social networks. Network based anomaly detection has been investigated in a number of

additional problem domains including intrusion detection [59, 63, 87], tra�c modelling [167]

and gene regulation [92, 91]. However since we are primarily interested in social networks we

have not included these studies in our review.

A.6.1 Static unlabelled anomalies

Static, unlabelled anomalies occur when the behaviour of an individual or group of individuals

leads to the formation of unusual network structures. Because the labels on edges and vertices

are not considered, any information regarding the type of interaction, it’s duration, the age

of the individuals involved, etc. is ignored. Only the fact that the interaction occurred

is significant. Thus in order to detect anomalous behaviour, assumptions must be made

regarding the probability that a given pair of individuals will interact.

As an example, Shrivastava, Majumder, and Rastogi [169] noted that email spam and

101

viral marketing material is typically sent from a single malicious individual to many targets.

Since the targets are selected at random, they are unlikely to be connected independently of

the malicious individual, and the resulting network structure will form a star. Based on this

observation, the number of triangles in each ego-net 1 is used to label the subject individual

as being either malicious or innocent, with a low triangle count indicating a malicious indi-

vidual. Extensions to this basic approach have also been used to detect groups of malicious

individuals acting in collaboration [169].

While Shrivastava, Majumder, and Rastogi [169] considered star-like structures to be

indicative of malicious behaviour, Akoglu, McGlohon, and Faloutsos [5] demonstrated that

both near-stars and near-cliques may be indicative of anomalous behaviour in social networks.

Cliques and stars form the extremal values of a power-law relationship between the number of

nodes in an ego-net and the number of edges (Ne / N↵
v), thus in order to detect anomalies,

a power-law curve can be fitted to the network, and the residuals analysed for significant

deviance from the expected relationship. This idea has been applied to numerous properties

of the ego-net [5, 68], and in a comparison of various combinations of features, Hassanzadeh,

Nayak, and Stebila [68] showed that a power-law relationship between edge count, and the

average betweenness centrality (see Hassanzadeh, Nayak, and Stebila [68] for definitions) of

an individual’s ego-net was most useful in di↵erentiating between normal and anomalous

(near-cliques or near-stars) ego-nets.

Another approach for detecting static, unlabelled anomalies is the use of signal processing

techniques. The application of signal processing stems from work on graph partitioning, and

community detection [127, 137], and treats anomalous subgraphs as a signal embedded in a

larger graph, considered to be background noise. The problem of detecting this anomalous

subgraph is formulated in terms of a hypothesis test [127, 128, 125] with

H0: the graph is noise (no anomalous subgraph exists)

H1: the graph is signal + noise (an anomalous subgraph is embedded in the graph)

1An ego-net is defined as the subgraph induced by consideration of a subject and their immediate neigh-
bours

102

The null hypothesis assumes that the network is generated by some stochastic process de-

scribing the probability that any pair of nodes will be connected by an edge. Anomalous

subgraphs are generated by di↵erent underlying processes, resulting in a density of edges that

di↵ers from that expected under the null model [127]. Clearly, the degree to which a sig-

nal processing approach can be successfully applied depends on the identification of suitable

null models describing the background graph. The most basic model of random graphs, the

Erdös-Rényi model, treats the possibility of an edge between two vertices as an independent

Bernoulli trial, so that any given edge exists with probability p. However, graphs generated

using this process exhibit a Poisson distribution of vertex degrees, which has been shown to

be a poor approximation of many real world networks. Typically, real social networks exhibit

a much fatter tail than the Poisson distribution [136, 122]. More sophisticated models, such

as the recursive-matrix model (R-MAT) are able to generate more realistic graphs with some

degree of clustering and non-Poisson degree distributions [23, 136, 122]. However, the selec-

tion of a suitable model remains a challenge for signal processing approaches, and further

research is required in this area.

A.6.2 Static labelled anomalies

By considering vertex and edge labels in addition to the network structure, a context can be

defined in which typical structures may be considered anomalous. Conversely, the particular

combination of edge and vertex labels within the context defined by a given network structure

(say an ego-net or community) may also be considered anomalous.

In addition to the detection of cliques and stars using unlabelled properties, Akoglu,

McGlohon, and Faloutsos [5] also considered edge labels to detect ‘heavy’ ego-nets, where

the sum over a particular label is disproportionately high relative to the number of edges.

For example, in analysing donations to US presidential candidates, the Democratic National

Committee were found to have donated a substantial amount of money, but this money was

spread over only a few candidates, thus the ego-net formed is considered ‘heavy’. In contrast

103

the Kerry Committee received a large number of donations, but each donation was for a small

amount. In this example, a bipartite network is considered (with candidates and donors as

the two vertex types), and the ego-net provides a context in which the received or donated

amounts may be considered anomalous. Outside this structure, a series of small or large

donations may be perfectly normal.

Taking a similar view of context, the detection of community dependent anomalies has

been investigated by dividing the network into communities based on individuals’ patterns

of interactions, and then considering the attributes of the members of each community [55,

81, 64, 133]. Attribute values which would be deemed normal across the entire network may

appear as anomalies within the more restricted context imposed by the community setting.

For example, Gao et al. [55] describe a situation where the patterns of interaction between a

particular group of individuals marks them as a community within a larger network, however

one member of this community has a far lower income than their peers. Globally, this indi-

vidual’s income is completely normal, however within the context provided by the community

their income is seen as an anomaly.

In the realm of spam detection, static labelled anomalies have been used to identify

opinion spam in online product reviews [2, 28, 142]. These researchers have applied belief

propagation to anomaly detection, whereby ‘hidden’ labels assigned to vertices and edges are

updated in an iterative manner conditionally based on the labels observed in the system of

interest.

As an example of belief propagation, the FraudEagle algorithm [2] uses a bipartite graph

to represent reviews of products in an online retail store, with users forming one set of vertices,

and products forming the other. Edges between users and products represent product reviews

and are signed according to the overall rating given in the review. The aim of FraudEagle is

to assign a hidden label to each node, with users labelled as either honest or fraudulent, and

products as good or bad. These labels are assigned based on the observed pattern of reviews.

104

It is assumed that normal, honest reviewers will typically give good products positive reviews

and bad products negative reviews, while fraudulent reviewers are assumed to regularly do

the opposite. This assumption is encoded as a matrix describing the probability of a user

with a hidden label of either honest or fraudulent giving a positive or negative review of a

product whose hidden label designates it as either good or bad. By iteratively propagating

labels through the network according to these assumed probabilities (i.e. by applying loopy

belief propagation), the system is able to determine those users who can be considered as

opinion spammers.

While not strictly applied to social networks, TrustRank [65] could also be considered as

an example of a belief propagation approach to anomaly detection. In TrustRank, trustwor-

thy pages are assumed to be unlikely to link to spam pages, and given an initially labelled set

of trustworthy pages, trust is propagated through page out-links, so that those pages within

k-steps of the the initially trusted page are also labelled as trustworthy. By ranking pages

according to the propagated trust score, spam pages, representing anomalies, can be detected.

Another approach to the detection of static labelled anomalies is the application of infor-

mation theory, which provides a set of measures for quantifying the amount of information

described by some event or observation. The most commonly used measure, entropy, de-

scribes the number of bits required to encode the information associated with a given event.

Thus, given a set of observations O, the global entropy H(O) can be thought of as a measure

of the degree of randomness or heterogeneity. A set containing a large number of di↵erent

observations will require more bits to store the associated information and will therefore have

a higher global entropy. In contrast a totally homogeneous set will require relatively few bits

to store the associated information.

In terms of anomaly detection, entropy can be used to identify those subgraphs that if

removed from the network would lead to a significant change in entropy. These subgraphs

may represent important communities or individuals [168, 178, 166], or may represent a

105

normal pattern of behaviour that can then be used as a point of comparison, with those

subgraphs that deviate from this norm considered to be anomalous [140, 44, 43]. In comparing

subgraphs, an information theoretic approach considers a global context, using a very di↵erent

representation of the network than that used in the other approaches described in this chapter.

In applying an information theoretic approach, interactions are represented as subgraphs,

and values typically represented as labels on edges or vertices are themselves represented as

a vertex in this subgraph.

Information theoretic approaches have been shown to be capable of detecting anomalous

interactions based on complex structures and flows of information. For example, a version

of this method was applied to the Enron email data set [43], resulting in detection of a

single instance of an email being sent from a director to a non-management employee, and

then being forwarded to another non-management employee. Within the Enron data set

many emails are sent from directors to non-management employees and between pairs of

non-management employees, but this was the only instance involving a forwarded email from

a director to a non-management employee. This degree of sensitivity is useful in problem

domains consisting of adversarial systems where individuals actively seek to hide illegal or

otherwise unwanted behaviour, and deviations from the norm are likely to be small [43].

A.6.3 Dynamic unlabelled anomalies

Dynamic unlabelled anomalies arise when patterns of interaction change over time, such that

the structure of a network in one time-step di↵ers markedly from that in previous time-steps.

As with static unlabelled anomalies, there are obviously numerous graph properties that we

may consider, each of which can be used to generate time-series that can be analysed using

traditional tools. Indeed, we could go so far as to use a static analysis (e.g. the parameter of

a fitted power-law relationship) as the subject of a time-series and consider how this value

changes over time. The di�culty lies, of course, in selecting an appropriate feature, or set of

features, that adequately captures the real-world behaviour of interest.

106

Within the literature we found examples of dynamic unlabelled network analysis using a

variety of methods, including scan statistics [149, 135, 31, 116, 144, 120], Bayesian inference

[70], auto-regressive moving average (ARMA) models [148], and link prediction [76]. The use

of these methods has mostly focused on individual nodes, or ego-nets, considering the node

degree or the size of the ego-net.

Link prediction attempts to predict future interactions between individuals based on

previous interactions. In order to detect anomalies, a link prediction algorithm is run, and

for each pair of individuals in the network, the likelihood of interaction occurring in the

next time-step is calculated. This predicted likelihood is then compared to the observed

interactions, and those observed interactions having a low predicted likelihood are deemed

anomalous [76].

Using scan statistics, analysis is performed by averaging a time-series over a moving

window [t � ⌧, t] and comparing this average to the current time-step. If the di↵erence is

larger than some predefined threshold, the time-step is considered to be anomalous [149,

135, 31, 116, 144]. The use of ARMA models involves fitting the model to a time series and

considering the residuals for this fit (see Pincombe [148]). Those residuals above a specified

cut-o↵ are deemed to represent anomalous time-steps.

In Bayesian analysis, the generated time series is assumed to follow some distribution (i.e.

each time-step represents a draw from the assumed distribution). Given an initial estimation

of the distribution parameters, a series of updates can be performed in an iterative manner.

For each time step, the prior distribution is updated by considering the value at that time

step and calculating a posterior distribution that incorporates the information from all of

the previous time steps. Using this posterior distribution, a p-value is calculated, giving

the probability that the value at the next time step was drawn from this distribution. If

this p-value is below a significance threshold, the value can be considered anomalous. The

posterior distribution is then treated as the prior for the next update [70].

107

The use of scan statistics is the most prominent form of analysis we found in the liter-

ature, and extensions to the basic form have been suggested that allow correlated changes

in graph properties to be detected [31]. This enables inter-related vertices or subgraphs to

be identified, and may be of benefit in detecting clandestine organisations. Another exten-

sion is the application to hypergraphs [144], which are a generalisation of graphs allowing

hyperedges that can connect more than two vertices. Such graphs can be used to represent

interactions that involve more than two individuals such as meetings, group emails and text

messages, and co-authorship on research papers [144, 170].

Other researchers have considered larger structures such as maximal cliques [30], and

coronets 2 [82], with a view to detecting anomalous evolution of a system at a neighbourhood

scale. If we consider only the pattern of interactions between individuals, a maximal clique

can evolve in only six di↵erent ways; by growing, shrinking, merging, splitting, appearing

or vanishing [30]. Similarly, a coronet can evolve only through the insertion or deletion of a

node, or the insertion or deletion of a number of edges. If normal behaviour is assumed to

result in stable, non-evolving neighbourhoods, then any neighbourhood that undergoes one

of these transformations can be considered to be anomalous. For less stable systems, this idea

could obviously be extended to include consideration of the number of neighbourhoods that

change over a time-step, or the magnitude of this change. In such scenarios, scan-statistics,

Bayesian inference or any other form of time-series analysis may be employed in order to

detect anomalous time-steps.

In addition to the approaches discussed above, there is a large body of work that focuses

on anomaly detection in time-series in general (see Cheboli [29] and Chandola [25] for recent

reviews). We believe that these existing methods could also be used to detect dynamic

2A coronet is a concept of neighbourhood, where the ‘closeness’ to a subject is defined in terms of the
number of interactions that occur between individuals, rather than simple connectedness. See [82] for a
formal definition. Note that the number of interactions between two individuals is often expressed as a
weight, which could be considered a label on the edge. However, since multiple interactions can also be
represented by multiple edges, we do not consider this to be a true label.

108

anomalies in social networks, assuming that suitable features can be identified for generating

the required time-series. Moreover, substantial work has been undertaken in the field of

change detection in social networks (e.g. McCulloh and Carley [120], Arney and Arney [9],

and Tambayong [176], and we believe that there is considerable room for cross-over between

these two fields.

A.6.4 Dynamic labelled anomalies

In conducting our survey, we found dynamic labelled anomalies to be the least represented

in the literature. A recent paper describes the application of a signal processing approach to

anomaly detection in dynamic, labelled networks [124], however this was the only example

we found.

Extending the basic signal processing approach used for static, unlabelled anomalies [127,

128], detection of dynamic labelled anomalies assumes that the probability of an edge occur-

ring between any two nodes is a function of the the linear combination of node attributes

[124]. Coe�cients for this linear combination are fitted to the network of interest. The

dynamic nature of the network is handled by considering the network structure in discrete

time-steps, and treating each time-step as for a static network. Comparing the expected

graph to the observed graph in each time-step gives a residual matrix that can be integrated

over a specified time period using a filter (see Miller, Arcolano, and Bliss [124] and Miller,

Beard, and Bliss [126] for details). Note that this method assumes the number of vertices

remains constant over the specified time-period, and that only the edges change.

In addition to the signal processing approach described above, we suggest that those

methods used for detecting dynamic unlabelled anomalies could be adapted for the detection

of dynamic labelled anomalies. We argue that this type of development will be extremely

beneficial as including additional information provided by node and edge labels is likely to sig-

nificantly improve anomaly detection, providing additional dimensions for separating normal

109

and anomalous behaviour. For example, a recent study demonstrated that link prediction

can be significantly improved by including topic information from users tweets [156]. Obvi-

ously if the algorithm used to predict links is improved, any anomaly detection using this

algorithm will also be improved.

As with dynamic unlabelled anomalies, we also suggest that existing methods for time-

series analysis can be applied to the detection of dynamic labelled anomalies. A number

of methods for detecting anomalies within discrete sequences are discussed in [27], and we

believe that many of these methods could be applied to the detection of dynamic labelled

anomalies in social networks.

A.7 Discussion

In this chapter we have surveyed a small but growing number of solutions to detecting

anomalies in online social networks. While these approaches di↵er in their treatment of

the network, considering dynamic or static representations and including or ignoring node

attributes, they are all based primarily on the analysis of interactions between individuals.

It is this basis that di↵erentiates the detection of anomalies in social networks form other

forms of anomaly detection.

Note that while anomalies and networks can be characterised as static or dynamic, la-

belled or unlabelled etc., the various approaches to anomaly detection can, of course, also

be grouped by the types of algorithms employed and also the problem domain they were

originally developed to address. In conducting our survey, we found it quite interesting that

the partitioning of detection methods by algorithm type very nearly matches the partition

induced by the authorship of related literature. During our review, we found very little

crossover between the di↵erent research groups exploring this area, with each group tending

to focus on a single or limited number of approaches. Certainly, we did not find clear lines

of development, where a particular approach has evolved through incremental improvements

110

over a large number of iterations. Clearly, this reflects the young nature of this field, and we

anticipate that this state of a↵airs will change significantly over the next decade.

In considering how the various approaches presented in the literature apply to di↵erent

types of network anomalies, we found that the methods used to actually detect anomalies, as

opposed to calculating network features, is largely independent of the type of anomaly being

detected. Once a suitable feature space has been identified and calculated, it is often the case

that any number of traditional anomaly detection techniques could be applied. For example,

in Section A.6.1 (static unlabelled anomalies), we discuss the use of regression to detect

anomalous ego-nets displaying an unusual edge count relative to node count [5]. However,

rather than applying regression, once the edge count - node count feature space is extracted,

an alternative anomaly detection method, such as a nearest neighbour method, could just

as easily have been applied. Therefore, we argue that the process of detecting anomalies in

social networks is composed of two quite separable sub-processes; namely, the calculation

of a suitable feature space, and the detection of anomalies within this space. Moreover, we

argue that the selection of a suitable feature space can be further broken down so that, taking

a high level view of the problem, the vast majority of the approaches we reviewed can be

generalised into the following five steps.

1. Determine the smallest unit a↵ected by the behaviour of interest (node, neighbourhood,

community, etc).

2. Identify the particular properties of this unit that are expected to deviate from the

norm.

3. Identify the context in which these deviations are expected to occur.

4. Calculate the properties of interest, extracting a feature space in which the distances

between observations can be measured and compared in a meaningful way.

111

5. Within this space, calculate distances between observations, possibly applying tradi-

tional (non-network) tools for anomaly detection (e.g. clustering, nearest neighbour

analysis etc.).

In each of the papers surveyed we found something akin to the five steps given above.

Obviously there is a major focus on step 4, as the naive approach to this step is often

computationally expensive. Given the size of many online social networks, and the demand

for tools to handle Big Data we see the development of scalable anomaly detection solutions

as being an extremely important area of research. However, we also see the selection of a

suitable feature space (steps 1 - 3) as being equally important.

We believe that our steps 1 - 3, which encompass the mapping of real-world behaviours

of interest to suitable feature spaces, form a key challenge for detecting anomalies in social

networks. In conducting our survey, few of the papers we reviewed explicitly described how

the mapping between the behaviour of interest and the network properties considered was

performed. Those few papers that did (e.g. Akoglu, Chandy, and Faloutsos [2], Shrivastava,

Majumder, and Rastogi [169], Friedland [52], Gao et al. [55], and Ji, Yang, and Gao [82]),

clearly explained the combination of domain knowledge and mathematical reasoning that

underpin the use of a particular approach and the examination particular network features.

For the majority of papers though, the reasons for considering a particular set of features

were unclear, and in many examples the real-world behaviour giving rise to any anomalies

detected was discussed only in response to the anomaly actually being found, rather than as

a motivation for using a particular approach. We believe that this is problematic as many

of the approaches we reviewed were tested only on a single, or a limited number of data

sets, and may therefore be biased towards the particular anomalies inherent in those data

sets. Without explicit reasoning as to why a particular behaviour should be identifiable

by a particular anomalous network feature there is no reason to suspect that this feature

will behave in a particular manner across di↵erent data sets, representing di↵erent social

networks.

112

The lack of papers clearly describing the reasons for examining a particular set of features

suggests to us that selection of a suitable feature space may be extremely di�cult in practice.

Many properties of social networks are correlated in some fashion, and it is not clear which

combinations of features can be used to capture orthogonal concepts. Some comparison of

feature spaces has been undertaken (e.g. Hassanzadeh, Nayak, and Stebila [68] and McCulloh

and Carley [120]), however such comparisons have been restricted in the number of features

considered, and the types of anomalies being detected. We predict that the requirements for

anomaly detection in social networks will rapidly advance in the near future, with ever larger

volumes of data and increasingly complex behaviours being considered. This may in turn lead

to the consideration of increasingly complex feature spaces. Thus the development of any

guidelines or heuristics for mapping real-world behaviour to appropriate feature spaces will be

of benefit. One possibility that we see for identifying suitable feature spaces is the application

of a shotgun approach. By applying multiple detection techniques across numerous graph

properties, it may be possible to identify mechanistic links between the actual behaviours of

interest and resulting changes in network properties, and to determine those features that

best di↵erentiate anomalous and normal behaviours.

Another major challenge for detecting anomalies in online social networks is the evaluation

and comparison of di↵erent methods. Clearly, not all algorithms are universally applicable,

and many of the existing approaches have been developed with specific problem domains and

data formats in mind. Moreover, there is a distinct lack of publicly available data sets with

known ground truths. In order to compare existing and novel techniques, it is important

to consider how accuracy (recall) and precision are influenced by the scale of the analysis,

the density of anomalies, and the magnitude of di↵erence between anomalous and normal

observations. However, the range of di↵erent data sets required to perform such comparisons

is not currently available. Thus many approaches are tested on a single data set, with

verification of results performed for the top ranked anomalies using manual investigation.

For example, Pandit et al. [142] analyse transactions in an online auction system, and in

113

order to test their approach results were ranked according to an anomaly score. The top-

ranked user accounts were then manually investigated by checking the auction website for

complaints made against these accounts. This type of manual investigation is highly time-

consuming and highly dependent on the level of reporting by the owners of the target system.

In many cases, manual investigation of user accounts in this way is impossible.

Some data sets do exist that are relatively well characterised, including the Enron email

data set and to a lesser extent the Paraiso communication (synthetic, VAST 2008, www.cs.

umd.edu/hcil/VASTchallenge08/). Anomalies detected within these data sets can be easily

verified against the known series of events. However these data sets are relatively small, and

may only be suitable for a small subset of problem domains. Therefore, in order to address

this challenge, we believe that the generation of synthetic data sets is a logical course of

action.

A number of methods for generating random social networks have been proposed, ranging

from simple models assuming some global probability that a given pair of nodes will be

connected to more complex models considering the dynamics of each individual node [122].

Between these two extremes lies a broad spectrum of models that have been developed

over time and thus reflect our growing understanding of the general properties of social

networks (e.g. high transitivity, positive, assortivity, presence of community structures).

Consequently, early models (reviewed by Chakrabarti and Faloutsos [22], see also Sallaberry,

Zaidi, and Melançon [157]) capture only a small number of what we now consider to be

general properties of social networks [4], while more recent models (e.g. [4, 157]) are able

to reproduce far more realistic representations of a wide range of social networks. As an

example, Akoglu and Faloutsos [4] describe eleven properties of social networks which they

suggest should be reproduced by random network generators and provide a suitable method

for generation that does indeed reproduce these properties. This method is reported to be

highly flexible, and can be used to generate weighted or unweighted, directed or undirected

and unipartite or bipartite networks. The method has since been applied in the testing of a

114

novel anomaly detection method, being used to generate a bipartite network representing user

reviews of online products in an e-commerce setting [2] (a method for generating these types

of networks is also described as part of the Berlin SPARQL Benchmark http://wifo5-03.

informatik.uni-mannheim.de/bizer/berlinsparqlbenchmark, last accessed May, 2014).

The vast majority of network generation methods proposed to date can be described as

phenomenological in nature. While these methods are able to reproduce many of the known

properties of social networks, they do so without describing the underlying mechanisms that

cause these properties to arise. In contrast, agent-based models (alternatively, individual-

based models) such as that proposed by Menges, Mishra, and Narzisi [122] (see also Glasser

and Lindauer [62] and Hummel et al. [77]) describe the specific actions taken by individuals

in the underlying system that lead to the formation of a social network. In this type of sim-

ulation, the macro-level properties of the resulting social network can be seen as emergent

properties stemming from the micro-level behaviour of the underlying agent-based system.

The model does not explicitly set out to reproduce these properties, but rather to represent

the behaviour of the individuals involved. In the course of representing this behaviour, the

model reproduces a realistic social network. We believe that this approach has great poten-

tial for generating realistic data sets and represents an extremely interesting area of research,

particularly in adversarial problem domains where anomalous agents could attempt to dis-

guise their behaviour by mimicking ’normal’ agents.

In this chapter we have surveyed a number of approaches for detecting anomalies in

online social networks. We found that these di↵erent approaches can be usefully categorised

based on characterisation of anomalies as being static or dynamic and labelled or unlabelled.

Depending on this characterisation, di↵erent features of the network may be examined, and

we have suggested that the selection of appropriate features is a highly non-trivial task. We

believe that as the requirements of social network analysis continue to grow, the challenges

inherent in Big Data analysis will necessitate sophisticated heuristics and algorithms for

115

mapping complex behaviours to network features, and scalable solutions for calculating rich

feature spaces which can be subjected to anomaly detection analysis.

116

Bibliography

[1] L. Akoglu, H. Tong, and D. Koutra. “Graph based anomaly detection and description:

a survey”. Data mining and knowledge discovery (2015).

[2] L. Akoglu, R. Chandy, and C. Faloutsos. “Opinion fraud detection in online reviews

by network e↵ects”. Proceedings of the International AAAI Conference on Web-Blogs

and Social Media. 2013.

[3] L. Akoglu and C. Faloutsos. “Anomaly, event, and fraud detection in large network

datasets”. Proceedings of the 6th ACM International Conference on Web search and

data mining. ACM. 2013, pp. 773–774.

[4] L. Akoglu and C. Faloutsos. “RTG: a recursive realistic graph generator using random

typing”. Data Mining and Knowledge Discovery 19.2 (2009), pp. 194–209.

[5] L. Akoglu, M. McGlohon, and C. Faloutsos. “Oddball: Spotting anomalies in weighted

graphs”. Advances in Knowledge Discovery and Data Mining. Springer, 2010, pp. 410–

421.

[6] L. Akoglu, H. Tong, and D. Koutra. “Graph-based Anomaly Detection and Descrip-

tion: A Survey”. Data Mining and Knowledge Discovery (2014).

[7] C. Allen. “The Dunbar number as a limit to group sizes”. lifewithalacrity. com/

2004/ 03/ the_ dunbar_ number. html (2004).

[8] R. A. Araujo. “The e↵ects of money laundering and terrorism on capital accumulation

and consumption”. Journal of Money Laundering Control (2006).

[9] D. C. Arney and K. Arney. “Modeling insurgency, counter-insurgency, and coalition

strategies and operations”. The Journal of Defense Modeling and Simulation: Appli-

cations, Methodology, Technology 10.1 (2013), pp. 57–73.

117

[10] Australian Transaction Reports and Analysis Centre. Money laundering in Australia

2011. 2011.

[11] Australian Transaction Reports and Analysis Centre. Typologies and case studies re-

port. 2011.

[12] G. Bachi et al. “Classifying trust/distrust relationships in online social networks”.

International Conference on Privacy, Security, Risk and Trust. IEEE. 2012, pp. 552–

557.

[13] J. Bailey, T. Manoukian, and K. Ramamohanarao. “Fast Algorithms for Mining

Emerging Patterns”. Lecture Notes in Computer Science (2002), pp. 39–50.

[14] V. Barnett and T. Lewis. Outliers in Statistical Data. 3rd ed. John Wiley & Sons,

1994.

[15] L. S. Bershtein and A. Tselykh. “A clique-based method for mining fuzzy graph pat-

terns in anti-money laundering systems”. Proceedings of the 6th International Con-

ference on Security of Information and Networks. ACM. 2013, pp. 384–387.

[16] C. Bird et al. “Latent social structure in open source projects”. Proceedings of the 16th

ACM SIGSOFT International Symposium on Foundations of software engineering.

ACM. 2008, pp. 24–35.

[17] J. A. Blum et al. “Financial havens, Banking Secrecy and Money-Laundering”. Crim-

inal Justice Matters (1999).

[18] R. J. Bolton and D. J. Hand. “Statistical fraud detection: A review”. Statistical Science

(2002), pp. 235–249.

[19] U. Brandes et al. “What is network science?” Network Science 1.1 (2013), pp. 1–15.

[20] C. Brenig and G. Müller. “Economic Analysis of Cryptocurrency Backed Money Laun-

dering”. Economic Analysis (2015).

118

[21] B. Buchanan. “Money laundering - a global obstacle”. Research in International Busi-

ness and Finance 18.1 (2004), pp. 115–127.

[22] D. Chakrabarti and C. Faloutsos. “Graph mining: Laws, generators, and algorithms”.

ACM Computing Surveys (CSUR) 38.1 (2006), p. 2.

[23] D. Chakrabarti, Y. Zhan, and C. Faloutsos. “R-MAT: A recursive model for graph

mining”. Proceedings of the 2004 SIAM International Conference on Data Mining.

SIAM. 2004, pp. 442–446.

[24] S. Chakravarthy and S. Pradhan. “DB-FSG: An SQL-Based Approach for Frequent

Subgraph Mining.” 19th International Conference on Database and Expert Systems

Applications. Springer. 2008, pp. 684–692.

[25] V. Chandola. “Anomaly detection for symbolic sequences and time series data”. PhD

thesis. University of Minnesota, 2009.

[26] V. Chandola, A. Banerjee, and V. Kumar. “Anomaly detection: A survey”. ACM

Computing Surveys 41.3 (2009), p. 15.

[27] V. Chandola, A. Banerjee, and V. Kumar. “Anomaly detection for discrete sequences:

A survey”. IEEE Transactions on Knowledge and Data Engineering 24.5 (2012),

pp. 823–839.

[28] D. H. Chau, S. Pandit, and C. Faloutsos. “Detecting fraudulent personalities in net-

works of online auctioneers”. 10th European Conference on Principles and Practice of

Knowledge Discovery in Databases. Springer, 2006, pp. 103–114.

[29] D. Cheboli. “Anomaly Detection of Time Series”. PhD thesis. University of Minnesota,

2010.

[30] Z. Chen, W. Hendrix, and N. F. Samatova. “Community-based anomaly detection

in evolutionary networks”. Journal of Intelligent Information Systems 39.1 (2012),

pp. 59–85.

119

[31] A. Cheng and P. Dickinson. “Using Scan-Statistical Correlations for Network Change

Analysis”. Trends and Applications in Knowledge Discovery and Data Mining. Springer,

2013, pp. 1–13.

[32] J. A. Chevalier and D. Mayzlin. “The e↵ect of word of mouth on sales: online book

reviews”. Journal of Marketing Research 43.3 (2006), pp. 345–354.

[33] M. Conover et al. “Political polarization on Twitter.” Proceedings of the Fifth Inter-

national AAAI Conference on Weblogs and Social Media. 2011.

[34] M.-F. Cuéllar. “The tenuous relationship between the fight against money laundering

and the disruption of criminal finance”. Journal of Criminal Law and Criminology 93

(2002), p. 311.

[35] Data Repository for NaN group, http: // carl. cs. indiana. edu/ data/ . 8, 2015.

[36] I. S. Deleanu. Anti-Money Laundering E↵orts - Failures, Fixes and the Future. Utrecht

University, 2015.

[37] G. Dong and J. Bailey. Contrast Data Mining: Concepts, Algorithms, and Applica-

tions. CRC Press, 2012.

[38] G. Dong and J. Li. “E�cient Mining of Emerging Patterns: Discovering Trends and

Di↵erences”. Knowledge Discovery in Databases (1999), pp. 43–52.

[39] G. Dong et al. “CAEP: Classification by Aggregating Emerging Patterns”. Discovery

Science 1721 (1999), pp. 30–42.

[40] R. Dreżewski, J. Sepielak, and W. Filipkowski. “System supporting money laundering

detection”. Digital Investigation (2012).

[41] R. Dreżewski, J. Sepielak, and W. Filipkowski. “The application of social network

analysis algorithms in a system supporting money laundering detection”. Information

Sciences (2015).

120

[42] R. Dreżewski, J. Sepielak, and W. Filipkowski. “System supporting money laundering

detection”. Digital Investigation (2012).

[43] W. Eberle and L. Holder. “Applying graph-based anomaly detection approaches to

the discovery of insider threats”. International Conference on Intelligence and Security

Informatics. IEEE. 2009, pp. 206–208.

[44] W. Eberle and L. B. Holder. “Mining for Structural Anomalies in Graph-based Data”.

DMIN. 2007, pp. 376–389.

[45] E. Eskin. “Anomaly Detection over Noisy Data using Learned Probability Distri-

butions”. International Conference on Machine Learning. Morgan Kaufmann, 2000,

pp. 255–262.

[46] H. Fan and K. Ramamohanarao. “Fast Discovery and the Generalization of Strong

Jumping Emerging Patterns for Building Compact and Accurate Classifiers”. IEEE

Transactions on Knowledge and Data Engineering 18.66 (2006), pp. 721–737.

[47] G. Fei et al. “Exploiting Burstiness in Reviews for Review Spammer Detection”.

International Conference on Web and Social Media. 2013.

[48] Financial Action Task Force. Anti-money laundering and counter-terrorist financing

measures - Mutual Evaluation, Australia. 2015.

[49] M. Fire, G. Katz, and Y. Elovici. “Strangers intrusion detection - detecting spammers

and fake profiles in social networks based on topology anomalies”. Human Journal 1.1

(2012), pp. 26–39.

[50] N. Fore and G. Dong. “CPC: A contrast pattern based clustering algorithm requir-

ing no distance function”. Technical Report - Department of Computer Science and

Engineering (2011).

[51] S. Fortunato. “Community detection in graphs”. Physics reports (2010).

[52] L. Friedland. “Anomaly Detection for Inferring Social Structure”. Encyclopedia of

Data Warehousing and Mining, Second Edition. IGI Global, 2009, pp. 39–44.

121

[53] D. H. Fusilier et al. “Detecting positive and negative deceptive opinions using PU-

learning”. Information Processing & Management (2014).

[54] J. Gao et al. “A Multi-graph Spectral Framework for Mining Multi-source Anomalies”.

Graph Embedding for Pattern Analysis. Springer, 2013, pp. 205–227.

[55] J. Gao et al. “On community outliers and their e�cient detection in information

networks”. Proceedings of the 16th International Conference on Knowledge Discovery

and Data Mining. ACM. 2010, pp. 813–822.

[56] S. Gao and D. Xu. “Conceptual modeling and development of an intelligent agent-

assisted decision support system for anti-money laundering”. Expert Systems with

Applications (2009).

[57] X. Gao et al. “A survey of graph edit distance”. Pattern Analysis and applications

13.1 (2010), pp. 113–129.

[58] Z. Gao and M. Ye. “A framework for data mining-based anti-money laundering re-

search”. Journal of Money Laundering Control 10.2 (2007), pp. 170–179.

[59] P. Garćıa-Teodoro et al. “Anomaly-based network intrusion detection: Techniques,

systems and challenges”. Computers & Security 28.1-2 (2009), pp. 18–28.

[60] V. Gargiulo. “The use of financial instruments by criminal organisations for the pur-

pose of money laundering”. PhD thesis. Reykjav́ık University, 2014.

[61] L. Getoor and C. P. Diehl. “Link mining: a survey”. ACM SIGKDD Explorations

Newsletter 7.2 (2005), pp. 3–12.

[62] J. Glasser and B. Lindauer. “Bridging the Gap: A Pragmatic Approach to Generating

Insider Threat Data”. Security and Privacy Workshops (SPW), 2013 IEEE. IEEE.

2013, pp. 98–104.

[63] P. Gogoi et al. “A Survey of Outlier Detection Methods in Network Anomaly Identi-

fication”. The Computer Journal 54.4 (2011), pp. 570–588.

122

[64] M. Gupta et al. “Community trend outlier detection using soft temporal pattern

mining”. Machine Learning and Knowledge Discovery in Databases. Springer, 2012,

pp. 692–708.

[65] Z. Gyöngyi, H. Garcia-Molina, and J. Pedersen. “Combating web spam with TrustRank”.

Thirtieth International Conference on very large databases. VLDB Endowment. 2004,

pp. 576–587.

[66] J. Han, J. Pei, and Y. Yin. “Mining frequent patterns without candidate generation”.

ACM SIGMOD Record 29.22 (2000), pp. 1–12.

[67] J. Han et al. “Mining Frequent Patterns without Candidate Generation: A Frequent-

Pattern Tree Approach”. Data mining and knowledge discovery 8.11 (2004), pp. 53–

87.

[68] R. Hassanzadeh, R. Nayak, and D. Stebila. “Analyzing the E↵ectiveness of Graph

Metrics for Anomaly Detection in Online Social Networks”. Lecture Notes in Computer

Science : Web Information Systems Engineering 7651 (2012), pp. 624–630.

[69] P. He. “A typological study on money laundering”. Journal of Money Laundering

Control (2010).

[70] N. A. Heard et al. “Bayesian anomaly detection methods for social networks”. The

Annals of Applied Statistics 4.2 (2010), pp. 645–662.

[71] N. Heidarinia and A. Harounabadi. “An Intelligent Anti-Money Laundering Method

for Detecting Risky Users in the Banking Systems”. International Journal of Computer

Applications (2014).

[72] A. Heydari et al. “Detection of review spam: a survey”. Expert Systems with Applica-

tions 42.7 (2015), pp. 3634–3642.

[73] A. Hlaoui and S. Wang. “Median graph computation for graph clustering”. Soft Com-

puting 10.1 (2006), pp. 47–53.

123

[74] V. J. Hodge and J. Austin. “A survey of outlier detection methodologies”. Artificial

Intelligence Review 22.2 (2004), pp. 85–126.

[75] X. Huang et al. “Semi-supervised Clustering of Graph Objects : A Subgraph Mining

Approach”. DASFAA. 2012, pp. 197–212.

[76] Z. Huang and D. D. Zeng. “A link prediction approach to anomalous email detection”.

IEEE International Conference on Systems, Man and Cybernetics. Vol. 2. IEEE. 2006,

pp. 1131–1136.

[77] A. Hummel et al. “An Agent-Based Simulation of Viral Marketing E↵ects in Social

Networks”. 26th European Simulation and Modelling Conference. 2012, 212–↵fd↵fd219.

[78] A. S. M. Irwin. “An analysis of money laundering and terrorism financing typologies”.

Journal of Money Laundering Control (2011).

[79] D. Janakiram, V. Adi Mallikarjuna Reddy, and A. V. U. Phani Kumar. “Outlier

detection in wireless sensor networks using Bayesian belief networks”. 1st International

Conference on Communication System. IEEE. 2006, pp. 1–6.

[80] A. Javed and A. Khokhar. “Frequent Pattern Mining on Message Passing Multipro-

cessor Systems”. Distributed and Parallel Databases 16.33 (2004), pp. 321–334.

[81] T. Ji, J. Gao, and D. Yang. “A Scalable Algorithm for Detecting Community Outliers

in Social Networks”. Web-Age Information Management. Springer, 2012, pp. 434–445.

[82] T. Ji, D. Yang, and J. Gao. “Incremental Local Evolutionary Outlier Detection for

Dynamic Social Networks”.Machine Learning and Knowledge Discovery in Databases.

Springer, 2013, pp. 1–15.

[83] D. Jin and S. G. Ziavras. “A Super-Programming Approach for Mining Association

Rules in Parallel on PC Clusters”. IEEE Transactions on Parallel and Distributed

Systems 15.99 (2004), pp. 783–794.

[84] N. Jindal and B. Liu. “Opinion spam and analysis”. Web Search and Data Mining.

ACM. 2008, pp. 219–230.

124

[85] S. Jouili, S. Tabbone, and V. Lacroix. “Median graph shift: A new clustering al-

gorithm for graph domain”. Proceedings of the International Conference on Pattern

Recognition (2010), pp. 950–953.

[86] T. Jung et al. “SPRT for SPIT: using the sequential probability ratio test for spam

in VoIP prevention”. Dependable Networks and Services. Springer, 2012, pp. 74–85.

[87] V. Jyothsna, V. R. Prasad, and K. M. Prasad. “A review of anomaly based intru-

sion detection systems”. International Journal of Computer Applications 28.7 (2011),

pp. 26–35.

[88] N. A. Le-Khac, S. Markos, and M. T. Kechadi. “Towards a new data mining-based

approach for anti-money laundering in an international investment bank”. Digital

Forensics and Cyber Crime (2010).

[89] N.-A. Le-Khac, S. Markos, and M.-T. Kechadi. “A heuristics approach for fast de-

tecting suspicious money laundering cases in an investment bank”. World Academy

of Science, Engineering and Technology 60.2009 (2009), pp. 76–80.

[90] N.-A. Le-Khac et al. “An investigation into Data Mining approaches for Anti Money

Laundering”. Proceedings of International Conference on Computer Engineering and

Applications. 2009.

[91] H. Kim, R. Atalay, and E. Gelenbe. “G-Network Modelling Based Abnormal Pathway

Detection in Gene Regulatory Networks”. Computer and Information Sciences II.

Springer, 2012, pp. 257–263.

[92] H. Kim and E. Gelenbe. “Anomaly detection in gene expression via stochastic models

of gene regulatory networks”. BMC Genomics 10.Suppl 3 (2009), S26.

[93] J. Kingdon. “AI fights money laundering”. IEEE Intelligent Systems (2004).

[94] L. Kobyliński and K. Walczak. “E�cient Mining of Jumping Emerging Patterns with

Occurrence Counts for Classification”. Transactions on Rough Sets XIII 6499 (2011),

pp. 73–88.

125

[95] L. Kratz and K. Nishino. “Anomaly detection in extremely crowded scenes using

spatio-temporal motion pattern models”. Computer Vision and Pattern Recognition.

IEEE. 2009, pp. 1446–1453.

[96] V. E. Krebs. “Mapping networks of terrorist cells”. Connections 24.3 (2002), pp. 43–

52.

[97] C. Kruegel and G. Vigna. “Anomaly detection of web-based attacks”. ACM conference

on Computer and Communications Security. ACM. 2003, pp. 251–261.

[98] L. Kugler. “Keeping online reviews honest”. Communications of the ACM 57.11

(2014), pp. 20–23.

[99] A. Lancichinetti et al. “Characterizing the Community Structure of Complex Net-

works”. PloS One (2010).

[100] A. S. Larik and S. Haider. “Clustering based anomalous transaction reporting”. Pro-

cedia Computer Science (2011).

[101] R. Y. Lau et al. “Text mining and probabilistic language modeling for online review

spam detecting”. ACM Transactions on Management Information Systems 2.4 (2011),

pp. 1–30.

[102] J. Leskovec, K. J. Lang, and A. Dasgupta. “Statistical properties of community struc-

ture in large social and information networks”. Proceedings of the 17th International

World Wide Web Conference. 2008.

[103] J. Leskovec, D. Huttenlocher, and J. Kleinberg. “Predicting positive and negative

links in online social networks”. Proceedings of the 19th International Conference on

World wide web. ACM. 2010, pp. 641–650.

[104] C. Leung and F. Jiang. “A Data Science Solution for Mining Interesting Patterns from

Uncertain Big Data”. Big Data and Cloud Computing (2014), pp. 235–242.

[105] M. Levi and P. Reuter. “Money Laundering”. Crime and Justice (2006).

126

[106] F. Li et al. “Learning to identify review spam”. Joint Conference on Artificial Intel-

ligence. AAAI Press. 2011, pp. 2488–2493.

[107] H. Li et al. “PFP: parallel fp-growth for query recommendation”. ACM conference on

recommender systems (2008), pp. 107–114.

[108] J. Li and L. Wong. “Identifying good diagnostic gene groups from gene expression

profiles using the concept of emerging patterns”. Bioinformatics (2002).

[109] E.-P. Lim et al. “Detecting product review spammers using rating behaviors”. Infor-

mation and Knowledge Management. ACM. 2010, pp. 939–948.

[110] Q. Liu and G. Dong. “CPCQ: Contrast pattern based clustering quality index for

categorical data”. Pattern Recognition 45.4 (2012), pp. 1739–1748.

[111] E. Loekito and J. Bailey. “Fast mining of high dimensional expressive contrast pat-

terns using zero-suppressed binary decision diagrams”. Knowledge Discovery and Data

Mining (2006).

[112] S. P. Looney. “Di↵usion of the unproven: The global anti-money laundering regime”.

PhD thesis. Budapest Central European University, 2012.

[113] L. T. Lv, N. Ji, and J. Zhang. “A RBF neural network model for anti-money laun-

dering”. Wavelet Analysis and Pattern Recognition (2008).

[114] O. Macindoe and W. Richards. “Graph Comparison Using Fine Structure Analysis”.

2nd International Conference on Social Computing (2010), pp. 193–200.

[115] A. Malm and G. Bichler. “Networks of Collaborating Criminals: Assessing the Struc-

tural Vulnerability of Drug Markets”. Journal of Research in Crime and Delinquency

48.2 (2011), pp. 271–297.

[116] D. Marchette. “Scan statistics on graphs”. Wiley Interdisciplinary Reviews: Compu-

tational Statistics 4.5 (2012), pp. 466–473.

127

[117] M. Markou and S. Singh. “Novelty detection: a review. Part 1: statistical approaches”.

Signal Processing 83.12 (2003), pp. 2481–2497.

[118] M. Markou and S. Singh. “Novelty detection: a review - part 2: neural network based

approaches”. Signal Processing 83.12 (2003), pp. 2499–2521.

[119] K. J. McCarthy, P. van Santen, and I. Fiedler. “Modeling the money launderer: Mi-

crotheoretical arguments on anti-money laundering policy”. International Review of

Law and Economics 43 (2015), pp. 148–155.

[120] I. McCulloh and K. M. Carley. Detecting change in longitudinal social networks. Tech.

rep. DTIC Document, 2011.

[121] J. McDowell and G. Novis. “The consequences of money laundering and financial

crime”. Economic Perspectives 6.2 (2001), pp. 6–10.

[122] F. Menges, B. Mishra, and G. Narzisi. “Modeling and simulation of e-mail social

networks: a new stochastic agent-based approach”. Proceedings of the 40th Conference

on Winter Simulation. Winter Simulation Conference. 2008, pp. 2792–2800.

[123] K. Michalak and J. Korczak. Graph mining approach to suspicious transaction detec-

tion. IEEE, 2011.

[124] B. A. Miller, N. Arcolano, and N. T. Bliss. “E�cient Anomaly Detection in Dynamic,

Attributed Graphs”. Intelligence and Security Informatics. 2013, pp. 179–184.

[125] B. A. Miller, M. S. Beard, and N. T. Bliss. “Eigenspace analysis for threat detection in

social networks”. 14th International Conference on Information Fusion. IEEE. 2011,

pp. 1–7.

[126] B. A. Miller, M. S. Beard, and N. T. Bliss. “Matched filtering for subgraph detection

in dynamic networks”. Statistical Signal Processing Workshop. IEEE. 2011, pp. 509–

512.

128

[127] B. A. Miller, N. T. Bliss, and P. J. Wolfe. “Toward signal processing theory for graphs

and non-Euclidean data”. International Conference on Acoustics Speech and Signal.

IEEE. 2010, pp. 5414–5417.

[128] B. Miller, N. Bliss, and P. J. Wolfe. “Subgraph detection using eigenvector L1 norms”.

Advances in Neural Information Processing Systems. 2010, pp. 1633–1641.

[129] S. Moens, E. Aksehirli, and B. Goethals. “Frequent Itemset Mining for Big Data”.

Big Data (2013), pp. 111–118.

[130] M. Moser, R. Bohme, and D. Breuker. “An inquiry into money laundering tools in the

Bitcoin ecosystem”. eCrime Researchers Summit (eCRS), 2013. IEEE. 2013, pp. 1–14.

[131] A. Mukherjee, B. Liu, and N. Glance. “Spotting fake reviewer groups in consumer

reviews”. World Wide Web. ACM. 2012, pp. 191–200.

[132] A. Mukherjee et al. “Spotting opinion spammers using behavioral footprints”. Knowl-

edge Discovery and Data Mining. ACM. 2013, pp. 632–640.

[133] E. Muller et al. “Ranking outlier nodes in subspaces of attributed graphs”. 29th In-

ternational Conference on Data Engineering Workshops. IEEE. 2013, pp. 216–222.

[134] N. N. Niyetullayev and P. Almond. “Money laundering and the shadow economy in

Kazakhstan”. Journal of Money Laundering Control 17.2 (2014), pp. 128–140.

[135] J. Neil. “Scan statistics for the online detection of locally anomalous subgraphs”. PhD

thesis. PhD thesis, University of New Mexico, 2011.

[136] M. E. J. Newman, S. H. Strogatz, and D. J. Watts. “Random graphs with arbitrary

degree distributions and their applications”. Physical Review E 64.2 (2001).

[137] M. E. J. Newman. “Finding community structure in networks using the eigenvectors

of matrices”. Physical review E 74.3 (2006), p. 036104.

[138] M. E. J. Newman and J. Park. “Why social networks are di↵erent from other types

of networks”. Physical Review E 68.3 (2003), p. 036122.

129

[139] S. Nijssen and J. N. Kok. “A quickstart in frequent structure mining can make a

di↵erence”. Proceedings of the 10th International Conference on Knowledge Discovery

and Data mining. ACM. 2004, pp. 647–652.

[140] C. C. Noble and D. J. Cook. “Graph-based anomaly detection”. Proceedings of the

9th International Conference on knowledge discovery and data mining. ACM. 2003,

pp. 631–636.

[141] M. Ott et al. “Finding deceptive opinion spam by any stretch of the imagination”.

Meeting of the Association for Computational Linguistics. Association for Computa-

tional Linguistics. 2011, pp. 309–319.

[142] S. Pandit et al. “Netprobe: a fast and scalable system for fraud detection in online

auction networks”. Proceedings of the 16th International Conference on World Wide

Web. ACM. 2007, pp. 201–210.

[143] P. Papadimitriou, A. Dasdan, and H. Garcia-Molina. “Web graph similarity for anomaly

detection”. Journal of Internet Services and Applications 1.1 (2010), pp. 19–30.

[144] Y. Park et al. “Anomaly Detection Using Scan Statistics on Time Series Hypergraphs”.

SDM. SDM. 2009.

[145] G. Pasi and R. R. Yager. “Modeling the concept of majority opinion in group decision

making”. Information Sciences 176.4 (2006), pp. 390–414.

[146] A. Patcha and J.-M. .-.-. M. Park. “An overview of anomaly detection techniques:

Existing solutions and latest technological trends”. Computer Networks 51.12 (2007),

pp. 3448–3470.

[147] C. Phua et al. “A comprehensive survey of data mining-based fraud detection re-

search”. arXiv preprint arXiv:1009.6119 (2010).

[148] B. Pincombe. “Anomaly detection in time series of graphs using ARMA processes”.

ASOR BULLETIN 24.4 (2005), p. 2.

130

[149] C. E. Priebe et al. “Scan statistics on Enron graphs”. Computational & Mathematical

Organization Theory 11.3 (2005), pp. 229–247.

[150] P. J. Quirk. “Macroeconomic implications of money laundering”. Trends in Organized

Crime (1997).

[151] V. Ramkumar, S. Rajasekar, and S. Swamynathan. “Scoring products from reviews

through application of fuzzy techniques”. Expert Systems with Applications 37.10

(2010), pp. 6862–6867.

[152] S. Raza and S. Haider. “Suspicious activity reporting using dynamic bayesian net-

works”. Procedia Computer Science (2011).

[153] E. Reid et al. “Collecting and analyzing the presence of terrorists on the web: A

case study of jihad websites”. Intelligence and Security Informatics. Springer, 2005,

pp. 402–411.

[154] P. Reuter. “Are estimates of the volume of money laundering either feasible or useful?”

Research Handbook on Money Laundering (2013).

[155] P. Reuter and E. M. Truman. “Anti-Money Laundering Overkill”. The International

Economy (2005).

[156] M. Rowe, M. Stankovic, and H. Alani. “Who will follow whom? Exploiting semantics

for link prediction in attention-information networks”. The Semantic Web. Springer,

2012, pp. 476–491.

[157] A. Sallaberry, F. Zaidi, and G. Melançon. “Model for generating artificial social net-

works having community structures with small-world and scale-free properties”. Social

Network Analysis and Mining 3.3 (2013), pp. 597–609.

[158] D. Savage et al. “Anomaly detection in online social networks”. Social Networks

(2014).

[159] S. E. Schae↵er. “Graph clustering”. Computer Science Review 1.1 (2007), pp. 27–64.

131

[160] F. Schneider. “Money laundering and financial means of organised crime: some pre-

liminary empirical findings”. Global Business and Economics Review (2008).

[161] M. F. Schneider and D. Enste. Shadow economies around the world: Size, causes, and

consequences. 0-26. International Monetary Fund, 2000.

[162] N. L. Schwalje and S. Seagrave. Lords of the Rim: the invisible empire of the overseas

Chinese. 1996.

[163] M. Seeland. “Structural Graph Clustering: Scalable Methods and Applications for

Graph Classification and Regression”. PhD thesis. Universitätsbibliothek der TU

München, 2014.

[164] “Self-organizing map for clustering in the graph domain”. Pattern Recognition Letters

23 (2002), pp. 405–417.

[165] T. E. Senator et al. “Financial Crimes Enforcement Network AI System (FAIS) Iden-

tifying Potential Money Laundering from Reports of Large Cash Transactions”. AI

magazine (1995).

[166] E. Serin and S. Balcisoy. “Entropy Based Sensitivity Analysis and Visualization of

Social Networks”. International Conference on Advances in Social Networks Analysis

and Mining. IEEE. 2012, pp. 1099–1104.

[167] S. Shekhar, C.-T. Lu, and P. Zhang. “Detecting graph-based spatial outliers: algo-

rithms and applications (a summary of results)”. Proceedings of the 7th International

Conference on Knowledge discovery and data mining. ACM. 2001, pp. 371–376.

[168] J. Shetty and J. Adibi. “Discovering important nodes through graph entropy the

case of Enron email database”. Proceedings of the 3rd international workshop on Link

discovery. ACM. 2005, pp. 74–81.

[169] N. Shrivastava, A. Majumder, and R. Rastogi. “Mining (social) network graphs to de-

tect random link attacks”. IEEE 24th International Conference on Data Engineering.

IEEE. 2008, pp. 486–495.

132

[170] J. Silva and R. Willett. “Detection of anomalous meetings in a social network”. 42nd

Annual Conference on Information Sciences and Systems. IEEE. 2008, pp. 636–641.

[171] J. Simser. “Money laundering: emerging threats and trends”. Journal of Money Laun-

dering Control (2012).

[172] “Spin: mining maximal frequent subgraphs from graph databases”. Proceedings of the

10th International Conference on Knowledge Discovery and Data Mining 1 (2004),

pp. 581–586.

[173] L. S̆ubelj, S̆. Furlan, and M. Bajec. “An expert system for detecting automobile in-

surance fraud using social network analysis”. Expert Systems with Applications 38.1

(2011), pp. 1039–1052.

[174] S. Sun and J. Zambreno. “Design and Analysis of a Reconfigurable Platform for Fre-

quent Pattern Mining”. IEEE Transactions on Parallel and Distributed Systems 22.99

(2011), pp. 1497–1505.

[175] Y. Sun and J. Han. “Mining heterogeneous information networks: principles and

methodologies”. Synthesis Lectures on Data Mining and Knowledge Discovery 3.2

(2012), pp. 1–159.

[176] L. Tambayong. “Change Detection in Dynamic Political Networks: The Case of Su-

dan”. Theories and Simulations of Complex Social Systems. Springer, 2014, pp. 43–

59.

[177] P. Terlecki and K. Walczak. “E�cient discovery of top-k minimal jumping emerging

patterns”. Rough Sets and Current Trends in Computing (2008).

[178] S. Tsugawa, H. Ohsaki, and M. Imase. “Inferring success of online development com-

munities: Application of graph entropy for quantifying leaders’ involvement”. 8th Asia-

Pacific Symposium on Information and Telecommunication Technologies. IEEE. 2010,

pp. 1–6.

133

[179] B. Unger and J. den Hertog. “Water always finds its way: Identifying new forms of

money laundering”. Crime, Law and Social Change (2012).

[180] S. Vaithilingam and M. Nair. “Mapping global money laundering trends: Lessons from

the pace setters”. Research in International Business and Finance 23.1 (2009), pp. 18–

30.

[181] J. Vańıček, I. Vrana, and S. Aly. “Fuzzy aggregation and averaging for group decision

making: A generalization and survey”. Knowledge-Based Systems 22.1 (2009), pp. 79–

84.

[182] A. Verhage. “The holy grail of money laundering statistics: Input and outcome of

the Belgian AML system”. Cross-Border Crime Inroads on Integrity in Europe. Wolf

Legal Publishers, 2010, pp. 143–168.

[183] J. Walker and B. Unger. “Measuring Global Money Laundering: The Walker Gravity

Model”. Review of Law & Economics (2009).

[184] J. Walker. “How Big is Global Money Laundering?” Journal of Money Laundering

Control (1999).

[185] G. Wang et al. “Identify Online Store Review Spammers via Social Review Graph”.

ACM Transactions on Intelligent Systems and Technology 3.4 (2012), pp. 1–21.

[186] S.-n. Wang and J.-G. Yang. A Money Laundering Risk Evaluation Method Based on

Decision Tree. IEEE, 2007.

[187] Q. Wang et al. “Power usage spike detection using smart meter data for load profiling”.

International Symposium on Industrial Electronics (ISIE). IEEE. 2016, pp. 732–737.

[188] C. R. Watkins et al. “Tracking dirty proceeds: exploring data mining technologies

as tools to investigate money laundering”. Police Practice and Research 4.2 (2003),

pp. 163–178.

[189] H. T. Welser et al. “Finding social roles in Wikipedia”. Proceedings of the 2011 iCon-

ference. ACM. 2011, pp. 122–129.

134

[190] G. Wu et al. “Distortion as a validation criterion in the identification of suspicious

reviews”. Workshop on Social Media Analytics. ACM. 2010, pp. 10–13.

[191] S. Xie et al. “Review spam detection via temporal pattern discovery”. Knowledge

Discovery and Data Mining. ACM. 2012, pp. 823–831.

[192] X. Yan and J. Han. “gSpan: Graph-Based Substructure Pattern Mining” (2002).

[193] U. Yun and J. J. Leggett. “WLPMiner: weighted frequent pattern mining with length-

decreasing support constraints”. Advances in Knowledge Discovery and Data Mining

3518 (2005), pp. 555–567.

[194] M. Zaharia et al. “Resilient distributed datasets: A fault-tolerant abstraction for in-

memory cluster computing”. USENIX Conference on Networked Systems Design and

Implementation. 2012.

[195] M. Zaharia et al. “Spark: cluster computing with working sets.” HotCloud (2010).

[196] G. Zengan. “Application of cluster-based local outlier factor algorithm in anti-money

laundering”. 2009 International Conference on Management and Service Science (2009).

[197] X. Zhang, G. Dong, and K. Ramamohanarao. “Information-Based Classification by

Aggregating Emerging Patterns”. IDEAL 1983 (2000), pp. 48–53.

[198] X. Zhang, G. Dong, and R. Kotagiri. “Exploring constraints to e�ciently mine emerg-

ing patterns from large high-dimensional datasets”. Proceedings of the 6th Interna-

tional Conference on Knowledge Discovery and Data Mining. ACM. 2000, pp. 310–

314.

[199] Y. Zhang, N. Meratnia, and P. Havinga. “Outlier detection techniques for wireless

sensor networks: A survey”. Communications Surveys & Tutorials, IEEE 12.2 (2010),

pp. 159–170.

[200] P. Zhao et al. “Graph cube: on warehousing and OLAP multidimensional networks”.

Proceedings of the 2011 ACM SIGMOD International Conference on Management of

data. ACM. 2011, pp. 853–864.

135

[201] J. Zhou and K.-M. Yu. “Tidset-Based Parallel FP-tree Algorithm for the Frequent

Pattern Mining Problem on PC Clusters”. Advances in Grid and Pervasive Computing

(2008), pp. 18–28.

[202] J. Zhou, K.-M. Yu, and B.-C. Wu. “Parallel frequent patterns mining algorithm on

GPU”. Systems, Man and Cybernetics (2010), pp. 435–440.

[203] T. Zhu. “An outlier detection model based on cross datasets comparison for financial

surveillance”. Proceedings of the IEEE Asia-Pacific Conference on Services Comput-

ing. IEEE. 2006, pp. 601–604.

136

