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Abstract

Phenotypic plasticity, both within and across generations, is an important mecha-
nism that organisms use to cope with rapid climate change. While an increasing
number of studies show that plasticity across generations (transgenerational plastic-
ity or TGP) may occur, we have limited understanding of key aspects of TGP, such
as the environmental conditions that may promote it, its relationship to within-
generation plasticity (WGP) and its role in evolutionary potential. In this review, we
consider how the detection of TGP in climate change experiments is affected by
the predictability of environmental variation, as well as the timing and magnitude of
environmental change cues applied. We also discuss the need to design experiments
that are able to distinguish TGP from selection and TGP from WGP in multigenera-
tional experiments. We conclude by suggesting future research directions that build
on the knowledge to date and admit the limitations that exist, which will depend on
the way environmental change is simulated and the type of experimental design
used. Such an approach will open up this burgeoning area of research to a wider
variety of organisms and allow better predictive capacity of the role of TGP in the
response of organisms to future climate change.

KEYWORDS
acclimation, adaptation, environmental predictability, maternal effects, non-genetic inheritance,
paternal effects, phenotypic plasticity, selection, within-generation plasticity

experienced in one generation can interact with conditions experi-

enced by subsequent generations to influence performance, termed

Environmental conditions are shifting from their long-term averages
and extreme climatic events are becoming more common due to
anthropogenic climate change (Collins et al., 2013). Organisms may
respond to changing climates by shifting their distributions, adapting
to new environments or acclimating through phenotypic plasticity
(Hoffmann & Sgro, 2011; Munday, Warner, Monro, Pandolfi, & Mar-
shall, 2013). Plasticity is likely to be especially important in enabling
organisms to cope with fast-changing environments (Gienapp, Teplit-
sky, Alho, Mills, & Merila, 2008), as the potential for rapid genetic
adaptation may be constrained under predicted climate change (Mer-
ili, 2012). While plasticity often occurs in response to environmental

conditions experienced within a generation, the conditions

transgenerational plasticity (TGP). TGP might be especially relevant
in understanding biological impacts of climate change because envi-
ronmental change will persist across generations for nearly all spe-
cies. If TGP is adaptive (although this may not necessarily be the
case), it can buffer populations against the immediate effects of cli-
mate change and provide time for genetic adaptation to catch up in
the longer term (Chevin, Lande, & Mace, 2010; Kopp & Matus-
zewski, 2014).

Parents can alter the phenotype of their offspring through a
range of non-genetic or epigenetic processes. These effects have
been referred to by a variety of names including TGP, non-genetic
inheritance, anticipatory parental effects, carry-over effects and
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intergenerational effects (Bonduriansky, Crean, & Day, 2012; Salinas,
Brown, Mangel, & Munch, 2013; Uller, Nakagawa, & English, 2013).
Traditionally, research has focused on non-genetic maternal effects
to offspring traits (Mousseau & Fox, 1998), however, evidence is
accumulating for paternally mediated effects (Crean, Dwyer, & Mar-
shall, 2013; Hallsson, Chenoweth, & Bonduriansky, 2012; Shama &
Wegner, 2014). Epigenetic transmission (e.g. RNA-mediated modifi-
cations, epigenetic marks and DNA methylation) enables both par-
ents to influence their offspring’s phenotype other than by the
genes they pass on (Ho & Burggren, 2010; Jiang et al., 2013). Impor-
tantly, these non-genetic and epigenetic processes can be influenced
by the environment, and thus provide a mechanism by which the
parental environment can influence the performance of offspring.
Currently, the term TGP is often used to include any non-genetic
effects that are observed in the current generation which is associ-
ated with the exposure of a previous generation to a new environ-
mental condition. However, this definition will incorporate TGP,
parental effects, as well as effects due to the developmental plastic-
ity of the current generation induced by early cellular exposure.
Instead, the term TGP should be limited to describe differences in
offspring phenotype that occur due to the interaction between the
current generation and previous generation’s environmental condi-
tions (Salinas et al., 2013).

This review aims to highlight experimental areas that require
greater understanding to reliably predict TGP as a means of respond-
ing to rapid climate change and to identify future research directions.
Other reviews have detailed the extent of TGP (e.g. Salinas et al.,
2013; Uller et al., 2013), the mechanisms by which it can occur (e.g.
Bonduriansky & Day, 2009; Jablonka & Raz, 2009), and its evolution-
ary or adaptive nature (e.g. Herman & Sultan, 2011; Marshall & Uller,
2007). Our review is not meant to be an evaluation of existing theory,
nor a comprehensive assessment of empirical studies conducted to
date. Rather, our goal is to outline appropriate experimental
approaches to improve the likelihood of detecting TGP when it exists,
address key knowledge gaps in TGP research, and suggest methods
to control for potentially confounding effects. In doing so, we hope
to open up this burgeoning area of research to a wider variety of
organisms and study systems so that generalisations can be more
readily made. We first explore the relationship between TGP and
three aspects of environmental change that might improve our ability
to predict where and when TGP will occur in response to climate
change: (1) environmental variability and predictability, (2) the timing
of environmental cues and (3) the relative magnitude of environmen-
tal change. We then consider the importance of distinguishing TGP
from other forms of plasticity. Finally, we discuss the ability to distin-
guish TGP from genetic effects in current experimental approaches,
because both non-genetic and genetic inheritance will be essential to
shaping the potential of populations to respond to future climate
change. Since we are interested in TGP responses to climate change,
we focus this review on studies that consider environmental condi-
tions relevant to future climate projections (e.g. temperature, salinity,
CO,) rather than a complete exploration of parental conditions that
can induce TGP (e.g. hormones, chemicals, predators).

2 | TGP AND ENVIRONMENTAL
PREDICTABILITY

Phenotypic plasticity is traditionally defined as the capacity of a
given genotype to render alternative phenotypes under different
environmental conditions but is more broadly considered as environ-
mentally induced phenotypic variation (Pigliucci, 2001). Phenotypic
outcomes of plasticity can be positive, neutral or negative to adap-
tive potential (Marshall & Uller, 2007; Uller et al., 2013), and limita-
tions to plasticity exist due to underlying genetic architecture
(Ghalambor et al., 2015; Scheiner, 1993). Environmentally induced
phenotypic variation is often divided into three main types: develop-
mental, reversible (or acute) and transgenerational (Angilletta, 2009;
Munday et al., 2013). Developmental and reversible plasticity both
occur within a single generation (i.e. within-generation plasticity:
WGP), whereas in TGP, the environment experienced by earlier gen-
erations interacts with the environment of the current generation to
determine the phenotype (Agrawal, Laforsch, & Tollrian, 1999; Sali-
nas et al., 2013). Variation in environmental conditions over space
and time can produce uncertainty about the future environment that
should influence when, if, and which type of plasticity is favoured
(Angilletta, 2009; Reed, Waples, Schindler, Hard, & Kinnison, 2010).
Consequently, the variability and predictability of environmental con-
ditions, including daily and seasonal variation (Kingsolver & Huey,
1998), can influence the capacity to produce plasticity to future
change (Burgess & Marshall, 2014; Herman, Spencer, Donohue, &
Sultan, 2014; Leimar & McNamara, 2015).

Different types of plasticity are expected to occur under differ-
ent combinations of environmental variability and predictability, yet
they are not necessarily mutually exclusive (Angilletta, 2009; Herman
et al., 2014; Leimar & McNamara, 2015). When environmental con-
ditions vary between generations and parents can effectively predict
their offspring’s environment, TGP should be selected for (Herman
et al, 2014). Alternatively, TGP is instead predicted to occur with
temporal stability, allowing offspring to accurately utilise parental
cues (Leimar & McNamara, 2015). In contrast, where the environ-
ment varies greatly and in an unpredictable manner between genera-
tions (e.g. marine organisms where juveniles disperse over large
distances), parents could be expected to hedge their bets by produc-
ing offspring with a range of phenotypes (Marshall, Bonduriansky, &
Bussiere, 2008), although empirical evidence for bet hedging is
scarce (Simons, 2011). TGP and bet hedging can also occur in combi-
nation, as environmental variance is often composed of both pre-
dictable and unpredictable components, with the concurrent
evolution of both plasticity and bet hedging expected (Simons,
2014). That is, diversified bet hedging may occur around the norm
of reaction (WGP: Furness, Lee, & Reznick, 2015; TGP: Shama,
2015). The prevalence of bet hedging and extent of within-brood
phenotypic variation in relation to climate change and TGP may be
substantially underestimated, as the majority of studies to date only
explore the average phenotype of offspring. Given that increasing
climate variability is predicted to pose an even greater risk to species

than directional climate change (Vasseur et al., 2014), it is important
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to shift the focus away from a strictly mean phenotype perspective
and also consider the role of phenotypic variance in future TGP
studies, since selection may not favour the average offspring pheno-
type and instead may favour the extreme phenotypes of offspring
produced. Consequently, a continued mean phenotype focused
approach within TGP research could reduce our capacity to accu-
rately forecast population responses.

While theoretical predictions for TGP depending on environmen-
tal variability and predictability exist, generalisations from empirical
evidence are difficult because environmental predictability is rarely
considered in climate change research (exceptions Burgess & Mar-
shall, 2011; Shama, 2015; Table 1). A broad range of species that
are expected to experience diverse levels of environmental variation
naturally possess the capacity for adaptive TGP to environmental
change (Table 1), yet, a recent meta-analysis found only weak evi-
dence for adaptive anticipatory parental effects (Uller et al., 2013).
This is not to say that adaptive transgenerational effects are weak,
but rather, that we may not be looking at the right time points in
the life history or using relevant cues of environmental change to
promote TGP. For example, if the predictability of the environment
is poorly characterised, and experimental manipulations of environ-
mental cues are based on this, detection of TGP may not be possible
even when it is present (Burgess & Marshall, 2014; Uller et al.,
2013) Additionally, the type of environmental predictability can also
influence phenotypic variation of future generations (Shama, 2017).
Periodic fluctuations like seasonality or tidal cycles, with regularity in
the timing and magnitude of changes around the average environ-
mental state, may have very different effects on offspring pheno-
types than stochastic environmental change (or environmental noise),
whereby predictability is determined by the degree to which the
environment is similar between successive time points (e.g. autocor-
relation; Marshall & Burgess, 2015). It may be instructive to re-ana-
lyse Uller and colleagues’ data with the addition of a variable that
accounts for the environmental variation experienced by each of the
species. In addition, it would be interesting to incorporate an under-
standing of the relative environmental quality offspring conditions
offer. Engqvist and Reinhold (2016) eloquently highlight that off-
spring phenotypic expectations with TGP are not the same if the
environment of parents and offspring do not interact additively (as is
the case when, e.g. parents facing a good environmental condition
greatly affect offspring phenotype when their offspring experience
poor environments but do not markedly affect the phenotype of off-
spring in benign conditions).

Within the current review, we summarise the transgenerational
outcomes, specifically whether the nature of the TGP response is
positive or negative in relation to projected future climate change
(see Table 1). From this data, we explore the proportion of cases
that found evidence for positive, potentially adaptive TGP, in the
face of climate change compared to negative or no TGP effect. We
found that the transgenerational response reported was positive in
42% of cases, 22% of cases were negative, and there was a neutral
response in 36% of cases (Table 2). Looking in more detail, this pat-
tern of transgenerational response did vary slightly between some of

Ciobsl Ghange Biclopy MYU T SVBEC

the ecological groups, but this is likely to be influenced by the num-
ber of studies within each group (i.e. low number of studies on rep-
tiles and amphibians). Interestingly, the number of observations for
positive TGP response was higher in studies that applied environ-
mental change cues outside of the normal seasonal conditions expe-
rienced (Table 2).

The difficulty with investigating the influence of environmental
variation for most species is that there is not sufficient data on the
microclimates that individuals experience, since most climatic data
sets are compiled at a regional scale. Furthermore, in addition to lim-
itations with measurement scale, non-sessile species can have access
to a range of microclimates within their territory or residence area,
and thus may not experience the average or full range of conditions
measured. The level to which individuals behaviourally regulate the
environmental conditions they experience can alter the plastic capac-
ity of other traits including physiology and morphology (Buckley,
Ehrenberger, & Angilletta, 2015; Hertz & Huey, 1981; Huey, Hertz,
& Sinervo, 2003). Technology advancements (e.g. miniaturisation of
archival and acoustic tags) does mean that for many organisms direct
measurements of their microenvironment are becoming possible,
however, it may never be an option for the majority of small and
micro-organisms. The risk that exists within climate change experi-
ments completed to date, where the focus has overwhelmingly been
to apply average projected future changes with no consideration of
the natural variation that should be simulated around it (exceptions
include Dammerman, Steibel, & Scribner, 2016; Manenti, Sgrensen,
Moghadam, & Loeschcke, 2014 in relation to WGP; Shama, 2017 for
TGP), is detecting higher levels of TGP than might actually occur in
nature since plasticity would be expected to occur more readily
when conditions are predictable. Future research would benefit from
a greater focus on environmental predictability and variability, since
determining plastic responses of species to future climate change
requires experiments designed with an understanding of the environ-
mental variation that naturally occurs in the study system and its
predictability across generations (Vasseur et al., 2014; Vazquez, Gia-
noli, Morris, & Bozinovic, 2015).

3 | TIMING OF ENVIRONMENTAL CHANGE

The time during ontogeny at which an environmental change is
experienced will directly influence both the phenotypic response
within the individual (WGP) and the effects on offspring produced
(TGP). Two life stages have been identified as critical periods when
environmental conditions experienced by parents can influence the
next generation: throughout early development (from fertilisation to
early juvenile development) and prior to and during reproduction
(Burton & Metcalfe, 2014; Fawcett & Frankenhuis, 2015; Feil &
Fraga, 2012). Transgenerational effects are especially sensitive to
experiences around conception or embryogenesis, because early
embryonic cells are more sensitive to environmental influences and
epigenetic changes during early development affect a higher propor-
tion of cells (Burton & Metcalfe, 2014). Large effects during early life
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TABLE 2 Summary of the direction of transgenerational response observed in studies outlined in detail in Table 1. Direction of
transgenerational response is shown overall for all taxa, depending on the ecological division (as in Table 1), and in relation to whether the
environmental change applied in the experiment was within or outside the normal seasonal range

Ecological divisions (%)

Relative environmental change (%)

Transgenerational All taxa Terrestrial Aquatic
response (%) invertebrates invertebrates
Negative 22 22 21

None 37 52 32

Positive 41 26 47

may also be due to the costs of plasticity varying with ontogeny or
the overall costs of maintaining genetic machinery for plasticity
throughout development, although maintenance costs have been
found to be relatively low when examined (Murren et al., 2015).
Investigations into TGP associated with climate change more often
involve experience by mature adults to projected future conditions
rather than plasticity resulting from environmental conditions experi-
enced during early life stages of the parents or previous generations
(Table 1). Most commonly, parental experience has been reported to
enhance performance of the offspring, but the timing of parental
experience is influential (see Table 1). Both the length and timing of
an environmental cue experienced by mature parents can affect the
transgenerational response observed in offspring (Table 1). Generally,
increasing cue length during reproductive phases results in a stron-
ger transgenerational response (Dupont, Dorey, Stumpp, Melzner, &
Thorndyke, 2013; Ho & Burggren, 2012; Salinas & Munch, 2012;
Suckling et al., 2015; Swain & Lindsay, 1986). For example, parental
exposure for 30 days of adult sheepshead minnow to 24°C and
34°C induced beneficial growth in offspring at the respective paren-
tal temperature, but TGP was not observed when parents were only
exposed for 7 days (Salinas & Munch, 2012). For other species, tim-
ing rather than the length of a cue may be essential for producing
adaptive TGP. For the marine polychaete, Ophryotocha labronica,
mothers only provided greater cold or heat tolerance corresponding
to parental conditions when temperatures were experienced during
late oogenesis (Massamba-N'Siala, Prevedelli, & Simonini, 2014). If
the cold and hot conditions were experienced from early oogenesis,
tolerance did not match the parental treatment.

Ontogenetic timing of cue exposure throughout parental devel-
opment can also influence whether offspring phenotype is affected.
In the spiny chromis, TGP of offspring gender was only observed
when parents developed in elevated thermal conditions from early
life, but not if mature parents experienced warm conditions only
during the breeding season (Donelson & Munday, 2015). TGP effects
may even be restricted to narrow critical windows during the early
life of a parent’s development. For the common lizard, rainfall experi-
enced by parents in utero, but not at conception or during their
early juvenile development, influenced the size and number of off-
spring they subsequently produced (Marquis, Massot, & Le Galliard,
2008). As experiments begin to add various exposure timings across
generations, the patterns of TGP become even more complex. In
threespine stickleback, when mature parents were exposed to either

17°C or 21°C, transgenerational effects resulted in better offspring

Reptiles and
Fish amphibians Outside Within
24 7 16 25
33 71 33 40
44 21 51 36

growth in their mother's reproductive environment (Shama, Strobel,
Mark, & Wegner, 2014). However, in the following generation when
fish were reared throughout development at either 17°C or 21°C,
the same transgenerational benefits of maternal reproductive condi-
tions on offspring growth were not observed (Shama & Wegner,
2014). Instead, F, offspring exhibited growth benefits during early
life in the corresponding temperature of their maternal grandmother
(Shama & Wegner, 2014). This suggests that the mechanism(s)
underlying the transfer of environmental information differed in the
two generations, potentially due to the timing of cue exposure.
Acute exposure of mature adults led to optimised mitochondrial res-
piration in offspring, whereas developmental exposure did not. These
physiological differences were also reflected in differential gene
expression (transcriptome) profiles of F, offspring and likely underlie
the differing TGP effects seen for offspring growth depending on
environmental cue timing (Shama et al., 2016).

Some differences in when environmental change induces TGP,
and when it does not, may be explained by differences in life histo-
ries. Attributes such as reproductive strategy (semelparous or itero-
parous), parental care, ontogenetic habitat shifts, dispersive life
stages, longevity, age at maturity and development rate could all
influence if a parent responds to an environmental cue to produce
TGP (Burton & Metcalfe, 2014; Herman et al., 2014). Life history
attributes that cause parents and juveniles to occupy different envi-
ronments (i.e. ontogenetic habitat shifts, dispersive life stages) would
likely reduce the usefulness of environmental cues experienced dur-
ing maturity in determining offspring phenotype (Leimar & McNa-
2015).
experienced during their own early life to trigger transgenerational

mara, Instead, parents may rely on the environment
effects if it serves as a predictor of their offspring’s environment
(Burton & Metcalfe, 2014). This potentially explains why adaptive
TGP is not always observed in experiments with only adult exposure,
or why development from early life may be required to express TGP.
The expression of TGP will also be influenced by differences in plas-
tic capacity between phenotypic traits and internal trade-offs (Angil-
letta, 2009; Crill, Huey, & Gilchrist, 1996; Groeters & Dingle, 1988;
Seebacher, Beaman, & Little, 2014). For instance, potential trade-offs
were observed when summer mosquitofish parents produced off-
spring with enhanced critical swimming speed, but poorer aerobic
capacity and burst velocity (Seebacher et al., 2014; Table 1). More-
over, all phenotypic traits should not be expected to have the same
capacity for TGP, as they are not likely to have the same perfor-

mance optimum or optimal performance range (Clark, Sandblom, &
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Jutfelt, 2013; Du, Yan, & Ji, 2000). Unfortunately, our ability to draw
conclusions about the influence of life histories on the expression of
TGP is restricted by concentrated investigations of a few model spe-
cies that are easily maintained in laboratory settings and a limited
subset of phenotypic traits within each study. There is a need to
broaden our understanding of TGP across a range of traits and taxa

with differing life histories.

4 | MAGNITUDE OF ENVIRONMENTAL
CHANGE

An important aspect of TGP that is largely overlooked in experimen-
tal studies is the magnitude of environmental change applied com-
pared to ambient or average conditions. TGP experiments typically
involve one treatment and a control, often utilising environmental
conditions that are within the seasonal range experienced by the
population (Table 1). At best, climate change experiments include
three treatments, “mid” and “end” of century predictions plus a con-
trol. A relatively large or rapid environmental change can induce a
greater set of phenotypic responses than a small or slower change
(Kuijper & Hoyle, 2015; Thor & Dupont, 2015), or alternatively, may
restrict or alter the plastic changes by causing a stress response that
would otherwise not occur with less extreme environmental changes
(Badyaev, 2014; Pedersen et al., 2014; Shama, 2017). Furthermore,
with a relatively large environmental change, individuals may not be
able to produce complete compensation of a trait with just one or
two generations (Donelson & Munday, 2015). These studies suggest
that thresholds exist for TGP, which may be influenced by the mag-
nitude of natural environmental variation in the system. For example,
the copepod Calanus finmarchicus from the Northern Atlantic experi-
ences a relatively small seasonal CO, range (Bates et al., 2012). In
this species, beneficial TGP occurs at moderate CO, levels, but not
when large increases in CO, are applied (Pedersen et al., 2014). In
contrast, in the copepod Pseudocalanus acuspes, which experiences a
relatively large seasonal range (Atamanchuk et al., 2015), parents
produce TGP at high CO, levels but not at lower levels (Thor &
Dupont, 2015). Organisms that experience a relatively small range of
environmental variability may exhibit limitations in producing TGP
when the environment changes greatly (Donelson & Munday, 2015;
Donelson, Munday, McCormick, & Pitcher, 2012; Pedersen et al.,
2014), while species that naturally experience greater variation may
require a higher level of environmental change before TGP occurs at
all (Thor & Dupont, 2015). Prevalence of environmental thresholds
may be underestimated by studies only including two experimental
treatment levels (i.e. control and treatment) or utilising environmen-
tal conditions that are within the seasonal range experienced by the
population (Table 1).

Smaller magnitudes of environmental change per generation may
be more relevant in attempting to predict the response of species to
future climate change, since the end of century conditions will not
be reached within a single generation for most species. More gradual
or stepwise change across generations can produce differing
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phenotypic results compared to a single large change within a gener-
ation (Donelson, Wong, Booth, & Munday, 2016). Fish that experi-
enced an end of the century relevant increase of +3°C within the
first generation and were maintained at +3°C for another generation
ceased to reproduce, while fish that experienced +1.5°C in the first
generation and another +1.5°C in the second generation (total +3°C
over two generations) exhibited improved reproductive capacity
compared to the reproductive ability of fish that experienced +3°C
in a single generation (Donelson, McCormick, Booth, & Munday,
2014; Donelson et al., 2016). These differences are at least partially
due to selection that occurred within the F4 generation in fish within
the +3°C treatment, where only a few fish made up of a particular
genetic lineages reproduced (Donelson et al., 2012). However, when
comparing the enhanced reproductive capacity of fish that experi-
enced either the gradual generational increase of +1.5°C per genera-
tion (totalling +3°C over two generations) versus their siblings that
experienced +1.5°C in the first generation and were maintained at
+1.5°C for a second generation, there was evidence of WGP on top
of TGP when reproducing at +3°C (Donelson et al., 2016). It is thus
essential to consider the risks of incorrectly estimating plastic capac-
ity depending on the magnitude of future simulations both within
and between generations.

5 | TGP AND OTHER TYPES OF PLASTICITY

There is a growing trend for climate change research to assign
phenotypic change that occurs with mutigenerational exposure to
TGP, with an absence of exploration or discussion of other types
of plasticity. It is naive to presume that an individual's capacity to
transmit transgenerational effects to its offspring will not be influ-
enced by its own capacity for WGP. First, if an individual can
effectively produce the optimal phenotype for a given environment
with WGP, then TGP would, in theory, not be required. Con-
versely, in situations where production of the optimal phenotype
is restricted within a generation, due to costs and the time
required to sense or make changes, greater capacity for TGP is
likely (Auld, Agrawal, & Relyea, 2010; Uller, 2008). Higher levels of
trait expression can been seen when parent and offspring environ-
ments match due to the high degree of temporal correlation (Gal-
loway & Etterson, 2009; Leimar & McNamara, 2015), whereas
some species may only possess critical windows during early life
that are open to environmental influence to initiate both WGP
and TGP (Burton & Metcalfe, 2014; Herman et al.,, 2014). Perhaps
in these cases, capacity for TGP might be more effectively pre-
dicted with an enhanced understanding of WGP (Beaman, White,
& Seebacher, 2016).

It is plausible that some apparent examples of TGP could actually
be a result of developmental plasticity of offspring during early
stages, and should rather be treated as WGP. Or alternatively, the
interaction between conditions experienced by current and previous
generations was not tested and responses should be considered

carry-over effects (i.e. the effect of parental environment on
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offspring phenotype, regardless of offspring environment). Separa-
tion of offspring developmental conditions during early life from par-
ental conditions can be difficult, due to parents brooding the
embryos or providing other care that is essential to survival (e.g. nest
tending Donelson et al., 2012; Miller, Watson, Donelson, McCor-
mick, & Munday, 2012). Alternatively, if primordial germ cells or
developing embryos experience the parental environment, it is diffi-
cult to distinguish a true TGP effect from developmental plasticity
without completing experiments over two to three generations (Skin-
ner, 2008; Torda et al., 2017). Even in the best model species used
to investigate TGP related to climate change, it is unknown when
primordial germ cells begin to form, and consequently when there
could be direct effects of parental environmental conditions on pro-
geny. The only studies to date that can be certain the observed phe-
notypic effect in the current generation is due to exposure of
previous generations are those that demonstrate grandparental
effects (e.g. Herman, Sultan, Horgan-Kobelski, & Riggs, 2012; Le
Roy, Loughland, & Seebacher, 2017; Parker, O’Connor, Raftos, Port-
ner, & Ross, 2015; Shama & Wegner, 2014). Such studies are, how-
ever, the exception rather than the norm. Of course, whether results
are truly TGP may not matter if we are only interested in under-
standing and quantifying the capacity for species to respond to envi-
ronmental change across generations.

Without more stringent experimental designs in future research,
we are limited in our ability to understand TGP and its potential
importance in organism responses to environmental change
(Figure 1). Clearly, this is most easily achieved in species with exter-
nal fertilisation where in vitro crosses can be done. It is currently
unknown what the relative contributions of WGP and TGP are in
most of the observed multigenerational responses (but see Kielland,
Bech, & Einum, 2017; Lucey et al., 2016), but it is clear that they
can interact in a variety of ways (Luquet & Tariel, 2016). For exam-
ple, spiny chromis fish exhibited WGP to +3°C conditions in addition
to the TGP produced by their parents experiencing +1.5°C condi-
tions (Donelson et al., 2016). Contrastingly, WGP may “overwrite”
the occurrence of TGP in the subsequent generation (Burggren,
2015; Shama & Wegner, 2014). A greater understanding of cue tim-
ing could also allow us to tease apart cases of TGP from those of
carry-over effects (Engqvist & Reinhold, 2016; Uller et al., 2013).
Experimental designs that separate effects of developmental condi-
tions from reproductive conditions can begin to partition broad tim-
ing effects, as well as TGP from WGP (Figure 1b). Simultaneous
investigation of plasticity types is also critical since the same envi-
ronmental cue can produce either TGP or WGP depending on the
phenotypic trait of interest (Figure 1b-d; Beaty et al., 2016).

The interplay between information from previous and present
generations will be crucial to the production of both TGP and WGP
to climate change (Leimar & McNamara, 2015). For example, in a sit-
uation where there is high environmental predictability or stability
across generations, it may be more beneficial to use information
from the parental generation (and earlier) than to act on an environ-
mental cue only experienced in the current generation. Furthermore,

in this example, a large magnitude of change within the present

generation might be necessary to override the use of information
from a previous generation. However, when the environment varies
between generations, especially when this change is of a relatively
large magnitude, the offspring phenotypic response may be driven
by environmental mismatch between generations rather than the
specific environmental conditions experienced (Enggvist & Reinhold,
2016; Shama et al., 2016). Parental effects, where certain parental
conditions alter offspring performance across environmental condi-
tions, could substantially impact the offspring phenotypic response
within TGP experiments, with many designs used to date being
insufficient in allowing separation of TGP from other parental effects
(see Engqvist & Reinhold, 2016 for further details). While important
theoretical advances are being made on how organisms integrate
information from various sources (grandparents, parents and them-
selves through ontogeny) (Dall, Giraldeau, Olsson, McNamara, & Ste-
phens, 2005; English, Pen, Shea, & Uller, 2015; Leimar & McNamara,
2015), empirical tests of assumptions and predictions are generally
lacking. Experiments that cross individuals from parental environ-
ments with a range of within-generation conditions will enhance our
understanding of the interaction between plasticity types and the
persistence of TGP in further generations, especially when the envi-
ronment continues to change.

6 | SEPARATING NON-GENETIC AND
GENETIC RESPONSES

A limitation of climate change TGP research to date is a general
inability to unequivocally distinguish selection from plasticity in
experimental designs. Some of the TGP results discussed in this
review are likely to not purely be due to plasticity, but may also be
influenced by selection of favourable genotypes (via mortality or
fecundity differences). In many cases, this may be an inherent logis-
tic constraint of the study system, whereas, in others, appropriate
experimental designs could disentangle these effects (Figure 1). One
aspect that limits the majority of TGP experiments conducted to
date (in non-clonal species) is that parental genotypes are blocked
within treatments, and thus, the same genotypes or diversity of
genotypes are not present within all treatment conditions (e.g. Miller
et al., 2012; Seebacher et al., 2014; Welch, Watson, Welsh, McCor-
mick, & Munday, 2014). Ideal experimental designs are only possible
with clonal organisms (see Kielland et al., 2017) or in sexually repro-
ducing organisms that are fully homozygous (e.g. Arabidopsis thali-
ana). Consequently, some of the observed differences in offspring
traits between treatments may possibly be due to which genotypes
ended up in each treatment and genotype by environment interac-
tions. Nevertheless, random allocation of parental genotypes to
exposure treatments (Figure 1a,c) should lead to a similar scope for
selection in each treatment. Moreover, when experimental crosses
are made between parents from different environments, and for
example, F4 offspring from split-clutches of the same family perform
better in their respective maternal environment only, then effects
can be attributed to an

confidently environment-specific
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modification transferred from mother to offspring, and not to
genetic selection (Shama et al., 2014). However, future experimental
designs should include the ability to determine both plasticity and
selection independently as well as their interaction, at least in the F,
generation (Figure 1b-d).

Paramount to disentangling selection from plasticity is the ability
to track genetic relatedness (Gienapp et al., 2008). This can be done
by genotyping or by maintaining pedigrees, neither of which are com-
monly done in TGP experiments (but see Donelson et al., 2012; Mun-
day, Donelson, & Domingos, 2016; Shama et al, 2014). TGP
experiments require a split-brood design (see Bonduriansky et al.,
2012 and Figure 1 for design schematics), and each split-family must
be reared individually or marked for later identification. Rearing split-
families individually also allows for estimations of WGP, genetic vari-
ance for WGP, and their possible interaction with TGP (see above),
and can allow for further analyses to disentangle selection from TGP
(e.g. fixation index analyses). In clonal species (or homozygotic lin-
eages) distinguishing WGP from TGP is easier and tests of genetic
variation for TGP among treatments are possible. For solitary species,
experimental designs should start with the same genetic composition
of families in all treatments (Vu, Chang, Moriuchi, & Friesen, 2015;
Figure 1b,d). Unfortunately, experimental space constraints often limit
the number of experimental units (families) and treatments that can be
maintained over generations. This is more easily achieved for small
organisms with short generation times such as copepods (Thor &
Dupont, 2015), other crustaceans (Walsh, Cooley, Biles, & Munch,
2015) and bryozoans (Marshall, 2008), but less so for taxa with longer
generation times (Donelson et al., 2012). For larger organisms, it may
be that families can be maintained individually only up to a certain
size, after which they must be pooled by treatment (see Shama et al.,
2014). The problem of disentangling selection from plasticity in multi-
generational experiments arises when further generations (F, and
beyond) are produced from this pool of mixed F4 individuals. In this
case, genotyping parents and offspring in each generation could be
used to reconstruct the pedigree (Malvezzi et al., 2015). Additionally,
it is essential to track differential mortality and fecundity within exper-
iments to gain an understanding of possible selection. Alternatively,
determining whether parental environment effects are reversible can
indicate whether plasticity or selection is the driving force. For
instance, Jensen, Allen, and Marshall (2014) found that parental salin-
ity environment strongly affected fertilisation success in a marine
polychaete. By switching the salinity treatment of half of the adults at
the mid-point of the exposure period, they could conclude that plas-
ticity rather than selection was the main driver, as fertilisation success
was greatest when the gamete environment matched the parental
environment immediately preceding fertilisation i.e. the effects of
adult environment were reversible (Jensen et al., 2014).

Separating plastic effects from genetic effects allows studies to
address the role of both non-genetic and genetic inheritance in
shaping the adaptive potential of populations, but unfortunately is
rarely done in the context of TGP studies (but see Hallsson et al.,
2012; Kielland et al., 2017; Shama, 2017; Shama et al., 2014). It is
important to remember that plasticity itself has a genetic basis and

can evolve (West-Eberhard, 2003), and that both plastic and genetic
effects can contribute to a phenotypic trend (Merili & Hendry,
2014; Munday et al., 2013, 2016; Welch & Munday, 2017). Further-
more, documenting family lines across generations could shed light
on the relationship between TGP and the heritability of a trait of
interest, as TGP may enhance it, reduce it or have no effect (Bon-
duriansky & Day, 2009; Munday et al., 2016; Welch & Munday,
2017). One potential avenue of future research is the relationship
between evolutionary potential (additive genetic variance sensu
stricto) and transgenerational effects. Theory predicts that highly
plastic traits would be expected to show strong maternal (and/or
paternal) effect variance, but little to no genetic variance, because
highly plastic traits can be influenced by the environment (also par-
ental environment), and additive genetic variance may be masked by
high environmental variation (Lynch & Walsh, 1998). An elegant
cross-generational, split-brood study using seed beetles found that a
more plastic trait (elytron length) was strongly influenced by parental
effects but showed no detectable genetic variance, whereas a less
plastic morphological trait showed the opposite pattern (Hallsson
et al., 2012), indicating that environment-dependent parental effects
may play an important role in the evolutionary response of highly
plastic traits. Furthermore, given that the expression of genetic varia-
tion can also differ depending on the environment (Hoffmann &
Merild, 1999), it is likely that the relationship between genetic vari-
ance and transgenerational effects may be environment-dependent
(see Shama et al., 2014). Still, long-term predictions of the effects of
non-genetic inheritance on evolutionary potential pose a challenge.
A virtually unexplored aspect of TGP that could be particularly
relevant to populations in novel environments (e.g. facing extreme
temperatures), is that transgenerational effects could lead to the
exposure of cryptic genetic variation. Higher phenotypic variance is
commonly seen when individuals are exposed to rare or altogether
novel environments within a generation (Leddn-Rettig, Pfennig,
Chunco, & Dworkin, 2014; Schlichting, 2008), but can also occur with
parental exposure (Shama, 2017). For example, maternal photoperiod
of the plant Arabidopsis thaliana interacted with offspring tempera-
ture, exhibiting varying amounts of phenotypic variation in germina-
tion speed depending on the combination (Munir, Dorn, Donohue, &
Schmitt, 2001). Similarly, in dandelions, exposing parents to different
stresses and raising their offspring in an ambient environment led to
an increase of variation in methylation patterns (Verhoeven, Jansen,
van Dijk, & Biere, 2010). Additionally, incomplete resetting of epige-
netic state can adaptively coevolve with plasticity or maternal effects
and prevent mismatch when the environment changes relatively
infrequently (Uller, English, & Pen, 2015). Thus, cryptic epigenetic
variation and states across generations may also play a role in offering

up new phenotypes for selection to act on.

7 | SUMMARY AND FUTURE DIRECTIONS

This review highlights that TGP may be commonplace, but our ability

to predict where and when it will be expressed in relation to
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projected future climatic conditions is limited. Key to future research
is the design of experiments that build on the knowledge to date
and admit the limitations that exist, which will depend on the way
environmental change is simulated and potential confounding effects
in the types of experimental designs used (Figure 1 and Box 1). For
many species, we will need to establish a better understanding of
how environmental conditions vary over space and time (Burgess &
Marshall, 2014) before experimental research can be usefully param-
eterized. Incorporating relevant magnitudes of environmental change
per generation and varying the timing of environmental cues are
paramount to acquire the most relevant information for predicting
TGP to future global change. As more researchers embark on investi-
gations of TGP climate change, we will inevitably broaden the diver-
sity of species being investigated. This will allow us to understand
not only its prevalence, but also the importance of life history and
how it may alter the use of environmental cues. Furthermore, includ-
ing multiple relevant exposure timings in parents will provide essen-
tial information on critical time windows that influence the resulting
phenotype of offspring. It is our hope that this review helps direct
that research in an effective manner.

Theoretical predictions of TGP have advanced faster than experi-
mental tests of these predictions (Walsh et al., 2015), which limits
our ability to make robust generalisations, but future research
requires a structured approach. Clearly, TGP is not independent of
selection or other forms of plasticity. An essential and relatively easy
step forward is to separate selection from TGP by tracking identity
(genetic and phenotypic) within experiments, and by dividing clones
or siblings between treatments (see Bonduriansky et al., 2012; Fig-
ure 1). Studies that investigate both plasticity and adaptation
together allow us to explore the link between evolutionary potential
(either additive genetic variation or genotype by environment inter-
actions) and TGP (see Shama et al., 2014; Welch & Munday, 2017).
Experimental designs that allow differentiation of WGP from TGP
will highlight how these forms of plasticity interact (e.g. overwriting,
additive or multiplicative effects), and may allow us to make edu-
cated predictions for many species where directly testing TGP is
unachievable. Logistically, investigating both WGP and TGP properly
will mean experiments with more generations than have often been
conducted in the past. This is also important to consider, as more
multigenerational experiments are needed to determine how long
transgenerational effects persist and if these accumulate or are reset
with each generation (Shea, Pen, & Uller, 2011).

Making broad conclusions about the capacity for species to exhi-
bit TGP to projected climate change is made more difficult by the
fact that all traits do not show the same capacity for plasticity
(Table 1). This may be due to differences in constraints on the rate
at which various physiological, morphological or behavioural changes
can occur, mechanistic differences in the expression of plasticity, or
the environmental thresholds that initiate plasticity of various traits.
It is likely that divergent capacity to produce TGP across traits would
be common and is underestimated in current research, as studies
often investigate a range of closely related traits rather than a
diverse array of traits (Table 1). There is a clear need to investigate a
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broader suit of performance metrics, ideally incorporating measures
of physiology, morphology and behaviour, as well as existing varia-
tion in transgenerational effects across individuals in future experi-
ments (Box 1).

The appropriate design of experiments is critical to obtaining
accurate predictions of TGP to climate change. Irrelevant exposure
timing or cue length for the study species could cause over- or
underestimation of TGP potential, especially in the case of adult
exposure treatments in longer lived species. Selection of relevant
treatment magnitudes is again species- and ecosystem-specific, but
we suggest that multiple projected future treatments will assist with
predictive capacity. Our ability to comprehend and predict TGP,
including the presence of thresholds, the number of generations
required for a trait to exhibit full compensation, and the interplay
between WGP and TGP, is enhanced by rearing at least two full

generations in experiments. Finally, nearly all studies of TGP to date

BOX 1 Key research areas and considerations for future
transgenerational plasticity climate change research

Predictability

e Include relevant environmental variation and estimates
of predictability in experimental designs

* |nvestigate a broader suit of performance metrics: physi-

ology, morphology and behaviour

Cue timing

e Expand research to incorporate environmental cue tim-
ing to production of TGP

® Broaden TGP research across a range of taxa

e Consideration of species life history and possible
changes across life stages when designing experiments

Magnitude of change

e Consideration of thresholds and relative cue change
required for TGP

e Use relevant rates of environmental change within and

across generations

TGP and other plasticity types

e Explore variation in transgenerational effects across indi-
viduals and the evidence for bet hedging

e Use experimental designs that can distinguish between
within-generation and  transgenerational plasticity
allowing investigation of the interrelationship between
plasticity types.

® Incorporation of multiple environmental cues that are

projected with climate change

Non-genetic vs genetic responses

e Employ designs that divide siblings or clones between
treatments

e Track genetic backgrounds to allow determination of

selection vs plasticity
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included only one environmental variable (due to the “newness” of
investigations for most species), although climate change is expected
to alter many critical climatic and biological parameters together.
Exploring how TGP shapes traits in response to multiple drivers may

help us strengthen our predictions.
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While an increasing number of studies show that transgenerational plasticity (TGP) may occur, we have limited understanding of key aspects
of TGP, such as the environmental conditions that promote it, its relationship to within-generation plasticity (WGP), and its role in evolutionary
potential. In this review, we consider how the detection of TGP is affected by the environmental cues applied in climate change experiments,
and discuss experimental designs that allow for improved distinction between TGP, WGP and genotypic selection. We conclude by suggesting

future research directions that build on the knowledge to date.





