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Abstract— Anticipating load characteristics on low voltage

circuits is an area of increased concern for Distribution Network

Operators with uncertainty stemming primarily from the validity

of domestic load profiles. Identifying customer behavior makeup

on a LV feeder ascertains the thermal and voltage constraints

imposed on the network infrastructure; modeling this highly

dynamic behavior requires a means of accommodating noise

incurred through variations in lifestyle and meteorological

conditions. Increased penetration of distributed generation may

further worsen this situation with the risk of reversed power

flows on a network with no transformer automation. Smart Meter

roll-out is opening up the previously obscured view of domestic

electricity use by providing high resolution advance data; while in

most cases this is provided historically, rather than real-time, it

permits a level of detail that could not have previously been

achieved. Generating a data driven profile of domestic energy use

would add to the accuracy of the monitoring and configuration

activities undertaken by DNOs at LV level and higher which

would afford greater realism than static load profiles that are in

existing use. In this paper, a linear Gaussian load profile is

developed that allows stratification to a finer level of detail while

preserving a deterministic representation.

Index Terms— Automatic meter reading (AMR), domestic load

profiling, energy demand, low voltage networks

I. INTRODUCTION

HE Low Voltage (LV) network and the consumers on it

has been a relative unknown quantity in power system

design and operation with highly generalized profiles of

domestic households being used to make decisions in all but  a

few exceptional cases [1]. The advent of Smart Metering has

the potential to change much of that but with the increased

volumes of household energy use data comes questions on how

best to employ it and prior to that how to understand it in the

first place. It has been postulated in smaller scale studies that

domestic customers can be profiled according to energy usage

time and magnitude. How these profiles aggregate together on

a low voltage feeder is of interest to Distribution Network

Operators (DNO) who traditionally would assume load was

merely a multiple of a single homogenous domestic profile –
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Figure 1 shows how this is not necessarily the case. Even on

similar dwellings the customer behavior can be very diverse.

As some of the key technologies of Smart Grids are realized,

the concerns regarding legacy infrastructure become more

apparent. Increasing penetrations of micro-generation are

challenging the usefulness of this assumption as excess

domestic generation tips residential feeders into reverse power

flows. While generation such as photovoltaic can be predicted

to some degree of accuracy, there needs to be further work on

modeling the loads that absorb them. Behavioral factors are

identified in [2] that influence the load profile breaking energy

demand into 2 root causes: behavioral determinants – habit

driven, relatively flexible; and physical determinants – driven

by environmental factors and building design. Behavioral

drivers are the one which invoke most variability, [3] noted in

an overview of advanced tariffs (e.g. real time pricing) that not

all customers could be suited to these; demographics such as

young families – no flexibility, constant temperature and the

elderly who also require constant temperature. Then there are

those who maintain a constant load already with the only

losses stemming from dwelling disrepair/insulation

shortcomings (cf. the ‘physical determinants’ of [2]).

With consumer technology acquisition at its highest ever

level, and expected to continue to grow, such profiles can only

become invalid quicker thus reinforcing the case for data

driven methodologies to be used. In this paper, an alternative

representation of domestic load is considered, that of a

composition of usage levels strata generated dynamically from
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Figure 1: 30 minute resolution residential loads over a single week from

similar dwellings.
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Smart Meter data. Embedding this representation in a

probabilistic model allows a quantifiable comparison to be

made between profiles generated by different dwellings and

how these can change. This paper will present a framework for

analyzing the consumption habits of domestic energy

customers which will be illustrated through the application to

actual half hourly metered properties.

II.RESIDENTIAL LOADS

The absence of low voltage metering means that until

recently very little knowledge exists on the low voltage

customer’s true load profile. This section reviews some of the

current practices and looks at how larger loads are dealt with

on the medium voltage (MV) network.

A. Current Profiling Practice

The current practices tend to involve metering relatively

small samples of households and then averaging over these.

The following outlines examples from the UK and Finland.

1) United Kingdom

For the UK, it was decided in the mid-1990’s that to

facilitate market operation, 8 load profiles would be used to

represent the types of customers on the network. Of these

profiles, Profile Class 1 [4] is the only one that represents the

residential customer unconstrained by usage times. The form

of the profile is 48 half hourly usage levels that correspond to

the market settlement periods for every settlement day in a

year. These are developed from recruited sample households

with hi-resolution meters; homes in the samples for the 14 UK

grid supply points are selected from rule based stratifications

(high medium low) of annual consumption obtained from retail

billing. Averages of the half hourly data are weighted by the

proportions of the population at a given grid supply point in a

given strata, yielding a load profile that takes the form of a

48×365 matrix.

2) Finland

Finnish electric utilities started to co-operate in load

research in the 1980’s and in 1992 Finnish Electricity

Association (FEA) published customer class load profiles for

46 different customer classes, 18 of which are for housing and

the rest for agriculture, industry and services. The housing

profiles are further divided by dwelling type, heating solution

and major appliances. Each load profile contains expectation

and standard deviation values for every hour of the year [5].

Although old, the FEA load profiles are still the only publicly

available load profiles. The most prominent shortcoming of

these profiles is their age; during the past 20 years electricity

consumption has experienced significant changes, the amount

of heat pumps and air-conditioners has multiplied, the use of

entertainment electronics has increased and electricity

consumption in recreational dwellings has changed [6].

Furthermore, in the future, the changes will be even bigger if

plug-in hybrids, customer-specific distributed generation and

demand response activities become popular. The load profiles

also suffer from small sample sizes, short measurement periods

and errors caused by geographical generalization. The load

profiles are created to model the average Finnish electricity

consumption. They do not take into account the regional

differences in electricity consumption, which originate from

different climate conditions and socioeconomic factors.

Consequently, the strategies used are error prone: the type of

the customer is usually determined through a questionnaire

when the electricity connection is contracted and then rarely

updated. In reality, the customer type may change, for

instance, because of a change in the heating solution, an

addition of new devices, such as air conditioning or the change

of customer activity e.g. from agriculture to pure housing.

B. Related Load Profiling on MV Network

In [7], Probabilistic Neural Networks (PNN) were used to

assign consumers to load profiles – these are closely related to

a Parzen Window and essentially smooth input data into a

probability density function (PDF) of observations. 10 load

profiles resulted but different cluster validity measures resulted

in conflicting optimal number of clusters. An assortment of

clustering techniques are used in [8] on 234 non-residential

customers metered on the MV network at 15 minute intervals

with the objective of grouping them into a small number of

classes for tariff formulation. Reference [8] noted that

theoretically robust means of choosing the number of clusters

would be required as conflicts between cluster validity criteria

could arise [7]. Techniques used include hierarchical

clustering (with Euclidean distance), Self Organizing Maps, K-

Means and Fuzzy K-Means. Dimensionality reduction of the

96-dimensional space into a more manageable subspace was

also performed allowing the ‘informative’ hours/periods to be

identified. ISODATA (Iterative Self Organizing Data Analysis

Technique) was used in [9] to cluster industrial customers into

load profile classes; outliers in training data were defined as

customers with high intra-day variation and customers with

high monthly variation were discarded.

Although load profiling on the MV network has received

attention, the criteria associated with it are not the same; it was

noted in [9] that large customers tend to have a small standard

deviation in their load and hence produce a more accurate load

profile lessening the need to encode variability in the profile

representation thus emphasizing the need to encode variability

in the smaller residential customer profiles as outlined in [10].

III. AMI/AMR STATUS

A number of countries are committed to upgrading their

housing stock to Automated Meter Reading (AMR) systems or

Smart Meters. In both the UK and Finland, large electricity

customers are already metered on half hour or hourly basis but

the state of domestic smart metering is different [11].

In Finland, full smart meter roll-out is currently underway

and a significant number of meters have already been installed

[11]. Legislation requires electricity distribution network

operators to equip at least 80 % of their customers with hourly

metering by the end of the year 2013. Daily meter reading,

support to demand response, and outage registration are also
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required [12]. One novel feature in Finnish AMR installations

has been to integrate AMR system with control center

applications of SCADA and DMS (Distribution Management

System) in order to use AMR meters in real-time low-voltage

network management and fault indication [13].

For the UK, AMR will provide advance data at a 30 minute

resolution, most likely communicated at the end of a 24 hour

period. Full scale roll-out is scheduled to begin in 2014 and

finish in 2019 although some crucial parts of the program,

such as details concerning national data and

telecommunication services, are yet to be decided [14].

IV. RESIDENTIAL PROFILING REQUIREMENTS

Reference [15] identifies that ‘individual consumer behavior

and their everyday practices accounts for a substantial

proportion of household energy consumption’. In identical

houses it was noted that this can vary by up to 300-400% as a

result. The drivers for variability are multi-factorial: [16]

identifies that different socio-economic types will contribute

different amounts to energy demand using the Local Area

Resource Access Model (LARA) – high levels of

socioeconomic and geographical disaggregation were noted in

the UK. Although the credit rating agency groups were noted,

[16] uses UK OAC (Output Area Classification) to segment

UK households into 7 groups with different socio-

demographic characteristics with largely self explanatory

labels e.g. ‘Blue Collar communities’, ‘City Living’,

‘Countryside’, ‘Prospering suburbs’. A ‘Culture based

approach to behavior’ is explored in [17] by identifying energy

usage behaviors as a means of finding opportunities to invoke

changes in behavior. In [17] the ’Energy Cultures’ framework

was proposed to explain different causal facets of energy use

which can be summarized as: Material Culture which is

characterized by: insulation, heating devices and influenced

by: Regulation, income, available technology; Cognitive

norms which are characterized by: social aspiration, tradition,

environmental concern and influenced by: Education,

upbringing, demographics; Energy Practices which are

characterized by: Number of rooms, Maintenance of

technology and influenced by: Social Marketing, Energy Price

Structure. As discussed, load profiles for the residential

customer have been largely homogenous arrangements that

were calendar based rather than behavior driven. With

AMI/AMR/Smart Metering measurements providing extensive

and detailed load and resulting variability, a representation is

needed to capitalize on this and provide utility stakeholders

with the information they require to increase reliability and

efficiency. Regarding actual behavior, it is highly unlikely that

all residential customers behave the same, so the

representation must be able to accommodate a finite number of

heterogeneous behaviors and do so in a compact manner thus

enabling the representation to be utilized without unfeasibly

large computing resources. For each heterogeneous behavior

encountered, the traditional quantity of interest is the expected

value of load; time of use is the other traditional concern so

what is really required is a coupling of time of use with load

magnitude. AMI in the UK and Finland provides data with half

hour or one hour resolution allowing this quantity to be

represented as a discrete vector rather than a functional

approximation. Where curve fitting or regressive approaches

may not suffice is in the provision for capturing load

variability – the confidence with which a given load’s expected

value is expressed is also necessary. For forecasting purposes,

which may arise in highly localized power systems, the

relation between time of day loads can inform a short term

forecast (weather related behavior change). Detection of

anomalous behavior is another requirement that would provide

indication of fault condition or, over longer terms, new classes

of customer emerging (e.g. greatly reduced loads through

adoption of storage or uptake of more efficient appliances).

Additionally, the capture of changes in behavior should be

allowed through the representation.

V.LOAD MODEL DESIGN

A. Load Probability Distributions

In load research, electric loads are often assumed to have a

Gaussian distribution even though this is not the case. Previous

studies [18, 19, 20] have tried to find the best probability

distribution to model electric load behaviour. In these studies,

beta, gamma, and log-normal distributions have been found to

model electrical loads better than Gaussian distribution. Figure

2 shows that, when scored with Bayesian Information Criterion

(BIC) [21], the log-normal distribution best describes UK

residential loads out of several candidate probability

distributions and is significantly better than the normal

distribution. Also, by log-normalizing the data, it can be

transformed to behave like a Gaussian distribution, which in

turn enables the use of algorithms designed for the more

tractable Gaussian distribution.

B. Expressing Uncertainty through probabilistic models

The general form of models proposed in this paper is one of a

non-stationary multivariate Gaussian distribution over 48 half

hourly advance periods. In [20] it was noted that variability of

even a single customer is such that an individual load pattern

cannot be obtained – thus the importance of modeling the

distribution rather than (just) the expected value. This section

Figure 2: Histogram and fitted distributions for half hour period 15:00-15:30 in

January (weekdays only).
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discusses several model families that may be used to express

multimodality and dependence and in such a way that the

representation maintains its compactness.

1) Mixture Models

A finite mixture model permits an arbitrary probability

distribution to be approximated by a linear combination of

weighted likelihoods drawn from a set of simple parametric

distributions:
M

i

ii xPxP
1

;θπ (1)

If this were a Gaussian mixture model, then the components

would be Gaussian parameterized as follows:
M

i

iii xPxP
1

2,; σµπ (2)

where x is the observation variable, θ i is the parameter vector

for the i
th

distribution, π is the vector of mixing weights and M

is the number of distributions used to approximate the implied

observation distribution.

2) Factor Analysis

As daily meter advances are represented as a 48 dimensional

vector here, it is difficult to assess which times of use

influence each other and how. Multivariate data can sometimes

contain correlation between variables that are so strong, these

can be amalgamated allowing only the most informative or

uncorrelated variables to be represented in a space of reduced

dimensionality. Two examples of models which can reduce the

dimension of an observation space and thus discard

uninformative variables and reveal dependency structure are

Principal Component Analysis (PCA) [22] and Factor Analysis

[23]. PCA is based around the eigenvectors that correspond to

the eigenvalues of the covariance matrix of a multivariate

observation. Factor Analysis assumes a linear mapping

between such an observation space x and its lower dimensional

representation z:

uzx µ (3)

Λ  is the factor loading matrix that transforms observation x

into a lower dimensional representation z. µ is the mean of the

observation variable. Ψ  is a diagonal covariance matrix

attached to the zero mean distribution from which Gaussian

noise u is drawn.

,0~ Nu (4)

Factor Analysis does not impose the constraint of a common

variance for all features and furthermore has a probabilistic

model associated with it in the form of a Multivariate Gaussian

T
NzP ,0 (5)

Owing to the linear Gaussian semantics of the model the

observation space is also assumed to be Gaussian

,zNzxP µ (6)

Λ  is of particular use as interpretation of its rows/columns

reveals the relations between variables in the observation

space.

3) Mixtures of Factor Analyzers

For the situation where sub-populations exist in the observed

data and multivariate dependency is non-homogeneous, the

Factor Analysis model may be embedded in a mixture model

[24].
M

i

iiii zxPxP
1

,; µπ (7)

Extending the mixture model to factor analysis, allows

multiple sub-populations in a sub-space to be captured. The

Mixture of Factor Analysers (MFA) model is particularly

appealing to the load profiling application as it encodes not

only the broad customer behaviors in the form of the model

means but also expresses the variability over a day in a

compact parameter set which also relates the advance times in

terms of their variability.

C. Parameter Estimation and Model Order Selection

Beginning with a set of smart meter data there are two

stages to go through before a model can be obtained: model

selection and parameter estimation. Model selection decides

on the cardinality of the model, the number of mixture

components and the number of factors in the case of the

Gaussian Mixture and MFA models previously discussed.

Optimization techniques that estimate the parameters of

statistical models from exemplar data are often based around

Maximum Likelihood Estimation (MLE). Model order

selection techniques often require parameters for a set of

models to be learned then the optimal one chosen using some

likelihood based measure such as BIC or Akaike Information

Criterion (AIC):

MxPNXAIC
N

n

n 2log2,
1

θθ (8)

These select the most likely number of parameters M while

penalizing overly complex models of a data population of size

N. Model complexity can harm the generalization capabilities

of a model by encoding too many specific eventualities in it.

While more complex parameter estimation techniques exist

such as Monte Carlo based methods and Variational Inference,

for illustrative purposes, the simpler Maximum Likelihood

Estimate based formulation of the Expectation Maximization

algorithm [25] can be used on both the mixture models and the

Factor Analysers.

VI. LEARNED RESIDENTIAL LOAD PROFILES

To illustrate the models proposed in this paper, load models

are learned for a group of 32 residential customers. Since load

behaviour is seasonal, separate load models are formed for

each month. In the following examples, only January’s load

models are shown.
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A. Gaussian Mixture Load Model

Using the January meter data for 32 residential properties,

50 Gaussian Mixture Models (GMM) were learned using

maximum likelihood EM; from these 50 the optimal number of

mixtures was selected using BIC, the results of which are

shown in figure 3. Figure 3 demonstrates a pronounced

minimum at 16 components but also reveals some important

features of the data; the asymptotic behavior of the left-most

extreme indicates that a single Gaussian distribution provides

the poorest fit to the data which reinforces the need to provide

for multimodal behaviour. Furthermore, a large number of

behaviours does not adequately represent the behaviour of

residential customers either – domestic loads would appear to

have, as far as a Gaussian representation is concerned, a

relatively small number of plausible forms, although as stated

in the outset, not a single one.

One advantage of the Mixture model over say a Neural

Network based clustering approach such as a self organizing

map is that an element of determinism can be obtained through

inspection of the parameters. Figure 4 shows the component

means for the optimal parameterized GMM load model. This

demonstrates the recurring load profile forms found in the 32

residential properties over the January period. One limitation

of the Gaussian Mixture Model load profile is that owing to

the high dimensionality of the data, it has difficulty expressing

the dependence between advance times present in residential

loads.

B. Mixture of Factor Analyzers Load Model

For an MFA mixture, an additional consideration is added

to the model selection process in that one can trade off

between mixtures (which accommodate various expected load

profiles) and subspace dimensions (which capture the drivers

of the correlation and variance structure).The MFA models

offer even further insight into the nature of the load profiles

discovered. Full covariance structure can be obtained for all

mixture components regardless of the dimensionality of the

data or the sparseness of the subpopulation that forms a

mixture component. A covariance matrix can be reconstituted

from the factor loading matrix as shown in equation (5), an

example of such a covariance matrix is shown in figure 5 as a

heatmap representation: this shows how meter advances across

the 48 daily intervals influence each other for a given load

profile. Dark red areas are strong positive correlations i.e.

when a given (row) advance increases, the corresponding

(column) advance increases. Blue areas show negative

correlation – increases in (row) advance size result in

decreases in corresponding (column) advance. The 48

dimensional representation can pose difficulties in articulating

in the relationships between advances due to the high

dimensionality of the data [26]. The usefulness of covariance

in load profiling is suggested by the example covariance

matrix in Figure 5, which indicates dependencies between

times of use, albeit as correlation. Advances around

consecutive time periods (e.g. 10pm to 11:30pm) show a

strong correlation reflecting late evening habits with little

temporal variation and duration in the order of hours. Whereas

the further apart the advance is the lower the correlation.

Similar dependence structures are exhibited during the early

hours of the morning as Figure 5 also demonstrates.

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 5: Example covariance matrix from one component of a GMM. Note

the very strong correlations for the advances in the early hours of the morning.

Figure 4: The 16 profile means found by the Gaussian Mixture.

Figure 3: Selection of the optimal number of customer profiles a GMM load

model should represent.
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VII. RESULTS AND PRACTICAL CONSIDERATIONS

This chapter shows how the above presented load models

could be used in practice and compares their performance to

existing load models.

A. Load Model Allocation

Before the learned load models can be used, they must be

compiled into customer specific monthly load profiles.

January’s load profile for all 32 customers can be compiled

from the 16 previously learned day models, all we need to do

is to find out which models best describe the customer’s

behaviour on each day of the week. As an example, Figure 6

shows how the Gaussian Mixture load models are allocated for

4 different residential customers. Customer 17 shows

remarkably consistent behavior, exhibiting the same profile for

both weekday and weekend usage. Customer 29 switches

between multiple profiles although does sometimes remain in

the same one for more than one day. Customer 5 exhibits a

near perfect separation in weekday/weekend electricity usage

while Customer 31 switches between 3 profiles, always

exhibiting the same energy usage characteristics on a Sunday.

A single Gaussian distribution is not enough to describe a

customer’s behavior on each day of the week, so the final load

model is constructed as a weighted average over all the

mixtures in the model. This weighting is performed according

to the occurrence counts of particular mixtures/profiles seen

for a given customer during the period over which the training

data was collected.

B. Comparison to Existing Load Models

In order to verify the accuracy of the proposed load modeling

methodology, a comparison is made between the current

British load modeling method (Standard Load Profile), GMM

and MFA. February’s load forecasts are created using these

methods and the forecasts are then compared to the real

measured values. Since we have measurement data from only

one year, the GMM and MFA model parameters are learned

from January’s data while February’s measurements are

reserved for verification. The selected Standard Load Profile

(SLP) corresponds to the geographical location and type of the

studied loads (domestic unrestricted customers). Both the

GMM and MFA models are constructed using 16 mixtures.

With 16 mixtures the AIC for MFA model is lowest with ten

subspace dimensions. For comparison a MFA model with two

dimensions is also built. The load forecasts were scaled to

match the estimated energy consumption in February.

C. Load Flow Calculation

In practical applications, it is often important to estimate

maximum (peak) or minimum (valley) loads. This is where the

models of load variability are needed. When we know the load

variability we can calculate peak or valley loads with different

confidence levels. In Finnish network calculation, 95%

confidence is typically used when calculating maximum line

flows [27].

1) Simulation Network

The simulation network is based on a test network presented in

[28]. Only the LV part of the test network is modeled in this

study. The feeding MV network is modeled with a voltage

source with 90 MVA short circuit power. The model

incorporates a 500 kVA, 11 kV/433V ground mounted

distribution transformer and four LV feeders each supplying

96 domestic customers. One LV feeder is modeled in detail

and the other three are modeled as lumped loads, as shown in

Figure 7. The LV feeder is 300 meters long, it comprises two

segments of cable, 150 m of 185 mm
2

and 150 m of 95 mm
2

cable. Single phase customer connections are distributed

evenly along the feeder and are connected to the main feeder

with 30 m long 35 mm
2

service cables. Load points of phase

L1 are populated with real metered data.

2) Simulation Results

Statistical load flow was performed on the simulation

network. Since there is no explicit method for summing log-

normally distributed variables, the following simplification

was made when summing loads during the load flow

calculation: Expectation values and variances were calculated

for the log-normally distributed loads, expectation values and

variances were then summed and log-normal distribution

parameters were recalculated as in [29]. Load flow was

calculated for every half hour of February using three different

load profiles: SLP, GMM and MFA based load profiles. With

GMM and MFA models, 95% confidence level was used.

Figure 6: Demonstration of the daily variability of four residential customers

with respect to day of the week.
Figure 7: Single line diagram of the simulation network.
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Maximum line currents and minimum node voltages were

calculated and compared with the values calculated with real

measured loads. Figure 8 shows the estimated and “measured”

maximum currents and minimum voltages on the phase L1 of

the simulation network main feeder. The current and voltage

values achieved with GMM and MFA models are very close to

the real maximum and minimum values. Designing or

operating the LV network based on Standard Load Profiles

would be difficult since they don’t take the peak or valley load

situations into account correctly. GMM and MFA models were

superior compared to SLP model even though January’s load

models were used to forecast February’s load. More accurate

models could have been created if measurements from the

previous February had been available. Euclidean distance, Peak & Valley estimates and Peak &

Valley estimates with 95% confidence, were calculated for

both aggregated load estimates and their corresponding actual

values; this comparison is shown in Table I. With GMM and

MFA (2D) models, the smaller Euclidean distance

demonstrates they track aggregated load better than the ones

calculated with SLP. The MFA (10D) had a poor fit when

evaluating performance with Euclidean distance which may be

down to overfitting of the covariance matrices in the higher

dimensional space.

VIII.CONCLUSIONS

This paper has presented several Linear Gaussian model based

load profiling techniques that compactly capture multiple

behaviors exhibited by residential customers who have

traditionally been assumed to be homogenous. The

combination of the modeling strategy and the smart meter

advance data has permitted a representation that expresses not

only load magnitudes at given times of day but also their

variability and how these variabilities influence other times of

use. The mixture model framework in which this is embedded

allows multiple behaviors to be assumed with the statistically

most likely one being used to categorize a given residential

customer on a given day. In this way, dynamic customer

behavior changes can be captured as they evolve with season

or changes in routine. Such models have theoretical properties

that permit ready use of sampling techniques that have been

used to demonstrate gains in accuracy over existing load

profile techniques. Such improvements are essential in the

management of smaller and islanded power systems. Loss of

performance in the MFA model may have stemmed from

overfitting of the covariance matrices. In further work this

could be prevented by considering a Bayesian formulation of

MFA such as that proposed by [30], which has been shown to

provide a more reliable estimate of optimal subspace

dimensions. Attention should also now be turned to employing

the computationally tractable Gaussian models in temporal and

spatial models that could augment emerging state estimation

tools [31] and models of regional energy density [32]. Both

applications are increasingly important on LV networks as

emerging services such as storage, distributed generation and

demand response measures reach ever higher penetration

levels.

TABLE I

ACCURACY METRICS FOR DIFFERENT LOAD MODELS

Criteria SLP GMM
MFA

(2D)
MFA (10D)

Euclidean distance 74.11 69.58 70.22 74.12

Peak estimate (real

23.1 kW)
19.32 18.62 18.69 18.26

Peak estimate with 95

% conf. interval
- 22.69 23.20 22.73

Valley estimate (real

2.93 kW)
3.34 3.35 3.33 3.49

Valley estimate with

95 % conf. interval
- 2.97 2.84 2.97

Figure 8: Load flow comparison between SLP, GMM and MFA models.

A) Maximum currents on the LV main feeder (phase L1)

B) Minimum voltages on the LV main feeder (phase L1)
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