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Abstract

We present a lattice model describing the formation of silica nanoparticles in the early stages of

the clear-solution templated synthesis of silicalite-1 zeolite. Silica condensation/hydrolysis is mod-

eled by a nearest-neighbor attraction, while the electrostatics are represented by an orientation-

dependent, short-range interaction. Using this simplified model, we show excellent qualita-

tive agreement with published experimental observations. The nanoparticles are identified as a

metastable state, stabilized by electrostatic interactions between the negatively charged silica sur-

face and a layer of organic cations. Nanoparticle size is controlled mainly by the solution pH,

through nanoparticle surface charge. The size and concentration of the charge-balancing cation

are found to have a negligible effect on nanoparticle size. Increasing the temperature allows for

further particle growth by Ostwald ripening. We suggest that this mechanism may play a role in

the growth of zeolite crystals.
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I. INTRODUCTION

Zeolites are nanoporous alumino-silicates used in industrial applications such as catalysis

and separations.1 Understanding how zeolites nucleate and grow is of fundamental scientific

and technological importance. Such understanding could be used to optimize catalysis and

separations by tailoring zeolite crystallite size and shape. In addition, controlled zeolite

synthesis could open new fields of application such as optical electronics,2 bio-implants3 and

enantioselective separations.4 In the past decade, silica nanoparticles have been found to play

an important role in zeolite formation from clear solutions.5–10 To explore the properties of

such nanoparticles, we have developed and applied a lattice model to simulate nanoparticle

formation, structure and stability.

The clear-solution synthesis of silicalite-1 zeolite provides an important test case.

Silicalite-1 is the pure-silica form of zeolite ZSM-5 (framework code MFI), which was first

reported by Flanigen et al.11 It is composed of parallel straight cylindrical channels, con-

nected by cylindrical zigzag channels.12 This unique structure enables numerous applica-

tions of MFI-type materials, particularly in hydrocarbon conversions.13 Silicalite-1 can be

synthesized from a clear solution of tetraethyl orthosilicate (TEOS), tetrapropylammonium

hydroxide (TPAOH) and water. When this solution is heated to ∼100oC for a few hours, it

yields high-quality crystals of silicalite-1.14 Directly after synthesis, its channel intersections

are occupied by tetrapropylammonium cations (TPA), with the four propyl groups extend-

ing into the adjacent channels. Removal of TPA by calcination produces a nanoporous

crystalline solid.

During the clear-solution synthesis of silicalite-1, a suspension of nanometer-sized sil-

ica particles has been observed by several researchers prior to the appearance of zeolite

crystals.5–10,15 These nanoparticles are found to remain stable at room temperature, and

lead to silicalite-1 crystals at elevated temperatures. Experimentally measured growth rates

and activation energies were found to agree with the predictions of a mathematical model

assuming that the rate limiting step for silicalite-1 growth is the addition of nanoparticles.15

Even though the presence of these particles is agreed upon, their structure and their precise

role in zeolite synthesis remain the subject of debate. Schoeman suggested that the nucle-

ation and growth of the zeolite proceeds by dissolution of the nanoparticles and subsequent

monomer and oligomer addition,5 while de Moor et al. proposed a mechanism of direct ag-
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gregation of particles to form zeolite crystals.7 Martens and co-workers have recently argued

that the particles are pre-formed nanometer-sized slabs of silicalite-1, and that silicalite-1

crystals are formed by organized assembly of these units.8 However, subsequent experiments

have thrown doubt on these conclusions, suggesting that the nanoparticles are amorphous

entities.9

More recently, Fedeyko et al. published a detailed in situ small-angle x-ray scattering

(SAXS) and small-angle neutron scattering (SANS) study of silica nanoparticles formed in

basic solutions of tetraalkylammonium cations (TAA).16 They interpreted their results in

terms of a core-shell structure for the particles, with a core of mostly amorphous silica and

a shell of TAA mainly located on the particle surface. They found that average particle

sizes decrease with pH, increase with temperature, and are nearly independent of the size

of the alkyl group in TAA. A decrease in particle size with pH has also been reported by

Yang et al.10 Despite the relative simplicity of this zeolite growth system, e.g., no alumina

source, we lack a fundamental atomistic understanding of the basic interactions that control

the structure and size of these nanoparticles. The objective of this paper is to develop

a statistical mechanical model of the spontaneous formation of silica nanoparticles from

an aqueous solution of TEOS and TPAOH. For the most part, we focus on the solutions

studied experimentally by Fedeyko et al.,16 because they present a systematic analysis of

several physical parameters. expedient calculations.

There have been several previous attempts to model silica polymerization using molec-

ular simulation methods.17–22 However, most of these simulations were performed at ex-

tremely high temperature, to allow for chemical bond breaking and reforming. Although

valuable, this approach is inadequate for the system studied here, which deals with poly-

merization of silica at room temperature. Other approaches have been used to circumvent

this problem, mainly based on employing “smart” Monte Carlo (MC) moves to sample the

three-dimensional connectivity of silica polymers.21,22 However, the current state-of-the-art

in terms of computer power restricts these simulations to relatively small systems and/or

short run times. In order to model the spontaneous formation of nanoparticles of realistic

sizes, and to obtain statistically meaningful information about their properties, one must

sample over large system volumes during long simulation times. Such simulations are cur-

rently too computationally intensive for off-lattice atomistic models. Lattice models, on

the other hand, are capable of providing at least qualitative information when applied to
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such complex systems. In particular, lattice models have been successful in predicting the

phase behavior and structure of micellar solutions,23–27 and have recently been extended to

surfactant-silica systems.28 Inspired by these successes, we have applied a lattice model to

simulate nanoparticle formation during the clear-solution synthesis of silicalite-1.

The sol-gel chemistry of aqueous silica solutions exhibits a rich variety of behavior re-

sulting from an interplay of several phenomena such as solvolysis, acid-base equilibrium,

metastability and phase separation.29–31 Furthermore, the high alkalinity of these solutions

and the presence of organic cations means that electrostatics likely plays an important role.

The organic cations are also associated with a structure-directing effect in the synthesis

of zeolites, and thus steric effects might also be important in the context of nanoparticle

formation. In this paper, we boil down all this complexity into a simple lattice model.

We achieve this by representing silica polymerization by an effective attraction between

lattice sites, including orientation-dependent interactions meant to embody electrostatics,

and using second-neighbor interactions to model size-exclusion effects. In addition to MC

simulations in the canonical ensemble, we employ parallel tempering MC32,33 to probe the

existence of metastable states, as well as reactive ensemble MC34,35 to study reaction equi-

librium. We observe in our simulations the spontaneous formation of silica nanoparticles

under conditions where they are seen experimentally. In our model, these particles are found

to be a metastable state of the system, stabilized by the interactions between ionized sil-

icates and organic cations. The model correctly reproduces several qualitative features of

the experiments outlined above.

The paper is organized as follows. Section II describes the model we utilize for the

TEOS-TPAOH-water system, and relates the model parameters to the experimental ther-

mochemistry of silica solutions. Section III describes the simulation techniques employed

and Section IV presents the results obtained from the simulations. The results section begins

with a brief analysis of the parameter space of the model, and then describes the formation

of silica nanoparticles over the course of a simulation. The conditions for the existence of this

nanoparticle phase are established and the effect of several parameters on the particle size

and distribution are determined. In Section V, we present our conclusions and a discussion

of future work.
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II. MODEL DESCRIPTION

Our goal is to describe nanoparticle formation using a simple statistical mechanical model.

This is particularly important for nanoparticle formation, since large system sizes are nec-

essary to obtain statistically meaningful information, and long simulations are required to

observe the spontaneous formation and evolution of the particles. Another advantage of

using a simple model is that the physical properties responsible for a given behavior of the

model can be more easily identified. Obviously, we must pay a price for using such a coarse-

grained model, and that price is the difficulty in obtaining quantitative insights about the

system. The simplifications involved are such that one is usually restricted to qualitative

comparisons to real systems. Keeping this in mind, we will endeavor to keep our model as

simple as possible, while retaining a realistic enough representation of the physico-chemical

processes at play. We thus begin by abandoning an atomistic representation in favor of a

“united atom” representation. This means that a given molecule will be represented by a

single site, rather than by an explicit representation of all its atoms. Furthermore, we divide

three-dimensional space into a simple cubic lattice, with every lattice site occupied by a

single species.

The starting point for the silicalite-1 synthesis is an aqueous solution of TEOS and

TPAOH at room temperature. The control variables in the experimental system are there-

fore the temperature, the initial concentration of TEOS and the initial concentration of

TPAOH (which sets the initial pH of the solution). The base dissociates completely into

TPA cations and hydroxyl anions.36 At the conditions commonly used for silicalite-1 syn-

thesis (high water/silicon ratio and high pH), hydrolysis of TEOS, yielding silicic acid and

ethanol, is complete.30,31 We are thus left with a system containing water, ethanol, TPA,

Si(OH)4 and OH-. To simplify this picture, we begin by ignoring the effect of ethanol and

consider the water/ethanol mixture as a single solvent species (hereafter designated by W).

In reality, the presence of ethanol may affect the silica polymerization equilibrium (by virtue

of esterification reactions) and alter the solubility of silica (by changing the nature of the

solvent).29 Nevertheless, we assume that in the dilute solutions studied here, these effects are

of minor importance. In addition, we do not explicitly represent hydroxyl ions, but rather

include their effects in acid-base reactions described below.

5



A. Neutral Polymerization

In order to build our model, we begin by considering the simplest case possible and pro-

ceed by adding subsequent levels of complexity, until we reach a satisfactory representation

of the real system. The simplest relevant case one can envisage is pure silica immersed in

solvent at the isoelectric pH of silica. In this situation, the relevant chemical reaction (again,

ignoring the presence of ethanol) is silica condensation/hydrolysis (here written in a generic

form):

R-Si-OH + R
′

-Si-OH
�

R-Si-O-Si-R
′

+ H2O (1)

A solution that is supersaturated with silicic acid monomer will quickly evolve into a complex

solution containing multiple silicate species, including dimers, trimers, rings and branched

structures.29 We treat this mixture by beginning with neutral silica monomers (denoted

by SN), each occupying one site on the lattice. The polymerization reaction energy is

mimicked by introducing an effective nearest-neighbor interaction between silica monomers.

For example, if during the simulation two monomers move close to each other and become

separated by only one lattice bond, we say that a dimer has been formed. Similarly, if a

third monomer moves to within one bond of any of the previous two, a trimer is formed,

and so on. This move is attributed a certain energy, which represents the internal energy

of the condensation reaction (1). This should be distinguished from the much larger energy

of forming a covalent bond, i.e., a covalent association energy. Both computational37 and

experimental29 studies have determined the silica condensation reaction to be exothermic,

which means that the interaction energy in our model should be attractive.

Using this procedure, a system composed of only neutral silica species immersed in sol-

vent is fully specified by a single energy parameter – the value of the attraction between

silica monomers, relative to the system temperature. To see that this is so, we consider the

Hamiltonian of such a system in the canonical ensemble by fixing the temperature T , the

number of lattice sites L3 (essentially volume), and the numbers of SN and W molecules.

For simplicity, we include only nearest-neighbor interactions, but the approach can be gen-

eralized for longer-range interactions. The Hamiltonian of such a system can be expressed

as:

E =
1

2

c
∑

i=1

c
∑

j=1

Nijεij, (2)
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where Nij is the total number of nearest-neighbor contacts between components i and j, εij

is the energy of interaction between those species, and c is the total number of components

in the system. It can be shown28 that, when all sites are occupied by either solute or solvent,

the energy difference between two configurations is given by:

∆E =
c

∑

i=1

c
∑

j>i

∆Nij

[

εij −
1

2
(εii + εjj)

]

=
c

∑

i=1

c
∑

j>i

∆Nijωij (3)

This means that the system is fully specified by a set of interchange energies ωij, with i 6= j.

For the simple system composed of silica and solvent molecules, we need only specify a single

interchange energy. If we now consider the case where all interactions involving the solvent

molecules are set to zero, hence defining the zero of energy, we can see that the interchange

energy is given simply by:

ωSNW = −1

2
εSNSN

(4)

Thus, the behavior of the system depends only on the value of the silica-silica interaction

energy. Such a parameter should be interpreted as an effective interaction, lumping together

not only the reaction energy for silica polymerization, but also the solvation energies of the

participating species.

We calibrate this effective interaction by simulating the solubility of amorphous silica at

its isoelectric point, as described in section IVA. In the remainder of this paper, all energies

are scaled by |εSNSN
| (the absolute value is used because εSNSN

is negative and we wish to

retain the sign of the interaction). The reduced temperature is given by T ∗ = kBT/|εSNSN
|,

where kB is Boltzmann’s constant.

A corollary of equation (3) is that a given solute-solvent system, with a given set of inter-

actions, can always be reduced to an equivalent system where all the interactions involving

solvent are reduced to zero. In practice, this allows us to treat the sites occupied by sol-

vent molecules as vacant sites.38 As we will see in section III, treating the solvent sites as

vacancies also allows one to speed up the calculations significantly.

B. Alkaline Polymerization

The procedure described above yields a simplified description of the equilibrium rep-

resented by reaction (1) under isoelectric conditions. However, at high pH an additional
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reaction becomes important:

R-Si-OH + OH- � R-Si-O- + H2O (5)

To include this reaction, one must distinguish between neutral and ionized monomers. A

further simplification introduced in our model is to consider only singly ionized monomers,

i.e., Si(OH)3O
−. Even though doubly ionized monomers (Si(OH)2O

−2
2 ) have been shown to

exist at high enough pH,29,30,39 they are relatively unreactive in polymerization,40 and would

add unnecessary complexity to our model. Throughout the remainder of this paper, singly

ionized silica monomers are denoted SI. As we will see in section III, the concentrations of

SN and SI can be obtained from experimental conditions and the deprotonation equilibrium

constant.

We must now specify two additional interactions: those between SI-SI and SI-SN. At

first glance, it may be expected that ionized monomers will polymerize in the same way

as neutral monomers. However, this is not the case, as the strong repulsion between the

negative charges on two SI molecules significantly inhibits the reaction. We assume here,

for simplicity, that the polymerization reaction energy is exactly cancelled by the electro-

static repulsion, so that the SI-SI interaction is set to zero. As a result, a system containing

only ionized silica and solvent will yield a uniform mixture of mostly monomers and a few

oligomers arising from random thermal fluctuations. This is consistent with experimental

observations showing that SI monomers formed at high pH by the ionization of monosilicic

acid are extremely soluble in water, being responsible for a marked increase in the solubil-

ity of amorphous silica at pH>9.29 As for the SI-SN interaction energy, it should also be

attractive, since reactions between neutral and ionized monomers do occur in real systems.

Nevertheless, the enhanced solubility of SI should have an impact on the effective interaction

energy, making it less attractive than the SN-SN energy. We have studied the behavior of the

model for several values of this parameter (see section IVA) and have obtained qualitative

agreement with experimental observations for ε∗SISN
= εSISN

/|εSNSN
| = −0.8.

Another important difference between neutral and ionized monomers is that interac-

tions involving the latter depend on its orientation – interactions will be stronger or weaker

depending on whether a given molecule approaches the negatively charged oxygen or the

neutral hydroxyl groups. We take this effect into account by assigning a pointer variable to

each lattice site occupied by an SI. This variable “points” to one of the neighbors of that
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site, to indicate the orientation of the negatively charged oxygen. The remaining neighbors

interact with a neutral hydroxyl group.

As a result of distinguishing between the neutral and anionic ends (represented by S-
I)

of each SI, we increase the total number of interaction parameters of our model to 6 (the 3

described above plus 3 interactions involving S-
I ). Following the same rationale as above, we

set the S-
I -S

-
I and SI-S

-
I interactions to zero. As for the SN-S-

I interaction, this corresponds

to a reaction of the type:

R-Si-O− + R
′

-Si-OH � R-Si-O-Si-R
′

+ OH− (6)

This reaction can be obtained by subtracting reaction (5) from reaction (1). Therefore,

the equilibrium constant for reaction (6) is the ratio of the equilibrium constants for reac-

tions (1) and (5). Experimental studies show that the equilibrium constant for the neutral

polymerization lies between approximately 20 and 500,39 while the equilibrium constant for

monomer deprotonation is 1.75× 106 (see Ref. 39 and section IIIA). From these values, the

equilibrium constant for reaction (6) is on the order of 10−4. This value is very low, so we

can safely assume that the reaction does not occur in practice. Therefore, we set the SN-S-
I

energy to zero.

C. Templated Growth

The final step is to include TPA cations in the model, requiring four additional interaction

parameters (TPA-SN, TPA-SI, TPA-S-
I and TPA-TPA). We may expect strong repulsion be-

tween two TPA cations due to their positive charges. However, this electrostatic repulsion

is countered by strong hydrophobic attractions between the propyl groups, which influence

the structure of water near TPA cations.36,41 Recent simulation studies reproduce this hy-

drophobic effect.42,43 In tetraalkylammonium ions, electrostatic repulsions and hydrophobic

attractions are found to have comparable magnitudes, giving behavior intermediate between

those of simple electrolytes and apolar molecules.36,41,43 In light of this, we have set the in-

teraction energy between TPA cations to zero.

As for the interactions between TPA and silicates, we assume that only the electrostatic

attraction between TPA and S-
I is important. We assign a relatively strong value of −2

to the reduced TPA-S-
I attraction. Van der Waals attractions between TPA and neutral
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silicates are disregarded for simplicity; these interaction energies are thus set to zero. Indeed,

quantum chemistry calculations37 suggest that the interactions between TPA and neutral

silica monomers are of the same order of magnitude as interactions between TPA and water,

while the attraction between TPA and anionic silica monomers is much stronger. In section

IVC we discuss the effect of using different values for the TPA-S-
I attraction.

Until now, we have ignored the fact that the TPA cation is much larger than the silica

monomer. The ionic radius of a TPA cation is approximately 0.45 nm,44 while the molecular

radius of Si(OH)4 is about 0.3 nm (calculated with the Si-O bond length of 0.16 nm, and

assuming an oxygen radius of 0.15 nm), giving a linear size ratio of 1.5. The simplest way

to represent this size difference in our model is to include a nearest-neighbor repulsion shell

around each TPA molecule. If this repulsion is strong enough, we ensure that all of the

first-neighbor sites of the TPA remain vacant, thus effectively increasing its collision diam-

eter. We also include a second-neighbor repulsion between two TPA cations, to eliminate

configurations in which two of these large molecules sit too close to each other in a diago-

nal arrangement on the simple-cubic lattice. The attraction between TPA and S-
I and the

pointer variable must then be extended to a second-neighbor level. This modification yields

a value of
√

3 = 1.732 for the size ratio between TPA and silica monomers in our model,

which is a reasonable approximation to the estimate of 1.5 mentioned above.

Most of the calculations presented in this paper deal with solutions containing TPA, which

we model using a “large” (or second-neighbor) cation. However, we are also interested in

studying the effect of cation size on the properties of the nanoparticles. For this purpose,

we have also performed simulations using a “small” (or first-neighbor) cation. This is a

reasonable approximation to a tetramethylammonium (TMA) cation, which, at an ionic

radius of 0.34 nm,44 is of comparable size to a silica monomer.

According to the above description, the Hamiltonian of the lattice model is:

E =
1

2

3
∑

i=0

3
∑

j=0

(

N FN
ij εFN

ij + N SN
ij εSN

ij

)

(7)

where superscripts FN and SN denote first- and second-neighbor interactions. The Hamil-

tonian is written as a sum over all contacts between components on the lattice. Indices 1,

2 and 3 refer to SI, SN and TAA, respectively. The summations run only up to index 3,

not 4, because the solvent molecules are considered as vacancies (all interaction energies are

zero). The index 0 refers to interactions involving the pointer variable. Table I shows the
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interaction parameters for the model with only first-neighbor interactions, while Tables II

and III present those for the model with both first- and second-neighbor interactions. For

brevity, we refer to these as the first-neighbor and second-neighbor models, respectively. In

what follows, we perform most of our calculations on the second-neighbor model.

In summary, the model proposed here assumes that the important parameters control-

ling silica nanoparticle formation are the initial concentrations, temperature, pH, cation

size, and the relative magnitudes of the SI-SN and TAA-S-
I attractions. Our model assumes

united atom representations on a simple-cubic lattice. In addition, because of the simple

cubic lattice the coordination number of silica polymers is increased from 4 to 6; changes in

reactivity of silicate species with degree of polymerization30,31,39 are ignored; and long-range

electrostatics are reduced to short-range effective interactions. In spite of these simplifica-

tions, we shall see that this model captures the essential physics leading to the spontaneous

formation of nanoparticles in the early stages of silicalite-1 synthesis.

III. SIMULATION TECHNIQUES

To probe the behavior and properties of the model described above, we have employed

a variety of molecular simulation techniques. Most of these are well documented, and thus

we provide only a brief description, focusing on the aspects of particular relevance to the

problem at hand. The majority of the results presented in this paper were obtained from

Monte Carlo (MC) simulations in the canonical ensemble (NV T ). Parallel tempering and

reactive ensemble MC (REMC) were used mainly to complement the NV T results. In what

follows, “simulation results” refer to NV T MC unless otherwise specified.

A. Canonical Ensemble Monte Carlo

We have performed NV T MC simulations using a simple cubic lattice with periodic

boundary conditions in all three cartesian directions. Two types of MC moves were imple-

mented. The first type of move is a swap, consisting of an exchange in position between

two molecules located on different sites. The first site is chosen at random from a list of

all ‘occupied’ sites (a site containing solvent is considered vacant), while the second site is

randomly chosen from the global list of N lattice sites. Since a great majority of all sites
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contain solvent molecules, this procedure allows for significant savings in computer time, by

avoiding irrelevant swap attempts. As usual, the move is accepted or rejected based on the

Boltzmann factor associated with the configurational change.45

The second type of move is a rotation of the pointer variable placed on the anionic

silica sites. This is implemented by randomly choosing an occupied site and checking to see

whether it is occupied by an SI molecule; if it is not, the move is rejected. A new value for the

pointer variable is chosen at random from all possible values (6 for the first-neighbor model

and 12 for the second-neighbor model). The Boltzmann factor for this trial is calculated

and the rotation is accepted or rejected accordingly.

Except where noted, each NV T MC run was started from a random initial configuration,

in a cubic simulation box of side L, and allowed to equilibrate for at least 1 million sweeps

(usually much more than this). If there are Nocc occupied sites on the lattice, then a sweep

is defined as Nocc attempted moves plus Nocc attempted rotations, chosen randomly. The

average energy of the system was calculated at the end of each sweep and written to file.

Snapshots of the simulation were produced at evenly spaced intervals during the course

of each run. We have also calculated cluster size distributions at different stages of the

simulation by implementing the Hoshen-Kopelman cluster counting algorithm.46 Two silica

monomers are considered part of the same cluster if they are connected by a single lattice

bond.

A correspondence with experiment was established by setting up the initial configuration

based on values calculated from experimental control variables. Typically, the composition

of the experimental solutions is given in terms of the mole ratios of the species present.

With this information, the mole fraction of TAA (xTAA) in the NV T simulation is simply

calculated from:

xTAA =
nTAAOH

nH2O + 5nTEOS + 2nTAAOH

, (8)

where ni is the number of moles of species i in the experimental solution. The above equation

assumes complete dissociation of TAAOH and complete hydrolysis of TEOS (producing 1

mole of monosilicic acid and 4 moles of ethanol per mole of TEOS). To calculate the mole

fractions of the silicate species (xSN
and xSI

), one must consider the reaction equilibrium

represented in equation (5). Since the total number of moles is conserved in the equation,
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the equilibrium relation can be written in terms of the mole fractions of the components:

KD =
xSI

xH2O

xSN
x

OH-
(9)

The value of the equilibrium constant (KD) can be obtained from information on the pKa

of the acid involved in the reaction. The pKa of siliceous acids depends on the degree of

ionization and may also depend on the degree of polymerization.30 As explained in section II,

we assume that the only ionic silicate present is the singly deprotonated monomer, and thus

we adopt the literature value of 9.5 for the pKa of monosilicic acid.39 In dilute solutions, one

can further assume that the concentration of water is essentially a constant at 55.6 mol/l.

Using the pKa for water (14), we obtain a value of 1.75 × 106 for KD.

So far, equation (9) has 3 unknowns, so we must introduce 2 other equations. The first is a

mass balance on the silicon atom, stating that all silica present in the simulation corresponds

to the amount of TEOS added to the solution:

xSN
+ xSI

=
nTEOS

nH2O + 5nTEOS + 2nTAAOH

, (10)

The second equation used is a charge balance over all ionic species in the simulation:

xTAA = x
OH- + xSI

(11)

Solving equations (9-11) simultaneously allows for the calculation of the mole fractions of

SN and SI, as well as monitoring the evolution of the pH during the course of the simulation.

Finally, the mole fraction of solvent (xW) is simply:

xW = 1 − xSN
− xSI

− xTAA (12)

Note that this procedure assumes that the concentrations of the components are fixed at their

equilibrium values. We relax this assumption as discussed below, by performing simulations

in the reaction ensemble (see section IIIC).

B. Parallel Tempering

As we see below, the model proposed in section II is difficult to equilibrate using the con-

ventional Metropolis NV T MC. To improve the efficiency of equilibration, we have employed

parallel tempering.32 This is implemented by performing M independent NV T simulations,
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running at different temperatures. Each replica is allowed to equilibrate using conventional

MC moves (as described in section IIIA). However, after a preset number of such MC moves

a replica exchange is attempted, wherein the complete configurations are exchanged between

two replicas running at adjacent temperatures. First, one of the M replicas is selected at

random. After this, one of its two adjacent replicas is also chosen randomly (in the case of

the highest or lowest temperature, this step is omitted, as there is only one possible choice).

Configurations of the two replicas are then exchanged and the energy difference is computed.

The trial is accepted with a probability given by:

p = min

{

1, exp

[(

1

kBTj

− 1

kBTi

)

(Ej − Ei)

]}

(13)

As such, the acceptance ratio of the replica exchange depends on the energy difference and on

the reciprocal temperature difference between two replicas. Naturally, the closer the spacing

between replicas, the higher the acceptance ratio. However, the computer time increases

proportionally to M . Therefore, one seeks a compromise involving the minimum number

of replicas allowing for high acceptance ratios, to ensure adequate sampling of the desired

temperature range.

To achieve this, we have used an iterative procedure to find the ideal value of M and

the optimal spacing between replicas. We begin by setting up a simulation containing an

initial number of replicas in the temperature range of interest, evenly spaced in 1/kBT .33

A short parallel tempering simulation is then run, and the resulting average energies and

acceptance probabilities are plotted as a function of replica temperature. We then refine

the replica temperature grid including more intermediate temperatures where necessary,

using the following procedure. The aim of this procedure is to obtain a grid that allows

for acceptance ratios of at least 5% throughout the entire temperature range. If exchanges

between replicas i and i+1 fall below 5% acceptance, we add more replicas between copies

i and i+1, evenly spaced in 1/kBT . To estimate how many replicas to add, we use equation

(13) to forecast new replica exchange probabilities. Regarding the energy to insert into

equation (13), we use equilibrium internal energies at the new replica temperatures. Since

these are not known a priori, we apply linear interpolation to the already-computed internal

energies to estimate the new ones. The refined simulation is run and the above procedure

is repeated if necessary. In practice, we found that at most three iterations are necessary

to obtain the optimal grid. This iterative procedure ensures that temperature regimes with
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steeper energy variation are assigned a higher number of replicas. We have monitored the

movement of replicas during parallel tempering following the procedure described in Ref.

47), and have found sufficient exchange even across regions with significant variations of E

with T .

C. Reaction Ensemble Monte Carlo

As described in section IIIA, NV T MC simulations are run at a fixed composition, cor-

responding to the equilibrium composition determined by the silica deprotonation reaction.

An alternative would be to use reaction ensemble Monte Carlo simulations,34,35 starting

from only neutral silica monomers (produced from TEOS hydrolysis), TAA and hydroxyl

ions (from the complete dissociation of TAAOH). The main difference relative to NV T MC

is that now, equilibration between components related by chemical reactions is sampled (the

total number of molecules, however, remains constant). Thus, the concentrations of SN and

SI are allowed to fluctuate, which more closely resembles the actual physical system.

To sample these fluctuations in composition, we include an additional type of MC move

— a reactive move — which consists of an attempt to transform an SN molecule to an SI

(or vice-versa). The probability of accepting a generic reactive move is:

p = min

{

1, exp

(

−∆E

kBT

)

V ν̄Keq

c
∏

i=1

[

Ni!

(Ni + νi)!

]

}

, (14)

where V is the system volume, Ni is the number of molecules of component i, νi is the

stoichiometric coefficient of component i (positive for products and negative for reactants),

ν̄ is the net change in the number of moles as a result of the reaction (i.e., the sum of νi

over all components), c is the total number of components involved in the reaction, and Keq

is the ideal gas equilibrium constant. In order to satisfy detailed balance, the probability of

attempting the forward reaction must be equal to that of the reverse reaction.

To ensure that this condition is fulfilled, we proceed as follows. First, a site occupied

by an SN molecule is chosen at random and changed to an SI. The energy difference is

computed and the trial is accepted with a probability given by:

p = min

{

1, exp

(

−∆E

kBT

)

KD

NSN
N

OH-

(NSI
+ 1)(NW − N

OH- + 1)

}

(15)

Equation (15) is obtained from equation (14) considering that ν̄ = 0. After the forward

reaction trial, a site occupied by an SI molecule is picked randomly and changed to an SN.
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The reverse reaction is accepted with probability:

p = min

{

1, exp

(

−∆E

kBT

)

1

KD

NSI
(NW − N

OH-)

(NSN
+ 1)(N

OH- + 1)

}

(16)

Due to the simplifications introduced in our model, we do not explicitly represent hydroxyl

ions or water molecules. Thus, the only explicit changes introduced in the composition of

the system as a result of the reaction are in the mole fractions of the SN and SI species.

Nevertheless, in the REMC simulations one must keep track of the number of hydroxyl ions

that would be present in solution, as this quantity must enter equations (15) and (16) for the

acceptance probabilities. The simulation protocol for a REMC run is essentially the same as

for NV T MC, except that a sweep is now defined as a swap trial, a rotation trial, a forward

reaction trial and a reverse reaction trial per occupied site, chosen with equal frequency.

IV. RESULTS AND DISCUSSION

We begin this section by analyzing the parameter space of the model, identifying the

range of conditions that leads to the formation of silica nanoparticles. We then study the

stability of these nanoparticles and proceed to compare their properties to experimental

observations.

A. Model Parameterization

In this subsection, we examine how changing the interaction parameters introduced above

influences the predictions of the model. We begin by studying the effects of the SN-SN

energy, considering a system composed of only neutral silica and solvent. This interaction is

meant to mimic the driving force for the silica condensation (equation (1)), and so it must

be attractive. This attraction will tend to make silica monomers cluster together, while

entropic effects will tend to keep monomers randomly distributed in solution. In this case,

the system will separate into a phase of pure silica and a phase composed of solvent with

some dissolved silica monomers. Just how much monomer remains in solution depends on

the ratio between the system temperature and the interaction energy (i.e., on the reduced

temperature). In this simplified system, increasing the SN-SN attraction (or equivalently,

reducing the temperature) reduces the fraction of monomers in solution, and vice-versa.
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We calibrate the value of εSNSN
by comparing simulation results for the simple system

described above with experimental measurements of the solubility of amorphous silica.29

NV T MC simulations are started from an initial configuration containing a pre-formed slab

of closely packed SN molecules in contact with pure solvent, and are allowed to equilibrate

at different values of the reduced temperature. The solubility is calculated from the average

concentration of free monomer in equilibrium with the solid phase. Due to the use of periodic

boundary conditions, the simulation box is elongated in the direction perpendicular to the

slab surface to eliminate confinement effects. A plot of silica solubility as a function of T

is shown in Fig. 1, where the insert shows a typical snapshot obtained during a simulation.

Figure 1 shows that the simulations capture the qualitative changes in solubility with system

temperature. Good quantitative agreement is obtained with εSNSN
= −2.5 kJ mol−1, which

corresponds to the temperature εSNSN
/kB = 1,250 K. As discussed above, this parameter

represents the energy change involved in removing a monomer from the solid phase and

solvating it in the liquid phase. This should be distinguished from the Si-O bond energy,

which is typically much higher. It is encouraging that this value is close to results of ab initio

calculations of silica dimerization,37 which yield −2.2 kcal/mol. The value obtained from our

fit to solubility data means that a reduced temperature of T ∗ = 0.24 corresponds roughly

to 298 K, the temperature at which most experimental information on silica nanoparticles

has been obtained. All the results below were obtained from simulations at this reduced

temperature except where noted.

As described above, the value of εSNSN
determines the solubility of neutral silica monomer.

The parameter εSNSI
, however, controls the relative proportion of SI molecules in the solid

phase. Increasing the SN-SI attraction drives more ionized monomers to the solid phase, thus

increasing the particle charge. We have analyzed this effect by simulating dilute solutions

containing an equimolar mixture of SN and SI immersed in solvent. (TAA cations were

omitted from these simulations to allow focus on the SN-SI attraction.) Such simulations

were performed for different values of εSNSI
and the charge per silicon atom in the solid

phase was calculated, assuming a single charge per SI molecule. The results are shown in

Fig. 2. At very low values of the SN-SI attraction, practically all of the ionized silica is in

solution leading to a very low particle charge. When the SN-SI attraction is larger than the

SN-SN attraction, the nanoparticle charge per Si atom reaches its limiting value of 1
2

(since

the solution is equimolar, when all the silica is in the solid phase, half of it is charged).
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Apart from controlling the charge, the SN-SI attraction also influences nanoparticle struc-

ture. In particular, if the magnitude of this attraction is large relative to εSNSN
, nanoparticles

show significant sublattice ordering with alternating SN and SI molecules in the solid phase,

in a manner similar to antiferromagnets.48 As the relative SN-SI attraction decreases this

effect disappears precipitously. Figure 2 also shows a plot of the percentage of sublattice

ordering in the solid phase as a function of ε∗SNSI
. This was obtained by calculating the aver-

age fraction of molecules in the solid connected only to distinct species. Sublattice ordering

in the clusters is almost complete for ε∗SNSI
= −1.2, but decreases rapidly as the energy be-

comes less attractive. A decrease in the εSNSI
attraction also leads to a higher proportion of

SI on the surface of the clusters, rather than inside the core. This is due to the orientational

variable assigned to the ionized silica. Because the SN-S-
I interaction is set to zero, there is

an energetic incentive for SI molecules to be on the surface of a cluster, with the pointers

oriented towards the solvent. For ε∗SNSI
< −0.7, we find no ionized silica inside the core of

the particles.

Sublattice-ordered silica clusters seem very unlikely, arising in our simulations as an

artifact of the lattice geometry. Therefore, the value chosen for ε∗SNSI
should produce minimal

sublattice ordering. On the other hand, an interaction that is too weak will drive all of the

ionized silica to the solution phase. It is known from experiments in colloidal silica29 that

the particles are charged at pH> 7. Silica nanoparticles formed during the clear-solution

synthesis of silicalite-1 are also negatively charged.16 In the remainder of this paper, we

have taken ε∗SNSI
= −0.8, since this value produces little sublattice ordering (less than 1%)

and some particle charge. This value also gives the possibility of charge existing inside the

nanoparticle core. We note that values in the range of −0.7 to −0.9 also give qualitatively

similar results.

Finally, we consider the effect of including TAA cations in the system. Apart from

size exclusion, the only relevant interaction involving TAA is the attraction towards S-
I .

For simplicity, let us consider a solution containing only TAA and ionized silica. Our model

predicts that all of the silica remains solubilized with practically no clustering. This behavior

arises because we set the SI-SI interaction to zero, and because we use pointer variables for

TAA-S-
I attractions. Small silica oligomers (dimers and trimers) are occasionally observed

in our simulations due to random fluctuations. Such a scenario mirrors experimental studies

of TAA-silicate solutions at high pH; these studies report the presence of mostly ionized
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monomers together with small oligomers such as the cubic octamer.49

For relatively low values of the TAA-S-
I attraction, TAA cations are found in our simula-

tions to be mostly dispersed in the solvent. As this attraction is increased more TAA cations

form ion pairs with anionic silica molecules. By setting ε∗
S-
I
TAA

= −2, most of the TAA and

SI ions are paired. Due to the orientational character of the interaction, a given SI molecule

is attracted to a single TAA. If the pointer variable were removed, extending the electro-

static attraction to all neighbors of the ionized silica, large sublattice-ordered aggregates of

SI and TAA would form in our simulations. These aggregates represent a crystalline phase

of silica anions and TAA cations, which is not known to occur at the conditions of interest

to this study. Thus, a useful consequence of accounting for the orientational structure of

ionic silica is the removal from our simulatioins of SI-TAA clusters.

In summary, a solution containing only ionized silica and TAA cations displays a single

phase comprised of isolated or paired ions in solvent, with no significant clustering (see Fig.

3a). This corresponds to an experimental solution where the amount of base is sufficient

to ionize all the silica, so that reaction (5) proceeds to completion. As the amount of silica

is increased, the concentration of free hydroxyl ions decreases until the equivalence point is

reached. Beyond this point the solution has a non-negligible concentration of neutral silica

monomers. In situ SAXS and SANS measurements of these solutions show that nanoparticles

form once the equivalence point is crossed.16 Our model reproduces these phenomena. As

soon as the mole fraction of SN exceeds the solubility limit, multiple silica aggregates are

formed (compare snapshots shown in Figs. 3a and 3b). These aggregates are negatively

charged, with the charge residing mainly on the particle surface. Due to the strong attraction

between SI and TAA molecules, the nanoparticles are surrounded by several organic cations.

This agrees with the core-shell structure inferred from SAXS and SANS experiments.16 In

the following subsections, we discuss in more detail the nature and stability of these silica

nanoparticles, as well as the effects of the model parameters on their properties.

B. Equilibrium vs. Metastability

As described in the previous subsection, when the solution contains a high enough con-

centration of neutral silica, clusters spontaneously form. It is interesting to examine in detail

the evolution of a typical simulation run from a random initial state until cluster sizes reach
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a plateau. Figure 4 shows a plot of the average energy, average cluster size and average

monomer concentration as a function of the number of sweeps in the course of a typical sim-

ulation. At early times we observe a steep decrease in the dissolved monomer concentration,

because of very rapid formation of small clusters. After about 10,000 sweeps the system

essentially runs out of free monomer, containing instead many small silica clusters with an

average size of about 60 units.

After this initial stage, the average cluster size increases as the energy decreases. We

find that this proceeds by a phenomenon analogous to Ostwald ripening, with dissolution

of smaller clusters and growth of larger ones. This is consistent with experimental data

showing that silica solubility decreases with increasing particle size.29 Due to this solubility

difference, smaller clusters dissolve, providing monomer for the growth of larger ones. In

future work, we plan to study in more detail the dynamics of the growth process.50

An alternative explanation for the increase in average cluster size is particle aggregation.

We did not observe any cluster aggregation during our simulations. This is consistent with

the fact that we did not include global cluster moves in our Monte Carlo scheme. Our

clusters move in space only by co-operative sequences of single-particle moves. The high

surface charge present in real silica particles at high pH stabilizes them against aggregation

through electrostatic repulsion.29 Therefore, under the conditions studied in this paper, silica

nanoparticles likely grow by a mechanism dominated by Ostwald ripening.

Ostwald ripening stops when the difference in solubility between the smallest and largest

particles present becomes negligible. After long simulation times, we observe no further

Ostwald ripening, no cluster aggregation and no cluster breakup. At this point, we might be

tempted to believe that the system has reached equilibrium, characterized by multiple silica

clusters in a dilute solution of silica monomers. However, after performing many simulation

runs that are thermodynamically identical but statistically independent, we find final states

with different average cluster sizes and energies. These properties differ by more than the

fluctuations in any given run, showing that each simulation becomes “frozen” in a state that

does not necessarily sample from the equilibrium distribution. At this point, two questions

may be raised. What is the true equilibrium state of the system? Do the NV T simulations

sample well-defined metastable states?

To answer these questions, we made use of parallel tempering Monte Carlo as described

in section IIIB. The freezing of the NV T simulations arises because attractions are strong
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relative to thermal energy, making it unlikely that NV T simulations can overcome free

energy barriers. In contrast, parallel tempering allows the simulation to overcome such bar-

riers, by attempting exchanges between replicas at different temperatures. Figure 5 shows a

plot of the average cluster size in a parallel tempering simulation as a function of tempera-

ture. A significant finding is that all parallel tempering runs below T ∗ = 0.4 give one single

large silica cluster (see also Fig. 3c), whereas all NV T runs below T ∗ = 0.33 give multiple

metastable clusters. For T ∗ < 0.4, the mean cluster size from parallel tempering decreases

with increasing temperature, reflecting increased silica solubility at elevated temperatures.

In contrast, for T ∗ < 0.33, the mean cluster size from NV T simulations increases with tem-

perature, reflecting the greater likelihood of Ostwald ripening at elevated temperatures. At

T ∗ = 0.33, the NV T results jump to the equilibrium curve, suggesting that at this reduced

temperature spontaneous fluctuations are sufficient to overcome free energy barriers separat-

ing the multi-cluster metastable state from the single-cluster equilibrium state. At T ∗ = 0.4,

both NV T MC and parallel tempering predict complete dissolution of all nanoparticles. We

note that the transition at T ∗ = 0.33 from a metastable solution of nanoparticles to a single

solid is reminiscent of the experimentally observed process of nanoparticles leading to zeolite

growth at elevated temperatures.10,15

Having established that NV T simulations produce metastable nanoparticles, we must

now determine whether these metastable states are reproducible. This is crucial for estab-

lishing that NV T simulations can be used to model actual nanoparticles, whose metastabil-

ity has been shown to be quite reproducible from lab to lab.5–10 Towards this end, we have

examined average cluster sizes and cluster size distributions (CSDs) from simulations using

different system sizes, by performing several independent NV T runs for each lattice size.

After each independent run converged (i.e., the plateau in energy and average cluster size

was reached), we calculated the CSD for each realization. Each run required between 2×106

and 5×106 sweeps to reach convergence, followed by a sampling period of at least 1×106

sweeps. A final average over all realizations was then computed. The total number of runs

for each system size was determined by keeping the total volume sampled approximately

constant from one system size to the next. For example, the calculation for L3=603 requires

8 times as many runs as that for L3=1203, since the volume of the latter box is 8 times as

large.

A plot of the average cluster size as a function of system size is shown in Fig. 6. For small
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systems the cluster size increases with L, the linear box size, because a single silica cluster is

formed in most of the individual runs. However, for L > 80 multiple clusters are formed in

all realizations, and the average cluster size remains practically unchanged. As such, we find

that the average cluster size has reached convergence within statistical uncertainty (error

bars shown in Fig. 6 represent ± one standard deviation). A more stringent test of this

convergence is provided by examining how the CSD varies with system size, shown in Fig.

7. For lattice sizes above 803, the CSDs are essentially indistinguishable, each peaking at

sizes around 300 silica units, with tails extending up to 2000 units. Thus, metastable states

reached in the NV T simulations possess characteristic cluster sizes, and hence NV T MC

can be used to probe the metastable behavior of these nanoparticles.

We have also performed calculations in the reactive ensemble using the protocol described

above in Sec. III. The resulting CSD is very similar to that obtained from conventional NV T

simulations (data not shown). A characteristic metastable state is also attained in REMC

simulations. This lends further credence to the conclusion that this metastable state is

representative of the real system, since REMC simulations are a more realistic representation

of the experimental situation.

C. Comparison with Experiment

Here we examine the effect of several model parameters on the CSD, and compare trends

predicted from our simulations with those found in experiments.16 We begin by analyzing

solutions with different initial concentrations of TPAOH and TEOS, in close analogy with

experimental work.16 Figure 8 shows CSDs computed at room temperature for three different

concentrations of TPAOH, keeping the total silica concentration constant. All distributions

show the same general shape, but there is a shift in the peak of the distribution to smaller

cluster sizes as the TPAOH concentration increases. This means that the size of the most

stable silica nanoparticles decreases with increasing amounts of TPAOH. The observation

of smaller particles at higher concentrations of TPAOH is in qualitative agreement with

experimental SAXS and SANS results, which also show a marked decrease in particle size.16

Increasing the initial concentration of TPAOH naturally increases the mole fraction of

TPA cations in the simulation, but also increases the pH. Therefore, the simulations shown in

Fig. 8 are not sufficient to disentangle these separate effects. One can envisage an experiment
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in which the initial pH is set by a given concentration of TPAOH, but the concentration of

the organic cation is increased by addition of TPAX (where X is, e.g., chloride or bromide).

In this way, we test the effect of increasing the TPA mole fraction at constant pH, since Cl−

and Br− anions only weakly change the solution pH. In analogy with such an experiment, we

have performed an NV T simulation with the mole fraction of ionic silica (xSI
) obtained from

the initial concentration of TPAOH, but with the mole fraction of TPA obtained according

to:

xTPA =
nTPAOH + nTPAX

nH2O + 5nTEOS + 2nTPAOH + 2nTPAX

, (17)

instead of using equation (8). We did not explicitly simulate halide ions in this simulation.

The CSD computed for this situation was compared to that from a simulation at the same

pH but lower TPA mole fraction, and to another with the same TPA concentration but higher

pH. From the results presented in Fig. 9, we see that increasing the concentration of the

organic cations by addition of TPAX has very little effect on the cluster size distribution.

The CSD is almost indistinguishable from the one at equal pH, but very different from the

one at higher pH. This suggests that in the range of conditions studied in this paper, it is

the pH that controls the stability of silica nanoparticles, and hence determines their size

distribution.

The control of particle size by initial pH can be interpreted in terms of nanoparticle

structure (see Fig. 3b). This involves a core of mostly neutral silica, together with silica

anions located mainly on the particle surface, surrounded by a shell of TPA cations to

balance charge. The TPA layer has the effect of protecting the particle surface against further

addition of silica monomers. The TPA shell thus contributes to free energy barriers keeping

these particles metastable. As the initial pH increases, more of the neutral silica monomers

become ionized, so the ratio of SI to SN in the NV T simulation increases. A consequence of

this is a significant increase in the particle charge on the surface, and subsequent coverage by

TPA cations. Therefore, higher pH means that formation of the protective TPA layer, and

hence inhibition of growth, occurs for smaller particles. This effect is similar to a recently

proposed stabilization mechanism of silica octamers by TMA cations.49 TMA cations are

seen to adsorb around negatively charged silicates, protecting them against hydrolysis by

water molecules. Similarly, TPA cations adsorb around the negatively charged surface of

silica nanoparticles, inhibiting further growth by monomer addition.

Our suggestion that nanoparticle size is controlled by surface electrostatics can be exam-

23



ined by performing a sensitivity analysis on our results with respect to the TPA-SI attraction.

In Fig. 10, we show the effect on the CSD from decreasing the value of εSITAA by one half.

Reducing this attraction causes a complete collapse of the metastable CSD. Cluster sizes are

spread throughout a large size range, and the only distinct peak in the distribution shows

up at 3600 units. This peak corresponds to the largest possible cluster given the lattice size,

indicating that this NV T simulation has easy access to the global free energy minimum.

These results predict that the attraction between silica anions and organic cations plays a

crucial role in stabilizing nanoparticles. Without this stabilizing influence, the simulated

particles would grow indefinitely corresponding to formation of a precipitate in experiments.

In Fig. 11, we show CSDs for solutions with different concentrations of silica, keeping the

TPAOH concentration constant. The most distinct feature is an increase in the number of

clusters present throughout most of the size range (above about 150 silica units). This is

in agreement with experiment, which shows that the particle number density increases with

increasing TEOS concentration while the particle size remains approximately constant.16

Our simulations also show a shift to larger sizes. Although this prediction may be in error,

it is also possible that this subtle change might be beyond the accuracy of the scattering

techniques.

Another experimental observation is the presence of silica nanoparticles in solutions con-

taining other TAA cations. The size of these particles seems to be relatively insensitive to

the size of the cation.16 As explained in section II, our model allows for the study of a smaller

cation by eliminating the second-neighbor repulsion around TPA, giving a cation with the

same size as a silica monomer. Such a model can be roughly identified with an experimental

solution containing TMA ions. A comparison of the results from the first-neighbor (TMA)

and second-neighbor (TPA) models is shown in Fig. 12. This comparison shows that the

CSD is practically unchanged by varying the cation size. This occurs because under these

conditions, the surface density of TAA cations on nanoparticles is still too low for TAA size

exclusion to play a role. An additional consequence of this observation is that, contrary

to our initial expectations, the simplest model that describes silica nanoparticle formation

need not include second-neighbor interactions.
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V. CONCLUSIONS

We have developed and applied a lattice model for aqueous solutions of silica and

tetraalkylammonium cations at high pH. These solutions represent the early stages of

silicalite-1 synthesis, in which silica nanoparticles are formed as precursors to zeolite growth.

Using this model, we observe the spontaneous formation of nanoparticles under conditions

at which they are seen experimentally. The nanoparticles are identified as a metastable

state, separated by an energy barrier from the true equilibrium state, which is a single large

silica cluster. The simulated nanoparticles are negatively charged with the charge residing

mainly on the surface, and are surrounded by a layer of tetraalkylammonium cations, in

accordance with experimental observations. Starting from a uniform mixture, we observe

particle nucleation and subsequent growth by a phenomenon analogous to Ostwald ripen-

ing. Nanoparticle growth slows down and eventually stops once a protective layer of organic

cations has formed. This layer is stabilized by electrostatic attractions between these cations

and the negatively charged silica surface. A similar stabilizing influence of TAA molecules

around silicate species has been reported previously.49

Our model shows excellent qualitative agreement with recent in situ experimental inves-

tigations of nanoparticle formation,16 by reproducing relationships between particle size and

experimental variables. In particular, our simulations predict that particle size is mainly

controlled by the solution pH. Increasing the pH increases the surface charge, and hence

leads to the formation of the TAA layer for smaller particle sizes. At the range of conditions

studied in this paper, the concentration and size of the cation have a negligible effect on

the size of nanoparticles. Increasing the total silica concentration at constant pH mainly

causes an increase in the number of particles formed, but also slightly increases their size.

Increasing temperature causes particle growth due to increased mobility of the TAA layer,

until thermal fluctuations are large enough to allow the particles to grow indefinitely towards

the equilibrium state.

Due to the coarse-graining of the model, quantitative comparisons with experimental

data are difficult to make. Furthermore, the simplifications introduced herein preclude us

from predicting the internal structure of the particles. This type of information can best

be obtained from continuum atomistic simulations of silica-TAA alkaline solutions. Such

simulations may also help clarify the precise role of TAA in nanoparticle stabilization. On
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the other hand, there is scope for refining the present model; efforts in this direction may

yield additional insights into the early stages of zeolite growth.
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TABLE I: Reduced interaction parameters for the first-neighbor model.

ε
FN
ij S-

I SI SN TMA

S-
I 0 0 0 -2

SI 0 0 -0.8 0

SN 0 -0.8 -1 0

TMA -2 0 0 0

TABLE II: Reduced first-neighbor interaction parameters for the second-neighbor model.

ε
FN
ij S-

I SI SN TPA

S-
I 0 0 0 5

SI 0 0 -0.8 5

SN 0 -0.8 -1 5

TPA 5 5 5 5

TABLE III: Reduced second-neighbor interaction parameters for the second-neighbor model.

ε
SN
ij S-

I SI SN TPA

S-
I 0 0 0 -2

SI 0 0 0 0

SN 0 0 0 0

TPA -2 0 0 5
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FIG. 1: Solubility of amorphous silica at the isoelectric point for several temperatures. The open

triangles represent experimental data from Iler29 and the line shows the simulation results. The

interaction energy between neutral silica monomers was used as a fitting parameter. The inset

shows a snapshot of a typical configuration obtained from the simulations.
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FIG. 2: Simulation results for an equimolar solution of neutral and ionized silica at T
∗ = 0.24,

using different values of the reduced interaction energy. Open squares represent the negative charge

per silicon atom in the solid phase, while closed circles show the percentage of sublattice ordered

units in the solid phase.
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FIG. 3: Snapshots of typical configurations obtained during simulations at T
∗ = 0.24: a) NV T

MC for 8 SiO2: 9 TPAOH: 9500 H2O: 32 Ethanol; b) NV T MC for 40 SiO2: 9 TPAOH: 9500 H2O:

160 Ethanol; c) Parallel tempering for 40 SiO2: 9 TPAOH: 9500 H2O: 160 Ethanol. Red spheres

are SN molecules, purple spheres are SI molecules and green spheres are TPA cations.
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FIG. 4: Evolution of a single NV T MC run at T
∗ = 0.24, for 40 SiO2: 9 TPAOH: 9500 H2O:

160 Ethanol. Open triangles show the mole fraction of free monomer in solution (left Y axis),

open circles show the average cluster size (left Y axis), and solid squares show the reduced internal

energy per lattice site (right Y axis). The insert shows the same plot on a logarithmic scale.
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FIG. 5: Average cluster size as a function of temperature. Circles are obtained with parallel

tempering, while triangles correspond to NV T results, averaged over two different realizations.

Mole fractions are the same as in Fig. 4.
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FIG. 6: Average cluster size obtained from NV T MC simulations at T
∗ = 0.24, as a function of

system size where L is the linear box length. Mole fractions are the same as in Fig. 4. The line is

a guide to the eye.
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FIG. 7: Comparison of cluster size distributions calculated from NV T simulations in lattices of

different size: L = 100 (thin solid line); L = 120 (thin dashed line); L = 140 (thick solid line).

Conditions are the same as in Fig. 4.
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FIG. 8: Effect of initial TPAOH concentration on the CSD at T
∗ = 0.24. Relative concentrations

are as follows: 40 SiO2: 9 TPAOH: 9500 H2O: 160 Ethanol (dashed line); 40 SiO2: 18 TPAOH:

9500 H2O: 160 Ethanol (thick line); 60 SiO2: 40 TPAOH: 9500 H2O: 240 Ethanol (thin line).

37



FIG. 9: Distinction between the effect of initial pH and of TPA concentration on the CSD at

T
∗ = 0.24. Relative concentrations are as follows: 40 SiO2: 9 TPAOH: 9500 H2O: 160 Ethanol

(thin line); 60 SiO2: 40 TPAOH: 9500 H2O: 240 Ethanol (dashed line); 40 SiO2: 9 TPAOH: 31

TPAX: 9500 H2O: 160 Ethanol (thick line).
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FIG. 10: Effect of the interaction energy between TPA cations and silica anions on the CSD. The

thin line corresponds to εSITAA = −2, while the thick line is for εSITAA = −1. Conditions are the

same as in Fig. 4.
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FIG. 11: Effect of the initial TEOS concentration on the CSD at T
∗ = 0.24. Relative concentrations

are as follows: 20 SiO2: 9 TPAOH: 9500 H2O: 80 Ethanol (thick line); 40 SiO2: 9 TPAOH: 9500

H2O: 160 Ethanol (thin line); 80 SiO2: 9 TPAOH: 9500 H2O: 320 Ethanol (dashed line).
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FIG. 12: Effect of the size of the TAA cation on the CSD. The thin line corresponds to TPA

(second-neighbor model) and the thick line is for TMA (first-neighbor model). Conditions are the

same as in Fig. 4.
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