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Abstract

Branching networks are ubiquitous in nature and their growth often responds to environmental cues dynamically. Using the
antibiotic-producing soil bacterium Streptomyces as a model we have developed a flexible mathematical model platform for
the study of branched biological networks. Streptomyces form large aggregates in liquid culture that can impair industrial
antibiotic fermentations. Understanding the features of these could aid improvement of such processes. The model requires
relatively few experimental values for parameterisation, yet delivers realistic simulations of Streptomyces pellet and is able to
predict features, such as the density of hyphae, the number of growing tips and the location of antibiotic production within
a pellet in response to pellet size and external nutrient supply. The model is scalable and will find utility in a range of
branched biological networks such as angiogenesis, plant root growth and fungal hyphal networks.
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Introduction

Branched morphological networks are ubiquitous in biology

and have received much attention in theoretical and experimental

studies in a range of biological systems. Branched networks are

highly scalable from bacterial hyphal structures in the mm to mm

spatial range and minutes to hours timescales through to colonies

of Armillaria bulbosa occupying 150,000 square metres over

thousands of year timescales [1]. These scales represent a

significant challenge to the modeling of such dynamic recursive

structures, yet modeling these systems has been valuable in

revealing many emergent properties of branched networks,

yielding important details regarding angiogenesis in organs and

tumors [2–6], transport networks in fungi [1,7–9] and amoebae

[2–6,10] and the development of root systems in plants [11,12].

Often however such models are system specific and lack flexibility.

Thus an adaptable and flexible model platform that responds to

external factors and can give an output in terms of the network

heterogeneity that can be applied to many branched networks

would be highly desirable.

The saprophytic soil bacterium Streptomyces is commercially

exploited for the production of antibiotics, immunosuppressive,

anticancer agents and other bioactive metabolites. Streptomyces are

unusual bacteria in their growth form; they grow by apical

extension of an individual hypha, achieving exponential growth by

the addition of new hyphal tips through branching [13]. In their

natural soil environment the hyphae access resources in a

heterogeneous environment via this exploratory apical extension.

In liquid culture, such as the conditions used commercially to

produce bioactive metabolites, these apically extending and

branching hyphae become entangled and form large hyphal

aggregates, whose morphology can significantly affect the

efficiency of industrial scale fermentations. These mycelial

aggregates (or pellets) are physiologically heterogeneous – often

metabolically active at the edges, yet nutrient starved and anoxic

at the centre [14,15]. It is known that the nutritional status of

Streptomyces cells has a profound effect on the formation of

secondary metabolites such as antibiotics [16], such that much

of the biomass in an industrial fermentation may be non-

productive in terms of the desired metabolite. Measuring the

heterogeneity of these pellets is difficult experimentally and

understanding the heterogeneity could have significant value in

the manipulation of industrial organisms in terms of their

morphology and their fermentation characteristics. This is

particularly important through the application of molecular

biology and genetics to alter the morphology of industrial strains

for improved fermentation characteristics. Studies in the literature

show that there is a critical pellet size for the production of the

antibiotic erythromycin in Saccharopolyspora erythrea [17]. Similarly

strain variants with altered branching frequency showed more

desirable fermentation characteristics such as increased antibiotic

production [18,19]. Increasing fragmentation of strains through

the manipulation of key cell division genes such as ssgA in

Streptomyces has also shown that engineering of production strains

offers great potential for improved fermentation efficiency and

yield [18,19]. The application of a robust modeling platform to
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this process should therefore yield key information regarding the

production of secondary metabolites and how this can be

manipulated.

Previously there has been a great deal of interest in modelling

both fungal and bacterial hyphal growth [20–23]. Lattice-based

modelling has been applied to fungal hyphal growth [9,24] and

recent modelling attempts of Streptomyces include a genome wide

metabolic model reconstruction [25], a mechanistic based model

of branching [26] and a morphological model of pellet growth

[27], all of which have built upon earlier work modelling work

focussed on filamentous fungi in particular [14,28–30].

Here we present a discrete-continuum stochastic differential

equation model platform that is applicable to many of the

branched networks found in biology. The advantage of our model

is that it uses relatively few parameters, of which most are directly

derived from experimental data. We have validated and para-

meterised the model using experimental data and used the

resulting model outputs to make biologically important inferences

regarding the growth dynamics, physiological heterogeneity and

antibiotic production in the industrially important bacterium

Streptomyces. Using oxygen as a growth limiting substrate, we

evaluate the influence of hyphal extension and branching on pellet

formation and gain insight into the areas of the pellet producing

antibiotics. This is important for applications where an optimal

branching rate can influence production. The model can make

predictions that are difficult or impossible to measure using

experimental methods. We have used the model to gain

quantitative insight into pellet growth characteristics, predicting

quantities such as the hyphal growth unit (HGU) and the

localisation of maximal branching. The flexibility of this modelling

platform means that it can be applied to a wide range of branched

biological networks such as plant root growth, angiogenesis and

fungal mycelium.

Results

Mathematical Description and Experimental Validation of
the Model

Elongation of network. To describe the elongation of an

individual tip within the network, we constructed a 2D random

walk model. The location of a tip over time is defined by an

ordinary differential equation, where the ith hyphal tip has a

position (xi M
2) that varies over time (t) according to its velocity

(vi M
2), namely;

dxi(t)

dt
~vi(t) ð1Þ

Equation 1 was solved using Euler’s method. The direction of

the tip movement is described by its velocity using a stochastic

differential equation similar to that used by Stokes et al., [2]. We

further amend the model to include the average speed of extension

(vavg) and normal velocity v̂vi tð Þ as shown in (2), where the velocity

depends on the current value plus a random component which is

unbiased and uncorrelated:

dvi(t)~b(vavg v̂vi(t){vi(t))dtz
ffiffiffi

a
p

dW i(t) ð2Þ

where,

v̂vi(t)~
vi(t)

vi(t)k k ð3Þ
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Figure 1. Branching events in the model. A. Hypha grows with
velocity (vi) from its original position (x1). The total length of the hyphae
is (Li). B. By a probability drawn from a normal distribution, a branching
point xj is identified away from a starting point x1 at an average inter-
branch distance of l2, derived from experimentally observed values. C. A
new hyphae emerges from the branching point position xj with
branching angle w and average velocity vavg. The branching angle is
taken from the parent hyphae using a bimodal probability distribution
derived from experimental data. The average velocity (vavg) is measured
from early hyphal growth experiments. D. Both the new and the parent
hypha continue to elongate with their own velocities (vk and vi
respectively). The length Li of the parent hyphae is now reset to be the
distance between the latest branching point xj and its tip position xi,
whereas the length of the new hyphae Lk initiates from zero and
increases as the new hyphae extends.
doi:10.1371/journal.pone.0054316.g001

Table 1. Parameters used for modelling early hyphal growth.

Parameter Symbol Value

Simulation time interval T 4 h

Number of Brownian steps _ 100

Diffusion coefficient a 10

Drift coefficient b 10

Average apical length l1 28.5 mm

Average interbranch length l2 7.3 mm

Standard deviation of apical length l1sd 8.5 mm

Standard deviation of interbranch length l2sd 3.9 mm

Average branching angle w 684.0 deg

Standard deviation of branching angle wsd 23.0 deg

Average hyphal velocity vavg 6.3 mm/h

doi:10.1371/journal.pone.0054316.t001

Modeling Branching Networks
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and b(vavg v̂vi(t){vi(t))dt describes the tendency of the tip to move

at the average elongation rate, and
ffiffiffi

a
p

dW i(t) describes random

fluctuations in tip speed and direction incorporating white noise

into the model, where b is the drift coefficient and a is the diffusion
coefficient.

The velocity of an individual tip is impossible to measure in

liquid cultures and thus no speed distribution can be directly

derived from experimental data. We assume that even when the

hyphal network has grown to form a large pellet, the environment

where the tips elongate and branches are formed, being at the

extremities of the pellet, is still similar to the early hyphal growth

(i.e. no growth limiting factors are minimal). Therefore, our

assumption is that the velocity is unlikely to change dramatically

during a pellet lifetime. The randomness incorporated in to the

velocity is validated by model comparison against corresponding

experimental observations of hyphal growth spread.

The model allows tip paths to cross over creating a 2D+ effect

where we make the assumption that the overlapping tip paths are

in different 3D planes. Therefore, the model is trying to capture

3D effects in 2D framework. This means that crowding is not

explicitly included in the model, however it is intrinsically

introduced via the growth limiting effects of an external substrate.

The model has been rigorously validated and tested using

laboratory studies to overcome any geometrical limitations of the

2D+ framework.

Branching. We mimic the natural process and model the

branching of the network to occur behind the apically growing tip.

The tip-to-branch distance is drawn from a cumulative probability

distribution function with an average and standard deviation

obtained from experimentally determined branching frequency

distributions. The probability of branching increases with increas-

ing apical length of an elongating tip. The length of a hypha (Li) is

defined as:

dLi(t)

dt
~ vi(t)k k ð4Þ

At each time step, a new position for each growing tip is

calculated, the hyphal length updated and the probability of

branching determined. The probability of branching is obtained

from an experimentally derived cumulative distribution function

(average l1+l2, standard deviation l1sd+l2sd) and is compared to a

random number in the unit interval drawn from a uniform

distribution. If the branching probability is higher than the

randomly generated number, branching occurs and a branch

point is created (note that we only allow branching to occur if the

external substrate levels are high enough for active growth),

therefore only growing cells can branch. The position of this new

branching point is calculated from the start of the hyphae at an

average interbranch distance (l2), which is experimentally derived.

The branching angle (w) is determined from a bimodal probability

distribution derived from experimental data. The new tip first

emerges from the branching point with an average velocity (vavg),

measured from experimental data, and then continues to elongate

on its own velocity independent from the parent hypha’s velocity.

The length of the new hypha increases from zero from the

branching point and the length of the parent hypha is reset to be

the distance between its tip position and the new branching point.

The sub-apical branching event is depicted in Fig. 1. Information

about the branching procedure is given in the Fig. 1 legend.

Validation of early network growth. At this stage, the

model can be used to simulate early network growth where there

are no rate limiting growth factors on the individual tips, e.g. such

as substrate depletion. Out of total of eleven parameters used, only

three cannot be measured directly from laboratory experiments in

our model system, Streptomyces (see Table 1 for a full list of

parameters). The first one of these parameters, the number of

Brownian steps, was set to be 100 for a 4 h time interval. We

found this sufficient for convergence of the Euler-Maruyama

scheme used to numerically solve the stochastic differential

equation (2). The most accurate values for the other two

parameters, diffusion and drift coefficients, were determined using

comparisons of simulations to equivalent experimental measure-

ments of early Streptomyces hyphal growth experiments, where the

external nutrient environment is constant and not limiting to

growth.

The simulation results for different diffusion a and drift b

coefficient values are shown in Fig. 2, where subplots A– show the

diffusion coefficient a varying from 0.1–000, when the drift

coefficient b is taken to be constant. The bottom row subplots E–

illustrate the difference between the drift coefficient values when

they range from 0.01–100, whilst the diffusion coefficient stays

constant. For experimental validation purposes the following

conclusion can be drawn – the greater the diffusion coefficient the

larger the random noise whereas with a large drift coefficient the

resistance to random fluctuation is higher. Comparison of these

simulations to microscopy images of early hyphal growth (Fig. 2 I),

allows us to estimate the most appropriate alpha and beta values

for this model organism. We confirmed this morphological

observation by numerical calibration to the maximum pellet

diameter and the number of tips in the a and b simulations to the

corresponding experimental results. Simulations were run for

values a (0.1–0) and b (0.01–000) (Fig. 3) and a comparison is

made for each a and b value to the hyphal growth network shown

in Fig. 2. From the comparison of the maximum pellet diameter it

can be seen that the low a and high b values reduce the variation

between the minimum and maximum values. To keep the

minimum and maximum values within the scope of experimental

standard deviations and still maintain as high a random variation

as possible, only the a values of 1 and 10 and respective b values of

0.01–10 and 0.01–10 are taken forward. When comparing the

effect a and b have to the number of the tips in the simulations, it

is shown that with the value 10 for both a and b simulation output

is closest to the average from the biological data, and with the

variation between simulations staying within acceptable observed

biological variation. From hereon in, we take a= b=10 (indicated

by the dashed box in Fig. 2).

External environment
Streptomyces is grown in liquid cultures for the production of

antibiotics, where the growing hyphae form dense pellets. Despite

continuous mixing in these cultures nutrient and oxygen gradients

can be generated inside pellets due to consumption, diffusion and

mass transfer constraints, cell lysis and degradation processes [31].

We model a concentration of external substrate, c(x,t) (mmol/l)

where x~ x,y½ �, using a reaction-diffusion equation where the

diffusion term is described by Fick’s law [32]:

Lc

Lt
~+

2cDc{dcc ð5Þ

where Dc is the diffusion coefficient (mm2/h) and dc is the rate of

consumption (h21). For our experiments and simulations, the

growth rate of the hyphae (hours) defines the time scale of interest.

Compared to this time scale, over the length scale of a hyphal

pellet the diffusion rate is fast and the consumption (dc) rate is also

fast (order of seconds). We make use of these differences and

Modeling Branching Networks
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assume a quasi-steady substrate concentration, to give the leading

order expression:

0~+
2c{dcc ð6Þ

where dc~dc=Dc. To solve this equation we subdivide the 2-D

domain into a (NxN) regular square grid and discretize the

laplacian using finite differences to give N2 coupled algebraic

equations. Unless otherwise stated, we take N=200 and a square

domain of size 2006200 mm2.

We set the boundary conditions as being fixed to the substrate

concentration that is detected in media in the absence of any cells.

Initially a homogenous concentration is assumed throughout the

grid. The tip paths are related to the underlying grid using a least

squares interpolation. The hyphal consumption rate (dc) is then

taken to be a function of hyphal occupancy density in the presence

of cells. The density can then be calculated by interpolating each

of the hyphal branches to the underlying square grid and counting

the number of hyphae in different metabolic states in each grid

square.

Cell metabolism
We incorporate four different metabolic states of the hyphal

aggregate into the model. We assume that as the external substrate

concentration depletes due to diffusion limitation and cellular

consumption, the hyphae switch from an active growth state (tip

elongation and branching) to secondary metabolism state (the

antibiotic producing state) as substrate limits growth [16]. As the

substrate concentration depletes further the hyphae either die

directly, or go through a state where only maintenance energy

requirements are met, the cell is therefore alive but not growing or

making antibiotic. From this state the hyphae are still able to

recover active growth or antibiotic production states depending on

the fluctuating external substrate concentration levels, or will then

die. The consumption of substrate is assumed to decrease as the

metabolism of hyphae change from actively growing to antibiotic

producing and further to the maintenance state. Once the hypha

dies, no substrate is consumed and it is not possible for the hypha

to recover to previous metabolic states.

With the above assumptions, the substrate consumption rate in

each square grid cell (i,j), i,j = 1…N is defined as

d i,j
c ~da

cA
i,j
zdp

cP
i,j
zdm

c M
i,j
zde

cE
i,j ð7Þ

where Ai,j, Pi,j, Mi,j and Ei,j are the numbers of actively growing,

antibiotic producing, maintenance energy only and dead hyphae,

respectively, in the grid cell (i,j). The parameters da
c , d

p
c , d

m
c and de

c

are taken to be the consumption rates for different metabolic states

of hyphae. Note that da
c , d

p
c , dm

c and de
c denote the corresponding

rescaled (by Dc) consumption rates. Note that de
c is zero for the

simulations presented in this paper, however, if chemical oxygen

demand for cell degradation processes are taken into account, this

parameter can be adjusted accordingly.

β fixed and α varied

α fixed and β varied

A B C D

E F G H

I

α = 0.1, β = 10 α = 1, β = 10 α = 100, β = 10 α = 1000, β = 10 

α = 10, β = 0.01 α = 10, β = 1 α = 10, β = 10 α = 10, β = 100 

Figure 2. Simulation results for early network growth using different diffusion and drift coefficient values. A–D. Diffusion coefficient a
varying from 0.1–1000, drift coefficient b is constant at 10. E–H. Drift coefficient b ranging from 0.01–100 when diffusion coefficient a stays constant
10. The remaining parameters are as per Table 1. I. A phase contrast image of S. coelicolor early hyphal growth for comparison. The dashed box
shows the simulation results for a and b values used in further simulations.
doi:10.1371/journal.pone.0054316.g002
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Validation of the model using oxygen as an external
substrate
In our simulations, we use oxygen as an external substrate. We

calculate the rescaled consumption rate (da
c ) by taking into account

the single cell dry weight, volume of a grid voxel (8 mm3 with the

typical N and domain values indicated above, allowing the 2D+

effect of overlapping tip paths, as described above), the external

oxygen concentration (c), the oxygen consumption rate (dc) and the

oxygen diffusion coefficient (Dc; Table 2). Since the mass of an

average cell of Streptomyces is not known, mainly since the cell

dimensions in filamentous organisms are hard to define [33], we

make assumptions of the cell dry mass based on the Esherichia coli

cell dry weight. To calculate the hypothetical cell volume for

Streptomyces coelicolor, we exploit the fact that a single nucleus is

associated with 1.9 mm hyphal length in vegetative hyphae and a

hyphal diameter is known to vary between 0.5–1 mm [13].

Therefore, the Streptomyces single cell dimensions are assumed to be

cylindrical with length of 1.9 mm and diameter of 1 mm. Then by

assuming that an E. coli cell of the same volume weighs the same as

a Streptomyces ‘cell’, we calculate a Streptomyces cell dry weight

utilizing published E. coli cell dry weight measurements [34].

A B

Figure 3. Numerical validation of early network growth. A. Comparison of maximum pellet diameter between the model and experimental
data (n = 41). B. Comparison of number of tips between the model and experimental data (n = 44). The simulation results are presented as average
with error bars showing the minimum to maximum values. The results from laboratory experiment are shown as yellow lines for mean (continuous
line) and standard deviation (dashed line).
doi:10.1371/journal.pone.0054316.g003

Table 2. Typical parameters used for external oxygen concentration and diffusion.

Parameter Symbol Value

O2 diffusion coefficient1 D 9.2166106 mm2/h

O2 concentration (in absence of cells) c 0.1975 mmol/l

O2 consumption rate2 – active growth d
2

c
a 161025 mm22

O2 consumption rate – antibiotic production d
2

c
p 70% of d

2

c
a

O2 consumption rate – maintenance requirements only d
2

c
m 50% of d

2

c
a

O2 consumption rate – dead d
2

c
e 0

1Calculated using [45].
2Consumption rate rescaled by diffusion rate.
doi:10.1371/journal.pone.0054316.t002

Modeling Branching Networks
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The consumption rate of oxygen is estimated to be around

6.5 mmol g21 h21 for actively growing hyphae [35]. According to

Melzoch et al. [35] continuous culture studies, at this rate,

Streptomyces coelicolor M145 does not produce antibiotics, yet it is

actively growing. By applying the above values to the rescaled

oxygen consumption rate calculations (dc~dc=Dc), we are able to

come to a value of ca 161026 mm22. It turns out, however, that

this estimate produces a very dense pellet that is fully metabolically

active with the core of the pellet consisting of antibiotic producing

hyphae and no hyphae with only maintenance requirements. Our

live/dead staining data suggest that the core of the pellet is likely to

be inactive. Therefore simulations using the rescaled consumption

rate of 161025 mm22 gave the most realistic comparison between

our simulations and the experimentally data. We found this

difference in the model parameter acceptable since the single cell

dry weight is based on the above assumptions, and some of the

data used in the calculations are derived from 3-dimensional

studies (continuous culture studies), yet our model only takes into

account 2-dimensional growth.

We estimated the varying levels of external oxygen concentra-

tion needed to change the metabolic states of the hypha based on

the work of Melzoch et al. [35]. We made the assumptions that at

90–100% of initial oxygen concentration, all hyphae are assumed

to be actively growing. When oxygen levels drop due to metabolic

consumption, the probability of hyphae switching from an actively

growing state to an antibiotic producing state increases. When the

external oxygen levels are between 50–60% of the initial

concentration, all the hypha are assumed to produce antibiotics.

Antibiotic production stops when less than 40% of the initial

oxygen concentration is present and the cells are only able to stay

alive, but are non-growing between 15–46% oxygen. The cells die

when less than 15% of the initial oxygen concentration level is

available. It is noted that these parameters can be difficult to

establish. We therefore performed a parameter sensitivity analysis

on these parameters (omitted for brevity) and found no qualitative

difference in the results.

Pellet development
Streptomyces grow by forming multigenomic, apically extending

filamentous hyphae. Growth is initiated from a single spore and as

growth proceeds in liquid cultures, the individual filaments get

tangled together forming hyphal clumps and eventually dense

pellets. Due to substrate diffusion limitations, the cells within a

pellet are assumed to be heterogeneous in their metabolism. To

illustrate this cell heterogeneity in a developing pellet, a Streptomyces

growth curve is shown in Fig. 4, where growth is monitored by

dry cell mass and cell pellets are stained using BacLight live/dead

staining. Green areas correspond to the fluorescent dye, SYTO9

that stains cells with an intact membrane potential (Live cells). Red

areas show hyphae that are stained with propidium iodide (PI),

indicating cells with impaired membrane potential that are likely

to be dead or at the very least metabolically inactive. Initial pellet

development appears fully green implying that all the cells are live

and active. Once the pellets develop further, the red areas appear

first at the core of the pellet and eventually spread over the whole

pellet, indicating a decrease in membrane potential and cell death.

Some red staining hyphae are present throughout growth, likely

representing natural variance in the system. Antibiotic production

(the cell associated, red pigmented antibiotic, undecylprodigiosin

[16]) was observed at 22–24 h onwards (Fig. 4). The cultures were

14h 16h 18h 20h

22h 24h 37h 44h

61h 64h 68h 85h

Figure 4. One generation of pellet development where BacLight live/dead staining highlights the cell heterogeneity within a pellet.
As pellets grow in size, the red area spread from the core of the pellet to eventually covering the whole pellet. Green fluorescence (SYTO9) is
associated with live cells; Red fluorescence propidium iodide (PI) stains dead cells. Bar = 100 mm. Bacterial growth was monitored by dry weight
weight (black squares). Antibiotic production is shown as undecylprodigiosin concentration (red circles). The error bars illustrate the standard
deviation (n = 3).
doi:10.1371/journal.pone.0054316.g004
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largely comprised of dead cells from 61 hrs onwards and at the

end of the growth curve, only the hyphal fragments, released from

the edges of old pellets, remained active.

Automated image analysis
To gain insight into the pellet development, automated image

analysis was performed on BacLight stained fluorescence images.

During the rapid growing phase, the pellet area increased in size in

both SYTO9 and PI stained hyphal parts (Fig. 5). At the end of

the rapid growing phase (31 h), both the SYTO9 and PI pellet

areas had relatively high coefficient variation (CV) of 46% and

39% respectively. From the frequency histograms presented in
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Figure 5. Results from automated image analysis of Streptomy-
ces coelicolor pellets using live/dead staining. A. The mean area of
SYTO9 (black squares) and PI (red diamonds) stained pellets over time.
The total number of images included in the analysis was 892. The error
bars correspond to the standard deviation of the data. At each time
point, between 28 to 71 pellets were measured. Time scale adjusted to
the modeling time line by deducting a 6 h germination period from the
start of the growth curve. B. A frequency histogram of SYTO9 pellet
areas at the end of the exponentially growing phase. The total number
of pellets measured was 60. C. A frequency histogram at the end of the
exponentially growing phase of pellet areas stained with PI. The
number of pellets included was 61.
doi:10.1371/journal.pone.0054316.g005

Figure 6. Example model simulation of network growth from a
single cell to a dense network. The time points shown are 6 h, 12 h,
18 h and 31 h after germination. Details of the simulation procedure is
given in the main text. Initially, two hyphal tips are considered to
emerge from the origin (x,y) = (0,0), both with initial velocities vavg and
random initial orientations.
doi:10.1371/journal.pone.0054316.g006

Table 3. The ratio of maximum pellet diameter in SYTO9
fluorescence images compared to phase-contrast images
(manual measurements).

Time after

germination1 (h)

Ratio of max pellet

diameter (%) n

6 67.2 31

8 64.9 53

10 66.3 10

12 63.8 10

14 74.4 10

16 76.6 10

18 75.4 10

31 76.7 10

1Germination time 6 h.
doi:10.1371/journal.pone.0054316.t003
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Fig. 5, it was observed that only few pellets out of ca 60

measurements contributed to this large distribution.

The average maximum pellet diameter was 270 mm for the

SYTO9 fluorescence image analysis at the end of the exponential

growth phase. By comparing manual measurements between

SYTO9 fluorescence and phase-contrast images, it was seen that

the average maximum pellet diameter in SYTO9 dyed images

were 65.6% (CV 20.5) and 75.8% (CV 8.1) of the average

maximum pellet diameter in phase-contrast images for time points

6–12 h and 14–31 h after germination respectively (Table 3).

Consequently, the average maximum pellet diameter measured

from SYTO9 fluorescence images gives results that are 35% and

24% smaller than the actual pellet for 6–12 h and 14–31 h after

germination respectively. If the average value of 270 mm is

corrected to represent the actual maximum pellet diameter, then

the average maximum pellet diameter would be around 356 mm.

The difference observed in fluorescence measurements and the

phase contrast images of pellet development may be explained by

the density of the pellets, such that the fluorescence from the pellet

centre is higher than the fluorescence from the individual tips

resulting in reduced detection of individual tips.

Comparison of Simulations to Experiments
We model the hyphal growth from a single cell to pellet

formation and show an example of the simulated hyphal

morphologies at 6 h, 12 h, 18 h and 31 h after germination

(Fig. 6). Since no time lag is incorporated into the model for spore

germination, the time shown is from the emergence of a germ

tube, which in experiments was following approximately 6 hours

of incubation. The simulation is clearly representative of the

experimentally observed features. For example, when comparing

pellet size (measured as the maximum pellet diameter) the pellet

area and pellet perimeter, at the end of the simulation (31 h), it

was noted that the simulations very accurately represent the

biological variation observed at the end of rapid growth in the

automated image analysis (Table 4). The corrected value for the

average maximum pellet diameter is 356 mm, and the corre-

sponding value from the simulations is 380 mm; Therefore, the

model correlates very accurately to the experimental data when

comparing pellet diameters. The experimental data for pellet area

gives a mode of between 20,000–30,000 and an average of 37,000.

If this average is corrected to represent the phase contrast images

of pellets (+24%) then it rescales to 46,000. This is still smaller than

the 60,000 estimated from the simulations, but is likely to reflect

additional complexities in the experiment such as additional

growth limiting factors. It is noted that the antibiotic producing

cells emerge in the simulations at around 16 h after germination.

This corresponds to the timing observed for the production of

undecylprodigiosin in our growth curve experiments.

Exploiting Model Simulations
Cell heterogeneity and oxygen limitation. Now that we

have a validated model framework, we use simulations to predict

the cell and pellet heterogeneity in filamentous growth (Fig. 7).

The simulation (Fig. 7C) indicates the switch from active to

inactive hyphae at the interface of green/red areas of pellet. Part

D in Fig. 7 shows specific locations of the metabolic switch from

primary to secondary metabolism where actively growing hyphae

Table 4. Comparison of simulation results to experimentally determined values.

Measurement1 Model simulation Experiment (from min to max)2

max pellet diameter (mm) 380 90–50

pellet area (mm2) 60,000 250–90,0003

pellet perimeter (mm) 1250 260–3600

1 Measured at 31 h after germination.
2 Measured from SYTO9 fluorescence images, n = 60.
3 See histogram in Fig. 5.
doi:10.1371/journal.pone.0054316.t004

B CA D

Figure 7. Microscopy images of Streptomyces coelicolor pellet compared to model simulations. A. Phase-contrast image of a pellet. B.
Fluorescence image of the pellet using green SYTO9 (live cells) and red propidium iodide (likely dead cells) nucleic acid stains. C. Model simulation of
a live/dead pellet at the end of the exponentially growing phase. Green colour corresponds to live cells with high consumption rate for oxygen 70%
or more, and red colour illustrates the cells surrounded by less than ca 50% of the external oxygen present at the start of the incubation. D. The
different metabolic states of the hyphae within the pellet at the end of the exponentially growing phase. Blue colour at the outskirts of the pellet
marks the actively growing hyphae. Cyan colour corresponds to hyphae producing antibiotics. Black colour, at the core of the pellet, illustrates
metabolically inactive hyphae with only maintenance demands for oxygen.
doi:10.1371/journal.pone.0054316.g007
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are predicted to be at the outskirts of the pellet (blue). More

centrally are the parts of the hyphae that produce antibiotics

(cyan). Within the simulation time scale no dead hyphae (light

blue) are seen, instead at the core of the pellet the hyphae are still

alive, however, they are not actively growing nor are they

producing antibiotics, yet they still have maintenance require-

ments for oxygen (black).

To predict the external oxygen concentration surrounding cells

located at the interface of live/dead stained areas, a number of

simulations were run using different values of external oxygen

concentration for the switch from green (live) to red (likely to be

dead) areas and measuring the resulting red area. The red areas in

simulations are then compared to the average red area seen in

experimental data, where the average PI area were observed to be

1.716104 mm2 at the end of log phase. Using this comparison the

model predicts that the shift seen in experiments from green to red

occurs when external oxygen concentration drops to ca 50–55%

(Table 5).

Network morphology. To find the effect that different

branching patterns have on network morphology, oxygen

consumption and metabolism, we ran simulations with varying

parameters for apical (first branch point) and inter-branch

distances as previously published for S coelicolor [36], [37] (see

Table S1 for parameter values used). As observed in Fig. 8,

increasing branching frequency in the model affects pellet

morphology (Fig. 8: A–H). Interestingly, the model prediction

Table 5. The average area of propidium iodide stained cells in experimental data (1.716104 mm2) is used to predict the oxygen
concentration level at the interface of live/dead stained cells.

External O2 concentration1 at the interface of green/red areas in

the simulations (%) Average red (PI) area in simulations (6104 mm2)

40% 0.62

45% 1.04

50% 1.53

51% 1.45

52% 1.56

53% 1.66

53.5% 1.78

54% 1.81

55% 1.89

60% 2.48

65% 2.89

1Percentage scaled to the total carrying capacity of oxygen in media.
doi:10.1371/journal.pone.0054316.t005

A B C D 

E F G H 

Morphology Density O2 concentration Metabolic state

Frequent

branching

Less

frequent

branching

Figure 8. The effect of different branching patterns on pellet morphology, density, oxygen consumption and metabolism. In
simulations A–D a frequent branching pattern using the previously measured apical and inter-branch distances of Jyothikumar et al. [36]. E–H
illustrate less frequent branching pattern using the previously determined parameters of Allan and Prosser [37]. B and F show the hyphal density
within a pellet and C and G show the rate of consumption of external oxygen. In D and H the metabolic state of hyphae is shown where blue colour
corresponds to actively growing hyphae, cyan colour illustrates antibiotic producing hyphae, and black colour marks metabolically inactive hyphae
with only maintenance demand for oxygen. The highest oxygen consumption is observed where the hyphae are densest. Less frequent branching
produces larger, less dense pellets that demand less oxygen and are metabolically active across the whole pellet. See Table S1. for parameter values.
doi:10.1371/journal.pone.0054316.g008
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of pellet morphology using frequent branching parameters shows

the appearance of satellite pellets that are likely to break off from

the original pellet under experimental conditions. A reassuring

conclusion about the good fit between the model and the empirical

work can be affirmed by observing the apparent that high hyphal

density co-localises with increased branching frequency (Fig. 8: B

and F). The oxygen concentration for both of the cases is shown in

Fig. 8: C and G, where dense pellet areas have higher oxygen

consumption. Images in Fig. 8: D and H show prediction of the

metabolic state of hyphae suggesting that less frequent branching

creates larger and less dense pellets that consume less oxygen and

stay fully metabolically active.

Average hyphal velocity. In our model the hyphae elongate

during the rapid growth phase according to an average velocity of

6.3 mm/h, based on experimental values. To determine the effect

of different elongation rates and to test the effects of domain size

on growth characteristics, we ran multiple simulations using

average velocity values of 2.5 mm/h (260%), 4.4 mm/h (230%),

8.2 mm/h (+30%), 10 mm/h (+60%) and 12.6 mm/h (+100%),

where the value in brackets corresponds to a percentage difference

from our original assumed average velocity (see Table 1). In

simulations, we observe that the decreased velocity results in

smaller pellets with delayed antibiotic production. Increasing the

velocity significantly affects overall morphology, with the pellet

growing quicker with antibiotic producing cells appearing earlier.

However, as the main body of the pellet stays approximately at the

same size a few long, unbranched hyphae emerge from the main

body forming sub-pellets (Fig. 9). This simulation outcome reveals

two unexpected aspects of pellet development in our model.

Firstly, within the simulation time the spatial domain needed to be

average velocity +30% average velocity

+60% average velocity +100% average velocity

B

C D

-60% average velocity -30% average velocity

A

E F

Figure 9. Increasing hyphal elongation velocity affects the network morphology. Simulation results show the shape of a network using an
average tip elongation rate that is 260% (A), 230% (B), 0% (C), +30% (D), +60% (E) and +100% (F) of the experimentally observed value (6.3 mm/h).
Note that to accommodate the increased velocities, the domain size was increased to 500 mm6500 mm, 600 mm6600 mm, 800 mm6800 mm in (D),
(E) and (F), respectively. Note: the images were manually adjusted to show 400 mm6400 mm coordinates to allow a comparison between the
different cases.
doi:10.1371/journal.pone.0054316.g009
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increased such that the hyphal tips did not hit the simulated

domain boundary as a result of rapid extension. Since oxygen has

a limited diffusion distance, as the domain boundary is enlarged

the oxygen distribution is affected. This artefact only affects the

high velocity simulations where the oxygen does not diffuse

through the space sufficiently such that the oxygen concentration

at the pellet interior will be low. The lack of oxygen near the pellet

surface makes it impossible for most of the hypha to continue

elongating, and the long hypha seen in the simulations, are a result

of the only few hyphal tips still reaching the area where adequate

oxygen concentration for growth is present. Secondly, elongating

hyphae appear unbranched even though the branching frequency

is assumed to increase with increasing hyphal length. Our

assumption in the model is that once the branching event occurs,

the new branching point is calculated from the previous branching

point. Since the previous branching point does not significantly

change, the new branching point will emerge at the average

interbranch distance of l2. Since this new position is already in the

area of inadequate external oxygen concentration for growth, the

branching event is most likely going to be unsuccessful. Therefore,

it was noted that the model is favouring unsuccessful branching

events when oxygen concentration is limited.

Insight into branching. The model also allows us to gain

quantitative insight into processes that are very difficult or

impossible to obtain experimentally. Using the standard param-

eters for Streptomyces (see table 1), we can use the model to measure

the hyphal growth unit (HGU) and the total number of tips inside

a pellet (Fig. 10: A & B) – measurements that are almost

impossible to make by microscopy. HGU is routinely used as a

metric for growth of hyphal organisms. It is defined as total length

of the hyphae divided by the number of tips and is a useful

measure of the growth behaviour of a hyphal population. In our

simulations the HGU is close to the HGU data previously

measured by Allan and Prosser [37] where the HGU initially

oscillated and subsequently reached a constant value. Similarly,

the total numbers of tips in our simulations increase throughout

the growth curve. The model also allows us to track the frequency

of successful (blue) and unsuccessful (red) branching events during

simulations (Fig. 10 C). At the start of the growth curve, most of

the branching events are successful with increasing frequency, with

successful branching, declining rapidly following the onset of

antibiotic production.

Using the data from the different branching pattern simulations

(Fig. 8) we can draw further biological insight into the HGU and

the hyphal area for antibiotic producing cells at the end of log

phase (Fig. 11 A & B). In Figure 11 the HGU (A) and area of

antibiotic producing cells (B) for the apical and inter-branch

lengths associated with the less frequent branching patterns (I)

observed in the study of Allan and Prosser [37], (III) is for

parameter values associated with the frequent branching study of

Jyothikumar et al. [36] and (II) is for branch lengths as measured

in this study at a 10 h time point of the growth curve experiment,

in which we see a long apical branch distance and short inter-

branch distance (which we will refer to as the standard parameters,

see Table 1 for the model parameter values for this case). As

expected, increasing branching frequency in the model reduces the

HGU (Fig. 11 A). This monotonic form, however, is not repeated

in Fig. 11 B, which shows that the area of antibiotic producing

cells maximizes for standard parameters (II), indicating that both

apical and inter-branch lengths are crucial determinants of

antibiotic production.

Data from the velocity simulations (Fig. 9) can be similarly used

infer additional insight. For example, plotting HGU at the end of

log phase versus average tip velocity (Fig. 11 C) and the time of

maximum successful branching versus these calculated HGUs

(Fig. 11 D) shows congruence, as would be expected when

exponential growth is underway (i.e. fast extension rate, rapid

branching). Again, using these calculated HGUs, we can also

observe the relationships between end diameters and areas of the

different metabolic regions versus HGU (see Fig. 12 A, B). Note

that the different states of metabolism resemble growth curve

characteristics with lag phase, exponential growth and stationary/

death phases. We also plot the maximum rates of oxygen

consumption in these simulations versus the calculated HGUs

(see Fig. 12 C). Not only can these plots be used for prediction

purposes but also they highlight that an optimal value of average

tip velocity for exponential growth exists and can be utilised in the

design of industrial processes through the application of rational

process design.

Discussion

Branched networks are found throughout biology. The ability to

achieve exponential network growth through branching has been

adopted by many systems across a range of organisms either as a

strategy [38,39] or as an emergent property of apical growth

[10,40]. Here, we present a model that allows the visualisation of

pellet development in Streptomyces and the estimation of difficult or

impossible to obtain experimental measures, such as Hyphal

Growth Units (HGU), pellet density, the prediction of metabolic

status versus time across a pellet and the precise identification of

antibiotic producing cells.

A B C

Figure 10. Additional insight into network characteristics. The model provides information on the hyphal growth unit (A), number of tips (B)
and branching count (C) inside a dense network. In the simulation B, the black, dashed curve corresponds to the total number of tips, and green and
red curves illustrate the total number of live and dead tips respectively. In C, the blue bars show the frequency of successful branching events and
the red bars, the frequency of unsuccessful ones.
doi:10.1371/journal.pone.0054316.g010
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The model is able to predict the physiological heterogeneity

within a pellet showing that the hypothesis of substrate-limitation

within each pellet is significant in causing cessation of growth and

cell death in the centre of pellets. The ability to test the model

prediction through our use of BacLight fluorescent staining and

also to compare the results to other studies of cell pellets [41] and

to oxygen measurements [42] means that we can validate our

modelling framework. Accurately predicting this behaviour from

our model with verification through experimental testing allows

further layers of complexity to be tested by the model. Antibiotic

production (and other secondary metabolites) are often regulated

by the availability of nutrients, and the ability of the model to

predict those cells producing a product in an industrial setting will

have great utility in assessing the morphology of pellets and the

nutrient concentrations likely for optimised production. It is clear

from the model that some of the inefficiency observed in

fermentations may be the result of less than 50% of the biomass

within a process producing the desired product, such that through

manipulation of morphology, productivity can be enhanced.

Several mutants are known to affect pellet formation, through

fragmentation and also significantly enhance the production of a

desired product [18,19]. This should provide a rational framework

for the rapid characterisation of cell division mutants that may be

useful in an industrial process.

Interestingly, the number of tips in the model increases

throughout, as would be expected, given that branching is a

requirement for exponential growth in hyphal organisms. The

model demonstrates that the number of successful branching

events drops at the onset of antibiotic production, correlating with

the decrease in growth rate that is observed in experiments at this

time, indicating that our model can link the cessation of

exponential growth and nutrient limitation to the production of

antibiotics. The relatively few, easily measured parameters allow

A CB D

I      II      III I      II      III

Figure 11. Model predictions using different branching patterns. Three different branching patterns for less frequent (I), standard (II) and
frequent (III) branching affect the HGU (A) and the area of the antibiotic producing cells (B) at the end of log phase. Regression lines utilized to
determine the HGU and the time of maximum succesful branching (C and D respectively) based on average tip velocities of 2.5 mm/h (260%),
4.4 mm/h (230%), 6.3 mm/h (60), 8.2 mm/h (+30%), 10 mm/h (+60%) and 12.6 mm/h (+100%).
doi:10.1371/journal.pone.0054316.g011

A CB

Figure 12. Model predictions using different average tip velocities. The relationships between end diameters and areas of the different
metabolic regions using average tip velocities of 2.5 mm/h (260%), 4.4 mm/h (230%), 6.3 mm/h (60), 8.2 mm/h (+30%), 10 mm/h (+60%) and 12.6 mm/
h (+100%) versus HGU (A and B, respectively). The metabolic state of the network is indicated for actively growing cells (black circles), antibiotic
producing cells (blue diamonds), maintenance requirements only cells (red crosses) and the total area of network (green rectangles). In (C), we plot
the maximum rates of oxygen consumption in these simulations versus the calculated HGUs.
doi:10.1371/journal.pone.0054316.g012
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significant biological and functional information to be gathered

from simulations.

To understand the hyphal elongation or pellet formation of

filamentous organisms, several mathematical models have previ-

ously been constructed [14,15,26,28–30,42,43]. Some of these

models do take into account external substrate and metabolic state

of cells, however only very few include antibiotic production. Our

discrete model framework is able to predict the location of

antibiotic producing cells in a pellet without having to compromise

on the structure of a single hypha. Our model has the advantage

that it is constructed from a few parameters that can be

determined from experimental data. This tight link between

mathematics and biology and the low number of unknown

parameters makes the model very powerful. Thus ensures that we

have a well-validated framework which we can use as a solid

platform for further modelling applications. The model can be

extended for future studies on biological processes such as the

internal movement of proteins, DNA in hyphae and can be

broadened to encompass any form of branched network structure.

Additionally the information derived form these processes can be

incorporated in to rational design of bioprocesses.

Materials and Methods

Bacterial strain and culturing
Streptomyces coelicolor strain M145 [44] was used in this study. The

bacteria were routinely cultured and maintained following

standard procedures [44]. Growth curve experiments were carried

out at 30uC in Yeast Extract Malt Extract (YEME) media lacking

sucrose [44] in two-litre Erlenmeyer flask without baffles or

springs, shaking at 220 rpm. Cultures were inoculated with 16105

cfu/ml bacterial spores in 400 ml of media. Biomass concentration

was determined in triplicate by vacuum-filtering 5 mL of culture

onto pre-weighed, glass microfiber filters (GF/C, Whatman, UK).

The filters and biomass were washed twice with 5 mL of distilled

water and dried to a constant mass. The concentration of oxygen

in media was determined using a dissolved oxygen probe (Mettler

Toledo, UK).

Microscopy and image analysis
Bacterial viability was estimated by microscopy using Live/

deadH BacLightTM bacterial viability kit (Molecular Probes,

L7007, Invitrogen Detection Technologies, Leiden, The Nether-

lands). The maximum excitation/emission for SYTO9 and PI are

480/500 nm and 490/635 nm respectively. Microscopic slides

were prepared in the dark by mixing 15 ml of culture with 15 ml of

0.0334 mM SYTO9 and 0.20 mM PI stain in distilled water.

Images were observed using a Nikon TE2000S inverted fluores-

cence microscopy at x200. Images were captured using a

Hamamatsu Orca-285 Firewire digital charge-coupled device

camera. Exposure times were 20 ms for phase-contrast and

fluorescence imaging throughout the growth curve analysis. For

PI the initial exposure time was 50 ms for 12 h to 24 h time points

and 20 ms for 37 h to 85 h time points. Pictures were analysed

using IPLab scientific imaging software version 3.7 (Scanalytics,

Inc., Rockville, USA) and an automated image analysis was

performed for fluorescence images using iterative mode as per the

software manufacturer’s instructions. The resulting segmentation

of the pellets was manually verified to cover the area of the pellet.

Statistical analysis of the hyphal and pellet measurements was

performed using Microsoft Office Excel software. Hyphal growth

unit was calculated as the total length of hyphae divided by the

total number of tips [13].

Supporting Information

Table S1 Parameter values for frequent and less frequent

branching patterns used in Fig. 8.

(DOC)
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