
Receptive Field Optimisation and Supervision 
of a Fuzzy Spiking Neural Network

Abstract

This paper presents a supervised training algorithm that implements fuzzy reasoning on a spiking neural 
network. Neuron selectivity is facilitated using receptive fields that enable individual neurons to be 
responsive to certain spike train frequencies and behave in a similar manner as fuzzy membership 
functions. The connectivity of the hidden and output layers in the fuzzy spiking neural network (FSNN) is 
representative of a fuzzy rule base. Fuzzy C-Means clustering is utilised to produce clusters that represent 
the antecedent part of the fuzzy rule base that aid classification of the feature data. Suitable cluster widths 
are determined using two strategies; subjective thresholding and evolutionary thresholding respectively. 
The former technique typically results in compact solutions in terms of the number of neurons, and is 
shown to be particularly suited to small data sets. In the latter technique a pool of cluster candidates are 
generated using Fuzzy C-Means clustering and then a genetic algorithm is employed to select the most 
suitable clusters and to specify cluster widths. In both scenarios, the network is supervised but learning 
only occurs locally as in the biological case. The advantages and disadvantages of the network topology for 
the Fisher Iris and Wisconsin Breast Cancer benchmark classification tasks are demonstrated and 
directions of current and future work are discussed.

Keywords: Clustering methods; Receptive Fields; Evolutionary Algorithms; Spiking Neural Network; Supervised Learning 

1. Introduction

The history of neural network research is 
characterised by a progressively greater emphasis 
paid to biological plausibility. The evolution of 
neuron modelling with regard to the complexity of 
computational units can be classified into three 
distinct generations (Maass, 1997). The third 
generation of neuron modelling (spiking neurons) is
based on the realisation that the precise mechanism 
by which biological neurons encode and process 
information is poorly understood. In particular, 
biological neurons communicate using action 
potentials also known as spikes or pulses. The spatio-
temporal distribution of spikes in biological neurons 
is believed to ‘hold the key’ to understanding the 
brain’s neural code (DeWeese, 2006).

There exists a multitude of spiking neuron models 
that can be employed in spiking neural networks 
(SNNs). The models range from the computationally 
efficient on the one hand to the biologically accurate 
on the other (Izhikevich, 2004); the former are 
typically of the integrate-and-fire variety and the 
latter are of the Hodgkin-Huxley type. All the models 
in this range exploit time as a resource in their 
computations but vary significantly in the number 
and kinds of neuro-computational features that they 
can model (Izhikevich, 2004). The extensive amount 
and variety of neuron models exist in 
acknowledgement of the fact that there is a trade-off 

between the individual complexity of spiking 
neurons and computational intensity. 

In addition to the variety of neuron models, 
biological neurons can have two different roles to 
play in the flow of information within neural circuits. 
These two roles are excitatory and inhibitory 
respectively. Excitatory neurons are responsible for 
relaying information whereas inhibitory neurons 
locally regulate the activity of excitatory neurons. 
There is also experimental evidence to suggest that 
the interaction between these two types of neuron is 
responsible for synchronisation of neuron firing in 
the cortex (Börgers & Kopell, 2003). Ongoing 
physiological experiments continue to illuminate the 
underlying processes responsible for the complex 
dynamics of biological neurons. 

The degree to which these complex dynamics are 
modelled in turn limits the size and computational 
power of SNNs. Therefore, it is imperative to 
determine which biological features improve 
computational capability whilst enabling efficient 
description of neuron dynamics. Ultimately neuro-
computing seeks to implement learning in a human 
fashion. In any kind of algorithm where human 
expertise is implicit, fuzzy IF-THEN rules can 
provide a language for describing this expertise 
(Zadeh, 1965). In this paper, the rationale for the 
distribution of biologically-inspired computational 
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elements is prescribed by the implementation of 

fuzzy IF-THEN rules. This rationale will 
demonstrate how strictly biological models of 
neurons, synapses and learning can be assembled in a 
network topology using fuzzy reasoning. Two 
benchmark classification datasets are used to 
demonstrate the capabilities of the topology. The 
benchmarks are the Fisher Iris and Wisconsin Breast 
Cancer datasets.

In Section II, unsupervised and supervised 
learning methods, dynamic synapses and receptive 
fields (RF) are reviewed. A brief discussion of how 
fuzzy reasoning can provide a basis for structuring 
the network topology in such a way that these 
various elements are suitably utilised follows. 
Section III introduces a generic network topology 
and outlines the specific models and algorithms used 
to implement fuzzy reasoning. Section IV is 
concerned with pre-processing of benchmark data, 
Fuzzy C-Means clustering and thresholding to 
determine cluster size. Experimental results and 
remarks for the complex non-linear Iris classification 
problem using a subjective cluster thresholding 
approach are presented in Section V, and results from 
the evolutionary optimisation of the thresholding 
technique for the Wisconsin Breast Cancer dataset 
are presented in section VI. A discussion of 
generalisation and the main contribution of the work 
are outlined in section VII, and lastly conclusions 
and future research directions are presented in 
Section VIII.

2. Review

In this section, unsupervised and supervised 
learning methods, dynamic synapses and RFs are 
reviewed. Modelling synapses is an essential aspect 
of accurate representation of real neurons, and one of 
the key mechanisms to reproducing the plethora of 
neuro-computational features in SNNs. Learning in 
all generations of neural networks involves the 
changing of synaptic weights in the network in order 
for the network to ‘learn’ some input-output 
mapping.  From a biologically plausible point-of-
view synaptic modification in spiking neurons should 
be based on the temporal relationship between pre 
and post-synaptic neurons, in accordance with 
Hebbian principles (Hebb, 1949). In fact, Hebbian 
learning and its ability to induce long-term 
potentiation (LTP) or depression (LTD) provides the 
basis for most forms of learning in SNNs. Hebbian 
learning gains great computational power from the 
fact that it is a local mechanism for synaptic 
modification but also suffers from global stability 
problems as a consequence (Abbott & Nelson, 2000). 

2.1. Unsupervised Learning

There are several learning algorithms that can be 
used to evoke LTP or LTD of synaptic weights. 
Spike-timing dependent plasticity (STDP) is 
arguably the most biologically plausible means of 
inducing LTP and LTD learning since it is a temporal 
interpretation of Hebb’s well-known first generation 
learning rule (Bi & Poo, 1999; Abbott & Nelson, 
2000). In terms of the temporal coding of spikes, it is 
the order of individual pre and post-synaptic spikes 
that determines whether the weight is increased or 
decreased using STDP. Stability of STDP can be 
ensured by placing limits in the strengths of 
individual synapses and a multiplicative form of the 
rule introduces an adaptive aspect to learning, 
resulting in progressively smaller weight updates as 
learning progresses. 

Bienenstock, Cooper and Munro’s model (BCM) 
(Bienenstock et al., 1982) compares correlated pre 
and post-synaptic firing rates to a threshold in order 
to decide whether to induce LTP or LTD. The 
threshold slides as a function of the post-synaptic 
firing rate in order to stabilise the model. Despite 
criticism for its lack of biological basis (Abbott & 
Nelson, 2000), BCM has been demonstrated to be 
related to STDP (Izhikevich, 2003). In particular, by 
restricting the number of pairings of pre and post-
synaptic spikes included in the STDP rule, the BCM 
rule can be emulated using STDP.

BCM and STDP are of course unsupervised 
learning algorithms, and as such they do not 
obviously lend themselves to applications requiring a 
specific goal definition, since this requires supervised 
learning.

2.2. Supervised Learning

There are several methodologies to date for 
implementing supervised learning in SNNs:

 SpikeProp (Gradient Estimation) (Bohte et al., 
2002)

 Statistical approach (Pfister et al., 2003)
 Linear algebra formalisms (Carnell & 

Richardson, 2005)
 Evolutionary Strategy (Beletreche et al., 

2003)
 Synfire Chains (Sougne, 2000)
 Supervised Hebbian Learning (Ruf & 

Schmitt, 1997; Legenstein et al., 2005)
 Remote Supervision (Kasiński & Ponulak, 

2005)

For a detailed review see (Kasiński & Ponulak, 
2006). 
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SpikeProp (Bohte et al., 2002) is a gradient decent 

training algorithm for SNNs that is based on 
backpropagation. The discontinuous nature of 
spiking neurons causes problems with gradient 
descent algorithms, but SpikeProp overcomes this 
issue by only allowing each neuron to fire once and 
by training the neurons to fire at a desired time. 
However, if weight updates leave the neuron in a 
state such that it will not fire, the algorithm cannot 
restore the neuron to firing for any new input pattern. 
Additionally, since each neuron is only allowed to 
fire once, the algorithm can only be used in a time-
to-first-spike coding scheme which means that it 
cannot learn patterns consisting of multiple spikes.

By employing a probabilistic approach to the 
Hebbian interaction between pre and post-synaptic 
firing, it is possible to produce a likelihood that is a 
smooth function of its parameters (Pfister et al., 
2003). The aim of this, of course, is that this allows 
gradient descent to be applied to the changing of 
synaptic efficacies. This statistical approach employs 
STDP-like learning windows and an injected teacher 
current. Consequently, the method has been 
described (Kasiński & Ponulak, 2006) as a 
probabilistic version of Supervised Hebbian learning 
(Ruf & Schmitt, 1997; Legenstein et al., 2005). 
Experiments with this approach have been limited to 
networks consisting of only two spikes, so it is 
difficult to know how robust the technique would be 
for larger networks.

Linear algebra formulisms involving definitions of 
inner product, orthogonality and projection 
operations for spike time series form the backbone of
Carnell and Richardson’s work (Carnell & 
Richardson, 2005). The Gram-Schmitt process is 
used to find an orthogonal basis for the input time 
series subspace, and this is then used to find the 
subspace for the desired output. A batch style 
iterative process is described that seeks to then 
minimise the error between target and actual outputs 
by projecting the error into the input subspace. The 
Liquid State Machine (LSM) (Maass et al., 2002) is 
used for the experiments. Successful training is 
dependent on the variability of input spikes, but since 
the training requires batch learning the method is 
unsuitable for online learning (Carnell & Richardson, 
2005).

Evolutionary strategies (ES) have been applied as 
a form of supervision for SNNs (Beletreche et al., 
2003). ES differs from genetic algorithms in that they 
rely solely on the mutation operator. The accuracy of 
the resulting SNN provides the basis for determining
the fitness function and the ES population was shown 
to produce convergence to an optimal solution. The 
learning capabilities of the ES were tested with the 
XOR and Iris benchmark classification problems. 

The Spike Response Model was used to model the 
spiking neurons in a fully connected feed-forward 
topology.  A limitation of this approach is that only 
the time-to-first-spike is considered by the ES 
(Beletreche et al., 2003). Additionally, as with all 
evolutionary algorithms the evolutionary process is 
very time-consuming and this renders them 
unsuitable for online learning.

Synfire chains (SFC) (Sougne, 2000) is a feed-
forward multi-layered topology (chain) in which 
each pool of neurons in the chain (subnet) must fire 
simultaneously to raise the potential of the next pool 
of neurons enough so that they can fire. STDP and an 
additional non-Hebbian term form the basis of the 
learning rule. The learning rule is designed to 
regulate the firing activity and to ensure that the 
waves of synchronous firing make it to the output of 
the network. The ability of the network to learn an 
input-output mapping is sensitive to the number and 
diversity of connection delays. As with many 
existing supervised SNN learning algorithms this 
technique relies on time-to-first-spike encoding, and 
as such cannot learn patterns involving multiple 
spikes.

Supervised Hebbian Learning (SHL) (Ruf & 
Schmitt, 1997; Legenstein et al., 2005) is arguably 
the most biologically plausible supervised SNN 
learning algorithm. SHL simply seeks to ensure that 
an output neuron fires at the desired time, with the 
inclusion of a ‘teaching’ signal. Since the teaching 
signal comprises of intracellular synaptic currents, 
supervision may be envisioned as supervision by 
other neurons. It has been proven that SHL can learn 
to reproduce the firing patterns of uncorrelated 
Poisson spike trains. Thus it can learn patterns 
involving multiple spikes. However, it suffers from 
the limitation that even after the goal firing pattern 
has been reached; SHL will continue to change the 
weights. Thus constraints must be added to the 
learning rule to ensure stability (Legenstein et al., 
2005).

The Remote Supervision Method (ReSuMe) is 
closely related to SHL but manages to avoid its 
drawbacks (Kasiński & Ponulak, 2005). The 
‘remote’ aspect comes from the fact that teaching 
signals are not delivered as currents to the learning 
neuron (as with SHL). Instead a teaching signal and 
STDP-like Hebbian correlation are employed to co-
determine the changes in synaptic efficacy. Two 
STDP-like learning windows are used to update 
synaptic weights. The first window increases the 
weight whenever there is a temporal correlation 
between the input and the desired output (teaching 
signal). The second learning window is an anti-STDP 
window which decreases the weight based on the 
correlation between the input and the actual output. 

PD
Fi

ll 
PD

F 
Ed

ito
r w

ith
 F

re
e 

W
rit

er
 a

nd
 T

oo
ls

http://www.pdfill.com


4
ReSuMe has thus far only been applied to LSM 

networks and has demonstrated that it can learn 
patterns involving multiple spikes to a high degree of 
accuracy (Kasiński & Ponulak, 2005). Irrespective of 
the particular neuron model used, the learning 
process converges quickly and in a stable manner.

Of all the supervised learning algorithms 
discussed, the ReSuMe approach is perhaps the most 
efficient. However, synaptic efficacy changes on a 
much shorter time-scale in biological neurons as well 
as over the longer time-scale of learning. Hence 
synapses should be modelled as dynamic not static 
entities.

2.3. Dynamic Synapses

Synaptic efficacy changes over very short-time 
scales as well as over the longer time-scale of 
training. The rate at which synaptic efficacy changes
is determined by the supply of synaptic resources 
such as neuro-transmitter and the number of receptor 
sites. Dynamic synapse models are typically either 
deterministic (Tsodyks et al., 1998) or probabilistic 
(del Castillo & Katz, 1954). However, whichever 
model is preferred, it is important that the modelled 
magnitude of the post-synaptic response (PSR) 
changes in response to pre-synaptic activity 
(Furhmann et al., 2002). Furthermore, biological 
neurons have synapses that can either facilitate or 
depress synaptic transmission of spikes (Tsodyks et 
al., 1998).

Modelling the dynamics of limited synaptic 
resources makes neurons selective (sensitive) to 
particular spike frequencies. The filtering effects of 
dynamic synapses occur because there is a frequency 
of pre-synaptic spike trains that optimises the post-
synaptic output (Thomson, 1997; Nätschlager & 
Maass, 2001). A likely explanation for this 
specificity of frequency is that for certain pre-
synaptic spike train frequencies the synapse will not 
run out of resources whereas for another it probably 
will. Between these two pre-synaptic spike 
frequencies there will be an optimum state where the 
post-synaptic spike frequency is maximised. This 
means that certain neurons and synapses can 
potentially be targeted by specific frequencies of pre-
synaptic spike trains. This phenomenon has been 
described as ‘preferential addressing’ (Nätschlager & 
Maass, 2001). 

The dynamic synapse model used in this research 
has the following kinetic equations (Tsodyks et al., 
1998):

 spSE
rec

txU
z

dt

dx



(1)

 spSE
in

txU
y

dt

dy



(2)

recin

zy

dt

dz


 (3)

The three differential equations describe inactive, 
active and recovered states respectively. Each pre-
synaptic spike arriving at time tsp activates a fraction 
(USE) of synaptic resources, which then quickly 
inactivate with a time constant of a few milliseconds 
(τin) and recover slowly with a time constant of τrec. 
These equations are used to calculate the post-
synaptic current, which is taken to be proportional to 
the fraction of resources in the active state:

   tyAtI SEsyn 
(4)

The post-synaptic membrane potential is 
calculated using a leaky-integrate and fire (LIF) 
passive membrane function given by:

 tIRv
dt

dv
syninmem 

(5)
where τmem is the membrane time constant, v is the 

membrane potential and Rin is the input resistance. 
The choice of parameters in the dynamic synapse 
model determines the type of synaptic response. The 
hidden layer neurons in the FSNN are connected to 
the input layer using facilitating synapses. 
Facilitating synapses are marginally more 
complicated to implement than depressing synapses 
because they involve the inclusion of another 
differential equation (Tsodyks et al., 1998):

   spSE
facil

SESE ttUU
U

dt

dU
 


11

(6)
where τfacil is the facilitation time constant and U1

is the initial value of USE. For facilitating synapses, 
the equation describes the variable rate of 
consumption of synaptic resources. 

Depressing synapses model the fact that biological 
neurons often only respond to the first few spikes in 
a spike train before running out of synaptic 
resources. These synapses are implemented using the 
dynamic synapse model (Tsodyks et al., 1998) by 
replacing Equation 6 with a constant value for USE. 
The action potential with these types of synapses is 
only significantly high in magnitude for a very short 
interval. Depressing synapses have been described as 
being coincidence detectors (Pantic et al., 2003)
since they often require synchrony of post-synaptic 
potentials in order to cause firing of a post-synaptic 
neuron.

Constructing a network of neurons using synapses 
that operate at different frequency bands is desirable 
from the perspective of promoting neuron selectivity 
and richness of information flow. However, it is 
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particularly difficult to tune dynamic synapse models 
to operate at specific frequency bands by changing 
the various model parameters. One way to guarantee 
that synapses are responsive to certain frequencies is 
with the use of RFs.

2.4. Receptive Fields

As far back as 1953, experiments with retinal 
ganglion cells in the frog showed that the cell’s 
response to a spot of light grew as the spot grew until 
some threshold had been reached (Barlow, 1953). 
The part of the visual world that can influence the 
firing of a neuron is referred to as the RF of the 
neuron (Rieke, 1997). In Barlow’s work (Barlow, 
1953), it was demonstrated that a spot of light within 
the centre of the RF produces excitation of the 
neuron, whereas when the spot of light is larger than 
the RF or outside the RF inhibition occurs.

The implications for SNNs are that RFs can be 
used in conjunction with neuron models to promote 
feature selectivity and hence enhance the ‘richness’ 
of information flow. It should be pointed out that 
RFs in this research behave in a similar manner to 
membership functions and, unlike the visual and 
auditory RFs found in the biology, the RFs in this 
research are being utilised to process purely 
numerical data.

3. FSNN (Fuzzy SNN) Topology

Biological neuron dynamics are determined by the 
relationships between spike trains, synaptic 
resources, post-synaptic currents and membrane 
potentials. Neuron selectivity can be further 
strengthened using RFs. The dilemma is in the way 
in which all these various elements can be combined 
in a logical way resulting in SNNs that provide 
insight in turn into the biological neuron’s code, and 
are useful from an engineering perspective. 
Biological neurons obviously implement a form of 
human reasoning. Human reasoning is fuzzy in 
nature and involves a much higher level of 
knowledge representation (Zadeh, 1965). Fuzzy rules 
are typically defined in terms of linguistic hedges 
e.g. low, high, excessive, reduced etc. Taking a cue 
from fuzzy reasoning, the aim of this paper is to 
demonstrate how the components necessary to define 
a fuzzy rule in turn dictate the distribution of the 
various biologically plausible computational 
elements in an SNN. Fuzzy IF-THEN rules are of the 
form:

IF (x1 is A1) AND …. AND (xN is AN) THEN (y is Z) (7)

where x1 to xN represent the network inputs, A1 to AN

represent hidden layer RFs and y is the network 
output. Figure 1 shows the FSNN topology. 

Figure 1 Generic FSNN Topology

At first glance it seems like any other fully connected 
feed-forward topology. However, each layer uses 
various computational elements to manage the 
information flow and implement fuzzy reasoning. 

The following subsections will outline the 
components in each of the layers in the three-layer 
SNN.

3.1. Input Layer

    The function of the input neurons is to simply 
encode feature data into an appropriate frequency 
range. Spike trains are then generated from the data 
using a linear encoding scheme. There is always a 
significant amount of pre-processing of input data 
that is required in order to convert typically 
numerical feature data into temporal spike train data. 
Here the encoding scheme takes the frequency data 
points and converts them into an inter-spike interval 
(ISI) which is then used to create linear input spike 
trains. Thus each data point is encoded to a particular 
frequency, which is used to generate an input spike 
train with a constant ISI. It is then the task of the 
network to alter the flow of information depending 
on the frequency encoding of the input data i.e. to be 
frequency selective.

3.2. Hidden Layer

All of the synapses in the FSNN are dynamic.
There are facilitating synapses between the input and 
hidden layers and depressing synapses between the 
hidden and output layers. Gaussian RFs are placed at 
every synapse between the input and the hidden 
neurons. 

In this work it should be noted that the Gaussian 
RFs operate in the frequency domain. Since the input 
data to the FSNN is encoded linearly as spike trains 
of particular frequencies, the RFs utilised in this 
work need to be selective to these differences in
frequency. In the biology, RFs usually operate in the 
spatial domain, and relay spike trains of various 
frequencies depending on where an input stimulus is 
presented in relation to the position of the RF. In this 
work, since data is encoded into frequencies, the RFs 
are conceptualised as operating in the frequency 
domain.

The frequency RFs determine where an input 
frequency fi is in relation to the central operating 
frequency of the RF FO. The weight is then scaled by 
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an amount φij when calculating the PSR. It is 

straight-forward for the synapse to measure the input 
frequency of the RF by measuring the ISI of the 
linear encoded spike trains. This whole process 
relates to the ‘IF (xi is Ai)’ part of the fuzzy rule, 
where xi is the input and Ai represents the RF. In this 
way the RF makes the synapse frequency selective in 
such a way that the numerous parameters in the 
dynamic synapse model do not have to be carefully 
tuned. This is aided by the fact that the synaptic 
weights of the hidden layer neurons are fixed and 
uniform in such a way that scaling of the weight by 
φij produces the desired variation in firing frequency 
of the hidden layer neurons. This is further facilitated 
by keeping the frequency range of encoded spike 
trains sufficiently small, [10 40] Hz in this work. 
Although it should be understood that the weights do 
not need to be carefully tuned, ASE values (see 
Equation 4) in the vicinity of 900 pA should suffice 
for most applications.

Employing facilitating synapses for this purpose 
makes the hidden layer synapses respond like a non-
linear filter. A single hidden layer containing 
facilitating synapses can approximate all filters that 
can be characterised by the Volterra series (Maass & 
Sontag, 2000). Like the Taylor series, the Volterra 
series can be used to approximate the non-linear 
response of a system to a given input. The Taylor 
series takes into account the input to the system at a 
particular time, whereas the Volterra series takes into 
account the input at all other times. Such filtering 
capability has been recently reported in the literature. 
It is thought that the interplay between facilitation 
and depression is responsible for this capability, with 
low-pass (Dittman et al., 2000), high-pass (Fortune 
& Rose, 2001), and band-pass (Abbott & Regehr, 
2004) filtering effects all having been observed.

Spiking neurons sum the post-synaptic potentials 
to calculate the membrane potential. The function of 
each hidden layer neuron is to impose the remaining 
part of the antecedent fuzzy IF-THEN rule, namely 
the conjunctive ‘AND’. This is not straight-forward 
since simply summing the post-synaptic potentials is 
tantamount to performing a disjunctive ‘OR’. The 
collective aim of the RFs connecting to each hidden 
layer neuron is to only allow spikes to filter through 
to the output layer when all of the input frequencies 
presented at each synapse are within the Gaussian 
RFs. This can be ensured by making the RF
excitatory within the RF and inhibitory outside, as 
with the centre-surround RFs observed in retinal 
ganglion cells (Glackin et al., 2008a; Glackin et al., 
2008b). In terms of biological plausibility, this gating 
property of RFs has been observed (Tiesinga et al., 
2004). The degree of synchrony of inhibitory 
synaptic connections causes some RFs to act as 

gates, transmitting spikes when synchrony is low, 
and preventing transmission of spikes when 
synchrony is high (Tiesinga et al., 2004). This has 
been observed in vitro by injecting currents into rat 
cortical neurons using a dynamic clamp and 
modifying the amount of inhibitory jitter. Of course, 
the gating property itself is unlikely to be as clear cut 
as traditional ‘AND’ gates, instead it is likely to be 
fuzzy in itself ranging between ‘OR’ and ‘AND’ on a 
continuous scale. In this paper, the RFs are designed 
to be conjunctive ‘AND’ gates. The reason for this is 
that there is currently no rationale for the use of any 
other types of gates in terms of clustering and 
because there are constraints on the number of RFs
that can be implemented on the computer. To 
produce the ‘AND’ gates, the excitatory (positive) 
part of the Gaussian RF scales the weight in the 
range [0, 1], and the inhibitory (negative) part of the 
RF scales the weight in the range [0, (1 - N)], where 
N is defined as the number of input neurons. In this 
way, if even one input frequency lies outside the RF, 
the resultant inhibitory post-synaptic potential will 
have sufficient magnitude to ‘cancel out’ the post-
synaptic potentials from all the other synapses 
connecting to the same hidden layer neuron. Linear 
spikes encoded with frequency xi are routed to the 
RFs located at synapses wij. Each synapse wij

contains a centre-surround RF of the kind shown in 
Figure 2.

Figure 2 The conjunctive ‘AND’ part of the fuzzy 
rule using excitatory/inhibitory receptive fields

The RFs are characterised by a central excitatory 
Gaussian with inhibitory surround. The activation of 
the RF φij, scales the weight wij, according to the 
position of the input frequency xi and the operating 
frequency of the RF fij. More formally, the activation 
φij of the RF on the synapses wij is given by:
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where xi is the frequency of the linear input spike 
train from input i, N is the size of the input layer, and 

fij is the operating frequency of the RF. 2
ij is the 

width parameter of the RF located on synapse wij. 
The Gaussian RFs are asymptotic at φij = 0, therefore 
an arbitrary tolerance of 0.01 on φij is used to sharply
implement the inhibitory part of the RF and prevent 
calculation of excessively small floating point 
numbers in MATLAB.
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3.3. Output Layer

The aim of the depressing synapses connecting the 
hidden layer to the output layer is to produce spikes 
in the output in a regimented stable manner. It is then 
the task of the ReSuMe supervised learning 
algorithm (Kasiński & Ponulak, 2005) to associate 
the hidden layer neurons to the output layer neurons. 
Figure 3 illustrates the ReSuMe process. The 
learning windows are similar to STDP (Wd) and anti-
STDP (Wout). The parameters sd and sout denote the 
time delays (td – tin) and (tout – tin) respectively. 

Figure 3 Illustration of the learning properties of 
ReSuMe (Remote Supervision). The learning rules 
are exponential functions that modify the synaptic 
weights according to the time difference between the 
desired spike time and input spike time (left plot); 
and according to the time difference between the 
output spike time and the input spike time (right 
plot).

A modified version of the ReSuMe algorithm was 
implemented using differential equations that enable 
the algorithm to be executed in a one-pass manner in 
much the same way that (Song et al., 2000)
implemented the additive STDP rule. The equations 
used are shown in equations 7.

d
d

dout
out

out W
dt

dW
sandW

dt

dW
s  (7)

Thus performing the fuzzy inferencing between the 
hidden layer (antecedents), and the output layer 
(consequents).

In summary, the presented FSNN topology 
provides a rationale for the use of RFs, excitatory 
and inhibitory neurons, as well as facilitating and 
depressing synapses. The next section of the paper 
describes how such a network may be used to solve 
two complex non-linear benchmark classification 
problems.

4. Pre-processing the Data

To test the validity of the approach presented in 
this paper, two well-known benchmark classification 
datasets were utilised. The two benchmarks are the 
Fisher Iris (Fisher, 1936) and the Wisconsin Breast 
Cancer (Asuncion & Newman, 2007) datasets. 
Arguably the two datasets have been used repeatedly 
for testing classification capabilities for numerous 
numerical, statistical and machine learning 

algorithms, and the plethora of benchmark results 
make them invaluable for refining new approaches.

4.1. Fisher Iris Data

The Iris classification problem (Fisher, 1936) is 
well-known in the field of pattern recognition. The 
data-set contains 3 classes of 50 types of Iris plant. 
The 3 species of plant are Iris Setosa, Iris 
Versicolour, and Iris Virginica. In the interests of 
clarity the three classes shall be referred to as class 1, 
class 2, and class 3 respectively. Class 1 is linearly 
separable from classes 2 and 3. Classes 2 and 3 are 
not linearly separable and make Iris a complex non-
linear classification problem. The lack of sufficient 
training data, a problem which is exacerbated by 
partitioning for cross-validation tests for 
generalisation, makes training and particularly 
generalisation for Iris problematic. With a training 
set of 90 data points (2/3 of the data), 5 
misclassifications in the training set will result in less 
than 95% accuracy, and with 60 data points in the 
testing (the remaining 1/3 of the data), 4 
misclassifications results in a sub-95% testing error. 
In this way, classification problems involving larger 
data sets are ‘more forgiving’.

4.2. Wisconsin Breast Cancer Data

The Wisconsin Breast Cancer Dataset (Asuncion 
& Newman, 2007) is another well-known benchmark 
classification problem. The Wisconsin breast cancer
dataset contains 699 instances, with 458 benign 
(65.5%) and 241 (34.5%) malignant cases. The 
dataset has only 6 samples with missing data and
these samples were removed. Each instance is 
described by 9 features with an integer value in the 
range 1-10 and a class label.

4.3. Positioning the receptive fields

The task of determining the number, position and 
spread of RFs (membership functions) is an 
important step in tuning a fuzzy system. This is 
because the maximum number of possible rules 
governing the fuzzy inferencing process is 
determined by R = NM where R is the number of 
rules, M is the number of membership functions, and 
N is the number of inputs. For the Iris classification 
task there are 4 inputs (4 features), therefore the 
number of rules (number of hidden layer neurons) is 
given by R = 4M. This means that the number of 
possible rules grows rapidly as the number of
membership functions increases. This phenomenon is 
known as ‘rule explosion’. There are many 
methodologies for optimising RF placement.
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Methodologies include statistical techniques and 

clustering algorithms (Abdelbar et al., 2006). For this 
dataset, Fuzzy C-Means (FCM) clustering was used 
to calculate the positions for RF placement that 
facilitate separation of the input feature data into 
their respective classes.

Fuzzy clustering is distinct from hard clustering 
algorithms such as K-means in that a data point may 
belong to more than one cluster at the same time. 
FCM clustering was first developed by Dunn in 1973 
(Dunn, 1973) and later refined by Bezdek in 1981 
(Bezdek, 1981). FCM is better at avoiding local 
minima than K-means but it is still susceptible to the 
problem in some cases. The algorithm for FCM is an 
iterative procedure that aims to minimise the 
following objective function.

2

11
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 , (1 ≤ m < ∞) (8)

where m refers to the degree of fuzziness, and should 
be a real number greater than 1. It is commonly set to 
2 in the absence of experimentation or domain 
knowledge. uij is the membership of any data point xi

in the cluster j. cj is the centre of the cluster j, and 
║*║ represents any norm that measures the 
similarity (distance) between the coordinate xij and 
the cluster centre. Through iteration of the algorithm, 
the membership is updated with the following 
function, until the termination criteria ε is met.
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The stopping criteria is given by:

    m
ij

k
ijij uu 1max

, (10)

ε is in the interval [0,1], and k are the iteration steps.
The Iris training set was clustered with FCM in a 

five-dimensional sense (4 features and the class 
data). One advantage of FCM is that it can cope 
when clustering the input data with the class data 
without altering the class information very much in 
the resulting clusters. This was the case with the Iris 
data, for the most part resulting in clusters associated 
with a particular class. Of course, since FCM is a 
fuzzy clustering technique, data samples are allowed 
to belong to multiple classes with varying degrees of 
membership. Careful selection of appropriate cluster 
widths can ensure, where possible, that hidden layer 
clusters are associated with a single class. 

MATLAB’s FCM algorithm was used to perform the 
clustering. 

4.4. Thresholding

The FCM program returns the cluster positions and a 
fuzzy membership matrix U for all the data samples 
in the training set. By setting appropriate thresholds 
on the fuzzy memberships to each cluster, it is 
possible to determine which data samples should be 
within each cluster and which should be excluded. 
Care should be taken with the thresholding to ensure 
that each data sample belongs to at least one cluster. 
Otherwise the networks’ hidden layer will ignore the 
data sample. Figure 4 shows an example of 
thresholding the fuzzy membership matrix U
obtained using MATLAB’s FCM clustering 
algorithm.

Figure 4 Intuitive Thresholding Technique

The figure shows U on the left and the thresholds on 
the clusters on the right. The membership values are 
obtained by calculating the Euclidean distance 
between the data points (1 to 9 in this simple 
example) and the clusters (1 to 6). The Euclidean 
distances then are scaled by the sum of Euclidean 
distances in each column so that the total 
membership is equal to 1. Of course Euclidean 
distance is not the only distance measure that can be 
used to determine the distance between a cluster and 
a datapoint. Several other distance measures were 
investigated including (Manhattan and Mahalanobis 
distances to mention but a few) but subjectively 
Euclidean was preferred for its simplicity and ease of 
thresholding. Once the thresholding has determined 
which data samples should belong to each cluster
(shaded in grey in Figure 4), the variances for each 
feature can be calculated from the features of each 
included data sample. These feature variances are 
then used to specify the widths of each Gaussian RF.

5. Fisher Iris Classification Results (Subjective 
Thresholding Technique)

The simple example shown in Figure 4 illustrates the 
thresholding technique for a small number of data 
points and clusters, but for larger sets optimisation of 
the thresholds is problematic. The subjective nature 
of the thresholding technique means that often there 
is a trade-off between the classification of data points 
crisply into particular classes and the number of data 
points included in the classification. Figure 5 shows 
the hidden layer output after thresholding has been 
performed for the Iris training dataset. 
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Figure 5 Hidden Layer Processing of Fisher Iris 
Training Data

The original ordering of the training data is used for 
clarity, with each successive 30 second interval 
corresponding to classes 1, 2 and 3. The order of the 
data does not affect the processing of the hidden 
layer dynamic synapses since synaptic resources are 
re-initialised after processing each data point. The 
hidden layer neurons have also been put in order of 
class. As can be seen from Figure 5, there are 3, 3 
and 4 clusters (and hence hidden neurons) associated 
with classes 1, 2 and 3 respectively. The resultant 
classification of the data is clear to see from the 
figure, however there are some anomalies. The 
thresholding technique could not exclusively 
associate hidden neurons 5 and 6 to class 2 data 
points. Similarly, hidden neurons 9 and 10 could not 
be exclusively associated with class 3 data points 
without the hidden layer excluding some points 
altogether. In all, there were 9 data points (10% of 
the training set) that were not uniquely associated 
with one particular class. This means that 10% of the 
data in the training set is unresolved in terms of the 
FSNN associating the data correctly with the class 
data. It is the task of the ReSuMe supervised training 
regime to resolve this error.

5.1. Resume Training

The first step in implementing the ReSuMe training 
was to specify the supervisory spike trains to be 
used. The ReSuMe algorithm was ‘forgiving’ in this 
respect producing good convergence for a wide range 
of supervisory frequencies. Therefore supervisory 
spike trains of a 50 Hertz frequency were delivered 
to the appropriate class output neuron whenever the 
data sample belonged to that class. The supervisory 
signal for the other class neurons for the given data 
sample was of zero frequency. The learning windows 
were equal and opposite in magnitude producing a 
maximum possible weight update of 0.05. Each 
training data sample is deemed correctly classified 
when it produces the maximum number of output 
spikes at the correct output class neuron. The training 
resulted in 10/409 misclassified data samples (97.6% 
accuracy). Once training was completed, all weights 
were then fixed and the unseen testing data (274 
samples) were presented to the network. During the 
testing phase 13/274 data points were misclassified 
(95.3% accuracy), showing good generalisation

6. Wisconsin Breast Cancer Classification 
Results (Evolutionary Threshold Optimisation)

When producing clusters for the Iris dataset, the 
class information was included in the clustering 
procedure as described in section 4.3. For the 
Wisconsin dataset it was desired to cluster the feature 
data in ignorance of the class information. Clustering 
without prior knowledge of class information is 
problematic because data points may be close 
together with regards to feature data but differ solely 
with regards to class information. Therefore any 
clusters generated may contain data points belonging 
to both classes. The task of the thresholding 
technique is complicated by this cluster ‘fuzziness’.
It was discovered that the subjective thresholding 
approach was time-consuming with regards to larger 
datasets. Preliminary experiments with FCM 
indicated that in order to achieve objective values 
comparable with the Iris dataset (with data scaled 
into the same frequency range), more clusters would 
be required to be generated. The larger number of 
thresholds accompanying these clusters further 
complicates the optimisation of the clusters. With 
MATLAB’s FCM algorithm it is required to specify 
the number of clusters required in advance. However, 
specifying too many can create ‘clusters’ that contain 
only one data-point, obviously these types of clusters 
could have disastrous consequences for 
generalisation. It is desirable therefore to use an 
optimisation technique to determine the required 
number of clusters, and perform the thresholding for 
problems that involve larger datasets such as the 
Wisconsin Breast Cancer dataset.

A Genetic Algorithm (GA) was used to find a 
good solution to the thresholding problem for the 
Wisconsin dataset, thus optimising the configuration 
of cluster sizes. GAs are particularly useful for 
finding good solutions for problems with high 
dimensional parameter spaces (Goldberg, 1989; 
Holland, 1975). In the typical GA considered in this 
research, a genotype encodes the solution to the 
problem. The genotype is constructed from the 
individual cluster thresholds (alleles), and then a 
fitness function determines the merit of each solution 
to the problem by assigning a fitness value to each 
genotype. In this way, by utilising thresholds as the 
basis for the hidden layer RF configuration, 
individual chromosomes in the GA are compact and 
as such well-suited to evolutionary optimisation 
(Cantu-Paz and Kamath, 2005). The GA developed is 
of the indirect topological variety (Miller et al., 
1989), since chromosomes only contain information 
about part of the structure of the FSNN.
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The following equations define fitness. The 

membership matrix U returned from the FCM 
algorithm is first augmented with the threshold 
vector T (genotype) to give:
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where SZH is the size of the hidden layer (number of 
clusters) and n is the number of data points in the 
training set. A membership index matrix S is 
constructed according to the following rules:
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The elements of the thresholded-membership matrix 
V are then calculated using:

jijiji suv ,,,  (13)

It is known from the training data which elements of 

jiv , belong to which class, therefore we define 

 qv as being an element of V belonging to class q. 
The fitness of each allele can now be evaluated:
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Finally the total fitness of each genotype is given by:





SZH

i
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1

(15)

According to equation (14) high fitness (a fitness 
value of zero) is awarded to those thresholds that
crisply classify the data, whereas thresholds that 
classify data points belonging to both classes result 
in a fitness value close to 1 (low fitness), as do 
thresholds that do not classify the data at all. In this 
way the GA does not tell the clusters which class 

they belong to, it simply rewards crispness of 
classification.

As well as this objective, there are several 
constraints that need to be applied to the GA. The 
thresholds that are randomly initialised or mutated 
must be in the range [0, 1] as numbers outside this 
range have no meaning in terms of fuzzy 
membership. Additionally, every data point must be 
processed by at least one cluster to ensure that data is 
not ignored by the hidden layer of the network. The 
FCM algorithm is first used to generate 100 cluster 
candidates. A population of 100 randomly generated 
solutions is evolved over 100 generations under the 
control of genetic operators. The principal operators 
are selection (preferential sampling), cross-over 
(recombination) and mutation. Figure 6 illustrates the 
flow of operation of the GA.

Figure 6 GA Flow of Operation

A population of 100 individuals are initialized in the 
range [0,1], every individual in the population is 
evaluated according to equations 11-15. Ranking of 
the individuals is then performed according to
fitness. The two individuals with the highest fitness 
are termed elite individuals and are retained for at 
least one more generation. A cross-over fraction of 
0.8 is used to determine that the next 78 (0.8 of the 
population of non-elite individuals) are used for 
recombination. Recombination or reproduction is 
performed by randomly selecting multiple cross-over 
points according to the uniform distribution. Then 
the remaining 20 individuals are mutated.
Constrained mutation is employed by necessity as 
values for individual thresholds have no meaning 
outside the range [0,1], since this is the range of 
fuzzy membership of data-points to clusters. Thus 
the next generation is constructed and the algorithm 
iterates until the target fitness has been reached, or 
the fitness has not improved by a significant amount 
for 20 generations, or the maximum number of 
generations has been reached. Figure 7 shows a plot 
of the mean fitness against the fittest individual at 
every generation.

Figure 7 GA Best and Mean fitness for Wisconsin 
Breast Cancer training data (fold 1)

As can be seen from the figure the mean fitness 
approaches the best fitness when the GA 
approximates its best solution. It should be noted 
however, that since the GA initialises its thresholds
randomly that it is important to perform multiple 
runs.

The hidden layer output resulting from the first 
fold of training data is shown in Figure 8.
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Figure 8 Hidden layer output for Wisconsin 

Breast Cancer training set (fold 1)

The data is in class order for clarity and the 
classification from the hidden layer is clearly shown. 
The hidden layer neurons (plotted vertically in the 
figure) are active in the first approximately two 
thirds of the data (class 1) or in the final third. The 
degree of activity of the hidden layer neurons is 
shown by the density of the spikes. It is clear to see 
for each hidden layer neuron which class it is 
classifying, although there is of course a certain 
amount of fuzziness when a particular hidden layer 
neuron produces spikes across the whole range of 
input data (but favours one class over another in 
terms of density of spikes). Additionally, as can be 
seen from the figure the output of only 41 of the 
original clusters is presented. The reason for this is 
that the GA sets the cluster sizes of the other 59 
clusters to 0; therefore they are removed from the 
implementation of the clusters in the hidden layer.

6.1. ReSuMe Training

As with the Iris problem, once the hidden layer 
RFs have been configured it is the task of the 
ReSuMe supervised learning to associate hidden 
layer neurons to output class neurons. The difference 
between the Subjective and Evolutionary approaches 
is that the latter is by definition an automated 
technique and as such cross-validation (CV) can be 
utilised to test for generalisation. Thus five-fold CV
was implemented and the results are shown in Table 
1.

Table 1 – Wisconsin Results

7. Discussion

Leave-one-out tests have been criticised as a 
basis for accuracy evaluation, with the conclusion 
that CV is more reliable (Kohavi, 1995). However, 
CV tests are also not ideal. Theoretically about 2/3 of 
results should be within a single standard deviation 
from the average, and 95% of results should be 
within two standard deviations, so in a 10-fold CV
you should very rarely see results that are better or 
worse than two standard deviations. The main 
criticism of generalisation tests is that running them 
several times produces different solutions. Therefore, 
the search for the best generalisation estimator is still 
an open problem (Dietterich, 1998; Nadeau, 1999). 
Even the best accuracy and variance estimation is not 
sufficient, since performance cannot be characterised 
by a single number. It would be much better to 
provide full Receiver Operator Curves (ROC). 

However, while ROC curves are considered to be 
superior it is useful to at least use generalisation tests 
that aid comparison to previous work on the 
benchmark datasets presented in this paper.

The presented FSNN topology is biologically 
based in a number of ways. As with all SNNs the
topology uses the temporal encoding of data into 
spike trains. The topology contains facilitating 
excitatory and inhibitory dynamic synapses (hidden 
layer) that act as non-linear filters. There is even 
biological evidence to suggest that the gating 
phenomenon implemented in its purest sense in this 
work (i.e. as pure AND gates) exists in the biology. 
In particular, when there is synchrony between 
inhibitory connections (Tiesinga, 2004). However, it 
is unclear to what extent the formation of RFs in the 
biology is evolved or learned; at best the mechanisms 
governing their use are poorly understood. Certainly 
there are structural aspects of RFs that are likely 
evolved (for example retinal ganglion cell and 
photoreceptors) and there is evidence that RFs can 
adapt to new stimuli. However, study of this 
phenomenon is limited by experimental technique 
and development, and it is fair to say the field has 
considerable scope for further development.

8. Conclusions and Future Work

This paper presents a detailed review of relevant 
publications on existing training algorithms and 
associated biological models. To underpin the FSNN 
topology, results for the well-known Fisher Iris and 
Wisconsin Breast Cancer classification problems are 
presented. The FSNN topology provides a rationale 
for the assembly of biological components such as 
excitatory and inhibitory neurons, facilitating and 
depressing synapses, and RFs. In particular, the 
major contribution of this paper is how RFs may be 
configured in terms of excitation and inhibition to 
implement the conjunctive AND of the antecedent 
part of a fuzzy rule.

Currently, the work relies on the use of FCM 
clustering as a strategy for combating the rule-
explosion phenomenon of fuzzy logic systems (FLS). 
Although fuzzy reasoning provides a rationale for the 
deployment of biological models, there are as yet no 
biological models for the positioning and size of RFs. 
Typically in FLSs this is done using purely 
computational techniques such as gradient-descent 
algorithms or intuitively. Often membership 
functions are chosen for the smoothness of control 
surfaces or for other reasons, it is as much art as 
science and very problem specific. Perhaps 
fortunately, neuroscientists are studying RF
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formation more intensely than ever before and it 

seems plausible that a biological alternative to using 
such computational clustering algorithms may exist.
Ideally, it would be preferable for the FSNN to 
determine the number, placement and spread of 
fuzzy clusters, without relying on external statistical 
or clustering techniques in reflection of the biology. 
For this reason, future work in recognition of the 
growing interest in biological RFs, will involve the 
development of dynamic RFs. The ultimate aim is to 
develop a biologically plausible FSNN that tunes 
itself using strictly biological principles, and in that 
regard this work represents a significant contribution.
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Fold 1 2 3 4 5
Average 

(%)
Standard 
DeviationNumber of 

Clusters 35 40 41 41 43

Training (%) 98.5 98.5 98.8 98.5 97.5 98.4 0.45
Testing (%) 94.8 95.9 97.8 97.0 97.0 96.5 1.04

Table 1 Wisconsin Results
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Figure 1 Generic FSNN Topology
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Figure 2 Excitatory/inhibitory receptive field
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Figure 3 ReSuMe Learning
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Figure 4 Intuitive Thresholding Technique
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Figure 5 Iris Hidden Layer Processing
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Figure 6 GA Flow of Operation

PDFill 
PDF Edito

r w
ith

 Free
 W

rite
r a

nd Tools

http://www.pdfill.com


Figure 7 Wisconsin GA Fitness
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Figure 8 Wisconsin Hidden Layer Processing
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