
Receptive Field Optimisation and Supervision
of a Fuzzy Spiking Neural Network

Abstract

This paper presents a supervised training algorithm that implements fuzzy reasoning on a spiking neural
network. Neuron selectivity is facilitated using receptive fields that enable individual neurons to be
responsive to certain spike train frequencies and behave in a similar manner as fuzzy membership
functions. The connectivity of the hidden and output layers in the fuzzy spiking neural network (FSNN) is
representative of a fuzzy rule base. Fuzzy C-Means clustering is utilised to produce clusters that represent
the antecedent part of the fuzzy rule base that aid classification of the feature data. Suitable cluster widths
are determined using two strategies; subjective thresholding and evolutionary thresholding respectively.
The former technique typically results in compact solutions in terms of the number of neurons, and is
shown to be particularly suited to small data sets. In the latter technique a pool of cluster candidates are
generated using Fuzzy C-Means clustering and then a genetic algorithm is employed to select the most
suitable clusters and to specify cluster widths. In both scenarios, the network is supervised but learning
only occurs locally as in the biological case. The advantages and disadvantages of the network topology for
the Fisher Iris and Wisconsin Breast Cancer benchmark classification tasks are demonstrated and
directions of current and future work are discussed.

Keywords: Clustering methods; Receptive Fields; Evolutionary Algorithms; Spiking Neural Network; Supervised Learning

1. Introduction

The history of neural network research is
characterised by a progressively greater emphasis
paid to biological plausibility. The evolution of
neuron modelling with regard to the complexity of
computational units can be classified into three
distinct generations (Maass, 1997). The third
generation of neuron modelling (spiking neurons) is
based on the realisation that the precise mechanism
by which biological neurons encode and process
information is poorly understood. In particular,
biological neurons communicate using action
potentials also known as spikes or pulses. The spatio-
temporal distribution of spikes in biological neurons
is believed to ‘hold the key’ to understanding the
brain’s neural code (DeWeese, 2006).

There exists a multitude of spiking neuron models
that can be employed in spiking neural networks
(SNNs). The models range from the computationally
efficient on the one hand to the biologically accurate
on the other (Izhikevich, 2004); the former are
typically of the integrate-and-fire variety and the
latter are of the Hodgkin-Huxley type. All the models
in this range exploit time as a resource in their
computations but vary significantly in the number
and kinds of neuro-computational features that they
can model (Izhikevich, 2004). The extensive amount
and variety of neuron models exist in
acknowledgement of the fact that there is a trade-off

between the individual complexity of spiking
neurons and computational intensity.

In addition to the variety of neuron models,
biological neurons can have two different roles to
play in the flow of information within neural circuits.
These two roles are excitatory and inhibitory
respectively. Excitatory neurons are responsible for
relaying information whereas inhibitory neurons
locally regulate the activity of excitatory neurons.
There is also experimental evidence to suggest that
the interaction between these two types of neuron is
responsible for synchronisation of neuron firing in
the cortex (Börgers & Kopell, 2003). Ongoing
physiological experiments continue to illuminate the
underlying processes responsible for the complex
dynamics of biological neurons.

The degree to which these complex dynamics are
modelled in turn limits the size and computational
power of SNNs. Therefore, it is imperative to
determine which biological features improve
computational capability whilst enabling efficient
description of neuron dynamics. Ultimately neuro-
computing seeks to implement learning in a human
fashion. In any kind of algorithm where human
expertise is implicit, fuzzy IF-THEN rules can
provide a language for describing this expertise
(Zadeh, 1965). In this paper, the rationale for the
distribution of biologically-inspired computational

* Manuscript (without any author details listed)
Click here to view linked References

PD
Fi

ll
PD

F
Ed

ito
r w

ith
 F

re
e

W
rit

er
 a

nd
 T

oo
ls

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Hertfordshire Research Archive

https://core.ac.uk/display/9839752?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://ees.elsevier.com/neunet/viewRCResults.aspx?pdf=1&docID=931&rev=1&fileID=26947&msid={6BB5D63B-A7EB-4F95-BB4B-67D8CBCA42FF}
http://www.pdfill.com

2
elements is prescribed by the implementation of

fuzzy IF-THEN rules. This rationale will
demonstrate how strictly biological models of
neurons, synapses and learning can be assembled in a
network topology using fuzzy reasoning. Two
benchmark classification datasets are used to
demonstrate the capabilities of the topology. The
benchmarks are the Fisher Iris and Wisconsin Breast
Cancer datasets.

In Section II, unsupervised and supervised
learning methods, dynamic synapses and receptive
fields (RF) are reviewed. A brief discussion of how
fuzzy reasoning can provide a basis for structuring
the network topology in such a way that these
various elements are suitably utilised follows.
Section III introduces a generic network topology
and outlines the specific models and algorithms used
to implement fuzzy reasoning. Section IV is
concerned with pre-processing of benchmark data,
Fuzzy C-Means clustering and thresholding to
determine cluster size. Experimental results and
remarks for the complex non-linear Iris classification
problem using a subjective cluster thresholding
approach are presented in Section V, and results from
the evolutionary optimisation of the thresholding
technique for the Wisconsin Breast Cancer dataset
are presented in section VI. A discussion of
generalisation and the main contribution of the work
are outlined in section VII, and lastly conclusions
and future research directions are presented in
Section VIII.

2. Review

In this section, unsupervised and supervised
learning methods, dynamic synapses and RFs are
reviewed. Modelling synapses is an essential aspect
of accurate representation of real neurons, and one of
the key mechanisms to reproducing the plethora of
neuro-computational features in SNNs. Learning in
all generations of neural networks involves the
changing of synaptic weights in the network in order
for the network to ‘learn’ some input-output
mapping. From a biologically plausible point-of-
view synaptic modification in spiking neurons should
be based on the temporal relationship between pre
and post-synaptic neurons, in accordance with
Hebbian principles (Hebb, 1949). In fact, Hebbian
learning and its ability to induce long-term
potentiation (LTP) or depression (LTD) provides the
basis for most forms of learning in SNNs. Hebbian
learning gains great computational power from the
fact that it is a local mechanism for synaptic
modification but also suffers from global stability
problems as a consequence (Abbott & Nelson, 2000).

2.1. Unsupervised Learning

There are several learning algorithms that can be
used to evoke LTP or LTD of synaptic weights.
Spike-timing dependent plasticity (STDP) is
arguably the most biologically plausible means of
inducing LTP and LTD learning since it is a temporal
interpretation of Hebb’s well-known first generation
learning rule (Bi & Poo, 1999; Abbott & Nelson,
2000). In terms of the temporal coding of spikes, it is
the order of individual pre and post-synaptic spikes
that determines whether the weight is increased or
decreased using STDP. Stability of STDP can be
ensured by placing limits in the strengths of
individual synapses and a multiplicative form of the
rule introduces an adaptive aspect to learning,
resulting in progressively smaller weight updates as
learning progresses.

Bienenstock, Cooper and Munro’s model (BCM)
(Bienenstock et al., 1982) compares correlated pre
and post-synaptic firing rates to a threshold in order
to decide whether to induce LTP or LTD. The
threshold slides as a function of the post-synaptic
firing rate in order to stabilise the model. Despite
criticism for its lack of biological basis (Abbott &
Nelson, 2000), BCM has been demonstrated to be
related to STDP (Izhikevich, 2003). In particular, by
restricting the number of pairings of pre and post-
synaptic spikes included in the STDP rule, the BCM
rule can be emulated using STDP.

BCM and STDP are of course unsupervised
learning algorithms, and as such they do not
obviously lend themselves to applications requiring a
specific goal definition, since this requires supervised
learning.

2.2. Supervised Learning

There are several methodologies to date for
implementing supervised learning in SNNs:

 SpikeProp (Gradient Estimation) (Bohte et al.,
2002)

 Statistical approach (Pfister et al., 2003)
 Linear algebra formalisms (Carnell &

Richardson, 2005)
 Evolutionary Strategy (Beletreche et al.,

2003)
 Synfire Chains (Sougne, 2000)
 Supervised Hebbian Learning (Ruf &

Schmitt, 1997; Legenstein et al., 2005)
 Remote Supervision (Kasiński & Ponulak,

2005)

For a detailed review see (Kasiński & Ponulak,
2006).

PD
Fi

ll
PD

F
Ed

ito
r w

ith
 F

re
e

W
rit

er
 a

nd
 T

oo
ls

http://www.pdfill.com

3
SpikeProp (Bohte et al., 2002) is a gradient decent

training algorithm for SNNs that is based on
backpropagation. The discontinuous nature of
spiking neurons causes problems with gradient
descent algorithms, but SpikeProp overcomes this
issue by only allowing each neuron to fire once and
by training the neurons to fire at a desired time.
However, if weight updates leave the neuron in a
state such that it will not fire, the algorithm cannot
restore the neuron to firing for any new input pattern.
Additionally, since each neuron is only allowed to
fire once, the algorithm can only be used in a time-
to-first-spike coding scheme which means that it
cannot learn patterns consisting of multiple spikes.

By employing a probabilistic approach to the
Hebbian interaction between pre and post-synaptic
firing, it is possible to produce a likelihood that is a
smooth function of its parameters (Pfister et al.,
2003). The aim of this, of course, is that this allows
gradient descent to be applied to the changing of
synaptic efficacies. This statistical approach employs
STDP-like learning windows and an injected teacher
current. Consequently, the method has been
described (Kasiński & Ponulak, 2006) as a
probabilistic version of Supervised Hebbian learning
(Ruf & Schmitt, 1997; Legenstein et al., 2005).
Experiments with this approach have been limited to
networks consisting of only two spikes, so it is
difficult to know how robust the technique would be
for larger networks.

Linear algebra formulisms involving definitions of
inner product, orthogonality and projection
operations for spike time series form the backbone of
Carnell and Richardson’s work (Carnell &
Richardson, 2005). The Gram-Schmitt process is
used to find an orthogonal basis for the input time
series subspace, and this is then used to find the
subspace for the desired output. A batch style
iterative process is described that seeks to then
minimise the error between target and actual outputs
by projecting the error into the input subspace. The
Liquid State Machine (LSM) (Maass et al., 2002) is
used for the experiments. Successful training is
dependent on the variability of input spikes, but since
the training requires batch learning the method is
unsuitable for online learning (Carnell & Richardson,
2005).

Evolutionary strategies (ES) have been applied as
a form of supervision for SNNs (Beletreche et al.,
2003). ES differs from genetic algorithms in that they
rely solely on the mutation operator. The accuracy of
the resulting SNN provides the basis for determining
the fitness function and the ES population was shown
to produce convergence to an optimal solution. The
learning capabilities of the ES were tested with the
XOR and Iris benchmark classification problems.

The Spike Response Model was used to model the
spiking neurons in a fully connected feed-forward
topology. A limitation of this approach is that only
the time-to-first-spike is considered by the ES
(Beletreche et al., 2003). Additionally, as with all
evolutionary algorithms the evolutionary process is
very time-consuming and this renders them
unsuitable for online learning.

Synfire chains (SFC) (Sougne, 2000) is a feed-
forward multi-layered topology (chain) in which
each pool of neurons in the chain (subnet) must fire
simultaneously to raise the potential of the next pool
of neurons enough so that they can fire. STDP and an
additional non-Hebbian term form the basis of the
learning rule. The learning rule is designed to
regulate the firing activity and to ensure that the
waves of synchronous firing make it to the output of
the network. The ability of the network to learn an
input-output mapping is sensitive to the number and
diversity of connection delays. As with many
existing supervised SNN learning algorithms this
technique relies on time-to-first-spike encoding, and
as such cannot learn patterns involving multiple
spikes.

Supervised Hebbian Learning (SHL) (Ruf &
Schmitt, 1997; Legenstein et al., 2005) is arguably
the most biologically plausible supervised SNN
learning algorithm. SHL simply seeks to ensure that
an output neuron fires at the desired time, with the
inclusion of a ‘teaching’ signal. Since the teaching
signal comprises of intracellular synaptic currents,
supervision may be envisioned as supervision by
other neurons. It has been proven that SHL can learn
to reproduce the firing patterns of uncorrelated
Poisson spike trains. Thus it can learn patterns
involving multiple spikes. However, it suffers from
the limitation that even after the goal firing pattern
has been reached; SHL will continue to change the
weights. Thus constraints must be added to the
learning rule to ensure stability (Legenstein et al.,
2005).

The Remote Supervision Method (ReSuMe) is
closely related to SHL but manages to avoid its
drawbacks (Kasiński & Ponulak, 2005). The
‘remote’ aspect comes from the fact that teaching
signals are not delivered as currents to the learning
neuron (as with SHL). Instead a teaching signal and
STDP-like Hebbian correlation are employed to co-
determine the changes in synaptic efficacy. Two
STDP-like learning windows are used to update
synaptic weights. The first window increases the
weight whenever there is a temporal correlation
between the input and the desired output (teaching
signal). The second learning window is an anti-STDP
window which decreases the weight based on the
correlation between the input and the actual output.

PD
Fi

ll
PD

F
Ed

ito
r w

ith
 F

re
e

W
rit

er
 a

nd
 T

oo
ls

http://www.pdfill.com

4
ReSuMe has thus far only been applied to LSM

networks and has demonstrated that it can learn
patterns involving multiple spikes to a high degree of
accuracy (Kasiński & Ponulak, 2005). Irrespective of
the particular neuron model used, the learning
process converges quickly and in a stable manner.

Of all the supervised learning algorithms
discussed, the ReSuMe approach is perhaps the most
efficient. However, synaptic efficacy changes on a
much shorter time-scale in biological neurons as well
as over the longer time-scale of learning. Hence
synapses should be modelled as dynamic not static
entities.

2.3. Dynamic Synapses

Synaptic efficacy changes over very short-time
scales as well as over the longer time-scale of
training. The rate at which synaptic efficacy changes
is determined by the supply of synaptic resources
such as neuro-transmitter and the number of receptor
sites. Dynamic synapse models are typically either
deterministic (Tsodyks et al., 1998) or probabilistic
(del Castillo & Katz, 1954). However, whichever
model is preferred, it is important that the modelled
magnitude of the post-synaptic response (PSR)
changes in response to pre-synaptic activity
(Furhmann et al., 2002). Furthermore, biological
neurons have synapses that can either facilitate or
depress synaptic transmission of spikes (Tsodyks et
al., 1998).

Modelling the dynamics of limited synaptic
resources makes neurons selective (sensitive) to
particular spike frequencies. The filtering effects of
dynamic synapses occur because there is a frequency
of pre-synaptic spike trains that optimises the post-
synaptic output (Thomson, 1997; Nätschlager &
Maass, 2001). A likely explanation for this
specificity of frequency is that for certain pre-
synaptic spike train frequencies the synapse will not
run out of resources whereas for another it probably
will. Between these two pre-synaptic spike
frequencies there will be an optimum state where the
post-synaptic spike frequency is maximised. This
means that certain neurons and synapses can
potentially be targeted by specific frequencies of pre-
synaptic spike trains. This phenomenon has been
described as ‘preferential addressing’ (Nätschlager &
Maass, 2001).

The dynamic synapse model used in this research
has the following kinetic equations (Tsodyks et al.,
1998):

 spSE
rec

txU
z

dt

dx

(1)

 spSE
in

txU
y

dt

dy

(2)

recin

zy

dt

dz

 (3)

The three differential equations describe inactive,
active and recovered states respectively. Each pre-
synaptic spike arriving at time tsp activates a fraction
(USE) of synaptic resources, which then quickly
inactivate with a time constant of a few milliseconds
(τin) and recover slowly with a time constant of τrec.
These equations are used to calculate the post-
synaptic current, which is taken to be proportional to
the fraction of resources in the active state:

 tyAtI SEsyn
(4)

The post-synaptic membrane potential is
calculated using a leaky-integrate and fire (LIF)
passive membrane function given by:

 tIRv
dt

dv
syninmem

(5)
where τmem is the membrane time constant, v is the

membrane potential and Rin is the input resistance.
The choice of parameters in the dynamic synapse
model determines the type of synaptic response. The
hidden layer neurons in the FSNN are connected to
the input layer using facilitating synapses.
Facilitating synapses are marginally more
complicated to implement than depressing synapses
because they involve the inclusion of another
differential equation (Tsodyks et al., 1998):

 spSE
facil

SESE ttUU
U

dt

dU

11

(6)
where τfacil is the facilitation time constant and U1

is the initial value of USE. For facilitating synapses,
the equation describes the variable rate of
consumption of synaptic resources.

Depressing synapses model the fact that biological
neurons often only respond to the first few spikes in
a spike train before running out of synaptic
resources. These synapses are implemented using the
dynamic synapse model (Tsodyks et al., 1998) by
replacing Equation 6 with a constant value for USE.
The action potential with these types of synapses is
only significantly high in magnitude for a very short
interval. Depressing synapses have been described as
being coincidence detectors (Pantic et al., 2003)
since they often require synchrony of post-synaptic
potentials in order to cause firing of a post-synaptic
neuron.

Constructing a network of neurons using synapses
that operate at different frequency bands is desirable
from the perspective of promoting neuron selectivity
and richness of information flow. However, it is

PD
Fi

ll
PD

F
Ed

ito
r w

ith
 F

re
e

W
rit

er
 a

nd
 T

oo
ls

http://www.pdfill.com

5
particularly difficult to tune dynamic synapse models
to operate at specific frequency bands by changing
the various model parameters. One way to guarantee
that synapses are responsive to certain frequencies is
with the use of RFs.

2.4. Receptive Fields

As far back as 1953, experiments with retinal
ganglion cells in the frog showed that the cell’s
response to a spot of light grew as the spot grew until
some threshold had been reached (Barlow, 1953).
The part of the visual world that can influence the
firing of a neuron is referred to as the RF of the
neuron (Rieke, 1997). In Barlow’s work (Barlow,
1953), it was demonstrated that a spot of light within
the centre of the RF produces excitation of the
neuron, whereas when the spot of light is larger than
the RF or outside the RF inhibition occurs.

The implications for SNNs are that RFs can be
used in conjunction with neuron models to promote
feature selectivity and hence enhance the ‘richness’
of information flow. It should be pointed out that
RFs in this research behave in a similar manner to
membership functions and, unlike the visual and
auditory RFs found in the biology, the RFs in this
research are being utilised to process purely
numerical data.

3. FSNN (Fuzzy SNN) Topology

Biological neuron dynamics are determined by the
relationships between spike trains, synaptic
resources, post-synaptic currents and membrane
potentials. Neuron selectivity can be further
strengthened using RFs. The dilemma is in the way
in which all these various elements can be combined
in a logical way resulting in SNNs that provide
insight in turn into the biological neuron’s code, and
are useful from an engineering perspective.
Biological neurons obviously implement a form of
human reasoning. Human reasoning is fuzzy in
nature and involves a much higher level of
knowledge representation (Zadeh, 1965). Fuzzy rules
are typically defined in terms of linguistic hedges
e.g. low, high, excessive, reduced etc. Taking a cue
from fuzzy reasoning, the aim of this paper is to
demonstrate how the components necessary to define
a fuzzy rule in turn dictate the distribution of the
various biologically plausible computational
elements in an SNN. Fuzzy IF-THEN rules are of the
form:

IF (x1 is A1) AND …. AND (xN is AN) THEN (y is Z) (7)

where x1 to xN represent the network inputs, A1 to AN

represent hidden layer RFs and y is the network
output. Figure 1 shows the FSNN topology.

Figure 1 Generic FSNN Topology

At first glance it seems like any other fully connected
feed-forward topology. However, each layer uses
various computational elements to manage the
information flow and implement fuzzy reasoning.

The following subsections will outline the
components in each of the layers in the three-layer
SNN.

3.1. Input Layer

 The function of the input neurons is to simply
encode feature data into an appropriate frequency
range. Spike trains are then generated from the data
using a linear encoding scheme. There is always a
significant amount of pre-processing of input data
that is required in order to convert typically
numerical feature data into temporal spike train data.
Here the encoding scheme takes the frequency data
points and converts them into an inter-spike interval
(ISI) which is then used to create linear input spike
trains. Thus each data point is encoded to a particular
frequency, which is used to generate an input spike
train with a constant ISI. It is then the task of the
network to alter the flow of information depending
on the frequency encoding of the input data i.e. to be
frequency selective.

3.2. Hidden Layer

All of the synapses in the FSNN are dynamic.
There are facilitating synapses between the input and
hidden layers and depressing synapses between the
hidden and output layers. Gaussian RFs are placed at
every synapse between the input and the hidden
neurons.

In this work it should be noted that the Gaussian
RFs operate in the frequency domain. Since the input
data to the FSNN is encoded linearly as spike trains
of particular frequencies, the RFs utilised in this
work need to be selective to these differences in
frequency. In the biology, RFs usually operate in the
spatial domain, and relay spike trains of various
frequencies depending on where an input stimulus is
presented in relation to the position of the RF. In this
work, since data is encoded into frequencies, the RFs
are conceptualised as operating in the frequency
domain.

The frequency RFs determine where an input
frequency fi is in relation to the central operating
frequency of the RF FO. The weight is then scaled by

PD
Fi

ll
PD

F
Ed

ito
r w

ith
 F

re
e

W
rit

er
 a

nd
 T

oo
ls

http://www.pdfill.com

6
an amount φij when calculating the PSR. It is

straight-forward for the synapse to measure the input
frequency of the RF by measuring the ISI of the
linear encoded spike trains. This whole process
relates to the ‘IF (xi is Ai)’ part of the fuzzy rule,
where xi is the input and Ai represents the RF. In this
way the RF makes the synapse frequency selective in
such a way that the numerous parameters in the
dynamic synapse model do not have to be carefully
tuned. This is aided by the fact that the synaptic
weights of the hidden layer neurons are fixed and
uniform in such a way that scaling of the weight by
φij produces the desired variation in firing frequency
of the hidden layer neurons. This is further facilitated
by keeping the frequency range of encoded spike
trains sufficiently small, [10 40] Hz in this work.
Although it should be understood that the weights do
not need to be carefully tuned, ASE values (see
Equation 4) in the vicinity of 900 pA should suffice
for most applications.

Employing facilitating synapses for this purpose
makes the hidden layer synapses respond like a non-
linear filter. A single hidden layer containing
facilitating synapses can approximate all filters that
can be characterised by the Volterra series (Maass &
Sontag, 2000). Like the Taylor series, the Volterra
series can be used to approximate the non-linear
response of a system to a given input. The Taylor
series takes into account the input to the system at a
particular time, whereas the Volterra series takes into
account the input at all other times. Such filtering
capability has been recently reported in the literature.
It is thought that the interplay between facilitation
and depression is responsible for this capability, with
low-pass (Dittman et al., 2000), high-pass (Fortune
& Rose, 2001), and band-pass (Abbott & Regehr,
2004) filtering effects all having been observed.

Spiking neurons sum the post-synaptic potentials
to calculate the membrane potential. The function of
each hidden layer neuron is to impose the remaining
part of the antecedent fuzzy IF-THEN rule, namely
the conjunctive ‘AND’. This is not straight-forward
since simply summing the post-synaptic potentials is
tantamount to performing a disjunctive ‘OR’. The
collective aim of the RFs connecting to each hidden
layer neuron is to only allow spikes to filter through
to the output layer when all of the input frequencies
presented at each synapse are within the Gaussian
RFs. This can be ensured by making the RF
excitatory within the RF and inhibitory outside, as
with the centre-surround RFs observed in retinal
ganglion cells (Glackin et al., 2008a; Glackin et al.,
2008b). In terms of biological plausibility, this gating
property of RFs has been observed (Tiesinga et al.,
2004). The degree of synchrony of inhibitory
synaptic connections causes some RFs to act as

gates, transmitting spikes when synchrony is low,
and preventing transmission of spikes when
synchrony is high (Tiesinga et al., 2004). This has
been observed in vitro by injecting currents into rat
cortical neurons using a dynamic clamp and
modifying the amount of inhibitory jitter. Of course,
the gating property itself is unlikely to be as clear cut
as traditional ‘AND’ gates, instead it is likely to be
fuzzy in itself ranging between ‘OR’ and ‘AND’ on a
continuous scale. In this paper, the RFs are designed
to be conjunctive ‘AND’ gates. The reason for this is
that there is currently no rationale for the use of any
other types of gates in terms of clustering and
because there are constraints on the number of RFs
that can be implemented on the computer. To
produce the ‘AND’ gates, the excitatory (positive)
part of the Gaussian RF scales the weight in the
range [0, 1], and the inhibitory (negative) part of the
RF scales the weight in the range [0, (1 - N)], where
N is defined as the number of input neurons. In this
way, if even one input frequency lies outside the RF,
the resultant inhibitory post-synaptic potential will
have sufficient magnitude to ‘cancel out’ the post-
synaptic potentials from all the other synapses
connecting to the same hidden layer neuron. Linear
spikes encoded with frequency xi are routed to the
RFs located at synapses wij. Each synapse wij

contains a centre-surround RF of the kind shown in
Figure 2.

Figure 2 The conjunctive ‘AND’ part of the fuzzy
rule using excitatory/inhibitory receptive fields

The RFs are characterised by a central excitatory
Gaussian with inhibitory surround. The activation of
the RF φij, scales the weight wij, according to the
position of the input frequency xi and the operating
frequency of the RF fij. More formally, the activation
φij of the RF on the synapses wij is given by:

01.0

2

01.0
2

2

2

2

2

2

2

2

1

ij

iji

ij

iji

ij

iji

fx

fx
fx

ijiij

e

e

if

if

N

efx

 (8)

where xi is the frequency of the linear input spike
train from input i, N is the size of the input layer, and

fij is the operating frequency of the RF. 2
ij is the

width parameter of the RF located on synapse wij.
The Gaussian RFs are asymptotic at φij = 0, therefore
an arbitrary tolerance of 0.01 on φij is used to sharply
implement the inhibitory part of the RF and prevent
calculation of excessively small floating point
numbers in MATLAB.

PD
Fi

ll
PD

F
Ed

ito
r w

ith
 F

re
e

W
rit

er
 a

nd
 T

oo
ls

http://www.pdfill.com

7

3.3. Output Layer

The aim of the depressing synapses connecting the
hidden layer to the output layer is to produce spikes
in the output in a regimented stable manner. It is then
the task of the ReSuMe supervised learning
algorithm (Kasiński & Ponulak, 2005) to associate
the hidden layer neurons to the output layer neurons.
Figure 3 illustrates the ReSuMe process. The
learning windows are similar to STDP (Wd) and anti-
STDP (Wout). The parameters sd and sout denote the
time delays (td – tin) and (tout – tin) respectively.

Figure 3 Illustration of the learning properties of
ReSuMe (Remote Supervision). The learning rules
are exponential functions that modify the synaptic
weights according to the time difference between the
desired spike time and input spike time (left plot);
and according to the time difference between the
output spike time and the input spike time (right
plot).

A modified version of the ReSuMe algorithm was
implemented using differential equations that enable
the algorithm to be executed in a one-pass manner in
much the same way that (Song et al., 2000)
implemented the additive STDP rule. The equations
used are shown in equations 7.

d
d

dout
out

out W
dt

dW
sandW

dt

dW
s (7)

Thus performing the fuzzy inferencing between the
hidden layer (antecedents), and the output layer
(consequents).

In summary, the presented FSNN topology
provides a rationale for the use of RFs, excitatory
and inhibitory neurons, as well as facilitating and
depressing synapses. The next section of the paper
describes how such a network may be used to solve
two complex non-linear benchmark classification
problems.

4. Pre-processing the Data

To test the validity of the approach presented in
this paper, two well-known benchmark classification
datasets were utilised. The two benchmarks are the
Fisher Iris (Fisher, 1936) and the Wisconsin Breast
Cancer (Asuncion & Newman, 2007) datasets.
Arguably the two datasets have been used repeatedly
for testing classification capabilities for numerous
numerical, statistical and machine learning

algorithms, and the plethora of benchmark results
make them invaluable for refining new approaches.

4.1. Fisher Iris Data

The Iris classification problem (Fisher, 1936) is
well-known in the field of pattern recognition. The
data-set contains 3 classes of 50 types of Iris plant.
The 3 species of plant are Iris Setosa, Iris
Versicolour, and Iris Virginica. In the interests of
clarity the three classes shall be referred to as class 1,
class 2, and class 3 respectively. Class 1 is linearly
separable from classes 2 and 3. Classes 2 and 3 are
not linearly separable and make Iris a complex non-
linear classification problem. The lack of sufficient
training data, a problem which is exacerbated by
partitioning for cross-validation tests for
generalisation, makes training and particularly
generalisation for Iris problematic. With a training
set of 90 data points (2/3 of the data), 5
misclassifications in the training set will result in less
than 95% accuracy, and with 60 data points in the
testing (the remaining 1/3 of the data), 4
misclassifications results in a sub-95% testing error.
In this way, classification problems involving larger
data sets are ‘more forgiving’.

4.2. Wisconsin Breast Cancer Data

The Wisconsin Breast Cancer Dataset (Asuncion
& Newman, 2007) is another well-known benchmark
classification problem. The Wisconsin breast cancer
dataset contains 699 instances, with 458 benign
(65.5%) and 241 (34.5%) malignant cases. The
dataset has only 6 samples with missing data and
these samples were removed. Each instance is
described by 9 features with an integer value in the
range 1-10 and a class label.

4.3. Positioning the receptive fields

The task of determining the number, position and
spread of RFs (membership functions) is an
important step in tuning a fuzzy system. This is
because the maximum number of possible rules
governing the fuzzy inferencing process is
determined by R = NM where R is the number of
rules, M is the number of membership functions, and
N is the number of inputs. For the Iris classification
task there are 4 inputs (4 features), therefore the
number of rules (number of hidden layer neurons) is
given by R = 4M. This means that the number of
possible rules grows rapidly as the number of
membership functions increases. This phenomenon is
known as ‘rule explosion’. There are many
methodologies for optimising RF placement.

PD
Fi

ll
PD

F
Ed

ito
r w

ith
 F

re
e

W
rit

er
 a

nd
 T

oo
ls

http://www.pdfill.com

8
Methodologies include statistical techniques and

clustering algorithms (Abdelbar et al., 2006). For this
dataset, Fuzzy C-Means (FCM) clustering was used
to calculate the positions for RF placement that
facilitate separation of the input feature data into
their respective classes.

Fuzzy clustering is distinct from hard clustering
algorithms such as K-means in that a data point may
belong to more than one cluster at the same time.
FCM clustering was first developed by Dunn in 1973
(Dunn, 1973) and later refined by Bezdek in 1981
(Bezdek, 1981). FCM is better at avoiding local
minima than K-means but it is still susceptible to the
problem in some cases. The algorithm for FCM is an
iterative procedure that aims to minimise the
following objective function.

2

11
ji

m
ij

C

i

m

i
m cxuJ

 , (1 ≤ m < ∞) (8)

where m refers to the degree of fuzziness, and should
be a real number greater than 1. It is commonly set to
2 in the absence of experimentation or domain
knowledge. uij is the membership of any data point xi

in the cluster j. cj is the centre of the cluster j, and
║*║ represents any norm that measures the
similarity (distance) between the coordinate xij and
the cluster centre. Through iteration of the algorithm,
the membership is updated with the following
function, until the termination criteria ε is met.

1

2

1

1

m

ki

ji
c

k

ij

cx

cx

u

,

m
ij

N

i

i
m
ij

N

i
j

u

xu
c

1

1
.

(9)

The stopping criteria is given by:

 m
ij

k
ijij uu 1max

, (10)

ε is in the interval [0,1], and k are the iteration steps.
The Iris training set was clustered with FCM in a

five-dimensional sense (4 features and the class
data). One advantage of FCM is that it can cope
when clustering the input data with the class data
without altering the class information very much in
the resulting clusters. This was the case with the Iris
data, for the most part resulting in clusters associated
with a particular class. Of course, since FCM is a
fuzzy clustering technique, data samples are allowed
to belong to multiple classes with varying degrees of
membership. Careful selection of appropriate cluster
widths can ensure, where possible, that hidden layer
clusters are associated with a single class.

MATLAB’s FCM algorithm was used to perform the
clustering.

4.4. Thresholding

The FCM program returns the cluster positions and a
fuzzy membership matrix U for all the data samples
in the training set. By setting appropriate thresholds
on the fuzzy memberships to each cluster, it is
possible to determine which data samples should be
within each cluster and which should be excluded.
Care should be taken with the thresholding to ensure
that each data sample belongs to at least one cluster.
Otherwise the networks’ hidden layer will ignore the
data sample. Figure 4 shows an example of
thresholding the fuzzy membership matrix U
obtained using MATLAB’s FCM clustering
algorithm.

Figure 4 Intuitive Thresholding Technique

The figure shows U on the left and the thresholds on
the clusters on the right. The membership values are
obtained by calculating the Euclidean distance
between the data points (1 to 9 in this simple
example) and the clusters (1 to 6). The Euclidean
distances then are scaled by the sum of Euclidean
distances in each column so that the total
membership is equal to 1. Of course Euclidean
distance is not the only distance measure that can be
used to determine the distance between a cluster and
a datapoint. Several other distance measures were
investigated including (Manhattan and Mahalanobis
distances to mention but a few) but subjectively
Euclidean was preferred for its simplicity and ease of
thresholding. Once the thresholding has determined
which data samples should belong to each cluster
(shaded in grey in Figure 4), the variances for each
feature can be calculated from the features of each
included data sample. These feature variances are
then used to specify the widths of each Gaussian RF.

5. Fisher Iris Classification Results (Subjective
Thresholding Technique)

The simple example shown in Figure 4 illustrates the
thresholding technique for a small number of data
points and clusters, but for larger sets optimisation of
the thresholds is problematic. The subjective nature
of the thresholding technique means that often there
is a trade-off between the classification of data points
crisply into particular classes and the number of data
points included in the classification. Figure 5 shows
the hidden layer output after thresholding has been
performed for the Iris training dataset.

PD
Fi

ll
PD

F
Ed

ito
r w

ith
 F

re
e

W
rit

er
 a

nd
 T

oo
ls

http://www.pdfill.com

9

Figure 5 Hidden Layer Processing of Fisher Iris
Training Data

The original ordering of the training data is used for
clarity, with each successive 30 second interval
corresponding to classes 1, 2 and 3. The order of the
data does not affect the processing of the hidden
layer dynamic synapses since synaptic resources are
re-initialised after processing each data point. The
hidden layer neurons have also been put in order of
class. As can be seen from Figure 5, there are 3, 3
and 4 clusters (and hence hidden neurons) associated
with classes 1, 2 and 3 respectively. The resultant
classification of the data is clear to see from the
figure, however there are some anomalies. The
thresholding technique could not exclusively
associate hidden neurons 5 and 6 to class 2 data
points. Similarly, hidden neurons 9 and 10 could not
be exclusively associated with class 3 data points
without the hidden layer excluding some points
altogether. In all, there were 9 data points (10% of
the training set) that were not uniquely associated
with one particular class. This means that 10% of the
data in the training set is unresolved in terms of the
FSNN associating the data correctly with the class
data. It is the task of the ReSuMe supervised training
regime to resolve this error.

5.1. Resume Training

The first step in implementing the ReSuMe training
was to specify the supervisory spike trains to be
used. The ReSuMe algorithm was ‘forgiving’ in this
respect producing good convergence for a wide range
of supervisory frequencies. Therefore supervisory
spike trains of a 50 Hertz frequency were delivered
to the appropriate class output neuron whenever the
data sample belonged to that class. The supervisory
signal for the other class neurons for the given data
sample was of zero frequency. The learning windows
were equal and opposite in magnitude producing a
maximum possible weight update of 0.05. Each
training data sample is deemed correctly classified
when it produces the maximum number of output
spikes at the correct output class neuron. The training
resulted in 10/409 misclassified data samples (97.6%
accuracy). Once training was completed, all weights
were then fixed and the unseen testing data (274
samples) were presented to the network. During the
testing phase 13/274 data points were misclassified
(95.3% accuracy), showing good generalisation

6. Wisconsin Breast Cancer Classification
Results (Evolutionary Threshold Optimisation)

When producing clusters for the Iris dataset, the
class information was included in the clustering
procedure as described in section 4.3. For the
Wisconsin dataset it was desired to cluster the feature
data in ignorance of the class information. Clustering
without prior knowledge of class information is
problematic because data points may be close
together with regards to feature data but differ solely
with regards to class information. Therefore any
clusters generated may contain data points belonging
to both classes. The task of the thresholding
technique is complicated by this cluster ‘fuzziness’.
It was discovered that the subjective thresholding
approach was time-consuming with regards to larger
datasets. Preliminary experiments with FCM
indicated that in order to achieve objective values
comparable with the Iris dataset (with data scaled
into the same frequency range), more clusters would
be required to be generated. The larger number of
thresholds accompanying these clusters further
complicates the optimisation of the clusters. With
MATLAB’s FCM algorithm it is required to specify
the number of clusters required in advance. However,
specifying too many can create ‘clusters’ that contain
only one data-point, obviously these types of clusters
could have disastrous consequences for
generalisation. It is desirable therefore to use an
optimisation technique to determine the required
number of clusters, and perform the thresholding for
problems that involve larger datasets such as the
Wisconsin Breast Cancer dataset.

A Genetic Algorithm (GA) was used to find a
good solution to the thresholding problem for the
Wisconsin dataset, thus optimising the configuration
of cluster sizes. GAs are particularly useful for
finding good solutions for problems with high
dimensional parameter spaces (Goldberg, 1989;
Holland, 1975). In the typical GA considered in this
research, a genotype encodes the solution to the
problem. The genotype is constructed from the
individual cluster thresholds (alleles), and then a
fitness function determines the merit of each solution
to the problem by assigning a fitness value to each
genotype. In this way, by utilising thresholds as the
basis for the hidden layer RF configuration,
individual chromosomes in the GA are compact and
as such well-suited to evolutionary optimisation
(Cantu-Paz and Kamath, 2005). The GA developed is
of the indirect topological variety (Miller et al.,
1989), since chromosomes only contain information
about part of the structure of the FSNN.

PD
Fi

ll
PD

F
Ed

ito
r w

ith
 F

re
e

W
rit

er
 a

nd
 T

oo
ls

http://www.pdfill.com

10
The following equations define fitness. The

membership matrix U returned from the FCM
algorithm is first augmented with the threshold
vector T (genotype) to give:

SZHnSZHSZH

iji

n

Tuu

Tu

Tuu

U

,1,

,

1,11,1

(11)

where SZH is the size of the hidden layer (number of
clusters) and n is the number of data points in the
training set. A membership index matrix S is
constructed according to the following rules:

iji

iji

ji Tu

Tu
s

,

,

, 0

1
(12)

The elements of the thresholded-membership matrix
V are then calculated using:

jijiji suv ,,, (13)

It is known from the training data which elements of

jiv , belong to which class, therefore we define

 qv as being an element of V belonging to class q.
The fitness of each allele can now be evaluated:

n

j
ji

n

j
ji

n

j
ji

n

j
ji

n

j
ji

n

j
jin

j
ji

n

j
ji

n

j
ji

n

j
ji

n

j
jin

j
ji

n

j
ji

n

j
ji

i

vv

vv

vv
vv

v

vv
vv

v

F

1

2
,

1

1
,

1

2
,

1

1
,

1

2
,

1

1
,

1

2
,

1

1
,

1

2
,

1

2
,

1

1
,

1

2
,

1

1
,

1

1
,

00

1

1

1

(14)

Finally the total fitness of each genotype is given by:

SZH

i
iFF

1

(15)

According to equation (14) high fitness (a fitness
value of zero) is awarded to those thresholds that
crisply classify the data, whereas thresholds that
classify data points belonging to both classes result
in a fitness value close to 1 (low fitness), as do
thresholds that do not classify the data at all. In this
way the GA does not tell the clusters which class

they belong to, it simply rewards crispness of
classification.

As well as this objective, there are several
constraints that need to be applied to the GA. The
thresholds that are randomly initialised or mutated
must be in the range [0, 1] as numbers outside this
range have no meaning in terms of fuzzy
membership. Additionally, every data point must be
processed by at least one cluster to ensure that data is
not ignored by the hidden layer of the network. The
FCM algorithm is first used to generate 100 cluster
candidates. A population of 100 randomly generated
solutions is evolved over 100 generations under the
control of genetic operators. The principal operators
are selection (preferential sampling), cross-over
(recombination) and mutation. Figure 6 illustrates the
flow of operation of the GA.

Figure 6 GA Flow of Operation

A population of 100 individuals are initialized in the
range [0,1], every individual in the population is
evaluated according to equations 11-15. Ranking of
the individuals is then performed according to
fitness. The two individuals with the highest fitness
are termed elite individuals and are retained for at
least one more generation. A cross-over fraction of
0.8 is used to determine that the next 78 (0.8 of the
population of non-elite individuals) are used for
recombination. Recombination or reproduction is
performed by randomly selecting multiple cross-over
points according to the uniform distribution. Then
the remaining 20 individuals are mutated.
Constrained mutation is employed by necessity as
values for individual thresholds have no meaning
outside the range [0,1], since this is the range of
fuzzy membership of data-points to clusters. Thus
the next generation is constructed and the algorithm
iterates until the target fitness has been reached, or
the fitness has not improved by a significant amount
for 20 generations, or the maximum number of
generations has been reached. Figure 7 shows a plot
of the mean fitness against the fittest individual at
every generation.

Figure 7 GA Best and Mean fitness for Wisconsin
Breast Cancer training data (fold 1)

As can be seen from the figure the mean fitness
approaches the best fitness when the GA
approximates its best solution. It should be noted
however, that since the GA initialises its thresholds
randomly that it is important to perform multiple
runs.

The hidden layer output resulting from the first
fold of training data is shown in Figure 8.

PD
Fi

ll
PD

F
Ed

ito
r w

ith
 F

re
e

W
rit

er
 a

nd
 T

oo
ls

http://www.pdfill.com

11
Figure 8 Hidden layer output for Wisconsin

Breast Cancer training set (fold 1)

The data is in class order for clarity and the
classification from the hidden layer is clearly shown.
The hidden layer neurons (plotted vertically in the
figure) are active in the first approximately two
thirds of the data (class 1) or in the final third. The
degree of activity of the hidden layer neurons is
shown by the density of the spikes. It is clear to see
for each hidden layer neuron which class it is
classifying, although there is of course a certain
amount of fuzziness when a particular hidden layer
neuron produces spikes across the whole range of
input data (but favours one class over another in
terms of density of spikes). Additionally, as can be
seen from the figure the output of only 41 of the
original clusters is presented. The reason for this is
that the GA sets the cluster sizes of the other 59
clusters to 0; therefore they are removed from the
implementation of the clusters in the hidden layer.

6.1. ReSuMe Training

As with the Iris problem, once the hidden layer
RFs have been configured it is the task of the
ReSuMe supervised learning to associate hidden
layer neurons to output class neurons. The difference
between the Subjective and Evolutionary approaches
is that the latter is by definition an automated
technique and as such cross-validation (CV) can be
utilised to test for generalisation. Thus five-fold CV
was implemented and the results are shown in Table
1.

Table 1 – Wisconsin Results

7. Discussion

Leave-one-out tests have been criticised as a
basis for accuracy evaluation, with the conclusion
that CV is more reliable (Kohavi, 1995). However,
CV tests are also not ideal. Theoretically about 2/3 of
results should be within a single standard deviation
from the average, and 95% of results should be
within two standard deviations, so in a 10-fold CV
you should very rarely see results that are better or
worse than two standard deviations. The main
criticism of generalisation tests is that running them
several times produces different solutions. Therefore,
the search for the best generalisation estimator is still
an open problem (Dietterich, 1998; Nadeau, 1999).
Even the best accuracy and variance estimation is not
sufficient, since performance cannot be characterised
by a single number. It would be much better to
provide full Receiver Operator Curves (ROC).

However, while ROC curves are considered to be
superior it is useful to at least use generalisation tests
that aid comparison to previous work on the
benchmark datasets presented in this paper.

The presented FSNN topology is biologically
based in a number of ways. As with all SNNs the
topology uses the temporal encoding of data into
spike trains. The topology contains facilitating
excitatory and inhibitory dynamic synapses (hidden
layer) that act as non-linear filters. There is even
biological evidence to suggest that the gating
phenomenon implemented in its purest sense in this
work (i.e. as pure AND gates) exists in the biology.
In particular, when there is synchrony between
inhibitory connections (Tiesinga, 2004). However, it
is unclear to what extent the formation of RFs in the
biology is evolved or learned; at best the mechanisms
governing their use are poorly understood. Certainly
there are structural aspects of RFs that are likely
evolved (for example retinal ganglion cell and
photoreceptors) and there is evidence that RFs can
adapt to new stimuli. However, study of this
phenomenon is limited by experimental technique
and development, and it is fair to say the field has
considerable scope for further development.

8. Conclusions and Future Work

This paper presents a detailed review of relevant
publications on existing training algorithms and
associated biological models. To underpin the FSNN
topology, results for the well-known Fisher Iris and
Wisconsin Breast Cancer classification problems are
presented. The FSNN topology provides a rationale
for the assembly of biological components such as
excitatory and inhibitory neurons, facilitating and
depressing synapses, and RFs. In particular, the
major contribution of this paper is how RFs may be
configured in terms of excitation and inhibition to
implement the conjunctive AND of the antecedent
part of a fuzzy rule.

Currently, the work relies on the use of FCM
clustering as a strategy for combating the rule-
explosion phenomenon of fuzzy logic systems (FLS).
Although fuzzy reasoning provides a rationale for the
deployment of biological models, there are as yet no
biological models for the positioning and size of RFs.
Typically in FLSs this is done using purely
computational techniques such as gradient-descent
algorithms or intuitively. Often membership
functions are chosen for the smoothness of control
surfaces or for other reasons, it is as much art as
science and very problem specific. Perhaps
fortunately, neuroscientists are studying RF

PD
Fi

ll
PD

F
Ed

ito
r w

ith
 F

re
e

W
rit

er
 a

nd
 T

oo
ls

http://www.pdfill.com

12
formation more intensely than ever before and it

seems plausible that a biological alternative to using
such computational clustering algorithms may exist.
Ideally, it would be preferable for the FSNN to
determine the number, placement and spread of
fuzzy clusters, without relying on external statistical
or clustering techniques in reflection of the biology.
For this reason, future work in recognition of the
growing interest in biological RFs, will involve the
development of dynamic RFs. The ultimate aim is to
develop a biologically plausible FSNN that tunes
itself using strictly biological principles, and in that
regard this work represents a significant contribution.

References

(1) Abbott, L. & Nelson, S. (2000). Synaptic plasticity:
taming the beast. Nature Neuroscience, 3, 1178-1183.

(2) Abbott, L. F. & Regehr, W. G. (2004). Synaptic
computation. Nature, 431, 7010, 796-803.

(3) Abdelbar, A., Hassan, D., Tagliarini, G. & Narayan,
S. (2006). Receptive field optimization for ensemble
encoding. Neural Computing & Applications, 15, 1-8.

(4) Asuncion, A., Newman, D.J. (2007). UCI Machine
Learning Repository.
http://www.ics.uci.edu/~mlearn/MLRepository.html

(5) Barlow, H. (1953). Summation and inhibition in the
frog's retina. The Journal of Physiology, 119, 69.

(6) Belatreche, A., Maguire, L.; McGinnity, T. & Wu, Q.
(2003). A Method for the supervised training of
Spiking Neural Networks. IEEE Cybernetics
Intelligence--Challenges and Advances (CICA), 39-
44.

(7) Bengio, Y. & Nadeau, C. (2003). Inference for the
generalization error. Machine Learning. 52, 239-281

(8) Bezdek, J. (1981). Pattern Recognition with fuzzy
objective function algorithms. Kluwer Academic
Publishers Norwell, MA, USA.

(9) Bi, G. & Poo, M. (1999). Distributed synaptic
modification in neural networks induced by patterned
stimulation. Nature, 401, 6755, 792-795.

(10) Bienenstock, E., Cooper, L. & Munro, P. (1982).
Theory for the development of neuron selectivity:
orientation specificity and binocular interaction in
visual cortex. Journal of Neuroscience, 2, 32-48.

(11) Bohte, S., Kok, J. & La Poutré, H. (2002). Error-
backpropagation in temporally encoded networks of
spiking neurons. Neurocomputing, 48, 17-37.

(12) Borgers, C. & Kopell, N. (2003). Synchronization in
Networks of Excitatory and Inhibitory Neurons with
Sparse, Random Connectivity. Neural Computation,
15, 509-538.

(13) Cantu-Paz, E. & Kamath, C. (2005). An empirical
comparison of evolutionary algorithms and neural
networks for classification problems. IEEE
Transactions on Systems, Man and Cybernetics, 35, 5,
915-927.

(14) Carnell, A. & Richardson, D. (2005). Linear algebra
for time series of spikes. Proceedings of the 13th

European Symposium on Artificial Neural Networks
(ESANN). 363-368.

(15) del Castillo, J. & Katz, B. (1954). Quantal
components of the end-plate potential. The Journal of
Physiology, Physiological Soc., 124, 560.

(16) DeWeese, M. & Zador, A. (2006). Neurobiology:
efficiency measures. Nature. 439, 936-42

(17) Dietterich, T. (1998). Approximate statistical tests for
comparing supervised classification learning
algorithms. Neural Computation, 10, 1895-1923.

(18) Dittman, J. S., Kreitzer, A. C. & Regehr, W. G.
(2000). Interplay between facilitation, depression, and
residual Calcium at three presynaptic terminals.
Journal of Neuroscience, 20, 4, 1374-1385.

(19) Dunn, J. (1973). A fuzzy relative of the ISODATA
process and its use in detecting compact well-
separated clusters. Cybernetics and Systems, 3, 32-57.

(20) Fisher, R. (1936). The use of multiple measurements
in taxonomic problems. Annals of Eugenics, 7, 179-
188.

(21) Fortune, E. S., & Rose, G. J. (2001). Short-term
synaptic plasticity as a temporal filter. Trends in
Neurosciences, 24, 7, 381-385.

(22) Fuhrmann, G., Segev, I., Markram, H. & Tsodyks, M.
(2002). Coding of temporal information by activity-
dependent synapses. Journal of Neurophysiology, 87,
140-148.

(23) Glackin, C., McDaid, L., Maguire, L. & Sayers, H.
(2008). Implementing Fuzzy Reasoning on a Spiking
Neural Network. Proceedings of the 18th International
Conference on Artificial Neural Networks Part II,
258-267.

(24) Glackin, C., McDaid, L., Maguire, L. & Sayers, H.
(2008). Classification using a fuzzy spiking neural
network. The 2008 UK Workshop on Computational
Intelligence (UKCI).

(25) Goldberg, D. (1989). Genetic Algorithms in Search,
Optimization and Machine Learning. Addison-Wesley
Longman Publishing Co. Inc., Boston, MA, USA.

(26) Hebb, D. (1949). The Organization of Behavior: A
Neuropsychological Theory. Wiley.

(27) Holland, J. (1975). Adaptation in natural and
artificial systems. Michigan Press, MI.

(28) Izhikevich, E. M. & Desai, N. S. (2003). Relating
STDP to BCM. Neural Computation, 15, 1511-1523.

(29) Izhikevich, E. (2004). Which model to use for cortical
spiking neurons? IEEE Transactions on Neural
Networks, 15, 1063-1070.

(30) Kasinski, A. & Ponulak, F. (2005). Experimental
Demonstration of Learning Properties of a New
Supervised Learning Method for the Spiking Neural
Networks. Proceedings of the 15th International
Conference on Artificial Neural Networks, 3696, 145-
153.

(31) Kasinski, A. & Ponulak, F. (2006). Comparison of
supervised learning methods for spike time coding in
spiking neural networks. International Journal of
Applied Mathematics and Computer Science, 16, 101.

(32) Kohavi, R. (1995). A Study of Cross-Validation and
Bootstrap for Accuracy Estimation and Model
Selection. International Joint Conference on Artificial
Intelligence, 14, 1137-1145.

PD
Fi

ll
PD

F
Ed

ito
r w

ith
 F

re
e

W
rit

er
 a

nd
 T

oo
ls

http://www.ics.uci.edu/~mlearn/MLRepository.html
http://www.pdfill.com

13
(33) Legenstein, R., Naeger, C. & Maass, W. (2005). What

Can a Neuron Learn with Spike-Timing-Dependent
Plasticity? Neural Computation, 17, 2337-2382.

(34) Maass, W. (1997). Networks of spiking neurons: The
third generation of neural network models. Neural
Networks, 10, 1659-1671.

(35) Maass, W. & Sontag, E. (2000). Neural Systems as
Nonlinear Filters. Neural Computation, 12, 1743-
1772.

(36) Maass, W., Natschlager, T. & Markram, H. (2002).
Real-Time Computing Without Stable States: A New
Framework for Neural Computation Based on
Perturbations. Neural Computation, 14, 2531-2560.

(37) Miller, G., Todd, P., & Hegde, S. (1989). Designing
neural networks using genetic algorithms.
Proceedings of the third international conference on
Genetic Algorithms, 379-384.

(38) Natschlager, T. & Maass, W. (2001). Finding the Key
to a Synapse. Advances in Neural Information
Processing Systems, 138-144.

(39) Pantic, L., Torres, J. & Kappen, H. (2003).
Coincidence detection with dynamic synapses.
Network Computation in Neural Systems, 14, 17-33.

(40) Pfister, J.; Barber, D. & Gerstner, W. (2003). Optimal
Hebbian Learning: A Probabilistic Point of View.
Lecture Notes in Computer Science, 92-98.

(41) Rieke, F. (1997). Spikes: Exploring the Neural Code.
MIT Press.

(42) Ruf, B. & Schmitt, M. (1997). Learning Temporally
Encoded Patterns in Networks of Spiking Neurons
Neural Processing Letters, 5, 9-18.

(43) Song, S., Miller, K. & Abbott, L. (2000). Competitive
Hebbian learning through spike-timing-dependent
synaptic plasticity. Nature Neuroscience, 3, 919-926.

(44) Sougné, J. (2000). A Learning Algorithm for Synfire
Chains. Connectionist Models of Learning,
Development and Evolution: Proceedings of the Sixth
Neural Computation and Psychology Workshop, 23.

(45) Thomson, A. (1997). Synaptic interactions in
neocortical local circuits: dual intracellular recordings
in vitro. Cerebral Cortex, 7, 510-522.

(46) Tiesinga, P., Fellous, J., Salinas, E., José, J. &
Sejnowski, T. (2004). Inhibitory synchrony as a
mechanism for attentional gain modulation. Journal of
Physiology, 98, 296-314.

(47) Tsodyks, M., Pawelzik, K. & Markram, H. (1998).
Neural Networks with Dynamic Synapses. Neural
Computation, 10, 821-835.

(48) Zadeh, L. (1965). Fuzzy sets. Information and
Control, 8, 338-353.

PD
Fi

ll
PD

F
Ed

ito
r w

ith
 F

re
e

W
rit

er
 a

nd
 T

oo
ls

http://www.pdfill.com

Fold 1 2 3 4 5
Average

(%)
Standard
DeviationNumber of

Clusters 35 40 41 41 43

Training (%) 98.5 98.5 98.8 98.5 97.5 98.4 0.45
Testing (%) 94.8 95.9 97.8 97.0 97.0 96.5 1.04

Table 1 Wisconsin Results

PD
Fi

ll
PD

F
Ed

ito
r w

ith
 F

re
e

W
rit

er
 a

nd
 T

oo
ls

http://www.pdfill.com

Figure 1 Generic FSNN Topology

PDFill
PDF Edito

r w
ith

 Free
 W

rite
r a

nd Tools

http://www.pdfill.com

Figure 2 Excitatory/inhibitory receptive field

PDFill
PDF Edito

r w
ith

 Free
 W

rite
r a

nd Tools

http://www.pdfill.com

Figure 3 ReSuMe Learning

PDFill
PDF Edito

r w
ith

 Free
 W

rite
r a

nd Tools

http://www.pdfill.com

Figure 4 Intuitive Thresholding Technique

PDFill
PDF Edito

r w
ith

 Free
 W

rite
r a

nd Tools

http://www.pdfill.com

Figure 5 Iris Hidden Layer Processing

PDFill
PDF Edito

r w
ith

 Free
 W

rite
r a

nd Tools

http://www.pdfill.com

Figure 6 GA Flow of Operation

PDFill
PDF Edito

r w
ith

 Free
 W

rite
r a

nd Tools

http://www.pdfill.com

Figure 7 Wisconsin GA Fitness

PDFill
PDF Edito

r w
ith

 Free
 W

rite
r a

nd Tools

http://www.pdfill.com

Figure 8 Wisconsin Hidden Layer Processing

PDFill
PDF Edito

r w
ith

 Free
 W

rite
r a

nd Tools

http://www.pdfill.com

