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Abstract 

 

Power generation is the largest single source of greenhouse gas emissions, accounting for 

some 40% of the world total (1). The situation can be improved by usage of renewable 

fuels. There is a lot of controversy and growing concerns regarding usage of so called first 

generation bio fuels produced from food crops. The attention of industry and researchers is  

moving towards second generation fuels obtained from non edible sources. Waste food or 

meat by-products can be processed into tallow. This thesis focuses on the suitability and 

feasibility of animal fat usage as a fuel for internal combustion engines. The applied 

approach can be characterised by acknowledging the challenges and difficulties of using 

untreated fat in the engine, where modifications to the fuel supply system are minimal; the 

consequences are described and analysed. This work is an attempt to provide guidance and 

minimal requirements for animal fat to be utilised as fuel. 

 

Animal fat (tallow) has been used by humans as source of energy since the Palaeolithic 

age. The main area of application was combustion in various types of lamps. Tallow is 

obtained from animal by-products in a process called rendering. The raw material is 

crushed and heated. The process eliminates water, sterilises the material and allows it to be 

separated into fats, meat and bone meal. It may regarded to be a waste product, however, 

access to the raw material, such as whales washed on shore, was regulated by law from as 

early as the 12th century. The feasibility of alternative fuel usage may often be a critical 

factor affecting power plant type selection. The renewable electricity generation 
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subsidising system in the United Kingdom has been reviewed. A basic feasibility study for 

the installed generating set was prepared and the highest tallow price at which electricity 

generation is profitable was determined. It was proven that usage of tallow can be feasible, 

provided that some form of incentive for biomass or waste technology is implemented.  

 

The properties of tallow were monitored on a weekly basis throughout a period of one 

year. By performing an analysis of laboratory test results, it was established whether the 

product quality is in statistical control. Some properties, such as acidity, moisture or ash 

content, showed significant variability throughout the year. Possible reasons causing 

variable and high acidity are given together with a proposal for an acidity removal method. 

The proposed method of evaporating free fatty acid under reduced pressure was tested in a 

laboratory installation and a promising reduction efficiency of 50 % was achieved. 

 

The effect of storage and supply temperatures on the properties of tallow was investigated. 

The available laboratory facilities enabled the verification of changes in fat’s viscosity, 

density and surface tension. Pre heating to 90°C enables reduction of all tested properties, 

however, the achieved results are comparable with Heavy Fuel Oil (HFO) rather than 

automotive diesel fuel. Lubricity of tallow was tested, to predict possible effects of its 

usage on the longevity of the engine fuel supply system. Elevated temperature does not 

have a negative impact on the lubricating properties of tallow. Storage conditions are an 

important factor affecting the quality of bio fuels. The impact of storage temperature on 

deterioration in tallow quality was investigated over a period of one month. It was proven 
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that animal fat can be stored in a liquid form for a prolonged period of time without 

deterioration of its properties.  

 

The combustion process of animal fat was compared with that of diesel fuel. Tests were 

conducted at three different loads. Usage of animal fat results in higher cylinder pressures, 

and the heat release rate for the premixed combustion phase is significantly lower. For high 

load operation, all measured emissions were lower for animal fat with exception of 

nitrogen oxides. Due to low sulphur content there is no requirement for a sulphur dioxide 

abatement system. The available emission control systems have been reviewed and a 

solution choice has been made, based on legal and economic criteria. Cooled Exhaust Gas 

Recirculation (cEGR) was designed and installed. Trial test results are presented and 

analysed. The system enabled reduction of nitrogen oxides’ emissions by 75%.  

 

A summary of two thousand hours operation of the 800 kW generating set using neat fat is 

provided. The performance of injectors and fuel pumps was investigated. It was proven 

that appropriate filtration and supply strategy can enable problem free operation of the 

internal combustion engine. An increased tendency for deposit formation was recorded. 

Two types of lubricating oil were tested. By adhering to the manufacturer’s 

recommendation for the lubricating oil centrifuge cleaning frequency, enabled the 

achievement of a 1000 hours oil change interval, the same as for fossil fuel operation. 

Usage of tallow causes an increase in oil viscosity.   
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Chapter 1  INTRODUCTION 

 

1.1 Thesis Background  

 

The UK Government has set strategic targets for both the energy market and industry. 

Documents such as the Low Carbon Transition Plan and Renewable Energy Strategy 

specify that emissions, expressed as metric tonne carbon dioxide equivalent (MtCO2e),  

must be cut by 18% by 2020 (compared to the 2008 level) (2) and 15% of energy should be 

generated from renewable sources by 2020 (3). The targets can be achieved by extended 

usage of biomass as a source of renewable energy. There is a potential in using crude fats, 

like tallow, as fuel for internal combustion engines. By adopting the right working 

practices and procedures and implementing appropriate treatment methods, the rendering 

industry may play an important role in the renewable energy sector. 

 

This thesis is one of the outputs of a collaborative project established between The School 

of Mechanical Engineering at The University of Birmingham and a leader in the UK 

rendering industry, Staffordshire based, John Pointon & Sons. Cooperation was in the form 

of a TSB (Technology Strategy Board) funded KTP (Knowledge Transfer Partnership). 
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1.2 Objectives 

 

The main aim of the research process described in this thesis is to verify suitability of 

animal fat as fuel for internal combustion engines. The objectives of this research were to:  

- identify, analyse and solve fuel flow-related problems with close attention given to 

the fuel supply system and fuel injection system 

- study the impact of raw and treated tallow on the combustion quality, emissions, 

performance and economy  

- study the mechanical and chemical effects of animal fat fuel on the engine 

components and longevity 

- optimise the engine operation, prepare procedures for operation of gen-set engines 

using tallow fuels  

- improve or modify fuel quality by varying the tallow preparation, fuel production 

or pre-treatment 

- verify the feasibility of the usage of tallow for power generation application by 

conducting analysis of existing support policies for biomass/waste fuels. 

 

1.3 Thesis Outline 

 

The thesis is divided into nine consecutive chapters which cover various aspects of animal 

fat usage as fuel for reciprocating engines. 
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A literature review is presented in Chapter 2, which introduces a definition of animal fat 

(tallow), describes the production process and also provides basic information regarding 

how tallow is divided into grades and categories. Available information regarding neat 

triglycerides’ usage as an engine fuel is analysed to obtain guidance for engine test trials. A 

short review of the emissions abatement systems available for large engines is also given. 

A very limited amount of published data regarding usage of animal fat as fuel for large 

internal combustion engines justifies the necessity of a conducted research programme. 

 

An electricity generation feasibility study is presented in Chapter 3. It contains calculations 

for a small scale plant (<1MW) and also a large scale plant (20MW). The relationship that 

links animal fat price with fossil fuel price is analysed. The effect of fuel price change on 

generation feasibility is given. 

 

The experimental set up is described in Chapter 4. It contains a description of the 800 kW 

research power plant located at John Pointon & Sons Ltd. premises at Cheddleton, Staffs, 

UK. Usage of animal fat required modification of the fuel supply system to enable dual 

fuel operation – the working principle is explained. The designed emission abatement 

system in a form of EGR with gases cooling and humidification, (cEGR), is presented 

together with technical drawings appended. Tests conducted at the research power plant 

were accompanied by laboratory tests, of which main the objective was fuel properties’ 

testing – a laboratory facilities description is provided. 
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Chapter 5 presents results of an investigation that focused on the consistency of fuel 

properties. Changes of properties during the calendar year are statistically analysed. A 

possible reason for variable acidity is given together with a review of available acidity 

reduction methods. One of the physical methods has been tested in a laboratory scale 

experiment. 

 

Chapter 6 is devoted to analysis of fuel temperature effect on its properties. The main 

objective of this chapter is to verify if pre heating is a correct way of animal fat pre-

treatment.  

 

Combined results of tests described in Chapters 5-6 lead to establishing a suitable fuel 

specification. Another outcome is the creation of an engine testing programme where 

operating conditions, such as fuel temperature, are considered. 

 

Analysis of the combustion process together with emissions data are given in Chapter 7. 

All data is recorded for fossil fuel (diesel), hence reference data is obtained, and then 

compared with results for animal fat. Tests were performed at synchronous speed for three 

different engine loads. 
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The long term effect of animal fat usage on engine components’ longevity is described in 

Chapter 8. Analysis is divided into sub sections describing fuel pumps, injectors and 

lubricating oil. 

 

Conclusions and suggestions for future work constitute the final chapter of this thesis.  
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Chapter 2  LITERATURE REVIEW 

2.1 Introduction 

 

This chapter contains a short summary of information available in literature concerning the 

possible application of animal fat and other triglycerides as fuel for compressed ignition 

engines. Emissions abatement methods used for marine and stationary applications are 

briefly described. 

 

2.2 Definition of Tallow 

 

Tallow is an animal fat obtained by rendering animal carcases and waste from the food 

industry. Crude fats primarily consist of triacylglycerols but also contain non glyceride 

substances (unsaponifiable fraction), that affect chemical and physical properties (4). A 

triacylglycerol consists of a three carbon glycerol head group to which are added three 

fatty acid chains (5). A structure of triacylglycerol is shown in Figure 2.1. All 

triacylglycerols have the same basic structure, and the differences in properties and use of 

commercial triglycerides depend largely on the length, degree of unsaturation and other 

chemical modifications to the fatty acid chains (6, 7). Examples of the structures of 

common C18 fatty acids are given in Figure 2.2, as C18:0 (stearic acid, octadecanoic acid), 

C18:1 (oleic acid, 9-octadecenoic acid), and C18:2 (linoleic acid, 9,12-octadecenoic acid) 

(8). Typical fatty acid composition of tallow and other animal fats is given in Table 2.1. 
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Figure 2.1 General structure of triacylglycerol, R, R', and R" indicate fatty acid groups (8) 

 

 

Figure 2.2 Structures of common C18 fatty acids: stearic, oleic, and linoleic acids (8) 

 

Table 2.1 Typical fatty acid composition (%wt) of major animal fats (7). Fatty acid specification (e.g. 
16:1) includes the length of carbon chain and amount of double bonds. 

 

Fat 

Fatty acid 

14:0 16:0 16:1 18:0 18:1a 18:2 
Other 

Myristic Palmitic Palmitoleic Stearic Oleic Linoleic 

Butterb 12 26 3 11 28 2 18

Lard 2 26 5 11 44 11 1

Beef tallow 3 27 11 7 48 2 2

Mutton tallow 6 27 2 32 31 2 0

Chicken fat 1 22 6 7 40 20 4

Notes 
a – including trans isomers 
b – also 4:0 (3%), 6:0 (2%), 8:0 (1%), 10:0 (3%), and 12:0 (4%).
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2.3 History of Tallow Usage 

 

Animal fat was used not only as a fuel but also for nutritional purposes and medicines. 

Widespread usage of animal fats for lighting purposes can be associated with the easy 

controllable combustion process and feedstock availability. Proof of animal fat usage from 

prehistoric times was discovered. Palaeolithic humans were living in caves and caverns 

where flint mining required artificial lighting. The first primitive lamps were used 

alongside with torches and fires. In southern France, in the region of the limestone hills 

upon the river Vezere, at the Lascaux cave complex, small stones with little cavities were 

found (shown in Figure 2.3). Some of these were black as a result of a combustion process. 

Hollow bones filled with animal fat were also used as a light source (9). During the 

Neolithic Age, humans living on the Danish coast were using oval, clay lamps. Analysed 

samples revealed the presence of small amounts of animal fat (fish oil). Fats obtained from 

sea birds like cormorants and sea gulls were also used (10). Flint mines in Grimes Graves 

and Cissbury were lit by small lamps made from chalk (10). Animal fat burned in stone 

lamps was also used in one of the largest flint mines in Europe which consisted of a 

thousand pit shafts, located in Krzemionki Opatowskie in Poland (11). 



9 
 

 

Figure 2.3 A deer fat lamp, found in a Lascaux cave. It can be viewed in the National Prehistory Museum in 
Les Eyzies-de-Tayac (12) 

 

In the polar zone, seal fat was used for heating and as a light source till modern times. 

Obtaining fat was inevitably linked with waste or a by-product conversion process and 

feedstock availability. In some cases fat was obtained from hunted animals. Whales thrown 

on the seashores (shown in Figure 2.4) were considered as a valuable resource. Magnus 

(13) listed possible ways of utilising one whale for:  meat, fat for heating and lighting, 

leather for clothing, and bones for heating (small) and construction (large). Often people 

fought over it. Since the 12th century this issue was regulated by law (10). 
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Figure 2.4 Large Rorqual stranded at Tynemouth in August, 1532 (14) 

 

Usage of animal fat as a source of light in mining extends even up to the 19th century. 

Metal lamps (shown in Figure 2.5) burning with an open flame, where a textile wick was 

pushed into the spout, were fitted into miners’ cloth caps.  

 

Figure 2.5 Tallow lamp - 19th century (15) 
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Tallow was used for candle making for centuries. Even nowadays it is possible to purchase 

tallow candles that, according to a manufacturer, are not only a source of light and heat 

(used to aid lighting a fire), but in a survival situation can be eaten (16).  

 

From this short summary it can be seen that animal fat is a resource that has been used by 

humans since prehistory. Sourcing fat and other products obtained from stranded whales 

can be seen as an exemplary way of the sustainable processing of waste. The rendering 

process can be seen as a modern follower of this route. 

 

2.4 Production Process  

 

Rendering is a straightforward process in which animal carcases and trimmings are crushed 

and heated. This process drives off the water, sterilises the material and allows it to be 

separated into the fats (tallow) and meat and bone meal (MBM). Raw materials are all the 

unusable parts of a carcass, including bones, internal organs and trimmings. Raw materials 

are collected for processing from abattoirs and from butchers and food processing sites. 

Two types of the process can be distinguished: batch and continuous rendering. 

Continuous systems are suitable for higher capacities. A process schematic diagram is 

shown in Figure 2.6.  
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Figure 2.6 Rendering process schematic diagram 

 

After arrival at the processing plant, by-products are placed in the hopper and then are 

transferred to a crusher where their size is reduced. Material is cooked in the cooker 

(shown in Figure 2.7) for a period of no less than 1 hour, at temperatures in excess of 

150°C 
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Figure 2.7 Cooker used for rendering process (17) 

 

The separation process is conducted in the screw presses, shown in Figure 2.8. As the 

greaves pass along the screw, the fat is pressed out, and the greaves are discharged as press 

cake. 

 

Figure 2.8 Haarslev screw press (18) 

Vapours from the material are diverted to thermal oxidisers, fuelled with fat, where at a 

temperature above 950⁰C all VOCs (Volatile Organic Compounds) are oxidised. Steam 

which is raised at the oxidisers is used for the cooking process. 
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2.5 Categories and Grades  

 

Animal by-products are divided into three categories depending on their potential risk to 

human and animal health or to the environment. There are different rules for disposing of 

waste in each category (19). Categories of tallow and permitted applications were defined 

by Animal By-Products Regulations (20). A summary is given in Table 2.2. 

 

Table 2.2 Tallow categories and its permitted applications (6, 19-21) 

 

Category Feedstock Application 

1 – very 
high risk 

animals and materials suspected or confirmed to be infected by 
TSEs (transmissible spongiform encephalopathies) such as 
scrapie in sheep or BSE (bovine spongiform encephalopathy) 
in cattle, animals that have been experimented on, zoo and pet 
animal carcasses, catering waste from international transport, 
specified risk material (SRM) (tissues from cattle, sheep or 
goats that are, or may be, infected with BSE) 

Fuel 

2 – high 
risk 

diseased animals (this excludes animals infected by TSEs), 
manure or animal by-products that could be contaminated with 
animal diseases, animals kept for human consumption, which 
die by means other than slaughtering, animals that die on farms 
that do not contain SRM 

Fuel, production of 
tallow derivatives 
for technical use 
only 

3 – low 
risk 

raw meat and fish from food manufacturers and retailers, 
former foodstuffs other than catering waste, this includes 
manufacturing or packaging defects, eggs and other by-
products that do not show signs of transmissible disease, raw 
milk, fish and other sea animals 

Fuel, pet food 
production, 
production of tallow 
derivatives 

 

Tallow is also graded in terms of quality. The two key grades for the UK market are: 

- grade 2 – high quality, low colour, used for demanding applications such as soap; 

- grade 6 – low quality, highly coloured, used for technical applications (6). 
 
 
Specifications for various tallow grades are given in Table 2.3. 



15 
 

Table 2.3 Properties of technical tallows and animal greases (22) 

 

Grade 
FFA max. 

Moisture and 
dirt 

Unsaponifiable 
matter 

Titre 
Iodine 

number 
max % (m/m) % (m/m) max % (m/m) min °C max 

1 3.0 0.5 0.5 40.0 55 
2 5.0 1.0 1.0 40.0 55 
3 8.0 1.0 1.0 40.0 55 
4 12.0 1.0 1.5 40.0 58 
5 15.0 1.0 1.5 40.0 58 
6 20.0 1.0 2.0 40.0 58 

Animal 
greases 

20.0 2.0 2.0 36.0-40.0 61 

 
 
 

2.6 Legal Status  

 

According to current legislation, in the UK, animal fat is treated as waste (23). Therefore, 

the Waste Incineration Directive applies. One of the requirements is that exhaust gas 

resulting from the process is raised to a temperature of 850ºC for 2 seconds (23). For the 

purpose of this research project – a Knowledge Transfer Partnership, the Environment 

Agency issued a permit to operate a generating set fuelled with animal fat (24). 

 

Products of the animal fat esterification process conducted in accordance with quality 

requirements described in Quality Protocol (25) are not classed as waste. 

 

The rendering industry is working on developing End of Waste Test criteria so tallow will 

be excluded from the Waste Incineration Directive.  
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2.7 Usage of Triacylglycerols as Engine Fuels 

 

Usage of triacylglycerols as fuels for internal combustion engines interested researchers in 

the earliest stages of engine history. Attempts, described as successful, were conducted by 

Dr Diesel (26). In the performed tests, earth nut oil has been used; however, potential for 

usage of other vegetable oil or animal fat is also mentioned. Due to lower prices of crude 

oil distillation products, oils and fats were not given much attention until the fuel shortages 

during the second world war and after the fuel crisis in the 1970s-80s (27). Some 

properties of oil and fats, important for substances designed to be used as fuels, are listed 

and described below. 

 

Density 

Density of the fuel has an impact on the fuel atomisation, for higher densities atomisation 

is worse (28, 29). Higher density results in increased formation of particulates, especially 

for higher loads (30, 31). As for the majority of injection systems, a fuel dose is controlled 

on a volumetric basis or based on timed events; a change in fuel density will affect the 

injection strategy (27, 32, 33). Density of triacylglycerols is on average, 10% higher than 

ULSD and approximately 10% lower than HFO. 

 

Viscosity 

Fuel viscosity is another parameter affecting atomisation of fuel; its contribution towards 

change in the SMD is approximated to be around 90% (28). For heavier fuels viscosity is 
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an important parameter used to determine the appropriate design of auxiliary fuel supply 

systems such as centrifuges and pre-heaters. Changes in viscosity have an impact on the 

efficiency of the fuel pumps, for higher viscosities leaks are reduced resulting in increased 

efficiency accompanied with larger fuel dose (27, 34). 

 

Surface Tension 

Surface tension affects fuel atomisation. For higher tensions, droplet radius increases and 

atomisation is worse (35, 36).  

 

Contamination 

For road fuels a contamination is defined as all un-dissolved substances retained on a filter 

after filtration under test conditions (37). For residual fuels contamination is called a 

sediment and is a sum of insoluble organic and inorganic material, separated from the bulk 

of the sample by filtration through a specified filter, and also insoluble in a predominantly 

paraffinic solvent (38). The standard specific for the rendering industry includes also a 

mineral matter combined as soaps (22). Particles present in the fuel will increase wear of 

the injection system elements. 

 

For fuels of vegetable origin potential for contamination is lower than for crude fuels, 

however, in the case of fats, contamination with finely divided particles of protein, bone 

and fibre requires close monitoring (31, 39). 
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Water Content 

Water content in the fuel despite lowering its calorific value may lead to corrosion of the 

fuel system elements. The problem of corrosion applies especially to crude fuels that may 

be contaminated with sea water containing salt (31, 40). Water presence reduces 

lubricating properties of fuels. At lower temperatures, ice crystals together with solid 

impurities are the nucleus of crystallisation for waxes and paraffins (27). In the case of bio 

fuels, water can speed up the biodegradation of the fuel. For animal fats moisture content 

characterises the efficiency of the filtration and separation processes. It is desirable to keep 

moisture at low levels. High moisture content may encourage hydrolysis and increase 

acidity as a result (39).  

 

Carbon Residue/Ash Content 

Ash represents solid contaminants as well as metals bound in the fuel (e.g. vanadium and 

nickel). Part of the ash could be catalyst particles from the refining process for mineral 

fuels. Solid ash should be removed to the widest possible extent by centrifuging, and 

cleaning can be improved by installing a fine filter after the centrifuge (e.g. 50 μm) (40). 

 

The carbon residue is measured as Conradson Carbon or Microcarbon. Carbon residue is 

an amount left after evaporation and pyrolysis to provide some indication of relative coke 

forming propensity (41). Fuels with a high carbon residue content could cause increased 

fouling of the gas ways, necessitating more frequent cleaning, especially of the 

turbocharger (40).  
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Acidity 

Acidity is expressed as an Acid Number (AN) [or Total Acid Number (TAN)] and 

measured in mg KOH/g or Free Fatty Acid content (in %). FFA results may be expressed 

in terms of acid value by multiplying the FFA percent by 1.99 (4). Monitoring of this 

parameter is important due to the corrosive impact of high acidity fuels on the fuel 

injection systems (31, 42). 

 

Acid number (AN) – the quantity of base, expressed in milligrams of potassium hydroxide 

per gram of sample, required to titrate a sample in the solvent from its initial meter reading 

to a meter reading corresponding to a freshly prepared non-aqueous basic buffer solution, 

or a well defined inflection point, as specified in the test method (43). 

 

Strong acid number (SAN) – the quantity of base, expressed as milligrams of potassium 

hydroxide per gram of sample, required to titrate a sample in the solvent from its initial 

meter reading to a meter reading corresponding to a freshly prepared non-aqueous acidic 

buffer solution, or a well defined inflection point, as specified in the test method (43). 

 

Iodine number 

Properties of oils and fats depend on the ratio of saturated and unsaturated acids. Iodine 

number is the parameter describing the unsaturation level of the fat (4, 7). 
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Sulphur 

All sulphur entering the engine combustion chamber is oxidized to SOX, which is emitted 

into the atmosphere with the exhaust gases. The SOX emissions from the engine depend on 

the fuel sulphur content and fuel consumption (44, 45). Low sulphur content is one the 

most significant advantages of bio fuels.  

 

Calorific Value 

The upper (higher or gross) calorific value is the heat of combustion, calculated assuming 

that all of the water in the products has condensed to liquid. Lower (or net) value is 

obtained in the case where none of the water is assumed to condense (46).  

 

The use of gross or net calorific value varies with type of industry. Engine and gas turbine 

manufacturers, for example, use net calorific value, whereas UK boiler manufacturers use 

gross when stating the efficiency of their plant (47). 

 

The calorific value for oils and fats is lower when compared to mineral fuels due to the 

oxygen content. 
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Flash Point 

Flash point temperature is measured to assess the tendency of the fuel to form a flammable 

mixture with air. The flash point can indicate the possible presence of highly volatile and 

flammable materials in a relatively non-volatile or non-flammable material (48). Crude bio 

fuels have a higher flash point compared to mineral fuels (31). 

 

Cetane Number 

The cetane number characterizes the time between injection and combustion in a diesel 

engine. The higher the number, the more flammable the fuel. The cetane numbers obtained 

for most vegetable oils are between 29 and 43 as opposed to 45–55 for diesel (32). 

 

It has been noted that a cetane number is not applicable for heavy residual fuels as an 

indicator of ignition quality. The concept of an ignition index based on viscosity and 

density was developed (31, 32). The CCAI (Calculated Carbon Aromaticity Index) is a 

unit-less number allowing ranking the ignition qualities of different residual fuel oils: the 

lower the number, the better the ignition characteristics. The CCAI does not give an 

absolute measure of ignition performance since this is much more dependent upon engine 

design and operating conditions (49). 

 

Due to the complex structure and composition of tallow, a cetane number or calculated 

indexes may not be appropriate criteria for assessment of its ignition quality.   
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Table 2.4 Standard fuels and triacylglycerols as fuels for CI engines - comparison of selected 
properties 

CI 

Engine 

Fuel 

Density Viscosity 
Carbon 

residue 

Iodine 

number 

Lower 

calorific 

value 

Flash 

point 

Cetane 

number 

Sulphur 

content 
Ref. 

 
kg/m3 

@25°C 
mm2/s@30°C % w/w gI2/kg MJ/kg °C - mg/kg  

Diesel 820-845a 2.0-4.5c 0.30 N/A 41.4-42.7 55 46-50 
10 (37, 

50-52) 

Diesel – 
Class A2 

820a 1.5-5.5c 0.30 N/A 42.3 56 Min 45 0.2 [%] (53) 

FAME 860-900a 3.5-5.0c 0.30 120 37.1 101 47-51 10 (27, 
54) 

HFO – 
RMA 30 

960a 30b 10 N/A 

39.8-41.5 

60 - 3.5 [%] 
(31, 
40, 
55) 

HFO – 
RMK 700 

1010a 700b 22 N/A 60 - 4.5 [%] 
(31, 
40, 
55) 

Coconut 915-920 32-40 - 7.5-10.5 35.0-35.8 228 37 0.01-4 

(4, 27, 
31, 
32, 
51, 
56, 
57) 

Corn 915-920 60-64/35c 0.24 118-128 37.8-39.5 277 38-42 0.01 (4, 31, 
50) 

Cotton 916-918 50-73/34c - 98-118 36.7-39.7 
234-
243 

38-41.8 0.01 (4, 31, 
50) 

Jathropa 901-940 25-53c 0.20-0.40 94 38.9 
180-
280 

33.7-51 0.01 

(31, 
32, 
58, 
59) 

Palm 915/889b 95-106/39.6c - 46-56 36.5-36.9 280 42 <1 
(4, 31, 
60, 
61) 

Rapeseed 915 34-39c 0.30 98 36.8-37.4 320 37.6 0.01-2.6 
(27, 
31, 
62) 

Soybean 917-921 58-63 0.27 123-139 37.3 330 37.9 0.01 (4, 31) 

Sunflower 918-923 55-62/34c 0.23 125-136 36.5-37.8 316 37 0.01 
(4, 31, 
50, 
63) 

Waste Oil 910-940 72.6 - 107-115 39.2-39.6 
312-
314 

36-37 0.02 (64, 
65) 

Animal fat 890-920 40-55c 0.36 40-49 36.5-39.8 268 ~40 <0.01 (52, 
66-68) 

a – at 15°C   b – at 50°C   c – at 40°C 
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A comparison of selected properties of various vegetable oils and animal fat is given in 

Table 2.4. Many of the physical and chemical properties of liquid vegetable oils are similar 

to those of fossil fuels. However, there are also differences that affect engine operation. 

The main differences are (27, 69): 

- The energy content is about 8–14% lower. 

- The flash point is very high. 

- The sulphur content is very low. 

- The acidity of certain vegetable oils is higher. 

- The cloud point / cold filter plugging point of certain vegetable oils is higher. 

- The viscosity and surface tension are higher  

- Vegetable oils have a different distillation curve – up to 250°C little volume of 

vegetable oil can be distilled, above that temperature, oil can be thermo cracked 

and follows a decomposition process. 

 

Researchers from Wartsila (69) recommend paying attention to the following issues when 

comparing the properties of liquid bio fuels and fossil fuels: 

- Solidification properties - the fuel injection equipment and fuel system must be 

designed to avoid filter clogging and breakage. 

- Acidity corrosion should be avoided. 

- Contents of ash constituents fouling the exhaust gas system, combustion chamber 

components, and the catalyst elements in the SCR and oxidation catalyst, should be 

avoided. 
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- Lower energy content - an adequate flow capacity in the fuel injection system is 

needed. 

 

Usage of tricylglycerols as engine fuels has several considerable advantages (32): 

- They are produced in rural areas and can contribute to the local economy. 

- They are biodegradable and they are a renewable fuel with a short carbon cycle 

period (1–2 years compared to millions of years for petroleum fuels) and are 

environmentally friendly. 

- They have physical and combustion characteristics similar to those of pure diesel 

oil. 

- They have a low sulphur content compared to pure diesel oil. 

- They have a flash point higher than that of diesel oil thus are safer for use. 

 

Some manufacturers allow usage of crude biofuels in their engines. Guiding specifications 

are given for two stroke engines (Table 2.5) and four stroke engines (Table 2.6).  
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Table 2.5 Guiding biofuel specification for MAN B&W two-stroke low speed diesel engines (40) 

 

Designation Unit Limit 1) 

Density at 15°C kg/m3 1010  

Kinematic viscosity at 100°C 
2)

 cSt 55 

Flash point °C >60  

Carbon residue % (m/m) 22 

Ash % (m/m) 0.15 

Water % (m/m) 1.0 

Sulphur 3) % (m/m) 5.0 

Vanadium ppm (m/m) 600 

Aluminium + Silicon mg/kg 80 

Sodium plus potassium ppm (m/m) 200 

Calcium ppm (m/m) 200 

Lead ppm (m/m) 10 

TAN (Total Acid Number) mg KOH/g 
4)

 <25 

SAN (Strong Acid Number) mg KOH/g 0 

1) Valid at inlet to centrifuge plant  
2) Pre-heating down to 15 cSt at engine inlet flange is to be ensured  
3) Iodine, phosphorus and sulphur content according to agreement with emission controls maker 
4) Experience shows that a high Total Acid Number has influence on the time between overhaul of the engine fuel system 
and, therefore, need to be adjusted accordingly
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Table 2.6 Liquid biofuel specification for Wärtsilä 4-stroke engines (69) 

 

Property Unit Limit 
Test method 
reference 

Viscosity, max. cSt @ 40 °C 100 ISO 3104 

Viscosity, min. cSt 1.8 - 2.8 1) ISO 3104 

Injection viscosity, 
max. 

cSt 24 ISO 3104 

Density, max. kg/m3 @ 15 °C 991 ISO 3675 OR 12185 

Ignition properties  2) FIA test 

Water, max. before 
engine 

% V/V 0.20 ISO 3733 

Carbon residue (micro 
method),max. 

% m/m 0.30 ISO 10370 

Flash point (PMCC), 
min. 

°C 60 ISO 2719 

Pour point, max. °C 3) ISO 3016 

Cloud point, max. °C 3) ISO 3015 

Cold fi lter plugging 
point, max. 

°C 3) IP 309 

Total sediment 
existent, max. 

% m/m 0.05 ISO 10307-1 

Sulphur, max. % m/m 0.05 ISO 8754 

Ash, max. % m/m 0.05 ISO 6245 

Phosphorus, max. mg/kg 100 ISO 10478 

Silicon, max. mg/kg 10 ISO 10478 

Alkali content (Na+K), 
max. 

mg/kg 30 ISO 10478 

Copper strip corrosion, 
(3 hrs @ 50°C) max. 

Rating 1b ASTM D130 

Steel corrosion 
(24/72hrs @ 20, 60, 
120°C), max. 

Rating No signs of corrosion LP 2902 

Acid number, max. mg KOH/g 5.0 ASTM D664 

Strong acid number, 
max. 

mg KOH/g 0.0 ASTM D664 

Iodine number, max.  120 ISO 3961 

1) depends on the engine model 
2) To be equal or better than the requirements for fossil fuels, i.e. CI min. 35, CCAI max. 870 
3) To be at least 10 °C below fuel injection temperature
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2.8 Potential of Tallow for Biodiesel Production 

 

Usage of tallow for biodiesel production has been described by other researchers (70-79). 

High and variable acidity level (free fatty acid - FFA content) required a two stage 

transesterification process. The FFA removal stage has an impact on yield and feasibility 

of biodiesel production. Therefore, this use of tallow has not been described in this thesis. 

 

2.9 Combustion of Neat Fat in Internal Compressed Ignition Engine 

 

The majority of researchers focused on the combustion of triacylglycerols of vegetable 

origin. Animal fat, due to its different chemical composition and production process may 

present challenges in application as fuel, hence should be described separately. 

 

Some researchers attempted to use preheated animal fat as fuel for automotive scale 

engines. Takayuki (66) used a 411cc Mitsubishi engine and animal fat preheated to 60°C. 

A decrease in NOx emissions by 10-15% is reported accompanied by an increase of CO 

and HC emissions, especially for low loads. PM emissions were higher than for diesel fuel 

at high load. Lower cylinder pressure and shorter ignition delay was recorded for animal 

fat. Decreased engine output is associated with lower calorific value of the fat.  
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Kleinova (80) presented results of tests conducted on VAG engines – 1.9 TDI (rotary 

pump) and 2.5 TDI (pump injector unit). Decrease in engine performance is explained as 

being related to the lower energy content of bio fuels (lard and chicken fat). Very low CO 

and HC emissions are reported; also the NOx level is lower when compared to results 

obtained for engines fuelled with diesel. The authors suggest than problematic operation of 

engines fuelled with triglycerides can be associated with poor fuel atomisation and low 

injection pressure. It is claimed that in the case of using a high pressure common rail 

system, it is possible to achieve good results for bio fuels. Paper contains a conclusion to 

disregard results obtained for triglycerides fuels in engines equipped with fuel supply 

systems different from common rail. 

 

Kumar (52) ran a series of tests on a Lister Petter TS1 – 630cc engine. Animal fat was 

preheated to 30, 40, 50, 60 and 70⁰C. Peak pressure and rate of pressure rise are lower with 

animal fat at low temperature as compared to diesel. Increasing fuel temperature results in 

an increase of both measured parameters. Ignition delay is higher for animal fat at all tested 

loads. Ignition delay depends on fuel temperature, for higher temperatures reduced delay 

has been reported. Heat release rates are lower for animal fat with a tendency to increase 

for elevated fuel temperatures. Operation on bio fuel resulted in an increased exhaust 

temperature. Emissions of CO and HC are higher with animal fat as compared to diesel. 

However, fuel pre heating reduces these emissions. Emissions of NOx were lower with a 

tendency to increase with elevated fuel temperature. Obtained results were confirmed by 

another member of the same research team – Kerihuel (81). 
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Figure 2.9 Typical engine test bed with dual fuel supply system used for triacylglycerol fuels testing (52) 

 

Research published by Mormino (67) was conducted at a test bed incorporating a four 

stroke turbocharged diesel engine without charge air cooler .A Volvo TD 60 B six cylinder 

engine has a swept volume of 913 cc per cylinder. The combustion process and resulting 

emissions from diesel, vegetable oils and animal fat were compared. Animal fat was 

preheated to 70 ⁰C. Ignition delay for animal fat was shorter; the difference was more 

significant for lower test speeds (rpm). The lower emissions of nitrogen oxides were 

explained by a limited premixed combustion phase and lower temperature in the 

combustion chamber. Lower emissions of soot were reported, the difference was 
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associated with the oxygen content and lack of aromatic compounds in fat. Hydrocarbons’ 

emissions were higher for oils and fat when compared to diesel as a result of less effective 

atomization.  

 

Kapusta (68) briefly described research conducted by Wartsila with regard to potential 

usage of various bio fuels for large generating sets. Tests were performed at two research 

power plants (VTT and Pieksamaki) equipped with Wartsila 4R32LN and 6L20 engines. A 

view of the Pieksamaki research power plant with a description of its main components is 

given in Figure 2.10. Significant reduction in soot emissions was observed for animal fat 

(up to 60%). While emission of nitrogen oxides was comparable for all tested fuels, a 

slight increase in hydrocarbons’ emission was detected. Researchers concluded that fuel 

quality and preparation is crucial for problem free engine operation.  
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Figure 2.10 Pieksamaki research power plant (69) 

 

 

Reported results are combined together and presented in Table 2.7. It has to be noted that 

conclusions made by other researchers are not consistent. For example, in the case of 

nitrogen oxides’ emissions, the assessment varies from a significant reduction in the case 

of a small engine fuelled with animal fat supplied at low temperature, while on the other 

hand, for a large engine with a fuel preheating system, an increase of those emissions is 

reported.  
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Table 2.7 Comparison of combustion characteristics and emissions obtained at a range of testing conditions for engines fuelled with animal fat with values 
obtained for fossil fuels 

Ref 

Test Conditions Combustion Characteristics Emissions 
Specific Fuel 
Consumption Engine Load Fuel 

temp 
Peak 

Pressure 
Ignition 
delay 

Heat 
Release 

Rate 
NOx CO HC Smoke 

Takayuki (66) 
Mitsubishi 
D800 

LL 60 - -  - + + ~a + 
HL 60 - -  - - - - + 

Kleinova (80) 
VW 1.9 TDI 
& 2.5 TDI 

LLb     - + ~ + + 
HLc     - ~ + + + 

Kumar (52) 
Lister Petter 
TS1 

LL 30    - - + + - + 
LL 70    - ~ ~ - + 
HL 30 - - + + - - - - + + + + - + 
HL 70 - + - - - - ~ - - + 

Mormino (67) 
Volvo 
TD60B 

Range 70 - - - -  + d + 

Kapusta (68) 
Wartsila 
6L20 

LL     + + ~ - -  
HL     + + + - -  

Where: 
‘+’ – increase, ‘+ +’ - significant increase, ‘-‘ – decrease, ‘- -‘ - significant decrease, ‘~’ – comparable result, LL – low load, HL – high load, a – decrease 
in PM emissions was also reported, b - at speed of 60 km/h, c - at speed of 120 km/h, d – decrease in soot emissions also reported, not significant 
difference for low speeds 
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There is no full set of test results (including emissions and combustion characteristics) for 

a large diesel engine, which may be used by the rendering industry to offset part of their 

electricity demand by utilising animal fat for renewable electricity generation. Hence, 

conducting a research programme, as described in this thesis, which aims to investigate 

various aspects of neat animal fat application as fuel for internal combustion engines,  is 

justified. 
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2.10 Emissions Abatement Methods for Large Engines 

 

The research power plant described in this thesis was granted special permission by the 

Environment Agency to conduct a trial test of the animal fat combustion in a large diesel 

engine. At the end of the trial, an abatement system enabling compliance with given limits 

should be proposed and installed. Review of available methods typical for large diesel 

engines is presented in following section. 

 

2.10.1 Nitrogen Oxides Emissions Abatement 

 

2.10.1.1 Classification of Abatement Methods 

 

There are various method classification criteria. Wartsila segregates methods as ‘dry’ or 

‘wet’. ‘Dry’ methods can be characterised by modification and optimisation of engine 

operation through fuel injection strategy alteration and modification of combustion 

chamber shape. NOx reduction in ‘wet’ methods is achieved thanks to water presence in 

the combustion chamber. MAN B&W divides methods into ‘primary’ – where 

modifications prevent NOx formation and ‘secondary’ where exhaust after treatment needs 

to be applied. 
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2.10.1.2 Exhaust Gas Recirculation 

 

The Exhaust Gas Recirculation method’s working principle is the feeding of a portion of 

the exhaust gas back to the cylinder. Nitrogen oxides emission depends on partial pressure 

of reagents – oxygen and nitrogen. The partial pressure can be altered by modification of 

charge composition in the cylinder. NOx emission can be reduced if oxygen concentration 

is lowered (dilution effect). Exhaust recirculation results in increased heat capacity of the 

cylinder charge (thermal effect). Carbon dioxide and water, present in the exhaust, can 

potentially, dissociate at high temperatures and take part in the combustion process 

(chemical effect) (82). EGR cooling is necessary to prevent soot emissions from rising to 

unacceptable levels and to avoid a significant drop in engine efficiency. The need for EGR 

cooling is more evident at high EGR rates and low engine speeds (83). 

 

Possible layouts of the EGR system are shown in Figure 2.11. Exhaust gas can be fed back 

before (case 1) or after (case 2) the turbocharger. Other researchers point out that charge 

dilution should be applied in circumstances where clean gas with low oxygen content is 

available (case 3) (44). For this reason, the EGR is disregarded as a NOx abatement method 

for marine applications by Wartsila (45). However, high reduction potential has to be 

noted, according to (44, 84), 5% recirculation can reduce NOx emission by 30%. Results of 

tests conducted by MAN B&W on a 4T50MX engine are given in Figure 2.12. 
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Figure 2.11 Different layouts for EGR system; case 1 – high pressure EGR, case 2- low pressure EGR, case 
3 – charge dilution (44) 

 

 

Figure 2.12 Effect of EGR on the 4T50MX engine emission (44) 
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2.10.1.3 Optimisation of Injection Strategy 

NOx emissions can be lowered by alteration of injector type. Large engine manufacturers 

implemented various solutions to improve fuel atomisation and provide better injection 

control. Wartsila introduced the RT-flex engine family equipped with a common rail 

injection system. MAN B&W introduced the ME engine family equipped with an 

individual electronic module responsible for fuel injection for each cylinder and a 

hydraulic exhaust valve actuator. The ME engine control system layout is shown in Figure 

2.14. 

 

Figure 2.13 presents a development process, starting with basic injection flow (InFl basic) 

optimised for low fuel consumption and used in production engines (Standard MC). 

Injection strategy management can lead to NOx emission reduction by even 20% (fuel 

consumption penalty of 3%) – for example via pilot injection introduction (pre-injection). 
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Figure 2.13 Fuel injection patterns, including pre-injection and the effects on SFOC and NOx emissions (44) 
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Figure 2.14 MAN ME engine control system layout 
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2.10.1.4 SCR – Selective Catalytic Reduction 

 

The working principle of the method is mixing exhaust gases with ammonia NH3, typically 

supplied as urea, and passing it through a catalytic reactor where nitrogen oxides are 

reduced to N2 and H20 at a temperature of 300 – 400⁰C. The following reactions occur 

once the urea has been decomposed and hydrolysed (85, 86): 

4 NO + 4 NH3 + O2 = 4 N2 + 6 H2O   (NO SCR) 

6 NO2 + 8 NH3 = 7 N2 + 12 H2O   (NO2 SCR) 

NO + NO2 + 2NH3 = 2N2 + 3H2O   (Fast SCR) 

The main advantage of this method is very high efficiency, reaching even 98%. 

Complicated installation, shown in Figure 2.15, resulting in higher capital expenditure and 

maintenance cost is a disadvantage. Despite the reaction of NOx reduction – a reversion 

process occurs as well. Calculation of both reaction coefficients at various temperatures 

can determine the appropriate operational temperature for the reactor. For low 

temperatures the reactor will not achieve its desired reduction efficiency. For higher 

temperatures ammonia will be burned before reduction reaction occurs. NOx reduction 

depends also on the amount of added ammonia – for higher concentrations, ammonia slip 

may occur – therefore a precise dosing system is required for efficient SCR operation. 

Another variable that may have impact on the SCR system reduction efficiency is location 

and type of ammonia injectors (44, 84). 
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Figure 2.15 SCR system layout for MAN B&W S46 MC-C engine (87) 
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2.10.1.5 Usage of Water 

 

The combustion process in a CI engine can be characterised by high local air excess ratios. 

Formation of nitrogen oxides can be reduced by lowering the temperature in the 

combustion chamber. It can be achieved through introduction of water, which absorbs heat 

via evaporation. Water can be delivered to the combustion chamber in various ways: with 

an additional water injector, through injection into the engine intake, supply the engine 

with water-fuel emulsion (88). CASS – (Combustion Air Saturation System) is an example 

of a system using water injection into the engine intake. A reported high reduction 

efficiency of 50-60% with no fuel penalty is accompanied by high fresh water 

consumption. Lower water consumption can be achieved through direct water injection 

(45). 

 

2.10.2 Reduction of Sulphur Oxides Emissions 

 

Sulphur present in fuel is oxidised to sulphur oxides in the combustion chamber. Sulphur 

oxides’ emission is proportional to sulphur content in the fuel (45). The only viable method 

of SOx emission is usage of low fuels with low sulphur content. It is reflected in the 

introduction of SECAs (Sulphur Emission Control Area) (89-91) where ships have to use 

low sulphur fuels. 
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2.11 Summary 

 

The following conclusions and predictions can be made based on the presented literature 

review: 

- Animal fat atomisation can be affected by its physical properties. 

- Atomisation can be assessed by optical methods – changes in Sauter Mean 

Diameter (SMD). 

- Emission of carbon monoxide can be used as an indicator of atomisation quality. 

- Atomisation can be improved by: 

o Increase of fuel temperature 

o Increase of injection pressure. 

- For good atomisation the benefit of the oxygen content may lead to a decrease of 

CO, HC and soot emissions. 

- Emissions of NOx may increase for high fuel temperatures. 

- Calorific value of the tallow is lower – it may decrease the engine performance 

(max power). 

- High acidity may lead to corrosion of the fuel supply system. 

- No abatement system for SO2 should be required due to low sulphur content of the 

animal fat. 
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Chapter 3  FEASIBILITY OF ELECTRICITY GENERATION WHEN 

USING AN INTERNAL COMBUSTION ENGINE FUELLED WITH 

TALLOW AS THE PRIME MOVER 

3.1 Factors Affecting Feasibility of Electricity Generation 

 

In this chapter renewable electricity and heat production support in the UK is described. 

Tallow prices recorded in 2009 are given. Fuel price, combined with additional subsidies 

available in 2009, are used to calculate the feasibility of a research power plant operation.  

 

The feasibility of electricity generation from animal fat in power plants using reciprocating 

engines depends on the following factors: 

- Electricity price (selling price) 

- Fuel price 

- Subsidies for renewable electricity/heat producers. 
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3.2 Supporting Legislation for Renewable Electricity Generation 

3.2.1 The History of Renewable Energy Support System  

3.2.1.1 Fossil Fuel Levy and Non Fossil Fuel Obligation 

Fossil Fuel Levy 

  

In the late 1980s the UK Government decided to privatise and deregulate the energy 

industry. Privatisation of the nuclear energy sector turned out to be a challenge. Private 

investors refused to accept all the risks and liabilities linked with nuclear power. Energy 

generated by nuclear plants was more expensive than energy derived from fossil fuels. 

 

The government thus kept the nuclear energy sector in public hands. To cover additional 

costs and protect the generators, a Non Fossil Fuel Obligation together with a Fossil Fuel 

Levy system, were then introduced in 1989 (92). 

 

Energy distributors were forced to purchase electricity generated by nuclear power 

stations. The levy was imposed on fossil fuel based power, and was set by an independent 

electricity regulator. Through this mechanism, the government made all consumers pay the 

extra costs for the ‘benefits’ of nuclear production by applying a broad carbon tax on the 

rest of the sector (93). The Fossil Fuel Levy Rates are given in Table 3.1. 
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Table 3.1 Fossil Fuel Levy rates  (94) 

 

Dates Rates (%) 

1 Apr 1990 to 31 Mar 1991 10.60 

1 Apr 1991 to 31 Mar 1993 11.00 

1 Apr 1993 to 30 Sep 1996 10.00 

31 Oct 1996 to 31 Mar 1997 3.70 

1 Apr 1997 to 31 Mar 1998 2.20 

1 Apr 1998 to 31 Dec 1998 0.90 

1 Jan 1999 to 30 Sep 1999 0.70 

1 Oct 1999 to 31 Mar 2002 0.30 

 

 

NFFO process 

 
 

Under the 1989 Electricity Act, the Secretary of State made five Orders requiring the 

Regional Electricity Companies (RECs) in England and Wales to contract for certain 

amounts of electricity generating capacity from renewable sources. The first Non Fossil 

Fuel Obligation Order (NFFO 1) took place in 1990, with the others following in 1991, 

1995, 1997 and 1998. The European Commission ruled that the NFFO constituted a state 

subsidy to the nuclear industry and thus they had to end in 1998 (93). 

 

Each Order specified the generating capacity for each technology band. These bands were: 

large wind projects, small wind projects, hydro, landfill gas, waste to energy and biomass. 

Project developers were then asked to bid for contracts. Winning offers were selected by 

the Non-Fossil Purchasing Agency (NFPA) based solely on bid price (94). A winning 
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project was then rewarded with a long term (typically 15 years (95)) contract to supply 

electricity to the National Grid. The energy was purchased by the NFPA and then sold to 

one of the RECs at the price set by the market regulator. The funds collected under the 

Fossil Fuel Levy were used to cover the difference between the sale price and the 

contracted cost (93). 

 

Figure 3.1 Total output by year and technology (GWh) (96)  

 

Figure 3.1 presents total output by year and technology. The output includes the generation 

of NFFO contracted projects. NFFO 1 and 2 contracts ended at the end of 1998. The output 

produced from NFFO 1 and 2 contracts during 1998 have been added to the 1999 and 2000 

output from NFFO 3, 4 and 5 contracts. This may overstate generation if these projects did 

not continue to produce at NFFO contracted levels. 

The key aspects of the NFFO concept can be identified as follows: 

- The UK Government would theoretically secure the largest amount of renewable 

generating capacity for a given cost. 
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- By giving developers secure long-term contracts, financing would be relatively easy to 

come by and also cheap. 

- The price of each technology would be revealed, and through successive competitions, 

driven down (93). 

 

The Impact of NFFO  

  

The Department of Trade and Industry asked the Frontier Economics and Byrne O’Cleirigh 

consultancy companies to evaluate support for renewable energy under the NFFO. The 

final report has been prepared (96) and its results can be summarised as follows: 

The NFFO has encouraged the uptake of renewable technologies, especially in landfill gas 

and onshore wind. In total, over 3200 MW capacity has been contracted through the NFFO 

in England and Wales. It has been estimated that nearly 24000 GWh have been produced 

by the NFFO contracted plants. The competitive NFFO process has helped to identify 

competitive prices for renewable energy and has enabled the government to maximise 

contracted capacity at the lowest cost. Electricity from NFFO contracted plants has 

replaced a significant amount of fossil-fuel production (96).   
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Figure 3.2 Real average contracted price for each technology (2000 prices).  The average is a capacity-
weighted average of the contracted price and does not account for the length of the contract. PPP is the Pool 

Purchase Price in the electricity market (96) 

 

Figure 3.2 presents contracted prices for different technologies. Lowering the prices of the 

renewable energy is regarded to be one of the largest successes of the NFFO system (93, 

94, 96). Data given in Figure 3.2 show those technologies such as landfill gas (LFG) and 

onshore wind could be developed in the future without additional funding. 

 

3.2.1.2 Renewable Obligation 

 

The Renewable Obligation support system was introduced on 1 April 2002 by the 

Renewable Obligation Order. Each MWh of electricity generated from eligible renewable 

sources is entitled to receive a special certificate – the ROC (Renewable Obligation 

Certificate). At that stage no technology banding was introduced. Certificates were 
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introduced as tradable instruments. Therefore renewable energy generators had two main 

sources of revenue, sold energy and sold ROCs. 

 

The licensed electricity suppliers must provide a certain percentage of sold energy that 

originates from renewable sources. The percentage is set by the government, as shown in 

Table 3.2. If a supplier is unable to present the required amount of ROCs, it has to pay a 

buy-out price. Funds raised this way are then divided between suppliers who comply with 

the obligation.  

 

Table 3.2 Renewables Obligation percentage and buy-out price for different obligation periods (97) 
 

Obligation period Obligation (%) 
Buy-out price 

(£/MWh) 

1 Apr 2002 to 31 Mar 2003 3.0 30.00 

1 Apr 2003 to 31 Mar 2004 4.3 30.51 

1 Apr 2004 to 31 Mar 2005 4.9 31.59 

1 Apr 2005 to 31 Mar 2006 5.5 32.33 

1 Apr 2006 to 31 Mar 2007 6.7 33.24 

1 Apr 2007 to 31 Mar 2008 7.9 34.30 

1 Apr 2008 to 31 Mar 2009 9.1 35.76 

1 Apr 2009 to 31 Mar 2010 9.7 37.19 

1 Apr 2010 to 31 Mar 2011 10.4 - 

1 Apr 2011 to 31 Mar 2012 11.4 - 

1 Apr 2012 to 31 Mar 2013 12.4 - 

1 Apr 2013 to 31 Mar 2014 13.4 - 

1 Apr 2014 to 31 Mar 2015 14.4 - 

1 Apr 2015 to 31 Mar 2016 15.4 - 
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As the amount of ROCs is limited due to the small number of accredited generators, ROCs 

are traded through auction systems. The electronic auction system is administrated by the 

Non-Fossil Purchasing Agency (NFPA). Figure 3.3 presents the historic record of auction 

ROCs prices. 

 

Figure 3.3 Track record for ROC auction prices by Compliance Period (CP) (98)  

 

As no technology banding was introduced, all power plants using internal combustion 

engines fuelled with gaseous fuels such as sewage gas, landfill gas or biogas are entitled to 

the same level of support. However, plants using bio fuels have to agree to and accredit the 

Fuel Measurement and Sampling procedure. Since 2007 ‘own use’ electricity is also 

entitled for support within the RO scheme (95). Different rules apply to micro generators 

(DNC less than 50kW). 
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3.2.2 Existing Support Policy 

3.2.2.1 Climate Change Levy and Levy Exemption Certificates 

  

Climate Change Levy (CCL) 

 

The Climate Change Levy (CCL) is an environmental tax that came into force on 1 April 

2001. The levy is chargeable on the industrial and commercial supply of taxable 

commodities for lighting, heating and power used by consumers in the following sectors of 

business: 

- industry 

- commerce 

- agriculture 

- public administration, and 

- other services. 

 

The levy does not apply to taxable commodities used by domestic consumers, or by 

charities for non-business use (99). The tax is applied as a rate per unit of energy. Each 

category of commodity has a specific rate of the tax . 
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Table 3.3 Climate Change Levy rates (99-102) 

 

Taxable commodity 

Rate 

1 April 2001 – 
31 March 

2007 

1 April 2007 – 
31 March 

2008 

1 April 2008 –  
31 March 

2009 

1 April 2009 – 
31 March 

2010 

Electricity 
£0.00430 

/kWh 
£0.00441 

/kWh 
£0.00456 

/kWh 
£0.00470 

/kWh 
Gas supplied by a gas utility or any 
gas supplied in a gaseous state 
that is of a kind supplied by a gas 
utility 

£0.00150 
/kWh 

£0.00154 
/kWh 

£0.00159 
/kWh 

£0.00164 
/kWh 

Any petroleum gas, or other 
gaseous hydrocarbon, supplied in a 
liquid state 

£0.00960 /kg £0.00985 /kg £0.01018 /kg £0.01050 /kg 

Any other taxable commodity  £0.01170 /kg £0.01201 /kg £0.01242 /kg £0.01281 /kg 

 

The CCL should deliver estimated annual carbon dioxide savings of over 3.5 million 

tonnes of carbon in 2010 (in the UK). It was also estimated to lead to an increase of good 

quality heat and power capacity by 1.2 Gigawatts of electricity by 2010 (103). The CCL 

policy was reviewed in 2006 and it was calculated that it resulted in cumulative savings of 

60.5 million tonnes of carbon (103, 104). 

 

Levy Exemption Certificates (LECs) 

 

Energy generated from qualified renewable sources is exempt from the Levy where certain 

conditions can be met. 

 

Renewable source technologies eligible for exemption include: 

- wind energy 
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- hydro power (up to 10 MW) 

- tidal power 

- wave energy 

- photovoltaic cells 

- photo conversion 

- geothermal hot dry rock 

- geothermal aquifers 

- municipal and industrial wastes 

- landfill gas 

- agriculture and forestry wastes, and 

- energy crops (105). 

 

The Generators must be accredited by Ofgem (market regulator) for the renewable 

electricity they generate. Exemption certificates (LECs) are then issued for each monthly 

qualifying output. Certificates can be traded separately from the electricity for which they 

were issued (106). 

 

CHP stations are regarded to be one of the most effective ways of reducing the carbon 

footprint. Therefore output from such plants may qualify for CCL exemption. 

 

Whether a CHP Station qualifies for CCL exemption on its entire energy inputs and 

outputs will be determined under the CHP Quality Assurance (CHPQA) programme 

administered on behalf of the Department of Energy and Climate Change (DECC). Under 
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the programme rules, the Quality Index (QI), and Power Efficiency (PE) of a CHP station 

are calculated from the fuel used, electricity generated, and heat supplied (107). 

 

3.2.2.2 Renewable Obligation 

 

The Renewable Obligation Order 2009 introduced several changes to the RO scheme. The 

most important is technology banding, introduced to support more advanced technologies. 

Banding details are given in Table 3.4. The Renewable Obligation scheme will remain 

operational as support for large scale renewable projects. The Renewable Obligation Order 

will implement few changes to the system. The lifetime of the scheme will be extended to 

2037. The Generators will not be entitled to receive support for more than 20 years (108, 

109).  

Table 3.4 Renewable Obligation scheme technologies banding (95)  

 

Technologies Level of support 
ROCs/MWh 

Number of 
MWh  
to be 

generated for 
1 ROC to be 

awarded 

Landfill gas 0.25 4 

Sewage gas, co-firing on non-energy crop (regular) biomass 0.5 2 

Onshore wind; hydro-electric; co-firing of energy crops; co-firing 
on non-energy crop (regular) biomass with CHP; EfW with 
CHP; geo pressure; the use of fuels made using standard 
gasification or pyrolysis; other not specified 

1.0 1 

Offshore wind; co-firing of energy crops with CHP; dedicated 
regular biomass 

1.5 2/3 

Wave; tidal stream; fuels made using anaerobic digestion, 
advanced gasification or pyrolysis; dedicated biomass burning 
etidal impoundment; micro generation;  

2.0 ½ 
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3.2.2.3 Feed-in Tariffs 

 

During the consultation regarding the 2008 Renewable Energy Strategy, many replies 

indicated Feed in Tariffs (FITs) as the most appropriate support mechanism for distributed 

and small scale electricity (109). Key characteristics of the mechanism are: 

- Each kWh generated from an eligible source will receive a fixed payment depending 

on the type of technology used (the ‘generation tariff’). 

- Generators will be guaranteed a market for their exports at a long-term guaranteed 

price (the ‘export tariff’). However, generators are entitled to individually negotiate the 

price for exported electricity with suppliers. 

- electricity can be used on-site (109). 

 

The FITs were introduced on 1 April 2010 and cover generators with declared net capacity 

(DNC) lower than 5MW (110). FIT supports generation technologies such as: anaerobic 

digestion (AD), hydro, micro CHP, photovoltaic cells and wind turbines.  

 

3.2.2.4 Renewable Heat Incentive 

 

Choosing from many available support models the government has decided to introduce 

the Renewable Heat Obligation as a support scheme for renewable heat. According to the 

Ernst and Young (Consultants) report (111) the key characteristics of an RHO mechanism 

would be: 
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 Suppliers of heat guarantee a minimum percentage of heat demand to be met by 

renewable heat applications (‘Obligation’), with the percentage increasing over 

time to achieve a specific future target for renewable heat supplied as a proportion 

of total heat demand. 

 Suppliers either pay a penalty if they fail to achieve their Obligation (‘Buy-Out’), 

or obtain Heat Obligation Certificates (HOC) for metered renewable heat 

generation that contributes to their Obligation. 

 Revenues from supplier penalties are recycled to compliant suppliers who meet 

their obligation (111). 

 

The RHI was introduced in April 2011 (112). The incentive is promoting various 

technologies, including: 

 heat pumps, 

 solar thermal 

 biomass boilers 

 renewable CHP 

 use of biogas and bio-liquids 

 bio-methane injection into gas grid (112). 
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3.2.3 Combined Heat and Power 

 

A CHP scheme must be accredited within the Good Quality CHP programme. The 

accreditation process is conducted to prove that a particular plant provides significant 

‘environmental and other benefits’ compared to best available energy supply alternatives 

(113). Projects are assessed by analysing the Quality Index (QI). This factor was 

introduced to compare the CHP schemes with other projects that generate power or heat 

only. To calculate the QI the following formula (1) is used: 

(1)      HeatPower YXQI    

(2)     TFITPOPower CHPCHP /  

(3)     TFIQHOHeat CHPCHP / ,  

Where: Total Power Output (CHPTPO) is the total registered annual power generation from a CHP Scheme 

(MWhe) as measured at the generator terminals; Qualifying Heat Output (CHPQHO) is the total registered 

amount of useful heat supplied annually from a CHP Scheme (MWhth). Total Fuel Input (CHPTFI) is the total 

registered annual fuel input to a CHP Scheme (MWh). All numbers are based on Gross Calorific Value 

(GCV)  

 

For the proposed plants the following conditions must be met: QI > 105 and %20Power   

(113). The X and Y coefficient values for new CHP schemes are given in Table 3.6. 
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Table 3.5 Coefficients for the calculation of QI for various sizes and types of new CHP scheme (113) 

 

Technology Size 
[MWe] 

X Y Techno- 
logy 

Size X Y Techno- 
logy 

Size 
[MWe] 

X Y 

Natural Gas (IC 
engines incl.) 

≤1 249 

115 

By-Product 
Gases 

≤1 294 

120 Biomass or 
Solid Waste 

≤1 370 

120 1 – 10 195 1 – 25 221 1 – 25 370 

10 – 25 191 > 25 193 > 25 220 

25 – 50 186 

Biogas 

≤1 285 

120 Wood Fuels 

≤1 329 

120 50 – 100 179 1 – 25 251 1 – 25 315 

100 – 
200 176 > 25 193 > 25 220 

200 – 
500 

173 
Waste Gas or 
Heat 

≤1 329 

120 

 

> 500 172 1 – 25 299 

Oil 

≤1 249 

115 

> 25 193 

1 – 25 191 

Liquid Biofuels 

≤1 275 

120 > 25 176 1 – 25 191 

Coal 

≤1 249 

115 

> 25 176 

1 – 25 191 

Liquid Waste 

≤1 275 

120 > 25 176 1 – 25 260 

Fuel Cell  180 120 > 25 176 

 

3.2.4 Summary 

 

It is very important to correctly determine all sources of revenue for a feasibility study of a 

planned generating station. The majority of the data required to prepare a good feasibility 

study is specific for the chosen engine and fuel type. Moreover, the revenue from the sale 

of energy or offset, depends on agreement with the regional electricity supplier, thus it is 

different for each project.  

 

The RO banding introduced in 2009 resulted in reduced support for proven technologies 

like landfill gas or sewage gas. Anaerobic digestion (AD) was granted a double value ROC 

band. Landfill gas and sewage gas will not be supported under the new FIT scheme 
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designed for plants with DNC < 5MW. Small and medium scale biogas (AD) projects will 

be supported with the highest subsidy reaching even £115/MWh. 

 

Animal fat combustion can be supported only in the case of large (> 5MW) projects within 

the RO scheme. Generating plants equipped with reciprocating engines can be used also as 

sources of heat – combined heat and power – therefore additional support can be granted 

from the RHI scheme.  

 

3.3 Tallow Prices 

 

The tallow market in the UK is limited to a few types of organizations, such as rendering 

companies (producers), oleo chemical companies, biodiesel production companies, pet 

food industry (clients). There is no open market for tallow – trade is done via direct 

contracts between companies. Therefore data regarding tallow consumption and prices is 

commercially sensitive. It corresponds with AEA findings presented in their report (6). For 

the purpose of the project described in this thesis, the up to date price for Grade 6 Category 

3 tallow has been obtained weekly. The data have been used for an electricity generation 

feasibility analysis. Crude oil prices were obtained from BP (114, 115) – those reported are 

weekly average prices of Brent crude oil. Comparison of tallow and crude oil prices is 

shown in Figure 3.4. It has to be noted that animal fat price is given in GBP per tonne 

while oil price is reported in USD per barrel. The presented data proves that to some extent 

animal fat prices are linked with fossil fuel prices. The lack of consistency in the last few 

weeks of 2009 can be explained by the higher availability of animal fat during the winter, 
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this could have stopped the price from rising along the trend line which was visible during 

the earlier months of the year. 

 

 

Figure 3.4 Comparison of animal fat (grade 6) and crude oil (Brent) prices in 2009 (114, 115) 

 

 

3.4 Feasibility Study of 0.8 MWe Generating Plant 

 

The following approach has been followed to assess a feasibility study of the research 

power plant installed at the host company premises at Cheddleton, Staffs, England. 
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Each kWh of energy generated by the test generator results in a lower electricity bill for the 

host company. As the company has signed a long term contract, the price of energy units 

can be treated as constant.  

 

Energy is generated from a renewable source so it is entitled to be supported by the 

Renewable Obligation System. The amount of money is related to the amount of MWh 

generated. Therefore: 

Income = MWh * ( A + B ) 

Where: 

A – Electricity price (£/MWh) 

B – Subsidy (£/MWh) 

 

Fixed costs such as: emission monitoring system hire (£/week) or engine servicing cost 

(£/year) were identified. The main variable cost is the price of fuel:  

Expenditure = MWh * C 

Where:  C – fuel price (£/tonne)  

 

The used model does not take depreciation into account as the engine used for the study 

was not an up to date model and it was difficult to correctly estimate the cost of replacing 

it. Analysis of animal price effect on generation feasibility has been conducted. Results are 

given in Figure 3.5. It can be seen that for the given engine, at prices of animal fat 
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exceeding 300 GBP/tonne electricity production is not feasible. Only additional support in 

form of ROCs can make electricity production from animal fat profitable, however, in the 

case of a fuel price rise above 500 GBP/tonne, even subsidised production is not profitable. 

Depending on the price, the fuel forms between 80-90% of total production cost. 

 

Figure 3.5 Impact of animal fat price on electricity generation feasibility. Assumptions: electricity selling 
price - 92 £/MWh, ROC price - 45 £/MWh 

 

 

3.5 Feasibility Study of Large Scale 20 MWe Generating Plant 

 

A feasibility study for a proposed large (20 MW) power plant fuelled with animal fat has 

been prepared. Two documents: Electrical Production Cost Study and Feasibility 

Calculation, have been prepared by MAN B&W in cooperation with the Author for the 
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host company – John Pointon & Sons Ltd. The electrical production cost analysis gives a 

total description of the economic flow in the financial period. The electricity, heat 

production and the running costs were assumed to be constant throughout the financial 

period. The sensitivity analysis covers the most important economical parameters, in order 

to show the influence the changed values on the comparison between the plant alternatives. 

 

The findings can be summarised as follows: electricity production from animal fat even in 

a high efficiency (48%) two stroke reciprocating engine driven plant is not feasible without 

additional support in the form of ROC or another scheme. Fuel price is responsible for 

approximately 85% of the total running cost (including staff costs, servicing and 

maintenance etc.). For a long payback time (25 years), electricity generation cost does not 

fall below 85 £/MWh. At the time of the study preparation, price paid to electricity 

generators was approximately at a level of 40 £/MWh. 

 

3.6 Economics of Electricity Generation 

 

Currently power plants using engine driven generators and fuelled with animal fat are 

entitled to government subsidies in the form of Renewable Obligation Certificates. This 

scheme supports the production of electricity in large (>5MW) stations using biomass. 

Animal fat is currently classed as biomass. Each MWh receives a virtual certificate that 

can be traded with other generators and suppliers. Heat generated by a CHP plant fuelled 

with tallow can be classed as output enabling the generator to obtain Climate Change Levy 
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Exemption Certificates (LECs). The recently introduced RHI creates another possible 

source of income by subsidising heat production. 

 

The analysis of animal fat prices was a difficult task as there is no open market for this 

commodity trade. The collected data showed that a link between animal fat and fossil fuels 

exists, in consequence it makes tallow price very volatile which can possibly lead to the 

wrong process of feasibility assessment. On the other hand, animal fat price can be 

predicted to some level of accuracy by the usage of similar methods which are used for 

fossil fuel prices’ prediction. 

 

The feasibility analysis prepared for the research plant showed that fuel price can 

constitute up to 90% of total electricity production cost. Therefore, animal fat price has a 

major impact on feasibility. Electricity generation was only profitable in the case of 

receiving support in the form of ROCs. For tallow prices above 500 £/tonne it was not 

feasible to operate the plant. 

 

Similar findings are included in the feasibility study for the proposed large power plant. 

Very efficient two stroke diesel engines were proposed for this particular application but 

still fuel price contributes to approximately 85% of the total generation cost. Also in the 

case of the proposed plant, feasibility is very sensitive to fuel price change. Electricity 

production from animal fat can be profitable only when additional support such as the 

Renewable Obligation or Renewable Heat Incentive is available.  
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Chapter 4  EXPERIMENTAL FACILITIES  

4.1  Introduction  

 

This chapter describes facilities used in the research process. It can be divided into two 

areas: facilities located at the hosting company premises, such as the engine-generating set 

together with monitoring equipment (in cylinder pressure sensor, shaft encoder etc.), 

emission monitoring, modified fuel supply system and developed emission abatement 

system; and laboratory facilities located at the University of Birmingham, where fuel 

properties have been tested. It has to be noted that the engine used in this research was 

designed and manufactured in the 1960s – therefore obtained results shouldn’t be directly 

compared with those gained from modern facilities. 

 

4.2  Engine Facility 

4.2.1 Engine Specifications 

 

A Ruston 6AR has been modified for the research described in this thesis. Modifications 

included installation of a new heated fuel supply system, installation of an electronic 

control unit enabling engine speed control, operational parameters monitoring and also 

synchronising with the grid. The engine has been equipped with cylinder pressure sensors, 

a shaft encoder and emission monitoring system. A new emission abatement system has 

been designed and installed. The 6AR (shown in Figure 4.1) is a six cylinder, four stroke, 
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direct injection diesel unit of 260.5 mm bore and 368 mm stroke. The engine is equipped 

with a turbocharger and water cooled air cooler. The cylinder liners are of the wet type. 

Separate cylinder heads are provided for each cylinder carrying two inlets, two exhaust 

valves, fuel injector and air starter valve. A chain driven camshaft, through a set of cams, 

operates valves and individual fuel injection pumps. The engine is water cooled with two 

circuits of raw and fresh water. The engine is started with a compressed air system. The air 

for the starter is raised by a diesel powered compressor. Engine technical data is given in 

Table 4.1. 

 

 

Figure 4.1 Ruston 6AR engine installed at John Pointon and Sons Ltd. premises at Cheddleton 
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Table 4.1 Engine technical data 

 

No. of cylinders 6 - 

Nominal speed 600 rpm 

Power 809 kW 

Bore 260.5 mm 

Stroke 368 mm 

MEP 1.4 MPa 

Compression ratio 12.3:1 - 

Injection pressure 200 Bar 

Injection commences 22 ºBTDC 

 

 

The engine is mechanically coupled to a Brush 11 kV alternator and exciter. The 

generating set has been installed at the hosting company premises at Cheddleton, 

Staffordshire, England and registered with OFGEM as ‘Pointon_gen4’ station. A single 

line diagram showing the local electrical grid configuration with the newly designed 

metering system is given in Figure 4.2.  
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Figure 4.2 Generating station single line diagram showing Ruston 6AR engine (Gen 11kV) and dedicated 
electricity metering system complying with OFGEM requirements 

 

 

 

4.2.2 Monitoring Equipment 

 

Cylinder pressure monitoring equipment 

The cylinder pressure monitoring system consists of: 

- pressure transmitter 

- shaft encoder 

- data acquisition PC card 

- data acquisition software 
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Pressure transmitter 

The pressure transmitter Kistler 6613CA, shown in Figure 4.3, contains a piezoelectric 

sensor and an integrated charge amplifier. The pressure transmitter is made for continuous 

cylinder pressure monitoring of large engines. The integrated charge amplifier provides a 

uniform output and can be connected directly to a data acquisition unit. There are no 

individual sensitivity adjustments necessary, since the output has uniform sensitivity. The 

sensor has a voltage output of 0 - 5 V with a zero line of 2 V (if pressure is 0 MPa) (116). 

The sensor can record pressure within two ranges: the first up to 25 MPa, and the second 

up to 10 MPa with sensitivities of 100 mV/MPa and 250 mV/MPa respectively. 

 

The calibration of the pressure transducer was performed on an oil weight bench machine 

in the range of 0MPa/1.5V to 9MPa/2.5V. The obtained characteristics of the pressure 

transducer were applied to the data acquisition software as a tuned coefficient.  

 

Working principle 

The cylinder pressure is acting on the diaphragm. The diaphragm converts the pressure in 

proportional force on the sensor element. The piezoelectric sensor element converts the 

force into a charge. The charge is converted by a charge amplifier into a voltage. The 

complete measuring chain is designed for easy operation and very long life time. 
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The advantages of the piezoelectric principle are: 

- It operates safely up to high temperatures and therefore is ideally suited for 

accurate measurements in harsh conditions. 

- It has a very small sensitivity change over a temperature range. 

- Its high stiffness results in small diaphragm stress. 

- It has high reproducibility since the piezoelectric constant of the measuring element 

is a constant of nature and does not change over time (116). 

 

 

Figure 4.3 Kistler 6613CA pressure transmitter (116) 

 

 

Data acquisition software 

The software used is a LabView based programme developed at the University of 

Birmingham. The cylinder pressure signal is recorded and then various parameters can be 

calculated, for example: 

- maximum pressure (comparison between cycles) 

- heat release rate 
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- IMEP (indicated mean effective pressure) 

- compression and exhaust polytrope factor – k 

- pressure vs. crank angle 

- pressure vs. volume. 

 

Emission monitoring system 

The emission monitoring system was provided by CBISS Ltd. The system consisted of:- 

- MIR9000 – an infra red spectrophotometer that uses a Gas Filter Correlation 

technique. The advantage of the GFC technique is that it uses a pair of narrow band 

pass interference filters, specific to each gaseous species, to establish and remove 

any cross interference from other gases (117). 

- FID – Flame Ionisation Detector – Gas is sampled with a heated pump and led to 

the burner supplied with pure hydrogen and air filtered and purified through an 

internal generator. The separation of the hydrocarbon molecules at high 

temperature in the cone of the flame provides an ionizing current, the strength of 

which is directly proportional to the number of carbon atoms of the analysed 

mixture (117).  

- PCME LMS 181 probe - The LMS181 measures the scattered forward light from a 

laser source. The measurement volume in the sensor probe is positioned in a 

representative location within the stack. The scattered light response is directly 

proportional to soot concentration. The instrument optimises its resolution and zero 

drift characteristics (118).  
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The emission data was recorded continuously and stored in the system memory. The daily 

report contained half hourly averages and the daily average of the following exhaust 

components and parameters: sulphur dioxide – SO2, nitrogen monoxide – NO, nitrogen 

oxides – NOx , carbon monoxide – CO, carbon dioxide – CO2, flow, temperature, soot, 

hydrocarbons – HC. 

 

4.2.3 Fuel Supply System 

 

According to the engine manual (119) the standard fuel supply system comprises of the 

following items:  

- Daily service tank 

- Fuel filters: before fuel pumps and edge filters in each injector 

- Individual fuel pumps for each cylinder 

- Injectors 

- Interconnecting piping. 

A standard fuel system diagram is given in Figure 4.4. 
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Figure 4.4 Standard fuel system layout (119) 

 

As animal fat is solid at room temperature, the fuel supply system had to be modified to 

enable operation on alternative fuel. The following assumptions were made: 

- The engine should start and stop on diesel fuel 

- The fuel supply system should be able to switch back to standard fuel in case of an 

alarm condition such as grid voltage loss, engine overheating, synchronisation loss etc. 

 

The fuel system has been modified by adding a second fuel tank with a heating coil for 

animal fat storage. Pipe work connecting the tank with the fuel supply panel has been fitted 

with trace heating preventing fat from solidification and non return valves were also fitted. 

The fuel supply panel consisted of two fuel boost pumps, one for diesel and another for 

liquid fat, powered by electric motors, four sets of filters, where two were preliminary 
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filters located before the boost pumps, and main filters located before the engine inlet. 

Three interlinked valves, one for diesel supply, second for fat supply and third for fuel 

return, were operated by a pneumatic actuator. The described arrangement enabled smooth 

transition between the fuels. The system layout is given in Figure 4.5. The valve 

arrangement and the fuels’ flow patterns for diesel operation (engine start up and warm up 

or alarm state) are given in Figure 4.6. The system state for animal fat operation is given in 

Figure 4.7.  

 

Fuel consumption has been measured with two flow meters. Coriolis mass flow meter, 

Promass 83F supplied by Endress+Hauser, has been used for animal fat consumption 

measurement. The flow meter was linked to a PC with a data acquisition software package 

installed. Diesel consumption was recorded with a positive displacement type flow meter, 

MP 025S supplied by Trimec. 
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Figure 4.5 Fuel supply system layout 
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Figure 4.6 Fuel supply system - diesel mode 
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Figure 4.7 Fuel supply system - tallow mode 
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4.2.4  Emissions Abatement System 

 

The main reason for the EGR testing was to reduce NOx emission from the generating set. 

The limit was set by the local authorities at the level of 450 mg/m3 (concentration in dry air 

at a temperature of 273K at a pressure of 101.3 kPa and with an oxygen content of 11% 

dry) (24). Method efficiency should reach 75-80%. An abatement system combining the 

effects of exhaust gases recirculation and introduction of water to the combustion chamber 

was designed and installed. Figure 4.8 shows the EGR system with gases cooling and 

humidification installed on the engine. Usage of water for an abatement system was 

carefully considered and was found acceptable for the purpose of this particular 

installation, because of reclaimed water availability within the rendering plant.  

 

RUSTON 
6AR

Exhaust cooler – cyclone 
with water injection 

chamber

Aftercooler

Air Filter

Silencer

Turbocharger
exhaust turbine

Turbocharger
 air compressor

Water IN
Water OUT

 

Figure 4.8 cEGR system layout - including gas cooling and humidification chamber 
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The proportion of recirculated exhaust can be controlled by a set of manually operated 

valves. EGR percentage was determined by comparison between two CO2 concentrations. 

One was measured at the engine intake, the second at the stack outlet. To achieve higher 

NOx emissions’ reduction efficiency, the EGR was cooled (cEGR) and humidified. 

Exhaust was diverted to a spray chamber where water was injected through a set of 

nozzles, shown in Figure 4.9. The mixture should be free of water droplets, therefore a 

cyclone chamber, shown in Figure 4.10, was installed to spin the gases. Any excess water 

was flowing down the walls of the chamber. Water injection can be switched off; the 

engine operates then with typical gas recirculation (EGR). Technical drawings of the 

cEGR system form Appendix 1. 

 

 

Figure 4.9 Water injecting nozzles 
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Figure 4.10 EGR cyclone chamber 

 

4.3  Fuel Laboratory Facilities 

4.3.1 Density Test  

 

The hydrometer method has been used for determination of animal fat density. A tested 

fuel sample was placed in a water bath with a thermostat to minimise sample temperature 

variation. Animal fat is an opaque liquid in all conditions, therefore the scale reading 

method described in ASTM standard D1298-99 (2005) (120) and shown in Figure 4.11, 

was used. 
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Figure 4.11 Hydrometer scale reading for opaque fluids (120) 

 

4.3.2 Surface Tension Test 

 

A maximum bubble pressure method has been used to measure surface tension of various 

fuels. A Sita Proline T15 tension meter was used and technical data are given in Table 4.2. 

Sample temperature was controlled by a water bath. 

 

Table 4.2 Sita Proline T15 technical data 

 

Surface Tension 

Measuring range 10 - 100 mN/m (dyn/cm) 

Resolution 0.1 mN/m (dyn/cm) 

Bubble Lifetime 

Controlled range 15 - 15000 ms 

Resolution 1 ms 

Liquid Temperature 

Measuring range 0 - 100°C 

Resolution 0.1 K 
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Variable bubble lifetime makes obtaining results comparable with static methods possible. 

Bubble pressure method suitability, for measurement of viscous fluids, has been positively 

verified by Fainerman (121).  

 

4.3.3 Viscosity Test 

 

Fuel viscosity has been analysed with an Ultra Shear Viscometer provided by PCS. The 

Ultra Shear Viscometer can carry out fully automated viscosity measurements over a shear 

rate range from 106
 s-1 to 107

 s-1 and temperatures between 40 and 150°C. The meter is 

fitted with a DC servo motor capable of speeds of over 20,000 rpm and an electromagnetic 

clutch which engages the rotor for only a very short period of time (typically 30 ms). This 

brief shearing interval minimizes the shear heating in the lubricant (122). The viscometer is 

shown in Figure 4.12 and its main parts are shown in Figure 4.13. 

 

 

Figure 4.12 PCS Ultra Shear Viscometer 
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Figure 4.13 USV main parts (122) 

 

 

 

4.3.4 Lubricity Test 

 

Several methods have been developed to assess fuel lubricity. These include: the Scuffing 

Load Ball on Cylinder Lubricity Evaluator (SLBOCLE), the High-Frequency 

Reciprocating Rig (HFRR), and the Ball on Three Seats (BOTS). More detailed description 

and discussion of correlation between full scale injection pump systems and laboratory 

methods can be found in the literature (123). High Frequency Reciprocating Rig (HFRR) 

method has been used in this study to assess lubricating properties of animal fat. The rig 

has been provided by PCS Instruments Ltd. London, UK. A schematic diagram showing 

the working principle is given in Figure 4.14 . The technical specification is given in 
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Table 4.3. 

 
Figure 4.14 Schematic diagram of HFRR (124) 

 

 

 

Table 4.3 PCS HFRR technical specification 

 

 

 

 

To increase test repeatability and reduce scatter the rig has been fitted with a temperature 

and humidity controlled cabinet so tests can be carried out at constant temperature and 

relative humidity. The wear scar diameter is measured with a Meiji metallurgical 

Frequency 10 – 200 Hz 

Stroke 20 µm – 2.0 mm 

Load 0 – 1.0 kg 

Max. friction force 10.0 N 

Temperature Up to 400 °C 

Upper specimen 6.0 mm diameter ball 

Lower specimen 10.0 mm diameter x 3.0 mm thick disc 

Camera resolution 2048 x 1536 pixels 
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microscope equipped with a digital measurement camera. Test conditions were based on 

ISO 12156 standard (refer to Table 4.4).  

Table 4.4 Test conditions based on ISO 12156  

 

Fluid volume 2 ± 0.2 ml 

Stroke length 1 ± 0.002 mm 

Frequency 50 ± 1 Hz 

Fluid temperature 60, 75, 90 ± 2 °C 

Applied load 200 ± 1 g 

Test duration 75 ± 0.1 min 

Bath surface area 6 ± 1 cm2 

 

 

Certified specimens provided by PCS were used for testing. The upper specimen is a 6.0 

mm diameter ball that is loaded into the upper specimen holder. The upper specimen is 

specified to grade 28 (ANSI B3.12), ANSI E-52100 steel, with a Rockwell hardness "C" 

scale (HRC) number of 58-66 (ISO 6508), and a surface finish of less than 0.05 µm Ra. 

The lower specimen is the disc that is loaded into the lower specimen holder. The lower 

specimen is specified to ANSI E-52100 steel machined from annealed rod, with 

Vickers hardness "HV30" scale number of 190-210 (ISO 6507/1). It is turned lapped and 

polished to a surface finish of less than 0.02 µm Ra (122). 

 

4.3.5 Free Fatty Acids Removal 
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One possible method of acidity reduction is free fatty acid (FFA) evaporation under 

reduced pressure.  FFA removal is described in more detail in sections 5.3 and 5.4. 

A small scale laboratory test rig was designed to run the trial with tallow fuel. A sample of 

animal fat was put in a beaker; the outlet was connected to a vacuum pump. The pump is 

capable of reducing pressure down to 6.5 - 9.5 hPa. The beaker, prepared as described 

above, was placed in a liquid bath. The temperature was set to 100⁰C and 220⁰C. The 

sample was exposed to the raised temperature over one and three hours. The experimental 

set up is presented in Figure 4.15. 

 

 

Figure 4.15 Test rig for FFA removal via evaporation at reduced pressure 
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Chapter 5  CONSISTENCY OF TALLOW PROPERTIES 

5.1 Introduction 

 

There are properties that are widely used to determine tallow quality and suitability for 

applications within the chemical and food industry. Usually the free fatty acid content, 

polyethylene contamination, moisture, insoluble impurities, ash and iodine values are 

measured. Those properties are tested on a regular basis in the host company’s on-site 

laboratory. Analysis presented in this chapter is based on test results obtained there.  

 

The amount of free fatty acid an animal fat contains is a good indication of whether the fats 

were properly handled before rendering. Meat tissues contain fat-splitting enzymes, which 

start to hydrolyze the fat to form free fatty acid as soon as the animal dies. Rendering must 

be performed as soon as possible after the animals are slaughtered for a minimum of free 

fatty acid development (4). The raw material is usually contaminated with polyethylene 

that will melt and disperse in the tallow during the rendering process. Polyethylene may 

solidify as the tallow is cooled and contaminate pipe work and valves or damage the fuel 

injection system. Moisture content characterises the efficiency of tallow filtration and 

separation processes. It is desirable to keep moisture at low levels. High moisture content 

may encourage hydrolysis and increase acidity as a result. Insoluble impurities are usually 

small particles of protein, bone and fibre. Animal fats are highly saturated and the iodine 

value is a parameter describing the level of saturation.  
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Industrial requirements for grade 6 tallow and crude bio-fuel specifications for two- and 

four-stroke heavy fuel oil engines are given in Table 5.1. 

 

Table 5.1 Required tallow properties 

 

Property 
Limit value 

Grade 6 tallow 4-stroke engine spec 
(69) 

2-stroke engine spec 
(42) 

Free fatty acids (FFA) <15 % <10% <15% 

Polyethylene <200 ppm - - 

Moisture <0.03% 0.2% 1.0% 

Insoluble impurities <0.05% 0.05% - 

Ash <0.02% 0.05% 0.15% 

Iodine value <60 120 - 

Calorific value 36-40 MJ/kg - - 

 

 

5.2 Long Term Monitoring Programme 

 

A category 3 grade 6 tallow batch was prepared on a weekly basis and pumped to a heated 

tank supplying the test generator. Samples were taken weekly throughout 2009 and tests 

were also conducted on a weekly basis with the exemption of density and calorific value, 

where monthly composite samples were tested.  

 

Results were statistically analysed to determine whether the data came from a process 

which is subject to statistical description. A two stage approach was chosen. The first step 
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was to check if the data values follow the normal distribution. A test for data normality 

consisting of Chi-square, Shapiro-Wilks statistics and Z scores for skewness and kurtosis 

was used and P-values were calculated. It can be assumed that data are adequately 

modelled by a normal distribution if the P-value is greater than 0.05 (125, 126). As the 

sample size used for process monitoring is n=1, a control chart for an individual unit 

should be used during the second stage of the data analysing process. If the data values 

follow normal distribution then a moving range control chart for individual measurements 

(MR chart) can be used. In case the data values do not follow normal distribution an 

exponentially weighted moving average control chart (EWMA chart) can be used. The 

exponentially weighted moving average is defined as: 

௜ݖ ൌ λx୧ ൅ ሺ1 െ λሻz௜ିଵ 

Where 0<λ<1 is a constant and the starting value is the process target (126).  

 

 Montgomery (126) claims that a EWMA with lambda parameter λ = 0.05 – 0.10 and an 

appropriately chosen control limit will perform very well against both normal and non 

normal distributions. 

 

To check if the acidity of the fuel depends on the ambient temperature, it has been 

recorded at hourly intervals. The weekly average temperature was then calculated. 
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Calculated annual mean values were compared with industrial requirements for grade 6 

tallow and bio fuel specification for large four and two stroke engines used for power 

generation. 

 

5.2.1 Results  

 

Results of tests for weeks 6-8 are excluded due to a failure of the filtration system which 

resulted in ‘off spec’ fuel provided for the research engine. Other data are graphically 

presented in Figure 5.1 and Figure 5.2. Acidity test results are presented in Figure 5.3 

together with the weekly average ambient temperatures. Monthly composite samples 

results are presented in Figure 5.4. 

 

 

Figure 5.1 Moisture, insoluble impurities, ash levels in tallow during 2009 
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Figure 5.2 Iodine number and polyethylene levels in tallow during 2009 

 

 

Figure 5.3 Free fatty acids (FFA) level in tallow and weekly average ambient temperature during 2009 

 

0

10

20

30

40

50

60

70

0

10

20

30

40

50

60

70

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

P
o

ly
et

h
yl

en
e 

[p
p

m
]

Io
d

in
e 

va
lu

e 
[g

 I2
/1

00
g

]

Week

Iodine value Polyethylene

0

5

10

15

20

25

30

35

0

5

10

15

20

25

30

35

W
ee

kl
y 

av
er

ag
e 

am
b

ie
n

t 
te

m
p

er
at

u
re

 [
d

eg
C

]

F
re

e 
fa

tt
y 

ac
id

 [
%

]

Week

FFA

Temperature



93 
 

 

Figure 5.4 Calorific value (higher) and density of tallow during 2009 
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designed limits – EWMA upper and lower control limits (UCL and LCL) in the case of the 

analysis presented in this paragraph. In the fourth column it is stated whether a particular 

tested property is within statistical control. A comparison of the calculated annual average 

and highest recorded values with three specifications (grade 6 tallow, 4- and 2-stroke 

engines) is also included; Y – means that the calculated/measured value complies with the 

specification, N – means that the calculated/measured value does not comply with the 

particular specification. It can be concluded that although some properties, like 

polyethylene contamination, are not consistent during the sampling period, they do not 

prevent the tallow from being used in industrial applications, as calculated averages exceed 

the required specification (grade 6). The only parameter that disqualifies the tested tallow 

from being used as a fuel in any available combustion engine is the acidity expressed as 

free fatty acids level. The highest measured value of FFA exceeds the specification for a 

two stroke low speed engine by 100%. Moisture content in the tested fuel seems to be 

within the statistical limits, however, the mean value does not meet requirements of grade 

6 tallow and bio fuel for a four stroke engine.  

 

As shown in Figure 5.3, there is a relationship between ambient temperature and free fatty 

acids’ level. Acidity is considerably higher during the summer period. The collected data 

are very random so it was difficult to create a detailed model or equation linking ambient 

temperature with acidity level. However, a very coarse approximation can be formulated: 

increase of ambient temperature by one degree can increase acidity of tallow by 0.75%. 

Acidity level depends on the intensity of the decomposition process and fat hydrolysis by 

enzymes. Clearly, the ambient temperature is one of the factors affecting the reaction rate. 
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Table 5.2 Summary of statistical analysis and compliance with various specifications 

 

Data series 
Smallest
P-value 

Normal 
distribution

Process 
in 

statistical 
control 

Annual 
average

Highest 
reading

Unit 

Compliance 
with 

specification 

G6 4S 2S 

Moisture 0.0008 No Yes 0.28 0.69 % N/N N/N Y/Y 

Insoluble 
impurities 

1.05*10-8 No No 0.13 0.54 % N/N N/N - 

Ash 
1.77*10-

13 
No No 0.04 0.11 % N/N Y/N Y/Y 

Iodine value 0.0150 No Yes 50.9 55.8 gI2/100g Y/Y Y/Y - 

Polyethylene 0.0017 No No 13.7 34.0 ppm Y/Y - - 

FFA 5.11*10-6 No No 21.9 32.6 % N/N N/N N/N

Density 0.0008 No Yes 897.4 899.5 kg/m3 - Y/Y Y/Y 

Calorific 
value 

0.0005 No No 39.34 38.98 MJ/kg Y/Y - - 

Where: G6 – grade 6 specification, 4S – four stroke specification, 2S – two stroke specification 
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Figure 5.5 EWMA control charts for monitored tallow properties 
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5.3 Available Acidity Reduction Methods 

 

Acidity can be lowered in many ways. Bhosle et al. (127) describe three main groups of 

methods: chemical, physical and miscella deacidification. The chemical method of 

lowering acidity comprises of the addition of an alkali to degummed oil, thereby turning 

the FFA into soap, which is then removed by mechanical separation from the neutral oil. 

This method has been widely researched by Zheng et al. (78) and Meher et al. (128) and 

applied in  first generation biodiesel production by Canakci et al. (129). An alternative 

approach is presented by Cmolik et al. (130), where advantages of physical methods like 

lower environment pollution due to lack of chemicals, higher yields achieved, are 

described. The most common physical methods are steam refining and inert gas stripping. 

Further investigation is required to determine the best solution for deacidification 

technology that can be implemented in the case of tallow used as fuel in engines.  

 

5.4 Acidity Reduction by Evaporation – Trial Test 

 

5.4.1 Preliminary Information 

 

In the case of the project described in this thesis, it was desirable to find an acidity 

lowering method that will not involve the usage of chemicals. Chemical FFA removal is a 

well known process and is already used in the biodiesel production industry, even for 

treatment of the fat sourced from the host company.  
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All physical methods are based on the fact that free fatty acids evaporate at lower 

temperatures if the pressure is reduced. The main goal is to lower the temperature to avoid 

polymerisation and fat decomposition. One of the physical method variations is thin film 

evaporation. The industrial scale method is described below. A Laboratory scale 

experiment has been conducted to ensure that fat specific for this project can be treated 

with this method – as there is no experience in dealing with grade 6 feedstock (correct at 

2010, experience in yellow grease treatment – FFA of 25%).  

 

5.4.2 Large Scale Plant Utilising Rothoterm® Technology by Artisan Industries Inc. 

 

A technology description accompanied by a process flow diagram is attached as Appendix 2.  

 

5.4.3 Small Scale Test Results and Discussion 

 

Average acidity reported in Table 5.3 has been calculated based on three consecutive tests. 

Tallow samples were tested on the rig described in paragraph 4.3.5.  

Table 5.3 FFA evaporation at low pressure – 6.5 – 9.5 hPa 

 

Test duration [hours] 
Test temperature [⁰C] 

100 220 

0 [ref] 9.38 % 

1 9.63 % 4.26 % 

3 9.21 % 7.53 % 
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It can be seen that heating animal fat at low pressure will encourage evaporation of free 

fatty acids. In the case of prolonged heating, high acidity can probably be explained by 

hydrolysis reaction affected by the higher temperature. As expected, the acids’ removal 

process should be fast – in industrial applications it is achieved either by supplying fats to 

stripping columns in the form of spray or in the case of evaporators in a thin film layer. 

The conducted test proves that fat produced by the host company can be potentially treated 

with one of the physical deacidification methods. No negative impact of the treatment on 

fat has been detected.  

 

5.5 Conclusions  

 

Data collected throughout the duration of the project proved that acidity of the tallow is 

high and does not meet any requirements given by engine manufacturers. An appropriate 

method of deacidification must be implemented to modify tallow properties to enable its 

usage as fuel for engine driven power plants. Moreover, high variability of acidity was 

detected. Ambient temperature affects the speed of the decomposition process, hence the 

acidity level. Observations proved the possible suitability of tallow as a fuel, due to high 

calorific value, which is consistent during the year. The quality of the fuel preparation 

process must be improved so that moisture content can be lowered. Tallow can be treated 

as a potential fuel for renewable energy power plants, however, its quality and pre-

treatment have to be developed and improved.  
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Chapter 6  DETERMINATION OF APPROPRIATE STORAGE AND 

SUPPLY TEMPERATURES 

6.1 Effect of Temperature on Properties of Animal Fat 

 

This chapter describes an attempt to establish the appropriate temperature for animal fat to 

be supplied as a fuel for reciprocating engines. Tallow is solid at ambient conditions and 

melts in temperatures above 35 °C. The following aspects have been discussed in this part 

of the study; elevating temperature will reduce the fat’s viscosity and surface tension thus 

improving spray characteristics. At the same time, high temperature may have an impact 

on the lubricating properties of the fuel. In the light of findings presented in Chapter 5, 

acidity seems to be one of the fuel properties that need close monitoring; therefore the 

possible contribution of high storage temperature towards increased acidity was also 

investigated. The main objective of this part of the study was to determine optimal feed 

and storage temperature for animal fat. 

 

The investigation concluded in Chapter 5 focused on properties’ consistency. Despite 

acidity variation associated with ambient temperature influencing the decomposition 

process, other properties presented some level of consistency, enabling the establishment 

of a set of typical values for animal fat. The next step was to establish limits – the internal 

specification when fuel would be rejected and not used for engine trials. Fuel used for tests 

presented in the current chapter was within the limits given in Table 6.1.  
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Table 6.1 Animal fat typical specification, tested sample properties 

 

Data series 
Annual 
average

Limit Sample Unit 

Moisture 0.28 0.5 0.16 % 

Insoluble 
impurities 

0.13 0.4 0.15 % 

Ash 0.04 0.1 0.06 % 

Iodine value 50.9 55 54 gI2/100g 

Polyethylene 13.7 35.0 15 ppm 

 

6.1.1 Viscosity 

 

Tallow contains high levels of saturated fatty acids, which give it a solid consistency at 

room temperature (4). Fuel pre heating was reported by numerous researchers (32, 66, 131, 

132) as a potential way of utilising neat triglycerides as engine fuels. The importance of 

viscosity reduction was noted by Ejim et al. (28) as it has the largest contribution, about 

90%, to change in the SMD. Therefore, viscosity reduction should be prioritised to achieve 

better fuel atomisation.  

 

Figure 6.1 presents a comparison of dynamic viscosity of two fuels – animal fat and ULSD 

– measured at a range of temperatures. The presented results are calculated averages of 

four consecutive tests performed at USV. The first condition measured was a temperature 

of 40 ⁰C – often used in fuel specifications as a reference. A temperature of 60 ⁰C is often 

regarded to be the temperature of fuel in the supply system and is used as a reference for 

example in the lubricity HFRR test. It was impossible to perform a test for animal fat at 
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lower temperatures and higher shear rates as viscosity values were reported to be too high. 

The impact of temperature on the viscosity of animal fat is significant; raising the 

temperature from 40⁰C up to 60⁰C results in viscosity reduction from approximately 40 cP 

down to 20 cP. Further heating up to 90⁰C reduces viscosity to 9 cP (for low shear rate) 

and 8 cP (for high shear rate). It has to be noted that even heating up to 90⁰C does not 

reduce viscosity to levels comparable with ULSD. However, calculated kinematic viscosity 

(presented in Figure 6.2) of 13.5 cSt (for 80⁰C) and 10.8 cSt (for 90⁰C) is lower than the 

limit of 15 cSt at the engine inlet flange defined for large two stroke engines (133). 

Therefore, it should be possible to use animal fat as fuel in large engines equipped with a 

fuel supply system capable of handling viscous fuels such as HFO or crude oil. The engine 

used in trials presented in this thesis can be supplied with fuel of viscosity limited to 14.5 

cSt at 40⁰C (119).                                                                                                                                              

 

Figure 6.1 Comparison of dynamic viscosity of animal fat and ULSD at range of temperatures 
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Figure 6.2 Effect of temperature on animal fat kinematic viscosity 

 

Presented results prove that pre heating above 80⁰C is required to reduce viscosity to a 

level comparable with that required by the engine manufacturer. 

 

The character of animal fat as a fluid can be determined by analysis of the relationship 

between stress and shear rate. Shear stress for animal fat and ULSD at various 

temperatures is shown in Figure 6.3. For ULSD at both tested temperatures a linear 

relationship between shear stress and shear rate was observed. A similar conclusion can be 

drawn for animal fat for temperatures of 80 and 90⁰C. It proves that tallow is Newtonian 

fluid. For lower test temperatures animal fat shows minimal signs of shear-thinning as 

curve gradient (viscosity) reduces with increasing shear rate.  
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Figure 6.3 Relationship between shear stress and shear rate for animal fat and ULSD at a range of 
temperatures 
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depends on various features such as saturation, oxygen presence, number of OH groups 

(136).  

 

The test for each temperature has been repeated three times, calculated averages are 

reported in Table 6.2. The wear scar measured for ULSD is shown in Figure 6.4. The 

measured diameter of 320 µm is consistent with values available in literature (138, 139).  

 

Table 6.2 HFRR test results 

 

Fuel 
Temperature MWSD WS1.4 Avg. Film 

Avg. Friction 
coefficient 

[degC] [µm] [µm] [%] [-] 

ULSD 60 315.0 320.0 83 0.176

Fat 60 85.5 102.3 100 0.069

Fat 75 86.5 104.2 100 0.078

Fat 90 89.5 108.9 100 0.082

Where: MWSD – uncorrected mean wear scar diameter; WS1.4 – corrected wear scar diameter 
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Figure 6.4 Wear scar captured by digital microscope; ULSD at 60⁰C 

 

 

Figure 6.5 Wear scar captured by digital microscope; Animal Fat at 60⁰C 
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As expected wear scar diameter is significantly lower for animal fat than for diesel fuel. 

The measurement result is shown in Figure 6.5. It can be explained by high unsaturation of 

animal fat - presence of double bonds, indicated by a iodine number. Animal fat contains 

10% oxygen which improves lubricity. According to Knothe et al. (140) oleic and linoleic 

acids have excellent lubricating properties, as no wear scar has been recorded. These two 

components constitute more than 50% of animal fat composition (7). Differences in 

lubricity of animal fat and ULSD are even more significant if film thickness is compared. 

For animal fat, film is developed after less than 5 minutes of the HFRR test, whilst for 

ULSD it never exceeds 85% of thickness. Comparison of film thickness for both analysed 

fuels is given in Figure 6.6 and a more detailed comparison focusing on the first 5 minutes 

of the test is given in Figure 6.7. Better lubricity of animal fat can also be proved by lower 

friction coefficients; in all cases the difference is significant. Comparison is given in Figure 

6.8.  

 

Figure 6.6 Film percentages for ULSD and animal fat at a range of temperatures. 
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Figure 6.7 Film percentages for ULSD and animal fat at a range of temperatures - first 5 minutes of HFRR 
test 

 

 

Figure 6.8 Friction coefficients for ULSD and animal fat at a range of temperatures 

0%

20%

40%

60%

80%

100%

0 1 2 3 4 5

F
ilm

 p
er

ce
n

ta
g

e

Test duration [minutes]

Fat 90 Fat 75 Fat 60 ULSD 60

0.000

0.050

0.100

0.150

0.200

0.250

0 10 20 30 40 50 60 70

F
ri

ct
io

n
 c

o
ef

fi
ci

en
t 

Test duration [minutes]

Fat 90 Fat 75 Fat 60 ULSD 60



109 
 

No significant impact of elevated temperature on lubricating properties has been detected. 

The wear scar diameter increased for the highest test point (90⁰C) by 7 µm; the wear scar 

is shown in Figure 6.9. Friction coefficient increased by 0.013 indicating worse lubrication. 

HFRR test results are consistent with those expected from the literature review. Further 

investigation is required to find correlation between the HFRR test parameters and the 

working conditions of the injection equipment of stationary engines. Conducted tests 

proved that impurities present in fuel prepared for engine trials do not affect lubricating 

properties. Lack of significant increase of wear scar diameter for the high temperature test 

ensures that fuel pre heating, necessary for viscosity reduction, will not have a negative 

impact on fuel pumps’ wear. This conclusion was verified by long term tests of fuel pumps 

which are described in section 8.3.  

 

 

Figure 6.9 Wear scar captured by digital microscope; Animal Fat at 90⁰C 
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6.1.3 Surface Tension 

 

Fuel surface tension is one of the parameters that have significant impact on fuel 

atomisation. For hydrocarbon fuels it increases together with viscosity and density and 

decreases when temperature and pressure rises.  

 

Surface tension has been measured with a bubble pressure tension meter at a range of 

temperatures, starting at 60⁰C going up to 90⁰C with intervals of 10⁰C. Diesel fuel (ULSD) 

has been tested at a temperature of 60⁰C. Each reading has been repeated three times – 

results are shown in Figure 6.10. The maximum bubble pressure method enables the 

recording of changes of fuel surface tension influenced by hydrodynamic effects (121). To 

compare results obtained with the bubble tension meter with data available in literature and 

obtained with static methods, long bubble lifetimes should be used. If results obtained for 

animal fat are considered, it can be seen that for bubble lifetimes longer than 5 seconds, 

measured surface tension remains constant. Significant impact of bubble lifetime on animal 

fat surface tension was recorded. It can be expected that hydrodynamic effects may have a 

negative impact on the atomisation process.  

 

Pre heating of animal fat reduces its surface tension. Raising the temperature to 90⁰C 

lowers the value down to 25.8 [mN/m] from 31.0 [mN/m] recorded at 40⁰C. The surface 

tension is still considerably higher than for mineral fuel – 23.4 [mN/m]. 
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Figure 6.10 Comparison of surface tension measured at a range of temperatures for ULSD and animal fat 
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Each test was repeated three times; calculated averages are reported and shown in Figure 
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Figure 6.11 Impact of fat temperature on density 

 

The obtained results present a linear trend where density decreases as temperature rises. 

The measured density at standard conditions (temperature 15⁰C) – 915 kg/m3 – is higher 

than the maximum density for diesel fuels (800 – 845 kg/m3 (37)) and FAME (860 – 900 

kg/m3 (54)). The density is similar to values reported in the literature (4). 

 

6.2 Maximum Allowable Long Term Storage Temperature 

 

Animal fat is usually stored in a solid state and preheated before transportation or usage. In 

a small generating station with power below 1 MW, this regime does not seem to be 

practical as a multiple tank arrangement will increase installation and maintenance costs. 

For large plants, where fuel is transferred from storage tanks to daily service tanks, animal 

840

860

880

900

920

940

960

0 10 20 30 40 50 60 70 80 90 100

D
en

si
ty

 [
kg

/m
3]

Test Temperature [degC]

limit for HFO RMA30 @ 15 degC

limit for ULSD @ 15 degC

limit for FAME @ 15 degC



113 
 

fat can possibly be stored for prolonged periods of time in a solid state. Due to its 

composition, tallow can easily oxidise (4). Nitrogen blanketing can be used to prevent fat 

oxidation. Multiple heating and cooling should be avoided due to potential fat 

polymerisation. In the case of the research plant described in this study, the size of the tank 

was determined to be approximately 20 tonnes. The tank would fulfil weekly fuel demand.  

 

Rice et al. (141) and the host company staff reported the potential impact of the storage 

temperature on animal fat acidity. As acidity of the tested fuel is already high (please refer 

to Chapter 5) any potential cause for its increase should be avoided. It should be noted that 

both findings apply to fat of higher quality (Grade 2). Due to lack of literature data it was 

decided to investigate the impact of storage temperature on tallow acidity. 

 

An experiment was set up at the hosting company. On that basis, a Final Year Project was 

established at The University of Birmingham – Mr Paik Seng Teoh conducted experiments 

and produced final report (142). Tested fuel samples were stored at a range of temperatures 

(ambient, 20, 60, 85, 105⁰C) for four weeks. Free fatty acid content was tested on a weekly 

basis. 

 

The findings can be summarised as follows; animal fat storage in liquid form at elevated 

temperatures does not increase its acidity, refer to data given in Table 6.3 and graphically 

presented in Figure 6.12. An increase has been detected for room and ambient temperature 

– however, due to a large error margin, it cannot be regarded as significant. 
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Table 6.3 Animal fat acidity - long term storage 

 

Temp (0C)
Content of Free Fatty Acid (%) 

Reference Week 1 Week 2 Week 3 Week 4 

Ambient 9.4 9.1 9.3 9.1 9.7 

20 9.4 9.1 9.3 9.1 9.3 

65 9.4 9.1 9.3 9.3 9.7 

85 9.4 9.2 9.1 8.9 9.0 

105 9.4 9.0 8.7 8.6 7.9 

 

 

 

Figure 6.12 Free fatty acids content in animal fat stored for four weeks at various temperatures 
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6.3 Conclusions 

 

The investigation presented in this chapter can be summarised as follows. Animal fat 

viscosity can be reduced by pre heating, however, even raising the temperature up to 90⁰C 

does not bring the viscosity down to a level comparable with conventional diesel fuel. For 

lower temperatures, like 40⁰C, when viscosity is high, a shear heating effect was observed. 

A linear relationship between fat temperature and its density was proved. The measured 

density is higher than conventional fuel and FAME, despite elevating the fuel temperature. 

A similar relationship was detected for fuel surface tension where pre heating reduces fat 

surface tension for various bubble lifetimes. The applied method – maximum bubble 

pressure – enabled detection of a significant difference between diesel fuel and fat, 

especially for short bubble lifetimes. Investigation of the hydrodynamic effect on fuel 

atomisation requires further analysis. Lubricating properties were tested at HFRR. Tests 

proved the excellent lubricity of animal fat at a range of temperatures. The impact of 

elevating the temperature up to 90⁰C was studied and no significant change in the wear 

scar diameter was detected. Acidity dependence on storage temperature was another area 

investigated in this chapter. Results of tests performed as part of FYP proved that animal 

fat storage at higher temperatures does not have an impact on fuels’ acidity. 

 

Two samples of tallow were sent for more detailed analysis to external laboratories. 

Certificates of analysis form Appendix 3. 
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The general conclusion of the tests presented in this chapter is that pre heating can be used 

as a method of altering physical properties to match those of conventional fuel. It has to be 

noted that raising fuel temperature even above 90⁰C does not result in achieving properties 

similar to ULSD. Animal fat should be treated as an alternative to heavy fuel oil (HFO). As 

no negative consequences of pre heating were detected, fat temperature of 80-90⁰C was 

chosen for engine trials. 
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Chapter 7  COMBUSTION PROCESS ANALYSIS 

 

7.1 Combustion Characteristics 

 

Heat release analysis is conducted in a way proposed and described by Stone (143). Net 

heat release rate is calculated with the following equation: 
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where k is approximated to be the polytropic exponent of compression and expansion, for 

which a different value is calculated for the respective parts of the cycle. Presented results 

are averages obtained from 100 cycles.  

 

The in-cylinder pressure and heat release rate patterns, accompanied by cylinder pressure 

rise rates for three rated loads from the engine operation on diesel and animal fat, are 

shown in Figures 47-52. A summary of combustion analysis is given in Table 7.1. Fossil 

diesel fuel has a higher calorific value than animal fat, thus the mass flow of animal fat was 

increased on average by 10-15 %, whereas volumetric flow rose by 5-7 %. The peak 

engine load for animal fat fuelling was reduced by 10%, as the fuel injection system was 

not modified to deliver higher quantities of fuels.  

 

Figure 7.1 presents pressure and heat release patterns for diesel and tallow combustion at 

high load (75%). It can be seen that peak pressure for tallow combustion is higher and 

occurs approximately two crank angle degrees later than for diesel. The difference in heat 

release patterns is evident. Net heat release rate (NHRR) during the premixed combustion 
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is higher for diesel compared with tallow. Mixing controlled combustion heat release tends 

to dominate in the case of tallow (period between -5 deg BTDC and 15 deg ATDC). The 

peak of the heat release rate for diesel was recorded at -9 deg BTDC and 5 deg ATDC for 

tallow. Late burn heat release is greater for diesel. Pressure increase for animal fat is 

slower than for mineral fuel (Figure 7.2). 

 

Figure 7.3 shows a comparison of the combustion process at medium load (50%). Again, 

recorded peak pressure for tallow is higher and occurs later; however, the difference is not 

as evident as at high load. The peak of heat release for diesel was recorded at -7 deg BTDC 

and -8 deg BTDC for tallow. For medium load it was noted that pressure rise, although 

lower for animal fat, occurs earlier – it may indicate shorter ignition delay (Figure 7.4).  

 

The comparison for combustion at low load (25%) is shown in Figure 7.5. Peak pressure 

for tallow is slightly lower but again delay was recorded. The peak of heat release for 

diesel was recorded at -6 deg BTDC and -7 deg BTDC for tallow.  

 

Heat release rate patterns for the premixed combustion phase at various loads for both 

fuels, are shown in Figure 7.7. For all three loads compared, more heat was delivered in the 

premixed mode for diesel fuel. However, recorded patterns show that combustion begins 

earlier for tallow and local maxima were noted approximately one crank angle degree 

earlier. Ignition delay increases for lower loads. The shorter ignition delay in the case of 

tallow combustion can be explained by chemical composition. As tallow contains 

unsaturated fatty acids, a chemical reaction, such as carbon double bond cracking could 
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have produced light volatile compounds (131). Shorter ignition delay for a high 

temperature of fat has been reported by Kumar (52). The larger amount of heat released in 

the diffusion combustion phase can be associated with multiple reasons. Firstly, 

polymerisation of triglyceride at the high temperature spray core, could have produced 

heavy low-volatility compounds (131). Heavy compounds are difficult to combust; 

therefore the process extends to the late phase. Physical properties of tallow, such as high 

viscosity (even at elevated temperature) and increased surface tension, affect the spray 

formation, leading to poor atomisation compared to diesel. Higher fuel viscosity can lead 

to a decrease in leaks in fuel pumps (34). Therefore it can be assumed than injection 

commences earlier. In the case of animal fat usage, diffusion combustion phase is the 

predominant form of combustion process. Lower heat release rate during the premixed 

combustion phase can be explained by limited availability of combustible mixture due to 

the higher viscosity and surface tension of animal fat. Therefore more time is required for 

the fuel droplet to evaporate and combust. It results in peak pressure occurrence delay by 

1-2 degCA for animal fat combustion. The coefficient of variance for IMEP, regarded to be 

a combustion stability evaluation criterion, is lower than 5% for high and medium loads for 

both fuels. At low load combustion stability is worse, most likely due to poor atomisation 

of animal fat. Lower calorific value of tallow requires more fuel to be injected per cycle 

through an unmodified injection system. 
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Figure 7.1 Combustion process comparison – 75% load 

 

 

Figure 7.2 Cylinder pressure rise rate – 75% load 
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Figure 7.3 Combustion process comparison - 50% load 

 

 

Figure 7.4 Cylinder pressure rise rate - 50% load 
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Figure 7.5 Combustion process comparison - 25% load 

 

 

Figure 7.6 Cylinder pressure rise rate - 25% load 
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Table 7.1 Combustion analysis results 

 

Parameter Unit 
Test condition 

D75 T75 D50 T50 D25 T25 

Ignition delay deg CA 12 12 12 12 13 13

25% HR @ deg CA 0 0 -4 -4 -6 -6

50% HR @ deg CA 10 8 3 3 -3 -3

95% HR @ deg CA 40 36 32 30 19 20

Total duration 
(Injection -95% MFB) 

deg CA 61 57 53 51 40 41

Avg. PP bar 64.5 66.7 54.5 55.0 42.5 41.6

Avg. IP bar 102.1 103.0 69.1 67.3 36.1 34.6

Avg. IMEP bar 10.1 10.2 6.8 6.6 3.6 3.4

COV PP  % 2.7 2.2 1.8 2.1 2.8 1.5

COV IP  % 2.0 1.2 1.8 2.5 1.7 5.1

COV IMEP % 2.0 1.2 1.8 2.5 1.7 5.1

Fuel Mass Flow  kg/h 145 160 100 110 60 65

Fuel Vol. Flow   l/h 175 185 120 125 70 75

Where: HR – heat released, PP – peak pressure, IP – indicated pressure, IMEP - indicated mean 
effective pressure, COV – coefficient of variance 
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Figure 7.7 Premixed combustion net heat release (NHRR) patterns for both tested fuels at three tested loads. 
Local maxima for premixed combustion phase are marked. 

 

 

Figure 7.8 Effect of fuel on the specific fuel consumption (not adjusted for calorific value) 
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Figure 7.8 shows the variation of the specific fuel consumption for the tested engine when 

fuelled with tallow and diesel. Tallow consumption is higher than diesel consumption by 

10 – 15%. Specific fuel consumption remains constant at loads varying between 50 and 95 

per cent for both tested fuels. Table 7.1 contains a comparison of fuel volumetric and mass 

flows. 

 

Fuel consumption has been recorded during the trial. Tallow consumption was recorded by 

a mass flow meter with data acquisition module and software. The permit for the trial 

specified a limit on tallow throughput to be 



 h
kgQ 270max

 . Prior to starting the engine 

and switching to tallow, the fuel supply system permeability was checked by draining for a 

few seconds. It resulted in high fuel flow spikes being recorded by a flow meter. In Figure 

7.9 typical daily fuel consumption data is presented together with a fuel temperature curve. 

A weekly tallow consumption graph is shown in Figure 7.10. 
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Figure 7.9 Daily fuel consumption curve 

 

 

 

Figure 7.10 Weekly fuel consumption curve 
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7.2 Emissions Comparison 

 

Engine emissions were measured for three loads and two tested fuels. Figure 7.11 contains 

a comparison of emissions for the high load operation. One of the main advantages of 

animal fat is its very low sulphur content resulting in sulphur dioxide emissions complying 

with WID standards for all three tested loads. It eliminates the necessity of a SO2 

abatement system. 

 

As animal fat does not contain nitrogen, all nitrogen oxides are formed at high temperature 

in the combustion chamber. Higher NOx emissions corresponds with higher cylinder peak 

pressure and a prolonged combustion process (Figure 7.1). Higher exhaust temperature for 

animal fat combustion has been recorded. Oxygen content in the animal fat improves the 

combustion process, as a result, emissions of carbon monoxide and unburned hydrocarbons 

are considerably lower.  
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Figure 7.11 Effect of fuel type on the engine exhaust emissions - 75% load 
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equipped with a Napier turbocharger with a constant geometry setting optimised for high 

load operation. Therefore cylinder filling and scavenging is worse for low loads. Finally, 

implications of the engine design type may affect the atomization process and tallow 

combustion. For a direct injection engine with a low compression ratio, the air temperature 

before start of the injection will be lower than for high loads.  

 

 

Figure 7.12 Effect of fuel type on the engine exhaust emissions - 50% load 
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Figure 7.13 Effect of fuel type on the engine exhaust emissions - 25% load 

 

7.3 Use of EGR 

 

The effects of various EGR concentrations on tallow combustion have been tested, with 

and without water injection. Results for the standard EGR configuration combustion 

analysis are given in Figure 7.14. As expected, peak pressure decreases with increased 

proportions of recirculated gases. The addition of exhaust gas prolongs the duration of the 

combustion process. For low recirculation rates there is no significant impact on the 

combustion process. Figure 7.15 shows the impact of cooled exhaust gas recirculation on 

the tallow combustion process. Addition of more than 20% of EGR results in a significant 

drop in peak pressure.  

0

50

100

150

200

250

300

350

400

450

500

NOx * 10 CO HC Soot SO2

E
m

is
si

o
n

s 
(m

g
/m

3)

Diesel Tallow



131 
 

 

Figure 7.14 Impact of the EGR on tallow combustion 

 

 

Figure 7.15 Impact of the cooled EGR (cEGR) on tallow combustion 
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Figure 7.16 presents an emissions’ comparison for various EGR concentrations. As 

expected, increasing the recirculation rate results in an increase of carbon monoxide. For 

cooled EGR, (Figure 7.17), more gases can be recirculated without an increase in exhaust 

temperature; better NOx reduction has been achieved. Emission of nitrogen oxides has 

been reduced by 75%, below the required 450 mg/m3, compared with the 0% EGR case. At 

the same time, carbon monoxide emission increased by 280%, and soot emission increased 

by 300%. It should be noted that the reference level for animal fat combustion is already 

low compared to fossil fuels. However, hydrocarbons emission decreased by 25%. This 

can be explained by the scrubbing effect of water sprayed into the exhaust and spun in the 

cyclone chamber. Visible carbon containing deposits were found in the excess water. 

Addition of water cooling and gas humidification improved the efficiency of the NOx 

reduction process (Figure 7.18). EGR concentrations higher than 18% were not achieved 

without cooling, due to an increase of exhaust temperature above 450°C and charge air 

temperature above 50°C. Gas cooling and water injection enabled the desired NOx 

reduction efficiency, at the same time charge air temperature did not increase above 40°C 

and exhaust temperature was stable at a 450°C level. Specific fuel consumption increased 

by 7%. The results obtained are consistent with those obtained on a low speed two stroke 

engine by MAN Diesel (84). 
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Figure 7.16 Impact of EGR concentration on engine emissions when fuelled with tallow - 75% load 

 

 

 

Figure 7.17 Impact of cooled EGR concentration on engine emissions when fuelled with tallow - 75% load 
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Figure 7.18 Effect of EGR and cEGR concentration on nitrogen oxides reduction potential and fuel 
consumption at 75% load 
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Combustion of animal fat results in achieving higher peak pressures; emissions of NOx 

increase as a result. The ignition delay was shorter for animal fat; the difference is evident 

for low load operation. Pressure rise rate for the animal fat was lower for all tested loads. 

Specific fuel consumption for the tested engine increased when fuelled with tallow. 

Animal fat contains oxygen, it leads to a more complete oxidation process, as a result 

emissions of carbon monoxide, hydrocarbons and soot are considerably lower at high 

loads. At medium and low load conditions the negative effect of the physical properties of 

the fuel on fuel atomization seem to prevail the benefits of the oxygen content, resulting in 

increased CO emissions. Emissions of sulphur dioxide were very low, complying with 

limits set by the local authority. Application of animal fat as fuel eliminates a necessity of 

SO2 abatement system.  

 

As described in the literature review - Table 2.7 - increased emissions of CO and HC 

accompanied with lower NOx emissions for animal fat were reported. It has to be noted 

that the described tests were conducted at a relatively low fuel temperature – 60 ºC. 

Considering the fact that animal fat temperature for the current test was set above 80 ºC, 

obtained results seem to confirm the positive effect of higher triacylglycerol supply 

temperature on the combustion characteristics and emissions.  

 

The suitability of exhaust gas recirculation as a nitrogen oxides’ reduction method for 

stationary engines operating at high loads has been tested. Introduction of gas cooling and 

humidification increased the method’s efficiency enabling a 75% reduction in NOx 

emissions.  
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The impact of the reported higher fuel consumption on generating station feasibility has to 

be considered. Combining the effect of lowering oxygen concentration by exhaust gas 

recirculation with the presence of water vapour, can be considered as a feasible method of 

NOx abatement, even for stationary engines designed to operate on high loads for 

prolonged periods of time.  
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Chapter 8  LONG TERM EFFECT OF USING TALLOW 

8.1 Introduction 

This chapter presents the consequences of using neat animal fat in a medium speed, four 

stroke diesel engine. The impact on the fuel supply system, injectors and lubricating oil is 

described. A preliminary assessment of the possible impact of animal fat on the fuel supply 

system has been conducted by analysis of the lubricating properties. Lubricity has been 

measured at an HFRR (High Frequency Reciprocating Rig). As high acidity of fuel was 

detected it was decided to verify the capability of the upgraded lubricating oil to withstand 

an operation of the engine when fuelled with animal fat. Two lubricating oils were 

compared. 

 

8.2 Lubricating Oil  

8.2.1 Requirements for Lubricating Oils Used in Generating Sets 

 

A modern engine needs a wide range of oil qualities. Oil acts in the following processes: 

- Separation of moving surfaces with oil film 

- Engine cooling by combustion and friction heat dissipation 

- Combustion chamber sealing 

- Cleaning the engine from deposits. 
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Juoperi (144) listed demands for medium-speed diesel engine lubricating oils: 

- Excellent thermal stability 

- Excellent oxidation stability 

- Effective capability to neutralize acid compounds entering lube oil 

- Slow viscosity increase rate (influence of insoluble matter and oxidation) 

- Excellent water shedding properties (removal of water also from used lube oil) 

- Excellent compatibility with fuels preventing: 

o deposit formation into piston cooling gallery 

o deposit formation on piston ring groove area 

o black sludge / deposit formation on cold engine component surfaces 

o sticking of fuel injection pumps   

 

8.2.2  Testing Programme 

 

Two types of lubricating oils were used in the research plant described in paragraph 4.2. 

The oil properties are given in Table 8.1. The main purpose of this part of the research was 

to verify what kind of impact on oil properties is caused by the usage of animal fat as a 

fuel. The first oil, Fuchs Titan 30 – SAE 30 grade, complies with the engine 

manufacturer’s recommendations. After 1000h of operation the oil grade was altered to 

Fuchs Titan Marine 30, which can be characterised by higher TBN and increased 

detergency. The oil type was chosen after the fuel properties’ testing, described in Chapter 

5, which showed a very high TAN of tallow, reaching even 70 mgKOH/g fuel. 
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Table 8.1 Lubricating oil properties (145, 146) 

 

Characteristics Unit Test Method 
Titan TXE 30 

Oil 
Titan Marine 

30 Oil 

SAE - - 30 30 

Kinematic Viscosity 

mm2/s IP 71 

  

@100⁰C 11.2 12.3 

@40⁰C 96 107 

Viscosity Index   102 106 

Flash point ⁰C IP34 220 210 

TBN mg KOH/g -  14 

Sulphated ash %wt. -  1.7 

Specific gravity at 
20⁰C 

kg/dm3 IP160 0.893 0.890 

Pour Point ⁰C IP15 -20 -15 
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The oil was sampled directly from the sump by a vacuum sampling pump and then tested 

against a set of criteria, including viscosity, soot content and chemical composition. The 

testing interval was set to be 100 hours or 1 month. The engine lubricating system, shown 

in Figure 8.1, has been modified to avoid the possibility of oil contamination with fuel that 

may leak from the fuel pumps’ supply lines. The oil lubricating rocker gear, delivered by 

pipe No. 22 and returning via pipe No. 21 was originally going back to the sump through 

the drip tray. In the modified arrangement this oil was diverted to the waste oil tank. 

Figure 8.1 Ruston 6AR lubricating system 
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8.2.3 Results 

 

Data collected during the trials are given in Table 8.2. The table is accompanied by two 

graphs showing changes in oil viscosity (Figure 8.2) and iron concentration (Figure 8.3). 

Increasing viscosity can indicate fuel contamination, high iron content may be caused by 

excessive engine wear.  

 

 

Figure 8.2 Long term effect of animal fat usage on lubricating oil viscosity 
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Figure 8.3 Long term effect of animal fat usage on engine wear - iron concentration 
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Table 8.2 Effect of ageing during operation on animal fat on various types of lubricating oil 

Oil Type SAE 30 Marine SAE 30 (1) Marine SAE 30 (2) 

Hours 100 200 313 350 500 600 700 800 900 990 1040 40 125 170 250 310 78 172 360 

KV [mm2/s] 107.3 107 109.7 108.8 109.9 116.5 117.5 119.4 120.9 119.7 121.8 91.4 105.8 110.6 111.8 112.5 109.3 110.2 116.3 

Soot 0.4 0.5 1.3 1.4 1.7 1.9 2.2 2.2 2.2 2.5 2.5 0.2 0 0.5 0 0.6 0.3 0.3 0.6 

Concentration [ppm] 

Iron (Fe) 14 18 37 43 40 45 52 50 54 64 69 16 29 31 42 40 24 29 27 

Copper (Cu) 1 1 4 5 4 5 4 3 3 3 4 1 1 1 2 5 1 1 1 

Silicon (Si) 2 6 6 7 5 8 7 6 7 5 9 3 7 10 6 10 17 15 10 

Aluminium (Al) 2 2 2 2 1 1 1 1 2 2 2 0 1 2 1 4 0 2 1 

Chromium (Cr) 0 0 1 1 1 2 2 2 2 2 2 0 1 1 1 1 0 1 1 

Nickel (Ni) 0 0 0 1 1 0 1 0 0 0 1 0 0 0 0 1 0 2 0 

Molybdenum (Mo) 47 48 50 50 49 52 59 54 58 62 67 37 21 16 8 7 2 1 1 

Manganese (Mn) 0 0 1 1 0 1 0 1 1 1 2 1 2 2 2 2 1 1 1 

Lead (Pb) 2 1 2 3 3 4 5 3 5 6 7 6 3 3 1 7 1 8 11 

Tin (Sn) 0 0 0 1 0 0 0 0 0 1 2 0 0 2 2 1 0 0 0 

Lithium (Li) 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 

Titanium (Ti) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Vanadium (V) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Silver (Ag) 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

Boron (B) 6 3 4 5 4 3 2 2 2 4 7 12 9 9 7 6 1 8 4 

Sodium (Na) 7 9 16 18 17 26 36 31 32 45 50 10 24 34 61 63 63 119 83 

Barium (Ba) 0 1 1 1 0 1 0 0 0 1 1 1 1 1 1 1 0 2 0 

Calcium (Ca) 1682 1740 1931 1861 1651 1887 1993 1794 1869 1862 2114 2884 4214 5027 5244 5113 4764 5610 5677 

Magnesium (Mg) 9 9 12 15 9 12 12 10 10 11 12 13 19 18 19 18 14 17 16 

Phosphorus (P) 689 740 803 790 718 799 858 774 824 860 888 715 665 641 595 549 502 566 567 

Zinc (Zn) 74 810 865 887 768 883 988 842 893 946 950 825 771 764 726 695 593 657 643 

Where: KV – Kinematic Viscosity 
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It can be seen that oil viscosity increased for both types of tested oils. During the trials the 

oil centrifuge had to be cleaned more frequently than for standard fuel operation due to fast 

deposit formation. The maintenance schedule was altered. Oil contamination with fuel can 

be caused by increased spray penetration due to different physical properties of fuel; hence 

droplets may hit liner walls and penetrate to the sump. Excessive wear has not been 

detected for both types of lubricating oil as concentrations of bearing materials (Cu, Pb, 

Sn) remained below warning limits. Conclusions are presented in paragraph 8.4.  

 

8.3 Impact on Injectors and Fuel Pumps 

 

Two sets of Ruston FAR 20000 fuel pumps (shown in Figure 8.4) were installed on the 

Ruston 6AR engine. Technical data are given in Table 8.3. The fuel pumps were inspected 

daily for leaks. Each set was used for approximately 1000 h.  

 

Table 8.3 Fuel pump specification 

 

Pump type FAR – 20000 

Camshaft speed 300 rpm 

Pump stroke 15 mm 

Plunger diameter 22 mm 

Fuel delivery at full load 200 cm3/100 strokes 

Injector nozzle configuration 10 x 0.014’’ 

Injector release pressure 200 bar 
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Figure 8.4 Assembly of fuel pump (119) 

 1 – control rack slipper, 2 – rack support bracket, 3 – lead sealed grub screw for 20, 4 – setting pointer, 5 – 
tappet retaining ring, 6 – plunger tappet, 7 – spring ring, 8 – operating pinion, 9 – plunger guide, 10 – air 
vent plug, 11 – delivery valve stop, 12 – delivery valve spring, 13 – delivery valve assembly, 14 – spill plug, 
15 – plunger, 16 – upper spring collar, 17 – plunger spring, 18 – lower spring collar, 19 – operating rack, 

20 – overload stop screw. 

 

The engine usually operated at high loads, above 75% of nominal power. Throughout the 

duration of the trials no issues with fuel pumps were recorded. This confirms laboratory 

test results (paragraph 6.1.2) and the excellent lubricating properties of animal fat. The 

filtration process used for fuel pre-treatment is efficient enough to provide fuel with a set 
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of properties enabling trouble-free usage in the reciprocating engine fuel supply system. It 

has to be noted that implementation of these fuels for new common rail systems may 

require further investigation and specification alteration.  

 

Fuel not complying with internal specifications has also been tested. Contamination with 

polyethylene, ash and insoluble impurities was noticeably higher. As a result, fuel pumps 

were damaged in less than 100 hours. The seal between the plunger and the guide was lost 

and fuel was leaking to the orifice below the fuel pumps, shown in Figure 8.5 (the picture 

has been taken through the inspection window below the fuel pump assembly; fuel droplets 

reflect flash light and are visible as a group of white points surrounding the plunger). Fuel 

injection pressure could not be maintained at the required level, therefore it was impossible 

to operate the engine at high load. Low injection pressure had an impact on the fuel spray 

resulting in an increase of emissions of unburned hydrocarbons and carbon monoxide by 

approximately 300%. The pumps were later dismantled and a visual inspection of the 

plunger surface confirmed wear signs caused by a higher level of impurities present in the 

fuel. It has to be highlighted that damage occurred despite having a standard fuel filter in 

place (5 micron cartridge).  
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Figure 8.5 Fuel leaking from fuel pumps damaged by fat containing polyethylene 

 

Standard injectors without nozzles’ cooling were used. Release pressure was set to 200 bar. 

Deposit formation on the injector nozzles was detected. Figure 8.6 shows a blocked nozzle 

(bad case). The tests proved that nozzles can be used for up to 130 hours of continuous 

operation. After that period the nozzles require cleaning. Usually the nozzles required 

replacement after two cleaning cycles. As described in paragraph 7.2, emissions of carbon 

monoxide and unburned hydrocarbons are lower due to the oxygen content in animal fat. 

Therefore any increase in monitored carbon monoxide emissions or visible smoke can 

indicate deposit build-up requiring intervention. One of the possible methods of extending 

cleaning intervals is periodic operation on fossil fuel. Application of this method must be 

carefully considered, as there is a 10% limit for fossil fuel content in fuel mix used for 

subsidised renewable electricity generation in the UK (95). The combustion of fat resulted 

in a higher temperature inside the combustion chamber and in the exhaust system. It led to 



148 
 

the nozzle’s tip breaking, as shown in Figure 8.7. Part of the trial run was performed with 

fuel heated up to 65⁰C. It resulted in valve damage (please refer to Figure 8.8 and Figure 

8.9) and an increased tendency to deposit build-up on the injector nozzles. It can be 

explained by fat’s higher density, viscosity and surface tension leading to poor atomisation 

and increased spray penetration (66). 

 

 

Figure 8.6 Deposit build-up 



149 
 

 

Figure 8.7 Injector nozzle damage caused by high temperature 

 

 

Figure 8.8 Burned exhaust valve 
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Figure 8.9 Ruston 6AR cylinder head - valve damage visible 

 

8.4 Conclusions 

 

Engine tests lasted for 2000 hours. More than 1 GWh of electricity has been generated and 

approximately 285 tonnes of animal fat have been utilised. This research has shown that 

appropriately filtered animal fat can be used as fuel for large, stationary engines. 

 

Usage of animal fat as fuel for an internal combustion engine requires modification of its 

maintenance schedule and may lead to injection system failures. The conducted tests 

proved that it is possible to operate a compressed ignition engine fuelled with tallow 

without major alteration of the lubricating system. Standard lubricating oil (SAE 30 grade) 
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withstood a 1000 hours’ change interval. Application of marine oil did not result in a 

significant difference in oil contamination with various wear products. It has to be noted 

that due to piston failure, the engine oil (Marine) had to be replaced before reaching the 

planned 1000 hours. The capacity of the oil centrifuge should be increased to improve 

removal of fat from the lubricating oil. Another modification that improved operation on 

animal fat was increased diameter of the pipe feeding the centrifuge and introduction of 

trace heating. It resulted in improved flow of oil to the centrifuge and ensured that 

contaminated oil will not solidify in the narrow parts of the lubricating system. 

 

Animal fat has a tendency to build up deposits on the injector nozzles’ tips. The 

relationship between fuel temperature and longevity was observed. Fuel pre heating above 

85⁰C improved the atomisation and emissions (CO, HC). Operation on partial loads or low 

temperature fuel (below 70⁰C) resulted in increased deposit build up. Another consequence 

was poor atomisation and increased spray penetration. The following remedies can be 

suggested to extend intervals between injector nozzle cleaning and/or replacement: firstly, 

nozzle cooling can be implemented, the fuel can be fed at a higher temperature so 

atomisation is improved and cooling should prevent the nozzle from the damage described 

earlier in this chapter. Another strategy is periodical operation on fossil fuel when deposits 

are removed.  
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Chapter 9  CONCLUSIONS AND FURTHER WORK 

 

9.1 Summary of Presented Findings 

 

This thesis contains numerous findings on the use of animal fat in internal combustion 

engines. The research programme focused on large compressed ignition engines used in 

marine and stationary power generation applications. The most important and significant 

findings and observations are presented in the following sections in the order of the 

original chapters. A summary of the KTP Project – extracted from the KTP Final Report 

(147) forms Appendix 4. 

 

9.1.1 Consistency of Tallow Properties 

 

The conducted tests identified a high variability of animal fat properties. It was also proven 

that constant monitoring of the fat properties is required in order to utilise it in the engine, 

as the quality can vary significantly even from batch to batch. Acidity was identified as a 

crucial property that has to be improved in order to comply with the bio fuel specification 

of any available generating set. The impact of ambient temperature on fat acidity has been 

detected, as high temperature during summer months speeds up the feedstock 

decomposition process. The most important outcome of research presented in Chapter 5 is 

the understanding of what is a typical set of properties of animal fat – thus in the further 

stages of the research process the appropriate fuel sample was used.  
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The possibility of free fatty acid removal by evaporation has been investigated. The trial 

runs have shown a promising removal efficiency reaching more than 50%. 

 

9.1.2 Determination of Appropriate Storage and Supply Temperatures 

 

As animal fat is solid at room temperature, pre heating is required to reduce the viscosity 

and feed the fuel through a standard fuel supply system. Investigation focused on analysis 

of the effect of elevated temperature on physical properties of the animal fat. The viscosity 

test showed that animal fat needs to be preheated above 80⁰C to reduce its viscosity to a 

level complying with requirements given by 2-stroke large engine fuelled with HFO 

(Heavy Fuel Oil). The impact of temperature on the viscosity of animal fat is significant; 

raising the temperature from 40⁰C up to 60⁰C results in viscosity reduction from 

approximately 40 cP down to 20 cP. Further heating up to 90⁰C reduces viscosity to 9 cP 

(for low shear rate) and 8 cP (for high shear rate).  

 

The lubricity of animal fat has been analysed – as the HFRR (High Frequency 

Reciprocating Rig) method has been applied. Tallow lubricating properties are excellent as 

WSD (Wear Scar Diameter) is less than 110 µm, compared with 320 µm for diesel. It can 

be explained by the presence of unsaturated fatty acids in the animal fat. Tallow contains 

10% oxygen that improves lubricity. No significant impact of elevated temperature on 

lubricating properties has been detected. Wear scar diameter increased for the highest test 

point (90⁰C) only by 7 µm 
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Pre heating of animal fat reduces its surface tension. Raising the temperature to 90⁰C 

lowers the value down to 25.8 [mN/m] from 31.0 [mN/m] recorded at 40⁰C. Surface 

tension is still considerably higher than that of mineral fuel – 23.4 [mN/m] recorded at 

40⁰C. 

 

The obtained density test results present a linear trend where density decreases as 

temperature rises. The measured density at standard conditions (temperature 15⁰C) – 915 

kg/m3 – is higher than the maximum density for diesel fuels (800 – 845 kg/m3) specified in 

a standard (37).  

 

It can be concluded that pre heating of fuel to a temperature of at least 85⁰C is required to 

modify its properties to suit the requirements given by HFO fuelled engines and also the 

Ruston 6AR engine available at the research power plant. 

 

The impact of high fat storage temperature on its properties (acidity) has been studied. 

Storage at a temperature of 90⁰C for a prolonged period of time (1 month) did not result in 

increased acidity. Fat polymerisation did not occur. 
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9.1.3 Combustion Process Analysis 

 

Recorded cylinder pressure patterns varied from those obtained for diesel for all tested 

loads. A lower heat release rate for the premixed combustion phase is characteristic for 

tallow across the tested load range. Due to fat’s properties, its atomisation is worse 

resulting in prolonged combustion. Difficult atomisation is more significant at low and 

medium loads causing an increase of CO and HC emissions. At high loads, however, the 

benefit of oxygen presence in tallow leads to more complete oxidation, as a result, 

emissions of soot, CO and HC are significantly lower. Emissions of NOx were higher for 

animal fat at high load. One of the biggest advantages of using the animal fat as fuel for 

reciprocating engines is its low sulphur content, which eliminates the requirement for a 

SOx abatement system. 

 

The research programme was focused on design and implementation of an appropriate 

nitrogen oxides abatement system. An exhaust gas recirculation system with gases cooling 

and humidification was designed and installed. The method achieved desired a NOx 

reduction of 75% by recirculating approximately 23% of the exhaust at high load. The 

impact of the reported higher fuel consumption on station feasibility has to be considered. 

Combining the effect of lowering oxygen concentration by exhaust gas recirculation with 

the presence of water vapour, can be considered as a feasible method of NOx abatement, 

even for stationary engines designed to operate at high loads for prolonged periods of time.  
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9.1.4 Long Term Effects of Using Tallow on Engine Components 

 

Findings presented in this thesis are supported with experience gained during nearly 2000 

hours of extensive tests in the research power plant. One of the outcomes of the KTP 

project was the establishing of procedures for generating set operation and maintenance 

and also internal fuel specification. Fuel quality is crucial for problem free operation of the 

engine on animal fat. It has been proven that engines can run on alternative fuel without 

significant problems; however, the injectors’ maintenance schedule has to be modified to 

incorporate more frequent cleaning and nozzle replacement due to deposit formation. Fuel 

pre heating is a simple way to alter properties of viscous fuels like animal fat. The fuel 

internal specification and operational parameters defined in Chapters 5 and 6 were proven 

satisfactory for prolonged usage.  

 

9.1.5 Economics of Electricity Generation 

 

An open market for animal fat trade does not exist in the UK, therefore it is difficult to 

assess the feasibility of electricity generation using it. The collaborative project described 

in this thesis was a unique opportunity to access data regarding fat pricing. The 

relationship linking animal fat prices and fossil fuels was presented – based on information 

collected throughout a period of 12 months. In both analysed cases, a small research power 

plant and a proposed large generating station, generation was not feasible without 

additional subsidies in form of a ROC or RHI. The renewable electricity support system in 

the UK has been described – currently animal fat can be used as a subsidy eligible source 
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of renewable electricity in power plants using internal combustion engines where installed 

power exceeds 5 MW.  

 

9.2 Suggestions for Future Work 

 

9.2.1 Engine Modifications 

 

It has been proven that fuel temperature has a critical impact on fat atomisation. However, 

high temperatures may have a negative impact on the injector nozzles – therefore injectors 

with nozzle cooling should be tested on the engine or the test rig to investigate the long 

term effect of animal fat usage. An alternative spray system should be tested to investigate 

spray penetration, cone angle etc. Ideally research should be conducted at facilities using 

modern optical equipment – such as PDA. 

 

The lubricating oil filtration system capacity should be increased to accommodate any 

volume of fuel that passes to the sump. It may be interesting to investigate usage of bio 

based lubricating oils for engines fuelled with animal fat or CPO. 
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9.2.2 Emissions Abatement 

 

Additional research focusing on the nature of particulates formed during animal fat 

combustion is required for better assessment of the benefits. The test engine should be 

equipped with an SCR system – hence the effect of the composition of animal fat on the 

catalyst longevity may be assessed. The high content of phosphorus may be challenging 

here. 

9.2.3 Animal Fat Quality 

 

Acidity seems to be one of the parameters that should be targeted first if tallow is 

considered as alternative fuel. A larger scale evaporator should be tested to investigate the 

possible effect of high temperature exposure on other fat properties. 

 

This thesis focused on pre heating as a way of viscosity reduction. Depending on local 

circumstances – blending with light hydrocarbons may be a viable solution. 

 

Due to variable and complex chemical composition, cetane number is not an appropriate 

criterion for ignition quality assessment. A new index, possibly similar to CCAI, should be 

developed.  
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The lubricity test presented in this thesis was based on conditions in line with the ISO 

standard developed for automotive fuels and light marine fuels. The only parameter altered 

was the fuel temperature. Further investigation should be conducted to verify whether 

other test conditions such as stroke or load have an impact on the wear scar diameter. 

 

Attempts to source syngas from animal fat were made within the Future Power Systems 

Group. Up to 10% and 5% vol. of H2 and CO, respectively, were detected when 60ml/h of 

tallow fuel was injected. As it has been reported in other studies, adding reformed 

hydrogen syn-gas as a closed loop to a diesel engine would improve combustion efficiency 

and therefore specific emissions (148). This reformed syn-gas has also been reported as 

beneficial to other diesel after-treatment devices (149). Results of tests look promising 

therefore investigation should be continued. 
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