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Abstract 

There is increasing use of Unicondylar or Unicompartmental Knee Replacements (UKR), 

especially following publication of good survival data and a trend towards ‘minimally invasive 

surgery’. The UKR preserves one of the femoral condyles and its meniscus, plus both of the 

cruciate ligaments. Therefore, the knee functions more normally following UKR than after 

Total Knee Replacement (TKR). However, the odds for failure of the UKR are higher than 

the TKR, and a principal reason is loosening of the tibial and femoral components. There is a 

need for the development of more reliable UKR fixation designs.  

The overall aim of this research was to understand fixation of UKR and make 

recommendations for improvement to designers and surgeons. Since the Oxford mobile-

bearing UKR is most widely used in the UK, it was used as the benchmark in this study.  

To assess initial fixation, in-vitro bone-constructs were prepared from ten cadavers 

implanted with the Oxford mobile-bearing UKR and tested for bone strain and bone-implant 

interface motion with the implants fixed using first cementless and then cemented methods. 

Cementless fixation produced higher proximal tibia strain and bone-implant displacement 

than cemented fixation. Peak bone strain increased with reduced bone density, such that the 

lowest density specimen fractured when implanted with the cementless UKR. 

To assess long-term fixation, an in-vivo prospective follow-up study of 11 Oxford UKR 

patients was developed and conducted for one-year, taking measurements of bone density 

using Dual X-Ray Absorptiometry (DXA) scanning. The average bone resorption under the 

tibial implant was found to be low; while it was higher under the femoral component and very 

high under the tibial intercondylar eminence. The fixation of the Oxford UKR implant was 

considered to be adequate at 1-year. 

Finite Element (FE) simulation techniques were reviewed and developed to simulate the 

UKR knee for investigation of bone strain, bone-implant interface micromotion and bone 

remodelling to assess initial and long-term fixation performance. Computer simulations of the 

tibiae and femora of 2 patients and 4 cadaveric specimens (obtained from the in-vivo and in-

vitro studies) were developed and validated for bone strain, bone-implant interface 

micromotion and bone remodelling.  

Comparative multi-specimen computational studies were conducted to understand how 

particular design features affected fixation. Good fixation was indicated for cementless UKRs 

when implanted in dense bone, but bone strains were very high in low density tibia. 

Cementation of the implants spread the loads more evenly and reduced bone strains. The 
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cementless tibial implant caused less bone resorption (compared to the cemented 

equivalent) but the difference in the femur was small. Bone resorption was highest at the 

anterior tibia and posterior to the femoral peg. Bone density was an important factor in the 

fixation performance of implant design features. Less bulky fixation features reduced bone 

resorption, provided that the underlying bone was sufficiently dense to maintain bone strains 

below the failure limit of bone. For patients with dense bone, fixation could be improved with 

shorter tibial keels and less stiff femoral implants. For patients with low density bone, fixation 

could be improved with cementation and bone resection that avoids creating stress-raisers. 
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1 Introduction and Background 

1.1 Unicompartmental Knee Replacement in Treatment of Osteoarthritis 

Osteoarthritis (OA) is a degenerative joint disease in which the homeostasis of articular 

cartilage chondrocytes, extracellular matrix and subchondral bone is damaged mechanically 

and biologically. It is the most common musculoskeletal disease particularly in people over 

50 years of age and can severely impair mobility and reduce quality of life. It is estimated 

that 15% of people of age 55- 64, 23% of age 65-74, and 40% of age over 75 years suffer 

from OA (Odding et al., 1998, 2006, Helmick et al., 2008). Symptomatic knee OA occurs in 

about 10-38% of people of age over 60 years (Buckwalter et al., 2004, Takeda et al., 2011). 

There are numerous early-stage treatments available to relieve the symptoms; however, the 

disease is progressive and Total Knee Replacement (TKR) is performed as the last resort for 

end-stage OA. 

The knee has three compartments (medial, lateral and patellofemoral). If the joint disease is 

confined to a single compartment then partial knee replacement provides another treatment 

option before TKR. Since OA usually begins in the medial compartment, medial Unicondylar 

or Unicompartmental Knee Replacement (UKR) is the most popular form of partial knee 

replacement. 

1.2 Current Demand for UKR 

Knee Arthroplasty is widespread and growing in Europe, Australia and the Unites States of 

America (USA). On average, 0.2% of these populations have knee arthroplasty per year 

(Kurtz et al., 2011) and the number of procedures is growing by 5-17% (Kurtz et al., 2011). 

The number of primary TKRs, among patients less than 65 years old, is expected to double 

in 2016 compared to the total number of TKR patients of all ages in 2009  (Kurtz et al., 

2009b). The number of patients requiring revision surgery is also expected to rise similarly 

(Kurtz et al., 2009b). The ageing populations of Europe and the USA pose further challenges 

for more cost-effective solutions. Currently TKR is preferred and only 8% of all knee 

arthroplasties are UKR (Fitz, 2009, Willis-Owen et al., 2009).  

For patients that are suitable, UKR provides distinct benefits over TKR. Post-operatively the 

knee kinematics are more natural (Cameron and Jung, 1988, Kozinn and Scott, 1989) with 

improved range of motion (Griffin et al., 2007) and no shortening of the patellar tendon 

(Weale et al., 1999). The functional outcome of UKR knees do not differ significantly from 



Introduction and Background 26 

 

normal, non-operative age- and sex-matched knees (Willis-Owen et al., 2009) and are better 

than TKR outcomes (Laurencin et al., 1991). The bone stock is preserved (Vorlat et al., 

2006) enabling future revision surgery to be easier (Saldanha et al., 2007, Chakrabarty et 

al., 1998, Becker et al., 2004, Kozinn and Scott, 1989). UKR is minimally-invasive and it is 

associated with reduced risk of infection. In comparison, TKR is associated with high 

infection rates and a significant economic burden (Kurtz et al., 2007). Operating and patient 

recovery times are reduced with UKR and it is cheaper (Shakespeare and Jeffcote, 2003). 

For the younger group, minimal bone resection, minimal disruption to knee kinematics; and 

easier revision are important factors.  

Patient expectations for knee arthroplasty differ greatly, with more demanding expectations 

from the increasing proportion of younger patients. Patients not only want pain relief, they 

want to resume sporting activities such as swimming, jogging and even skiing. Fixation of 

the implant to the bone is a more important issue with the next generation of implant 

designs. The dissatisfaction rates of TKR patients are high at up to 20% (Scott et al., 2010) 

and alternative solutions must be considered to meet these challenging demands. 

The potential benefits of UKR are available to far more patients than current practice, with 

estimates suggesting that up to 45% of patients requiring knee arthroplasty are suitable for 

UKR (Goodfellow, 2006, Willis-Owen et al., 2009). 

The following trends within the orthopaedic community are responsible for the increasing 

demand of UKR: the development of a spectrum of smaller procedures to treat arthritic joints 

at an earlier stage; the use of smaller surgical incisions (‘minimally invasive surgery’, MIS); 

and pressure to reduce hospital recovery times. As described above, surgeons are 

performing TKR in cases that may be suitable for the lesser UKR procedure. The surgeons 

contend that this situation is largely a result of their knowledge of the relative survival rates 

of TKR versus UKR. This is a vicious circle, in which surgeons do not use UKR, so the 

manufacturers do not invest in developing them as they have for TKR, so they have 

remained relatively undeveloped and unreliable. 

1.3 The State of UKR Research 

Although the potential advantages of UKR are widely recognised, there is still debate over its 

reliability (Furnes et al., 2007) and cost-effectiveness (Koskinen et al., 2008). Early in the 

evolution of UKR, conflicting reports cast doubt on its efficacy (Kozinn and Scott, 1989). Two 

influential early studies of UKR reported poor results (Insall and Aglietti, 1980, Laskin, 1978). 

As a consequence, UKR was abandoned by many practices. Therefore many trained 

orthopaedic surgeons (especially in the USA) have little or no exposure to UKR.  
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Revision rates are often used as a measure of outcome. A major confounding factor in the 

measure of revision rates and outcome of UKR patients is surgical experience and surgical 

approach to treatment of OA. In general, good UKR outcomes are repeated by practices that 

perform large numbers of UKRs while the poorer outcomes come from small practices that 

do not have the benefit of surgical routine (Robertsson et al., 2001a). A study of UK 

practices of UKR (Schindler et al., 2010) identified a big difference in surgical approaches 

between surgeons. For example: only 52% were minimally invasive; 30-40% allowed squash 

and jogging post-operatively: and 96% of all surgeons prefer cemented fixation (even though 

there is no real clinical evidence for this). Therefore, the clinical evidence for using UKR 

often seems contradictory and confusing. 

Revision of failed UKRs has also been reported to be more difficult with less favourable 

outcomes compared to a primary TKR (Froimson et al., 2009). However, revision from UKR 

is easier (Weale et al., 2001) and has a better outcome than TKR revision (Saldanha et al., 

2007) with reduced re-revision rate (4% compared to 6.7%) (Robertsson et al., 2001b).  

UKR components are considered to be poorly designed (Fitz, 2009) with poor fit, particularly 

for the lateral compartment. Experienced surgeons use tricks to compensate for the 

inadequate designs (Fitz, 2009) and surgical experience may explain the diversity of survival 

results (Robertsson et al., 2001a). Furthermore, the majority of today’s clinical results are 

from elderly patients who have low activity levels, and these good survival results are not 

being duplicated in younger, more active patients (Price et al., 2005a, Deshmukh and Scott, 

2002). 

One of the principal reasons for revision of UKR is aseptic loosening of the tibial and femoral 

implants (Koskinen et al., 2007, Lindstrand and Stenstrom, 1992, Skyrme et al., 2002, Bohm 

and Landsiedl, 2000, Price and Svard, 2011, Berger et al., 2004). Based on Swedish, 

Finnish and Norwegian and USA arthroplasty registers, 25-45% of failures are due to aseptic 

loosening (Lewold et al., 1998, Koskinen et al., 2007, Furnes et al., 2007, Gioe et al., 2003). 

Since 1993, the National Swedish Arthroplasty Register has consistently reported that ~45% 

of all UKR revisions were due to loosening compared to ~25% of all TKRs (osteoarthritis 

patients) (Goodfellow, 2006, Lund, 2011). Loosening is a significant issue in UKRs and there 

is a requirement to improve fixation and surgical techniques to achieve the full benefits of 

UKR.  

Progression of arthritis (most commonly to the patellofemoral joint) is also a common reason 

for revision (Berger et al., 2004, Koskinen et al., 2007). Based on Swedish, Finnish and 

Norwegian arthroplasty registers, 20-40% are due to progression of arthritis (Lewold et al., 

1998, Koskinen et al., 2007, Furnes et al., 2007). Based on a USA registry of over 500 



Introduction and Background 28 

 

UKRs, progression of arthritis was reported to account for 51% of revisions (Gioe et al., 

2003). Revision due to progression of arthritis is mainly a consequence of poor patient 

selection while aseptic loosening is due to insufficient fixation research dedicated to UKR. 

Over the past 20 years, clinical survival studies from varied groups of international authors 

have demonstrated good results (Goodfellow et al., 1987, Knutson et al., 1986, Marmor, 

1988, Mackinnon et al., 1988, Murray et al., 1998, Vorlat et al., 2000, Svard and Price, 2001, 

Pandit et al., 2006). The prostheses continue to survive ten years post-operation 

(Skowronski et al., 2005, Price and Svard, 2011). Although, there are still some mixed 

reports, Nuffield hospital, Oxford have consistently demonstrated excellent survival results of 

98% (Murray et al., 1998) at ten years and 91% at twenty years (Price et al., 2005b, Price 

and Svard, 2011). Clinical evidence suggests that, of those UKRs revised, most tend to 

occur within the first 5 years of arthroplasty (average 3 years (Price and Svard, 2011)). 

Over the past ten years, there has been a resurgence of interest in UKR (as evident by an 

increase of published papers). However published literature concentrates on clinical studies 

and there are unanswered questions (Laskin, 2001).  Clinical studies are often inconclusive 

because: (1) there are often confounding factors in the cohorts of patients; (2) studies are 

often poorly done (do not follow CONSORT) with little evidence supporting the conclusions 

(Price, 2000); and (3) the measure of revision/survival rate is not an indicator of performance 

(Goodfellow et al., 2010).  

Most UKR survival studies are retrospective, and confounding factors have been managed 

ineffectively such that like-for-like is not compared. For example, comparing revision rates of 

UKR to TKR may be inappropriate because UKR patients may be younger, more active and 

have higher expectations.  

The traditional objective of pain relief is often disregarded. For example, a study by Gleeson 

et al. (2004) reported that although the Oxford UKR has a better survival rate, a fixed 

bearing (St George Sled) has better pain relief scores. Note also that loosening can be 

undetected for long periods of time and it can cause significant pain to the patient; therefore, 

loosening can be a bigger problem than results show. The literature is limited on credible 

UKR implant fixation and implant design studies. 

1.4 History of the UKR Design 

McKeever and Elliot developed the concept of uni-condylar resurfacing in the 1950s and 

used it in the 1960s. Fixed bearing knee designs using cemented hemiarthroplasty were first 

reported in the 1970s by Gunston and Marmor. Unfortunately, the Gunston failed early 

because it was highly constrained with straight tracks. It was learnt that less constraint was 
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needed which helped develop two types of design: (1) fixed bearing tibial component; (2) 

mobile-bearing bearing tibial component.  

A successful fixed bearing design, right from the onset was the St George Sled (Waldemar-

Link GmbH & Co., Hamburg, Germany), introduced in 1970s and with a survivorship of 86% 

at up to 20 years (Steele et al., 2006). The Sled (Figure 1) has a flat fixed bearing (either 

fully PE or metal backed) and a femoral component designed to fit the profile of the femoral 

condyle. 

 

Figure 1 - The St George Sled UKR by Waldemar-Link GmbH & Co (image from 

www.linkorthopaedics.com, 2011). 

The Oxford mobile-bearing, designed by Goodfellow and O’Connor in 1975, was a 

significant development step, with subsequent contributions by Buechel and Pappas in 

contact stress kinematics and wear. Sixty-two percent of orthopaedic practices in the UK use 

the Oxford UKR; it is by far the most popular design (Schindler et al., 2010). 

The Oxford mobile meniscal bearing UKR, as illustrated in Figure 2, has a single radius 

cobalt chrome alloy femoral component that is fully congruent with an ultra-high molecular-

weight polyethylene (UHMWPE) mobile-bearing. The bearing slides on a flat tibial cobalt 

chrome component with a short keel. The cemented designs are fixed using 

polymethylmethacrylate (PMMA) cement and the cementless designs are coated with 

hydroxyapatite. 

Since its introduction, the Oxford design has had three development phases (current version 

is phase 3). For medial UKR, it has demonstrated excellent clinical results. For lateral UKR, 

the incidence of bearing dislocations is high; therefore, Oxford UKR in the lateral condyle is 

uncommon. Lateral condyle UKR is more challenging (Heyse and Tibesku, 2010). Currently 

most lateral UKRs utilise fixed bearings and, due to the increased kinematic movement of 

the lateral condyle, these would benefit most from the reduced wear rates of the mobile-

bearing. Based on research that a domed implant would perform better on the lateral 
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condyle (Baré et al., 2006), Biomet Ltd (Swindon, UK) have released a new lateral tibial tray, 

in order to make UKR of the lateral condyle a more viable option. 

 

Figure 2 - The Oxford mobile meniscal bearing UKR phase 3 range offered by Biomet Ltd, Swindon, UK 

(images from www.biomet.co.uk, 2011). 

A further iteration on the design of the Oxford mobile-bearing UKR, has been the Uniglide 

mobile-bearing by Corin Group Plc (Cirencester, UK). Since the profile of the natural femoral 

condyle does not conform to a single radius, the Uniglide design has a tri-radius femoral 

component. It is designed so that the bearing is congruent at flexion angles that bear the 

greatest loads during everyday activities. 

 

Figure 3 - The Uniglide mobile-bearing UKR range offered by Corin Group Plc, Cirencester, UK (images 

from www.coringroup.com, 2011). 

1.5 Competition between UKR Designs 

The most common fixed bearing UKRs have either all-polyethylene or metal backed 

polyethylene tibial components. Most are onlay implants i.e. the implant is fixed over the rim 

of the sagittal and transverse cuts of the proximal tibia.  

The difference in 10-year survival rates of mobile-bearings and fixed bearings is small 

(Emerson et al., 2002). The Oxford mobile-bearing design has 10-year survival rates of 84-
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100% (Price et al., 2005b, Murray et al., 1998, Emerson et al., 2002, Rajasekhar et al., 2004, 

Keys et al., 2004, Vorlat et al., 2006) while fixed bearing designs (Marmor, St George Sled, 

Brigham, PCA, MBUKA, Miller-Galante) have survival rates of 80-100% (Heck et al., 1993, 

Cartier et al., 1996, Squire et al., 1999, Ansari et al., 1997, Scott et al., 1991, Hasegawa et 

al., 1998, Bert, 1998, Berger et al., 1999, Argenson et al., 2002). Of the fixed bearing cohort 

studies that had data up to 15 years (Marmor and St George Sled), the survivorship reduced 

below 90% while the Oxford mobile-bearing design is reported to maintain survivorship 

above 90%. A study by Emerson et al. (Emerson et al., 2002), compared a cohort of mobile 

and fixed bearing UKR patients and reported that although the survivorship was similar, the 

fixed bearings tended to fail by tibial loosening while the Oxford knees fail due to progression 

of arthritis. 

Over 20 different UKRs are available in the market, the majority of which are fixed bearing 

designs. Implant companies tend to offer modular designs so that the surgeon can be 

flexible at surgery. Some common UKRs are the Oxford (Biomet Ltd, Swindon, UK); Uniglide 

(Corin Group Plc, Cirencester, UK), Miller-Galante and Replica (Zimmer Holdings Inc., 

Warsaw, USA ); EIUS (Stryker Inc., USA); Advance and St George Sled (Waldemar-Link 

GmbH & Co., Hamburg, Germany); Accuris (Smith and Nephew, London, UK); Align 360 

(Cardo Medical Inc., USA); Preservation (DePuy Orthopaedics Inc., Warsaw, USA); Unix 

and PCA (Howmedica Osteonics, Stryker Inc., USA); Advance (Wright Medical Technology 

Inc., USA); and Uni Evolution (Tornier Inc., USA). 

1.6 TKR Research and Understanding 

Since significantly less research has been conducted on the UKR compared to the TKR, the 

TKR knowledge base has been important in the design of UKRs. The following summarises 

relevant TKR knowledge and describes the limitations of such an approach.  

Some relevant knowledge from TKR research is that (1) the tibial subchondral bone strength 

decreases with depth below the tibial plateau, related to reducing cancellous bone density 

(Goldstein et al., 1983); (2) tibial components are more secure if they rest on the cortical rim 

(Bourne and Finlay, 1986); (3) load onto one edge of a component tends to cause tilting, so 

that the far edge lifts off from the bone, leading to loosening (Kaiser and Whiteside, 1990).  

One could also speculate, based on TKR research, that fixation would improve by using 

broadly-spaced fixation features that stabilise the components against tilting/rocking 

micromotion and transfer loads into the cortical shell of the tibia and femur. Although this is 

relevant, it must be noted that the mechanisms that cause rocking, tilting and translational 

movements in UKRs are not the same as TKRs. The UKR has a single condylar contact 
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point while the TKR has bi-condylar contact points and the implant-bone interface area is 

more than double in TKRs. 

There is also the need to minimise component size, both to aid MIS and to reduce bone loss 

during the event of revision surgery. There is therefore an inherent trade-off to be made 

between using bulky implants and the need for MIS surgical procedures. Finding a solution 

to this trade-off cannot be merely borrowed from TKR knowledge but requires dedicated 

investigation and optimisation of the UKR.  

Recent experience has also highlighted critical differences in surgical procedure: UKRs are 

thought to be more difficult to align accurately (Fisher et al., 2003) and correct soft-tissue 

balancing (Emerson and Higgins, 2008) during surgery (to ensure good knee kinematics) is 

far more critical to outcome. These factors must also be included in UKR design. 

There is evidence in the literature that UKR design features that have been inherited from 

TKRs require further optimisation and development. For example the metal backing of TKR 

tibial components has been implemented into many UKR designs but there is limited 

literature on the theoretical evaluation of metal backing in UKR and clinical results are 

inconclusive (Heck et al., 1993). Hyldahl et al. (2001) recommends that metal backing 

should be avoided in UKR. Another example is that polyethylene TKR fixed bearings are 

recommended to be thick to reduce wear rates (Marmor, 1976). Although this is a feasible 

design recommendation for TKRs where extensive bone removal for use of a thicker tibial 

tray is possible, this is not practical for UKRs where preservation of bone stock and 

minimally invasive operative techniques are higher priorities. 

UKR designs must be considered independently of recommendations made for TKRs. There 

is a requirement to reassess these TKR design features with a UKR perspective. Since one 

of the primary failure mechanisms of UKRs is loosening, the aim of this research is to make 

recommendations to improve fixation. The three distinct factors that contribute to successful 

implant fixation are (1) initial fixation, (2) long-term fixation and (3) implant durability. The 

failure modes are not entirely mechanical and are commonly inter-related with biological 

factors. Osteolysis, for example, may be initiated by implant wear particles and the body’s 

response causes dissolution of bone and eventual loosening. An implant designed without 

due consideration of all three factors will not have a successful fixation outcome. 

1.7 Clinical Observations of UKR Fixation Performance 

There is also inconsistent evidence in the literature regarding which designs are the best 

performing UKRs. Based on published literature and on analysis of national joint arthroplasty 

registry data,  the St Georg Sled, Miller Galante and Oxford UKRs are most consistent and 
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popular in their performance (Robertsson et al., 2001b, 2011, Lund, 2011). As described 

above, implant loosening is a principal reason for UKR failure (Goodfellow, 2006); therefore 

the following section includes a comprehensive review of the clinical observations 

concerning loosening.  

Much of the literature on UKR is based on clinical studies, often retrospective (not 

prospective randomised controlled trials) and they attempt to answer questions which are 

multifactorial and intertwined with confounding factors (Price, 2000). They are rarely 

supported by any theoretical analysis and laboratory studies. The reader should be aware 

that these studies often assess fixation performance by revision rate which is not a credible 

indicator (Goodfellow et al., 2010) because it neglects mobility, pain and achievable activity 

levels. 

Radiolucencies 

Radiolucent lines tend to appear in most UKR patients irrespective of cemented or 

cementless implant fixation; however there are distinct characteristics that can help identify 

pathological and physiological cases (Gulati et al., 2009a). Radiographs have traditionally 

been used as a method for assessing fixation (Mukherjee et al., 2008). In a study by 

Tibrewal et al. (1984), 96% of cemented Oxford UKRs showed radiolucencies. Other studies 

have reported 62-75% of cases (Gulati et al., 2009a, Pandit et al., 2009), with nearly half of 

those complete radiolucencies; however, none required revision surgery. They tend to 

appear a few weeks post-surgery and develop to be stable after 1-year. For cemented 

Oxford UKR, the most common sites tend to be around the keel (mostly towards the medial 

side in medial UKRs and vice-versa in lateral UKRs). As presented in Figure 4, these 

radiolucencies tend to be less than 1 mm thick and do not usually exceed 3 mm.  

 

Figure 4 -  Radiograph at year-1 of a cemented Oxford UKR, showing complete radiolucency around the 

tibial component (Pandit et al., 2009). 
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The occurrence of radiolucent lines in cementless Oxford UKRs tends to be significantly less 

at one year post-arthroplasty (Pandit et al., 2009). Radiolucencies are thought to be regions 

of fibro-cartilage tissue.  

 

 

Figure 5 - Radiograph of a cementless Oxford UKR showing radiolucency around the tibial component 

immediately post-surgery (left) which disappeared at year-1 (Right) (Pandit et al., 2009). 

Although the reasons for its occurrence and its significance are unclear for UKRs (Gulati et 

al., 2009a), it is indicative of areas of low fixation and compliance. Radiolucencies are either 

a layer of osteoporotic bone or fibrous tissue (Kwong et al., 1992). In cases where loosening 

occurs, radiolucencies tend to be thick and appear to engulf the implant (Figure 6). 

Pathological radiolucencies tend to be greater than 2 mm thick, don’t have a radiodense line 

and are progressive whilst “physiological” radiolucencies are defined as “narrow and well 

defined” (Gulati et al., 2009a). Potential factors could be (1) high hydrostatic bone strains 

remodelling bone into fibrous tissue (Gray et al., 2010); (2) bone-implant interface motion 

(Jasty et al., 1997a); (3) lysis initiated by wear particles (Huang et al., 2002); (4) thermal 

necrosis of bone (Berman et al., 1984, Ahlberg and Linden, 1977). 

 

Figure 6 - Radiograph of cemented Oxford UKRs showing pathological radiolucency (left) and extreme 

physiological radiolucency (right)(Gulati et al., 2009a). 
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Radiodense lines tend to appear immediately adjacent to the radiolucencies (Tibrewal et al., 

1984), as illustrated in Figure 6. The formation of radiodense lines can be signs of bone in-

growth and osseointegration (Tibrewal et al., 1984). Osseointegration tends to occur 6-16 

weeks post-surgery (Jasty et al., 1997a, Soballe et al., 1992, Prendergast et al., 1997, 

Cameron et al., 1973). 

Radiodense lines showing immediately post-surgery could also suggest a layer of poor 

quality dense bone (sclerotic bone) into which cement has not integrated (poor fixation) 

(Tibrewal et al., 1984). Sclerotic lines can also appear later on. It is postulated that this is 

because of formation of a soft tissue layer at the cement-mantle, causing high shear strains 

on the bone immediately under it, and leading to bone densification (Gray et al., 2010). This 

appears as high density bone regions under regions of radiolucency. 

Radiographs can be very useful to the experienced surgeon for characterising the success 

of UKRs; however these claims are unsatisfactorily supported with clear evidence especially 

because it is widely accepted that distinguishing between physiological and pathological 

radiolucency is difficult (Kalra et al., 2011). The knowledge gained from the study of TKRs 

links radiolucencies to loose implants (Ritter et al., 1999, Hvid and Nielsen, 1984, Ahlberg 

and Linden, 1977). This conflicts with the claims made for UKRs; therefore, UKR research 

clearly has to be studied independently.  

Bone Resorption 

Based on knowledge gained from TKRs and Total Hip Replacements (THRs), it is widely 

accepted that bone resorption can lead to bone loss and eventual loosening of implants. 

There is evidence that this can also occur in UKRs (Tibrewal et al., 1984). Bone resorption 

tends to occur due to ‘stress shielding’ of the underlying bone by the stiff implant. This can 

eventually lead to component failure, as displayed by radiographs in Figure 7. 
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Figure 7 - The radiodense line between the radiolucent cement and the bone is incomplete (left). The 

patient complained of pain. One year later the bone had resorbed (middle) and the component failed 

eventually (right) (Tibrewal et al., 1984). 

Migration 

Progressive ‘sinking’ (migration) of the tibial implant occurs in most UKR patients. It tends to 

be 0.4-1.0 mm in the first year and it tends to level off over a few years (Hyldahl et al., 2005, 

Ryd et al., 1983, Rea et al., 2007). In Oxford UKRs, it has been reported that there is some 

anterior migration coupled with this distal migration (Rea et al., 2007). There is also evidence 

that the femoral implant migrates distally by a similar amount (Rea et al., 2007). No 

correlation has been found between radiolucency and migration for UKRs (Ryd et al., 1983, 

Rea et al., 2007). Excessive migration, particularly in osteoporotic patients who have very 

soft bone at the proximal tibia, can cause tilt to one side and eventual loosening (Ryd et al., 

1995). High cancellous bone stresses under the implant are thought to be responsible for the 

migration (Taylor et al., 1998), but have never been quantified for the UKR. 

Perioperative Fractures 

A small number of patients may experience fracture of the tibia, mostly propagating from 

either the base of the keel (Vardi and Strover, 2004) or the tip of the sagittal cut. Fractures 

tend to occur perioperatively (Seon et al., 2007, Kumar et al., 2008) and are likely to be due 

to errors in operative technique (Clarius et al., 2009a, Clarius et al., 2009b). The errors tend 

to be related to extended cuts. A study by Clarius et al. (2009a) found that inexperienced 

surgeons produce vertical cutting errors of more than 4mm in 18% of cases. 

Misalignment 

Misalignment of TKRs increases the risk of loosening and the same conclusion has been 

associated with medial UKRs (Kasodekar et al., 2006, Keene et al., 2006, Kennedy and 

White, 1987). Correct alignment of UKRs, particularly mobile-bearing designs, is more 



Introduction and Background 37 

 

difficult than TKRs (Fisher et al., 2003) and the routine of performing UKR surgery improves 

accuracy and the likelihood of survival (Robertsson et al., 2001a). 

Hernigou  and Deschamps, in a clinical follow-up study of 212 fixed bearing UKR patients 

(Hernigou and Deschamps, 2004), concluded that tibial cuts with anteroposterior slopes 

greater than 7 degrees could cause loosening, particularly for unconstrained implants. Assor 

and Aubaniac (2006), in a 7-15 year clinical follow-up study of 276 patients, showed that, of 

the 52 failures, 45 had loosening of the tibial component due to femoral component 

rotational misalignment. The radiograph in Figure 8 shows how rotation of the femoral 

component can cause the bearing to be on the medial extent. Assor and Aubaniac (2006) 

concluded that that femoral rotational misalignment causes increased mediolateral 

translation of the contact point, leading to abrasion and excessive pressure on the medial 

portion of the plateau.  

 

Figure 8 - Radiograph of a cemented Oxford UKR, showing how tilt of the femoral component can cause 

the mobile-bearing to be on the medial edge of the tibial tray. 

Implant superoinferior alignment directly affects the varus/valgus knee angle and influences 

the medial-lateral compartment load-split. Based on clinical studies, there are conflicting 

reports about how and whether the knee should be corrected. Studies by Ridgeway et al. 

(2002) and Cartier et al. (1996) recommend that under-correction should be avoided 

(particularly for thin polyethylene metal backed tibial components). This was supported by 

Emerson et al. (2007) who recommended the correction of varus/valgus deformity using the 

Oxford ligament balancing technique. Gulati et al. (2009b), based on a study of 160 Oxford 

UKR patients, found that 25% had varus deformity and that the level of deformity was 

unrelated to the outcome. 

The translational position of the tibial component, such as an overhang (in an onlay 

compared to an inlay design), also makes a difference to outcome. Overhang can cause 

irritation of soft tissues and pain, whereas an underhang can cause loosening. Chau et al. 

(2009) analysed 172 Oxford UKR knee overhangs and found that patients with an overhang 
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of 3 mm or more exhibited significantly worse Oxford Knee Scores and pain scores at 5 year 

post-arthroplasty. No difference was found in knee scores in patients with minor overhang 

and underhang. Inlay UKRs, such as the Replicci UKR by Biomet, require an incision into 

the tibial plateau followed by insertion of a polyethylene tibial component. The survival rates 

of onlay UKRs tend to be lower (Goodfellow, 2006). 

Femoral Implant Loosening 

Loosening of the tibial implant is easier to detect than the femoral implant (Monk et al., 2009, 

Kalra et al., 2011); therefore, there is more evidence in the literature for tibial loosening than 

femoral loosening and it is unclear which component is more susceptible. Some studies 

have reported that femoral implants are more likely to fail (Weale et al., 2001) particularly at 

the tip of the peg (Kalra et al., 2011). One failure mechanism of the femoral component is 

that the resected profile no longer matches the implant underside, so the implant rocks on 

the surface showing wedge shaped radiolucency at the posterior femur during extension 

(Monk et al., 2009). 

Implant Materials 

Results of clinical studies have produced mixed results for recommendations on materials in 

UKR design. For example, on the question of whether full-polyethylene bearings or metal-

backed bearings are better (Hyldahl et al., 2001, Heck et al., 1993). A recent clinical study by 

Arastu et al. (2009) highlighted a 21% failure rate of the Depuy Preservation mobile-bearing 

UKR (DePuy Orthopaedics, Inc., Warsaw, Poland) at a mean of 22 months. Although the 

cause is unconfirmed, the Preservation UKR is constrained in the mediolateral direction, 

which, it is speculated, is responsible for the loosening. 

Bearing Dislocations 

With the introduction of the mobile-bearing UKR came some unexpected problems that were 

identified very clearly with clinical studies. Bearing dislocation was a common cause of 

complications, particularly for the lateral condyle (Verhaven et al., 1991). As a result, they 

now tend not to be implanted in the lateral condyle. The designs have improved, incidences 

have reduced and a new mobile-bearing UKR specifically designed for the lateral condyle 

was introduced into the market by Biomet in 2011.  

Wear 

Wear particles can lead to osteolysis and eventual loosening due to the immunological 

response of tissue cells to the wear particles. Osteolysis was responsible for many of the 

TKR failures in the past (Robinson et al., 1995). The immunological response is sensitive to 
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both particle size and quantity (Huang et al., 2002); therefore it is important that the particles 

are sufficiently small and sparse, so that they do not generate an immunological response. 

Based on clinical studies of TKR, it is recommended that, to minimise wear, polyethylene 

bearing thicknesses should be greater than 6 mm (Engh et al., 1992c, Bartley et al., 1994) 

and have a limited shelf age (Bohl et al., 1999), and a design allowing large areas of contact 

mediolaterally and anteroposteriorly (Argenson and Parratte, 2006). The developments that 

have occurred in reducing wear have been significant and have filtered into UKRs. Although 

wear was a common failure mode in early UKRs (Engh et al., 1992c), it is significantly less 

frequent, particularly in mobile-bearings which have been shown to have annual wear rates 

less than 0.08mm (Psychoyios et al., 1998). That said, 15% of all failures since 2000, 

reported in the Swedish National Joint Registry (Lund, 2011) were due to wear. 

1.8 Initial Fixation 

Initial fixation is a measure of the immediate post-operative stability of the implant. Currently 

the majority of UKR implants are cemented with known values of 96% in the UK (Schindler 

et al., 2010), 99% in Sweden (Lund, 2011), 75% in Australia (Australian National Joint 

Replacement Registry, 2011). Although cementless fixation is very low, there is a trend 

evident in the Australian National Joint Replacement Registry that surgeons are 

increasingly using cementless and even hybrid fixation (Figure 9). Analysis of the joint 

registries shows that cementless fixation is more popular for the femoral component 

(compared to the tibial implant), such that some patients are having a cemented tibial 

implant with a cementless femoral implant (Australian National Joint Replacement Registry, 

2011). 

 

Figure 9 - The fixation methods used in UKRs published in the Australian National Joint Replacement 

Registry (2011). 

Under daily activities, good initial fixation will exhibit low bone strains (within 50% of the 

failure limit of bone) and low micro-movements between the bone and implant at the 

interface (micromotion). Micromotion is particularly important during osseointegration of the 
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bone-implant interface of cementless prosthesis. Micromotions, parallel to the implant-bone 

interface (surface-tangent micromotion), greater than 50m are likely to inhibit 

osseointegration (Pilliar et al., 1986, Jasty et al., 1997a, Burke et al., 1991). 

Since assessment of initial fixation only requires short-term results, clinical survival results 

can be valuable; however, it is difficult to isolate variables that are causing the adverse 

effects. Micromotion can not be measured accurately in-vivo (radiostereometric analysis is 

too inaccurate for daily micromotions); therefore, mechanical testing and FE modelling 

methods are commonly used. FE modelling offers the potential to test numerous scenarios 

quickly and efficiently. A literature search revealed only four papers specific to initial fixation 

of UKRs of which none were based on computer simulations.  

A theoretical based paper on fixation of generic design features was published by O’Connor 

et al. (1982). However, it lacks a long-term fixation perspective and it is aimed at promoting 

the Oxford UKR.  

Kaiser and Whiteside (1990) compared initial fixation stability of screwed and pegged 

cementless implants on cadaveric specimens. Although they recommended the use of 

screws which was supported by long-term clinical studies (Epinette and Manley, 2008), the 

industry has been reluctant to use screws due to reports in TKR patients of radiolucent lines 

(Whiteside, 1994). 

Miskovsky et al. (1992) mechanically tested 3 different cementation techniques and 

concluded that cementing to a smooth subchondral bone or “unlavaged” cancellous bone is 

unreliable for initial fixation. Based on a cadaveric study of 24 UKR femurs, Clarius et al. 

(2010) reported that a rough surface (with drilled holes) is important for a strong cemented 

interface and that the posterior of the femoral implant was most susceptible to improper 

fixation. 

Rosa et al. (2002) compared initial fixation strength of a peg and a rim on the cemented all-

polyethylene Advance UKR (by Wright Medical Technology) with a series of mechanical 

tests on polyurethane foam blocks. The paper is focussed on promoting the Advance UKR 

and lacks a thorough analysis. 

Recently, a couple of relevant computer simulation-based papers were published: Simpson 

et al. (2011) reported that there was minimal load transfer through the lateral wall of the tibial 

implant. Chang et al. (2011) reported that a radial corner could help to alleviate the high 

strains at the resected corner of tibial implants. 
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1.9 Long-term Fixation 

There are increasingly higher longevity expectations for UKRs; therefore, it is important to 

understand how implant design can be improved for increased long-term fixation. Although 

studies have been published for long-term fixation for TKRs, the literature is limited for 

UKRs. 

There is considerable evidence to suggest that a reduction in the local stress distribution will, 

due to bone resorption, cause a decrease in bone mineral density (BMD). This can 

jeopardise implant fixation and lead to revision surgery. Computational bone remodelling 

techniques are sufficiently developed to provide useful fixation assessments of implants 

(Huiskes et al., 1987, Bitsakos et al., 2005, Kerner et al., 1999). However, limited resources 

have been placed on UKR simulation, particularly for the purposes of improving long-term 

fixation designs. A literature search revealed only six papers specific to long-term fixation of 

UKRs, of which only two use modelling based approaches.  

Hyldahl et al. (2001) assessed 2-year post-arthroplasty migration of 45 patients, comparing a 

metal tibial backed UKR with an all-polyethylene UKR tibial component. They found that 

there was no enhanced fixation provided by the metal-backed UKR and recommended the 

use of all-polyethylene UKRs. 

Lindstrand et al. (1988) compared cemented and cementless fixation in a cohort of 93 PCA 

(by Howmedica) UKR patients over a period of 1-4 years. There were no statistical 

differences in radiolucencies or any other fixation parameters. However, the report 

recommends cemented UKRs because they have a higher likelihood of complete pain relief.  

Epinette et al. (2008) assessed the fixation capabilities of hydroxyapatite on cementless Unix 

(by Howmedica) UKRs based on a 5-13 year follow-up study of 125 knees. Note that the 

Unix tibial component has four screws into the bone. Only 3% of patients had radiolucencies 

under the tibial plateau and there were no instances of radiographic loosening.  The study 

concluded that cementless UKRs can be successful in the long-term and promoted the use 

of screws. 

Pandit et al. (2009) compared radiolucencies of 62 Oxford UKR knees at 1-year post-

arthroplasty and found that cementless implants showed significantly less radiolucencies 

compared to cemented implants. If radiolucencies can be assumed to be indicative of 

fixation, then this shows that short-term fixation of cementless Oxford UKRs is better than 

cemented UKRs. 
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Gillies et al. (2007) investigated the long-term fixation effects of two polyethylene tibial 

implants, with and without a keel, using FE modelling. Post-arthroplasty, they predicted bone 

resorption of less than 8% with the keel and up to 10% bone apposition without the keel.  

A study by Simpson et al. (2009) investigated tibial strain caused by the Oxford UKR in 

various alignments. Although the study was used primarily to explain tibial pain as a result of 

elevated tibial bone strains anteromedially, strain is also an indicator of bone remodelling. 

The study lacks a perspective on fixation. 

Recently, Gray et al. (2010) reported the results of a computer simulation of the region 

beneath the tibial implant. They demonstrated that the radiolucencies observed in the clinic 

may be due to differentiation of the bone tissue into fibrous tissue and the sclerotic line due 

to bone apposition in this underlying region. 

1.10 Component Durability 

In order to maintain good fixation, the implant must remain intact. There is sufficient literature 

for designers to make conservative loading assumptions for implant design. For this reason 

failure of the component by yielding or fracture is rarely seen. Failure due to fatigue, and in 

particular due to wear is more common. 

Design features that reduce wear often affect the fixation capability of the implant. For 

example the Oxford UKR, which, to enable greater tibiofemoral surface conformity, has a 

single curvature femoral component, that curvature does not follow the femoral geometry as 

closely as its counterparts. This may have adverse effects on long-term fixation. 

A review of the current understanding of wear in UKR is discussed by Argenson and Parratte 

(2006). Since many of the developments associated with materials used in other implants 

can be transferred to UKRs, and wear modelling is computationally very different to the 

modelling performed in this study, component durability was considered to be outside the 

scope of this research thesis.  

1.11 Finite Element Analysis Studies 

Finite Element (FE) analysis of bone and bone-implant constructs is a powerful tool for 

biomechanics research of implants. If correctly performed, the method can help to isolate 

specific design factors and assess the implications of design changes while avoiding the 

high costs and time expenses inherent in traditional in-vivo and in-vitro studies. However, 

verification and validation using in-vivo and in-vitro studies are vital for the results to be 

meaningful. 
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Bone material properties are complex and modelling a bone accurately depends on the level 

of detail required for the intended purpose of the analysis. Tissue-level simulations help to 

analyse trabecular micro-mechanisms such as at the cement-bone interface of THRs 

(Waanders et al., 2009). Whole bone-level models (of whole joints) help to determine muscle 

forces and kinematics of joints (Hopkins et al., 2009). Architectural-level models require data 

from both the whole-bone level and tissue-level models in order to simulate the macro 

processes of whole bones such as remodelling in the tibia (Chong et al., 2011). 

Incorporating these into a single multi-scale model is a challenge for the biomechanics 

community. Until that is achievable careful assessment of assumptions is required, followed 

by verification and validation processes in order to produce meaningful results. 

1.12 Objectives and Scope 

The overall aim of this research was to understand fixation of the UKR and make 

recommendations for improvement. This was to be accomplished via a sequence of 

intermediate aims: 

1. Gathering of detailed bone geometry and density distributions of UKR patient knees 

by computed tomography (CT) scanning; 

2. Development of Finite Element (FE) computer models of implanted UKRs for 

investigation of initial and long-term fixation;  

3. Undertaking of in-vitro mechanical testing of implant/bone constructs to validate FE 

stress/strain results; 

4. Undertaking of a 12-patient clinical study to investigate post-arthroplasty bone 

adaptation and to validate computer predictions; 

5. Investigation of initial and long-term fixation of the UKRs and how they are affected 

by changes in implant alignment, implant design and bone excision. 

1.13 Structure of Thesis 

This thesis is structured into ten sections. The first three sections (including this section) 

provide a comprehensive review of UKR both in the clinic and within the biomechanics 

community. The subsequent seven chapters describe the development of the tools to assess 

UKR fixation and present the findings of the studies conducted. 

Section One (this section) is the introduction and details a literature review of mechanical 

fixation of UKRs. Section Two describes the current methods used to simulate bone 

properties in FE models of the knee, including a detailed literature review of the material 

property of bone, and a study on the sensitivity of material parameters on modelling bone.  
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Section Three is a literature review of knee forces and the rationale for assembling a new 

database of knee forces specific for UKRs and detaching from previous methods employed 

for TKRs. 

Section Four describes the FE modelling approach used in this thesis and presents findings 

of studies used to investigate the uncertainties associated with modelling of the UKR, and 

how these challenges were overcome. 

Section Five outlines the mechanical tests conducted in-vitro on ten cadaveric knees, and 

the results. The validation of four of these UKR cadaveric knees is presented in Section Six. 

Section Six presents a detailed validation of multiple UKR tibiae and femora FE models, for 

bone strain and bone-implant displacement. It demonstrates the reliability of the method 

developed in Section Four. 

Section Seven presents the in-vivo DXA study on 12 UKR patients and the year-1 results. 

The validation of two UKR patient knee models is presented in Section Eight. 

Section Eight describes the development of the bone remodelling simulations of patient-

specific FE models and evaluates their performance against in-vivo clinical data obtained 

from the DXA study. 

Section Nine presents the findings of comparative studies using computer simulations of 

UKR fixation features. The studies are based on UKR fixation questions identified in the 

literature and the clinic. 

Section Ten presents a summary of the conclusions of this thesis with recommendations for 

improving UKR fixation and for future work. 

 

 



Modelling Bone for Computer Simulations 45 

2 Modelling Bone for Computer Simulations 

2.1 Introduction 

Finite Element (FE) analysis of bone is a very powerful tool for biomechanics research, 

particularly for implant design. Bone material properties are complex and modelling a bone 

accurately depends on the level of detail required for the intended purpose of the analysis. 

This Section presents a detailed literature review of material properties of bone; the current 

methods for developing subject-specific bone FE models; and includes a study to conclude 

the most appropriate method to model fixation of Unicompartmental Knee Replacements 

(UKRs). 

2.2 Background 

It is important to consider the microstructure of bone to understand its mechanical properties 

(Rice et al., 1988). By weight, bone is made up of 60% inorganic mineral, 30% organic and 

10% water. The inorganic mineral phase of bone is a ceramic crystalline-type mineral; an 

impure form of hydroxyapatite, primarily composed of calcium carbonate and calcium 

phosphate, and it gives bone its characteristic rigidity and compressive strength. The organic 

phase is primarily type I collagen and osteoid. 

The material properties of bone are dependent on the level of interest: whole-bone level; 

architectural level (>1mm); tissue level (0.1-0.5mm); lamellar level (1-10μm); and collagen 

fibril level (0.1μm). 

At the architectural level, bone is classified as either cortical or cancellous (also called 

trabecular) depending on its porosity. Cortical bone is formed of tightly packed lamellar, 

Haversian, or woven bone and has a porosity of 5-30%. Cancellous bone is highly porous 

(greater than 30% porosity) and is of cellular structure (Keaveny et al., 2003). 

Tissue level bone models have shown to accurately mimic architectural level bone 

characteristics measured in the laboratory (Gibson, 1985). These models assume that the 

mineral phase of bone is homogenous and isotropic and the level of detail within the models 

incorporate trabecular architecture, alignment and porosity. Unfortunately there are 

computational challenges with scaling the models to the architectural level. Due to 

insufficient computational power to model whole bones from tissue level properties, 

simplified architectural level material properties are required. Keaveny and Hayes (1993) 

provide a good summary of the mechanical properties of trabecular bone. 
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Bone has a cellular solid structure with mineralised connecting walls/struts (100-300μm thick 

and 500-1500μm spacing) known as trabeculae. As the porosity reduces, the structural 

interconnectivity increases and cell struts (open cell porous structure) begin to look more like 

cell walls (closed porous cell structure). The alignment of the walls/struts determines 

whether the structure transfers load by axial deformation (high alignment) or by bending (low 

alignment); therefore it determines the degree of anisotropy. The structure is stiffest in axial 

deformation because the porous cells are aligned in this direction. There are four 

deformation mechanisms in a porous structure: (1) open cell structure with pure bending; (2) 

open cell structure with pure axial deformation; (3) closed cell structure with pure bending; 

(4) closed cell structure with pure axial. The overall deformation of cancellous bone is made 

up of a combination of these mechanisms, depending on the porosity, bone architecture and 

alignment of the cell walls. Based on the theoretical study of cellular structures, Gibson and 

Ashby (1982) proposed a square relationship (between elastic modulus and density) for 

open cell materials (high porosity, cortical bone) and a cubic relationship for closed cell 

materials (low porosity, cancellous bone). 

At the architectural level, the mechanical properties of bone are heterogeneous and 

anisotropic, and porosity and trabecular architecture are dependent on species and anatomy 

(Keaveny and Hayes, 1993). Differences in trabecular architecture are often defined using 

measurements of trabecular spacing, wall-thickness and trabecular number; for example, 

trabecular spacing is 30% higher in human proximal tibia compared with bovine proximal 

tibia and the trabecular walls are 50% thicker in the human femoral neck compared to the 

human proximal tibia (Morgan et al., 2004). The bone epiphysis (proximal tibia and distal 

femur) tend to display relatively low anisotropy with increasing anisotropy towards the stem 

(mid-diaphysis) (Pope and Outwater, 1974). The porosity and density are related to the 

elastic modulus and derivation of empirical relationships has been instrumental in 

development of FE modelling capabilities of whole-bone. 

The early work of Carter and Hayes (1977) proposed a single relationship for the whole 

porosity range of bone. They tested bones of various species and various anatomical sites 

and assumed that bone elastic modulus was isotropic. This work is well established in the 

biomechanics community and is commonly used in FE studies because it is convenient and 

easy to implement. 

Recent developments have demonstrated that the Carter and Hayes relationship is 

simplistic: Orthotropic properties of bone have been published (Rho et al., 1995); studies 

have shown species dependence (Rice et al., 1988, Ciarelli et al., 1991) and anatomic site 

dependence (Morgan et al., 2003). That said, the Carter and Hayes relationship may be 

adequate for the purposes of this Thesis. This Section presents a detailed review of current 
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methods for obtaining elastic moduli from density of bone and presents a comparative study 

of different relationships published in the literature that are relevant to the knee.  

2.3 Bone Density from CT 

Material property relationships in the literature normally relate elastic moduli to bone density; 

therefore, the density of bone must first be determined. 

A wide range of scanning methods are available and Computed Tomography (CT) is the 

most suitable for generating patient-specific whole-bone scale models. Although µCT 

produces higher resolution (tissue level) images, the maximum specimen length is limited to 

15cm and the high radiation dose is a barrier for obtaining ethical approval on living human 

subjects. CT is well established and widely available in hospitals and research centres. The 

image resolution (0.6 mm) captures architectural level detail – it is not sufficiently detailed to 

resolve individual trabeculae but has fine enough resolution that it does not omit bone 

topography. Two-dimensional X-ray images, measuring attenuation coefficient, are taken 

around a single axis of rotation. Three-dimensional arrays of greyscale values (called voxels) 

are then generated by computational processing of these images. The data is organised in 

slices perpendicular to the axis of rotation. These values can vary depending on equipment 

and the settings; therefore, the radiologist will usually calibrate the CT scan against a 

phantom (usually water HU=0 and air HU=-1000), giving Hounsfield Unit (HU). 

The empirical relationship between HU and density is linear (Rho et al., 1995, McBroom et 

al., 1985, Ciarelli et al., 1991). The linear relationship between HU and apparent density () 

depends on the composition of the material filling the voids and the density of this material. 

Studies in the literature have used different measures of density and it is important to define 

a consistent approach. Density measures can be grouped into (1) Ash density, (2) Wet 

density, or (3) Dry density. There is no consistent definition of apparent density through the 

literature; however, recent studies have tended to define it as dry density (including Carter 

and Hayes) and this is the definition used in this thesis. These density measures can be 

converted using equations empirically derived by Keyak et al. (1994) (and substantiated by 

Schileo et al. (2008a)):  

dry=1.66ash + 0.00457   

dry=0.913wet - 0.00336   

The material that fills the bone voids is bone marrow. The bone marrow is composed of a 

variety of cells (blood cells in all stages of development, fat cells and reticulum cells) and 

connective tissue. If we assume that the material that fills the bone voids is two-phase, 

composed of water and fat, then we know that the linear relationship is somewhere between 
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an upper and lower bound: (1) If the material that fills the voids is just water, and water has a 

Hounsfield value of 0 HU, then the apparent density of bone at 0 HU must be 0 g/cm3. (2) If 

the material that fills the voids is fat, and fat has a Hounsfield value of approximately -120 

HU, then the apparent density of bone at -120 HU must be 0 g/cm3. 

Over the years there have been developments in CT scanning equipment and measurement 

techniques; and it is unclear in the literature which relationships (between HU and apparent 

density) are most appropriate to this study. Therefore, a new relationship has been derived 

from the CT data set of actual cadaveric knees analysed in this study. Based on the analysis 

of ten cadaveric knees, the average upper value of 1860 HU was assumed to correspond to 

an average upper apparent density value for cortical bone of 1.75 g/cm3.The average lower 

value of -40 HU corresponded to bone marrow and the lower apparent density limit of 0 

g/cm3. Note that all these scans were performed on a “Definition AS+” Computed 

Tomography (CT) scanner (Siemens Healthcare, Germany) which is the same scanner used 

to scan the UKR patients (described in Section 7), and cadavers used to develop FE models 

(described in Section 5). The following relationship between HU and the apparent dry bone 

density (ρ, g/cm3) was developed and used in the study: 

                     

where apparent density ρ is in g/cm3. 

As illustrated in Figure 10, this is similar to relationships used in the literature (Rho et al., 

1995). 
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Figure 10 - Relationship between Apparent Density of bone and Hounsfield Unit 

There are two different approaches in the literature for deriving apparent density from CT 

data: (1) calibrate HU numbers to ash density using a phantom and then use another 

relationship to obtain apparent density (Barker et al., 2005, Dalstra et al., 1995, Keyak et al., 

2005, Keyak et al., 1998), or (2) calibrate HU numbers to apparent density directly (Bitsakos 

et al., 2005, Chong et al., 2010, Cody et al., 1999, Gupta et al., 2004, Peng et al., 2006, 

Taddei et al., 2004). The latter is usually done based on the assumption that apparent 

density is 0 g/cm3 for 0 HU; and the maximum estimated cortical density corresponds to the 

maximum HU in the dataset. Schileo et al. (2008a) reported that a subject-specific correction 

factor to the relationship reduces the error in a femur model. The method used in this thesis 

maintains a consistent approach, so that differences of densities between specimens are 

maintained and not normalised against average bone values from the literature.  

2.4 Elastic Modulus from Bone Density 

In 1977, Carter and Hayes (1977) proposed a single relationship between apparent bone 

density and elastic modulus, covering both cancellous and cortical bone. The relationship 

was empirically derived independent of species and anatomy.  

          

where elastic modulus E is in GPa, and apparent density ρ is in g/cm3. 
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This significant development opened opportunities in the computational modelling of the 

heterogeneous nature of bone; however, the study has its limitations and further 

development have been made. 

The literature contains over 40 studies (26 studies were reviewed by Linde et al. (1992) and 

another 15 by Helgasson et al. (2008)) and a tenfold difference in elastic-modulus 

predictions for cancellous bone at a particular density. It is therefore important to carefully 

consider what to use in computer simulations. 

As described in Sub-section 2.2, Gibson (1982) and Ashby (1985) demonstrated that elastic 

modulus is proportional to the square of apparent density for open cell materials (high 

porosity) and cube of apparent density for closed cell materials (low porosity). No theory 

exists for the middle range of porosity. In the late 1980s, new studies were conducted by 

analysing cancellous and cortical bone separately (Rice et al., 1988, Rho et al., 1997, 

Schaffler and Burr, 1988) and appreciating the anisotropic nature of bone by assuming 

orthotropy. 

The elastic modulus of bone is strain rate dependent with most studies showing an increase 

in stiffness with increasing strain rate (Hansen et al., 2008, Carter et al., 1981). Hansen et al. 

(2008) showed that increasing compressive strain rate from 0.14-29 s-1, the elastic modulus 

of femoral cortical bone increased from 16-30 GPa. These high strain rates are 

representative of impact loading from falls and not of loading experienced during daily 

activities such as walking and stair climbing. For low strain rates, representative of daily 

activities, the variation of elastic modulus is small (Currey, 1988) and has therefore been 

assumed to have negligible effect on computer simulations presented in this thesis. 

It is also important to consider the development of material testing methods. The platen-

technique, used in early studies such as Carter and Hayes, involved resecting bone into 

cylinders/cubes and using an anvil to apply a load and measure its deformation. This method 

is known to be prone to errors arising from: machine compliance errors (due to the very 

small deformations measured); and structural end-effects (high strains near the platens) – 

these can lead to underestimations of elastic modulus of 20-40% (Keaveny et al., 1997, 

Linde et al., 1992). Another source of error in early studies is due to misalignment of 

specimens. Modern methods (extensometer and the end-cap technique) use extensometers 

to focus on strain measurements at the centre of the specimens (Keaveny et al., 1997, 

Turner and Cowin, 1988, Odgaard and Linde, 1991). Alternative methods are also used in 

the literature: Snyder and Schneider (1991) conducted three point bend experiments on 

slices of cortical bone resected from the human tibia. Their results for elastic modulus of the 

tibia were higher than those previously measured for the femur (Currey, 1975); therefore, 
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they concluded that their method was inaccurate. However, with further developments since 

their study, particularly on the tibia, we now know that the modulus of tibial bone is higher 

than that of the femur (Morgan et al., 2003), and their results have been corroborated by 

other studies done on cortical bone (Hansen et al., 2008). 

Since 2000, research on bone architecture (Keaveny and Yeh, 2002) has suggested that 

bone property relationships are species and anatomical site dependent (Morgan et al., 

2003). The study by Morgan et al. (2003) demonstrated differences of elastic modulus of 

cancellous bone in various anatomical sites including the vertebra, proximal tibia, femoral 

neck and greater trochanter: 

                         
     

                             
     

                      
     

 where E is in GPa and ρ is in g/cm3. 

These relationships must not be extrapolated further than their appropriate density range. 

Cortical bone was not assessed in the study and has been considered separately. Snyder 

and Schneider (1991) conducted a study specifically on tibial cortical bone and proposed the 

following relationship for apparent densities greater than 1.5 g/cm3: 

                        
     

where E is in GPa and ρ is in g/cm3. 

Since the variation of cortical bone modulus is small within the diaphysis and metaphysis 

regions, an average modulus may be adequate. Measurements vary from 12-20 GPa (Rho 

et al., 1993), including specific anatomical measurements of 17.5 GPa for the tibia (Snyder 

and Schneider, 1991) and 17.7-17.8 GPa for the femur (Bayraktar et al., 2004b, Turner et 

al., 1999).  

The findings of the literature review have been considered with the practicalities and 

objectives of the computer simulations described in this thesis. Bone material properties 

applicable for the proximal tibia and distal femur were explored further with a material 

sensitivity study presented in Section 3.5. Although computer simulations of bone would be 

more accurate if orthotropic properties were used (Keyak et al., 1994), the literature is limited 

for the proximal tibia and distal femur, but the effect on results has been demonstrated to be 

small (Peng et al., 2006). The proximal tibia exhibits some anisotropy (Ciarelli et al., 1991); 

however, since the tibia is principally loaded along the anatomical axis (and provided 

material properties were obtained from samples orientated along this axis), the assumption 
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of isotropy is considered satisfactory. The principal loading direction of the distal femur is 

however not always along the anatomical axis - it varies with knee flexion angle. For walking 

gait, it is loaded mainly along the anatomical axis (maximum flexion angle is 30 degrees); 

but for stair-climbing and chair-rise activities the distal femur is off-axis loaded at mid-flexion 

(60-90 degrees) with high tibiofemoral and patellofemoral contact loads (refer to Section 4). 

The transverse elastic modulus can be less than 50% of the anatomical axis modulus 

(Kaneko et al., 2004). It is therefore important to keep in mind the limitations of assuming 

isotropy in simulations of the femur during stair-climbing. 

2.5 Bone Strength 

Simulating bone failure is important in computer simulations of implants. It will identify how 

close bone is to failure, highlighting hotspots and possible failure mechanisms. A review of 

the literature was conducted to determine the most appropriate method for calculating a 

safety factor for bone. 

Early studies of bone failure criteria concentrated on finding a relationship between density 

and failure stress (Carter and Hayes, 1977, Rice et al., 1988, Hvid et al., 1989, Keyak et al., 

1994). Figure 11 compares the most cited relationships (Carter and Hayes, 1977, Rice et al., 

1988, Hvid et al., 1989, Morgan and Keaveny, 2001, Keyak et al., 1994). The difference 

increases with bone density and becomes significant at densities greater than 0.5 g/cm3. 

 

Figure 11 - Apparent Density to Yield Stress relationships published in the literature 

Recent literature suggests that the failure of bone is better defined using a yield strain 

criterion (Morgan and Keaveny, 2001, Bayraktar et al., 2004b).  Morgan and Keaveny (2001) 

conducted multi-specimen multi-donor uniaxial mechanical tests on proximal tibia, greater 

trochanter, femoral neck and vertebra, to determine yield strain in these regions. They 

demonstrated that yield strain varies across anatomical sites and the yield strain is mostly 
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uniform within a given site despite substantial variation of elastic modulus and yield stress. In 

a follow up study, Morgan et al. (2004) showed that the inter-site variation was due to 

differences in bone architecture (trabecular spacing and wall thickness). The following yield 

strains were reported: 

Table 1 - Human cancellous bone yield strains published in the literature. 

Anatomic Site Compressive Strain Tensile Strain 

Proximal Tibia 7300 με 6500 με 

Greater Trochanter 7000 με 6100 με 

Femoral Neck 8500 με 6100 με 

The femoral neck compression yield strain is higher than that of the proximal tibia and the 

tensile yield strains are similar between regions. Bayraktar et al. (2004b) conducted a study 

with samples taken from the femoral neck and supported the conclusions for a strain based 

failure criterion. Another study (Bayraktar and Keaveny, 2004) concluded that, while 

compressive yield strains are dependent on anatomical site, tensile yield strains are 

independent of anatomical site - this matches the similarity in tensile properties reported by 

Morgan and Keaveny (2001). The compressive yield strain of cortical bone is unreported but 

under tension it has been measured as 7300 με (Bayraktar et al., 2004b). 

In 2000, Niebur et al. (2000) simulated bone failure with high-resolution FE models. They 

compared predictions with mechanical tests of bone in-vitro; and demonstrated that the 

strain failure criterion was accurate. Whole-bone level computational models have also 

successfully predicted reliable results: Schileo et al. (2008b) compared stress and strain 

yield criteria against experimental results and concluded that the strain criterion was more 

accurate.  

Since arthroplasty is usually performed on patients of 60-80 years, age is a factor to 

consider in the analysis of bone failure. McCalden et al. (1993) showed that ultimate bone 

strain halves from 3.5% to 1.75% between the ages of 20 and 80 years. Older bone has 

reduced mechanical properties due to the presence and susceptibility of developing 

microcracks that initiate at strains as low as 1500με; as a consequence, bone yield stress is 

lower in the elderly (Courtney et al., 1996). 

2.6 Material Sensitivity Study 

2.6.1 Introduction 

Since there is such a large variation of material property relationships in the literature, it was 

deemed necessary to do a study to understand the sensitivity of FE models to such 

uncertainty. It was hypothesised that, modelling the different elastic-modulus versus density 

relationships of bone and comparing them against a failure criterion, it would at least be 
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possible to identify unlikely relationships i.e. those that lead to predictions of bone failure 

under normal daily activity loads. 

2.6.2 Method 

A ‘strong’ tibia and ‘weak’ tibia were chosen from 10 fresh frozen cadavers that were 

mechanically tested in the laboratory (specimens CAD01 and CAD04 respectively, as 

described in Section 5), modelled using FE analysis and validated (Section 6). The matching 

femur of the ‘strong’ tibia was also analysed. 

As described in Sub-section 4.3.1, the tibiae were scanned using the “Definition AS+” 

Computed Tomography (CT) scanner (Siemens Healthcare, Germany) and phantom-

calibrated. The long axes of the bones were aligned with the scanner axis; the slice 

thicknesses were 0.6 mm and the cross-section voxels were 0.5x0.5 mm.  

The CT scans were segmented (as described in Sub-section 4.3.2), the surface meshed and 

smoothened with triangular mesh using AVIZO 6.1 software (Visualization Sciences Group, 

USA), and solid meshed with tetrahedral elements using MARC Mentat software (MSC 

Software Corporation, USA). As recommended in the literature (Polgar et al., 2001) and 

supported by our own sensitivity studies of element type (refer to Sub-section 4.5), 10-node 

quadratic tetrahedral elements were used and adequate mesh convergence was achieved 

(refer to Section 7.2). The proximal tibial and femoral distal cortices are too thin to be 

modelled with solid elements; hence, quadratic shell elements were included around the 

cancellous bone. The proximal 150mm of the tibia and distal 200mm of the femur were 

modelled with the base of the shafts fully constrained. 

Single elastic moduli of 18 GPa and 14 GPa were assigned to the cortical bone regions of 

the ‘strong’ and ‘weak’ bones, respectively. A single cortical elastic modulus produced the 

best correlation and the value was chosen based on the specimen specific average CT 

value. The thin proximal tibial cortex was modelled with 0.2 mm thick shell elements of 

equivalent elastic moduli (sensitivity assessments described in Sub-section 4.6.2 showed 

that the uncertainty of the cortex shell thickness and elastic modulus had only local strain 

effects and did not disrupt the global response of the model).  

Density-modulus relationships from the literature that were most appropriate for the tibia are 

listed in Table 2. All apparent densities were converted to dry apparent density (Keyak et al., 

1994). Each study covered a range of bone densities, but these were mostly of low density 

cancellous bone or high density cortical bone, leaving few data to cover intermediate values. 

Because a model of a complete bone has to cover the density range, linear relationships 

were assumed across the gaps between published low and high density data. This 
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assumption was supported by prior work (Ciarelli et al., 1991, Bessho et al., 2004), leading 

to ten sets of density-modulus relationships for the tibia (Figure 12). The plot shows 

differences of an order of magnitude in predicted elastic moduli for bone densities below 

10 g/cm3. 

Table 2 - Material bone property relationship groups modelled in tibia study. 

  Range (g/cm
3
) -E Equation (GPa) Source 

1 0.1-1.73 E=3.79ρ
3
 Carter and Hayes (1977) 

2 0.1-0.6 E=2.56ρ
1.47

 Hvid et al. (1989) 

 >0.8 E=3.79ρ
3
 (Carter and Hayes, 1977) 

3 0.1-0.95 E=0.06+0.9ρ
2
  Rice et al. (1988) 

 1.9-2.2 E=0.9ρ
7.4

 Schaffler et al. (1988) 

4 0.1-0.95 E=0.06+0.9ρ
2
 Rice et al. (1988) 

 >1.5 E=4.83ρ
2.39

 Snyder and Schneider (1991) 

5 0.1-0.95 E=-0.16+4ρ+1.1ρ
2
 Rho et al. (1993)  

 >1.5 E=4.83ρ
2.39

 Snyder and Schneider (1991) 

6 0.1-1.56 E=-0.16+4ρ+1.1ρ
2
 Rho et al. (1993) 

 >1.56 E=4.83ρ
2.39

 Snyder and Schneider (1991) 

7 0.1-0.778 E=2.003ρ
1.56

 Perillo-Marcone et al. (2003) 

 >0.778 E=2.875ρ
3.0

 Perillo-Marcone et al. (2003) 

8 0.1-0.37 E=11.12
2.2

 Keyak et al. (1994) 

 >1.5 E=4.83
2.39

 Snyder and Schneider (1991) 

9 0.1-0.37 E=18.49ρ
1.93

 Morgan et al. (2003) 

 >1.5 E=4.83ρ
2.39

 Snyder and Schneider (1991) 

10 0.1-0.37 E=18.49ρ
1.93

 Morgan et al. (2003) 

 >1.2 E=3.89ρ
2.39

 Carter and Hayes (1977) 

 

 

 

Figure 12 - Comparison of published tibia density-modulus relationships assessed in the study 
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The relationships included for the femur are detailed in Table 3 – these are less extensive 

and serve the purpose of supporting the conclusions of the tibia assessments for the femur. 

Table 3 - Material bone property relationship groups modelled in femur study 

  Range (g/cm
3
) -E Equation (GPa) Source 

1 0.1-1.73 E=3.79ρ
3
 Carter and Hayes (1977) 

2 0.17-0.58 E=4.782p
1.61

 Distal Femur, Kaneko et al. (2004) 

 >1.5 E=4.83ρ
2.39

 Snyder and Schneider (1991) 

3 0.23-0.70 E=7.845
1.49

 Femoral Neck, Morgan et al.  (2003) 

 >1.5 E=4.83ρ
2.39

 Snyder and Schneider (1991) 

4 0.1-0.37 E=18.49ρ
1.93

 Proximal Tibia. Morgan et al. (2003) 

 >1.5 E=4.83ρ
2.39

 Snyder and Schneider (1991) 

 

 

Figure 13 - Comparison of published femur density-modulus relationships assessed in the study 

Material properties were assigned on an element-by-element basis assuming heterogeneity 

and isotropy and assuming a Poisson’s ratio of 0.3 (Van Rietbergen et al., 1996). 

Radiographic grey scale values were obtained from CT data by averaging nine sampling 

points for each element. The CT scans were phantom calibrated to water and air to give 

Hounsfield Units (HU). The relationship between HU and tissue density was assumed to be 

linear as described in sub-Section 3.2 above. 

A database of tibiofemoral joint contact forces with muscle and ligament forces for walking 

and stair ascent were determined from analysis of the literature, as presented in Section 4.  

The loads were applied directly to the tibial and femoral cortices based on anatomical data 

for ligament attachment areas (as). The two peak forces, at 15% and 50% of the gait cycle 

were analysed.  
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The loads were scaled to body weight (64 kg for ‘strong’ tibia and 81 kg for ‘weak’ tibia) and 

applied directly to the nodes based on anatomical data for ligament attachment areas (Amis 

et al., 2006; Edwards et al., 2007) and tibio-femoral contact areas (Walker and Hajek, 1972) 

and positions (Wretenberg et al., 2002), as Sub-section 3.2. Simple representations of the 

medial meniscus were modelled in order to distribute the high medial contact loads 

accurately. Although the elastic modulus of the meniscus is non-linear (at 20% strain elastic 

modulus is 20 MPa and increases to 300 MPa with increased strain (Leslie et al., 2000)), a 

single linear elastic modulus of 20 MPa was assigned because it produced strains of 

approximately 20%. Two peak forces, at 15% of walking and stair-descent activities (refer to 

Section 3 for details of the knee forces during daily activities) were analysed.  

A Regions of Interest (ROI), represented by 163 nodes, was defined at the medial condyle, 

10 mm below the medial tibial plateau, defined by a mediolateral width of 10 mm, 

anteroposterior length of 20 mm and depth of 10 mm. 

The static implicit FE models were solved using the MARC 2010 multifrontal direct sparse 

solver; analysed for tibial stress and strains; and assessed against a strain failure limit, as 

described in Section 3.4. 

The results were post-processed to display plots of safety factor calculated against a bone 

yield strain criterion proposed by Morgan et al. (2004). Since there is no yield strain criterion 

available for the distal femur, the femur was assessed against criteria for both the proximal 

tibia and femoral neck. Refer to Sub-section 3.3 for further discussion of the strain criteria 

and Sub-section 4.6.9 for details of how the criterion was implemented as a MARC 

subroutine. 
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2.6.3 Results 

 

Figure 14 - Plots of minimum principal stress and strain at 15% of the walking gait cycle comparing 

material relationships by Carter & Hayes against Morgan et al and Snyder & Schneider. 
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Figure 15 - Bone failure plots at 15% of the walking and 50% of the stair ascent activity cycles. The 

legend scale 1.0-2.0 indicates the safety factors, with dark grey indicating failure and light grey indicating 

less than 50% of failure limit. The superimposed plot indicates the average minimum principal strain at 

the ROI defined at the medial condyle. 
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Figure 16 - Bone failure plots at 15% of the walking and 15% of the stair ascent activity cycles. The 

legend scale 1.0-2.0 indicates the reserve factors, with dark grey indicating failure and light grey 

indicating less than 50% of failure limit. The plots also compare the difference in using yield criteria of 

the femoral-neck and tibia. 

2.6.4 Discussion and Conclusions 

The most important finding of this study is that some of the published apparent bone density 

to elastic modulus relationships led to predictions of bone strains in the proximal tibia which 

exceeded published failure criteria under loads imposed by normal activities. There have 

been a number of studies which based their density-modulus relationships on 

measurements of low density cancellous bone and/or high-density cortical bone specimens, 

which suggests that they were unrealistic, leaving a scarcity of data to describe intermediate 

bone densities. This study found that both the relatively low density and high density bones 

had approximately 30% of their volume which fell within the range of uncertainty – from 0.4 

to 1.2 g/cm3. Thus, in addition to casting doubt on the use of some of the published density-

modulus relationships for analysis of the human proximal tibia, this study highlights the need 

for further experimental work to characterise the behaviour of bone with intermediate 

densities. 

There are numerous FE studies of the tibia in the literature; however we are not aware of a 

single study that has used the relationships that we propose. Most recently, experimental 

validation of a human cadaveric tibia, was reported by Gray et al. (2008). They used 

orthotropic material relationships, proposed by Rho et al. (1995), for which the dominant 
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superior-inferior elastic modulus according to our study would be under-predicted. This may 

explain why their regression gradient was 25 % above unity. Varghese et al. (2011) 

conducted a multi-specimen tibia validation and demonstrated excellent correlation; 

however, they did not use any material property relationships published in the literature. 

They avoided the problem of uncertainty in these material relationships by optimising elastic 

moduli value in order to produce the most favourable correlation. Although they obtained 

excellent correlations against in-vitro cortex mounted strain gauges, it is uncertain as to 

whether the cancellous bone strains they predicted were realistic. 

Schileo et al. (2007) conducted a validation study of the human femur and investigated 3 

different material property relationships including the generic Carter & Hayes and a species 

and anatomy specific relationship proposed by Morgan et al. They concluded that the 

species and anatomy specific relationship produced the most accurate results for the femur. 

In a follow up study, Schileo et al. (2008b) concluded that the strain failure criteria produced 

the most accurate predictions of bone failure. Our study on validated femoral bones supports 

the findings of Schileo et al. In addition, our study highlights the large potential inaccuracies 

produced by using inappropriate material properties. 

Bone in the proximal tibia predominantly has apparent dry densities of 0.1-0.4 g/cm3 (68-

73% by volume as presented in Table 4) and, as illustrated in Figure 1, the literature displays 

significant variability in elastic modulus predictions for this density range. The variability is an 

order of magnitude between Carter and Hayes and Morgan et al at 0.4 g/cm3. This was 

responsible for the large variability in the strain predictions.  

Table 4- Proportion of bone densities in proximal 100 mm of tibia. 

Density Region ‘Strong’ Tibia ‘Weak’ Tibia 

0.0 - 0.4 g/cm
3
 68% 73% 

0.4 - 1.2 g/cm
3
 32% 27% 

1.2 - 2.0 g/cm
3
 0.03% 0.04% 

The variability in cortical bone density-modulus relationships in the literature had less impact 

on strain predictions because (1) the cortical bone region was separated and a single elastic 

modulus assigned, and (2) the proportion of cortical bone (in the proximal 100 mm of the 

tibia) was very low (0.3-0.4%). Note that although the global response of the model changed 

with variations in cortical elastic modulus values, the results had negligible effect on the 

conclusions of this study.  

The wide spread of bone elastic modulus data in the literature, across the density range 0.1-

1.2 gcm-3 (Figure 12), is compounded by the sparcity of experimental data in this range, so 

there is uncertainty as to which is the most accurate relationship. Note that 27-32% of the 

tibial bone volumes were composed of densities in this range. 
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The safety factor plots (Figures 15 and 16) illustrate that the strain failure criteria proposed 

by Morgan et al. are not compatible with the density-modulus relationship proposed by 

Carter and Hayes for the tibia. The Carter and Hayes model under-predicted elastic moduli 

of the proximal tibia and, based on the strain failure criteria, over one-third of the proximal 

tibia was then predicted to fail under daily activity loads. One reason for this discrepancy 

may be because, as Morgan et al. (2003) demonstrated, bone material properties are 

species and anatomical site specific and we must use specific bone property data in 

computational models. A counter-argument for this discrepancy may be that the strain failure 

criteria used in this study are not appropriate in this case. However, there is evidence that 

strain failure criteria model bone behaviour more accurately than stress based criteria 

(Morgan and Keaveny, 2001). A constant strain failure criterion under uniaxial loading for the 

proximal tibia has produced acceptable results (Morgan and Keaveny, 2001). Bayraktar et 

al. (2004a) showed that human trabecular bone failure is nearly isotropic and homogeneous, 

providing further evidence that a simple strain failure criterion would be adequate in 

assessing bone failure. Schileo et al. (2008b) have successfully demonstrated that such a 

criterion can predict failure accurately for the femur. A limitation of this study is that all the 

results of density-modulus relationships were compared against a single failure criterion, 

which was proposed by Morgan et al, who also proposed the density-modulus relationship 

which this study demonstrates to be most appropriate.  

It is important to consider the limitations of this study. The modelling technique used in this 

study is common in the analysis of bones and the models used in this study were validated 

against in-vitro tests. Partial volume effects at the tibia boundary can cause geometric and 

material inaccuracies; however, sensitivity assessments of boundary material properties and 

geometric uncertainties showed negligible effect on the conclusions of this study. Since the 

precise knee loads experienced by these specimens is unknown, the loads were derived 

from various literature sources. The largest ligament and muscle contributors during peak 

walking and stair-descent loads are the ACL and patellar tendon. Sensitivity assessments on 

the ACL and patellar tendon loads revealed that uncertainties in these values made no 

difference to the conclusions of this study. Although there are an abundance of sources 

(using three principal methods: telemetry from instrumented knee prostheses, optimisation 

and inverse dynamic analysis of gait) supporting the magnitude of the knee load assessed, 

there is some uncertainty in the medial-lateral load-split. The load-split under walking loads 

was obtained from optimisation methods (Shelburne et al., 2004, Shelburne et al., 2006) and 

this is supported by more simple inverse dynamics (Morrison, 1970a) and telemetry (Zhao et 

al., 2007). The stair-descent loads were determined from simple inverse dynamics 

(Morrison, 1969) and the load-split was calculated from a study of adduction moments 
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(Kowalk et al., 1996, Andriacchi et al., 1980). The load-split is dependent on the adduction 

moment at the knee (Zhao et al., 2007), and although predictions are available for normal 

subjects it does vary depending on gait patterns and hip-knee-ankle alignment (Kowalk et 

al., 1996, Erhart et al., 2010). That said, neither specimen showed any geometric 

abnormalities and their knee alignment was probably relatively normal. It should also be 

considered that other activities, including chair-rise, can impart greater loads than those 

assessed (D'Lima et al., 2006) and these would further exacerbate the discrepancies 

observed. Sensitivity checks on other parameters (including uncertainty in CT-density 

relationship) revealed relative insensitivity compared to density-modulus relationship. 

The Carter and Hayes (1977) relationship is convenient; however, this study concludes that 

this relationship, including those by Perillo-Marcone et al. (2003) and Hvid et al. (1986), are 

unsuitable for the proximal tibia. The relationships proposed by (Morgan et al., 2003) 

produced acceptable tibial strains that did not predict bone failure under loads imposed 

during daily activities. This study also demonstrates how sensitivity assessments can 

provide a means to reduce uncertainty by eliminating unlikely candidates. The uncertainty 

present in computer models of the tibia highlights the need for validation of such models. 

Although the relationship proposed by Kaneko et al. (2004) is specific to the distal femur, it 

predicts yielding under daily loads, as presented by Figure 16. Note that the low safety 

factors at the condyle edges are artefacts of the nodal forces applied and can be ignored. 

Unfortunately Morgan et al. (2003) did not investigate the distal femur but did investigate the 

femoral neck and greater trochanter. Since both relationships were similar for their range of 

bone densities and the femoral neck relationship covered a wider range, the femoral neck 

relationship (combined with that of Snyder and Schneider (1991)) was used to predict 

femoral elastic moduli. Despite this relationship being the stiffest relationship available for 

the femur, the minimum principal strains are close to the compressive tibial bone yield strain 

limit and exhibit low safety margins. The tibia yield strain limit seems to be too low for these 

daily loads imposed on the femur. Although the femoral yield criterion (Morgan and Keaveny, 

2001) was derived from the femoral neck, it displays acceptable safety margins. Similar to 

the proximal femur, the distal femur loading is multi-directional, while the proximal tibia 

loading, on the other hand, is primarily on-axis. Trabecular architecture of the distal femur 

should resemble that of the proximal femur more closely than that of the proximal tibia (both 

loaded multi-directionally); therefore, using the femoral yield criterion on the distal femur is 

most appropriate, with the limitations of the literature in mind. 

Based on the findings of this study, Table 5 presents the density-modulus relationships and 

yield strains that were concluded to be the most suitable for the proximal tibia and distal 

femur. 
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Table 5 - Density to elastic modulus relationships for the proximal tibia and distal femur deemed most 

suitable. 

 
 Range 
(g/cm

3
) 

-E Equation 
(GPa) 

Source 
Yield Strain εy 

(με) 

Proximal 
Tibia 

0.1-0.37 

>1.5 

E=18.49ρ
1.93

 

E=4.83ρ
2.39

 

Prox. tib., Morgan et al. (2003) 

Snyder and Schneider (1991) 

Tensile: 6500με 

Compression: 7300με 

Distal 
Femur 

0.23-0.70 

>1.5 

E=7.85ρ
1.49

 

E=4.83ρ
2.39

 

Fem. Neck, Morgan et al. (2003) 

Snyder and Schneider (1991) 

Tensile: 6100με 

Compression: 8500με 

This study demonstrates the uncertainty of bone elastic moduli predictions used in FE 

models of the tibia and femur. It also highlights the variability of bone properties of human 

tibiae and femora. For successful implant design, the extremes must be considered, as it is 

the extremes that are likely to create undesirable outcomes. A recent study by Laz et al. 

(2007) incorporated the uncertainty of material property data into computer models using 

probabilistic methods. Although a statistical analysis is outside the scope of this thesis, 

based on variability of the samples measured by Morgan et al. (2003) and Snyder and 

Schneider (1991), upper and lower bounds have been predicted for the tibia, as presented in 

Table 6. 

Table 6 - Upper and lower bounds of density to elastic modulus relationships for the proximal tibia. 

 
 Range 
(g/cm

3
) 

-E Equation 
(GPa) Upper 

-E Equation 
(GPa) Lower 

Source 

Proximal 
Tibia 

0.1-0.37 

>1.5 

E=26.48ρ
1.93

 

E=5.23ρ
2.39

+1 

E=12.90ρ
1.93

 

E=4.43ρ
2.39

-1 

Prox. tib., Morgan et al. (2003) 

Snyder and Schneider (1991) 
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3 Simulating Knee Forces, Kinematics & Contact 

3.1 Introduction 

This section describes a literature review of knee forces, kinematics and contact between 

the tibia, femur and patella; and how a database of knee forces (boundary conditions for the 

computer models described in Section 4) was assembled. The database contains forces 

(magnitudes and directions) of tibiofemoral and patellofemoral contact, muscles and 

ligaments for the full activity cycles of walking, stair-ascent and stair-descent. 

Although walking locomotion (gait) patterns are specific to every individual, there are 

inherent characteristics observable in particular subject groups. For a normal subject, the 

stance phase is the first 60% period of the cycle when the foot is in contact with the ground. 

The cycle begins at right foot heel strike and ends with right foot toe off as illustrated in 

Figure 17. The remaining 40% of the cycle is termed swing phase and represents the foot 

moving in the air.  

 

Figure 17 - A typical gait cycle (Inman, 1981) 

Patients with OA are unlikely to exhibit normal gait due to limited range of motion and pain. 

Post-UKR patients are expected to regain gait patterns that are more normal, particularly 

compared to TKR patients. 

The knee is the largest joint in the human body and one of the most complex. There are 

three articulating compartments of the knee (patellofemoral, medial tibiofemoral and lateral 

tibiofemoral compartments). It joins the femur to the tibia, with the patella articulating in the 

femoral trochlea and the fibula supporting the lateral tibia. As the knee flexes, the femur 

slides and rolls on the tibial plateau with surrounding muscles and ligaments constraining the 
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motion. The medial and lateral menisci of the tibiofemoral compartments provide load 

absorption and smooth articulation of the surfaces. The tibial plateau is flat, inclined at 

approximately 7 degrees (Hashemi et al., 2008, Matsuda et al., 1999) to the anatomical tibial 

axes, and it is steeper anteriorly (extension facet). The posterior parts of the femoral 

condyles (flexion facet) are spheres and the anterior parts are circular with a larger radius.  

The muscles of the knee can be simplified and grouped into the hamstrings, gastrocnemius, 

and quadriceps (Morrison, 1968). The tensor fasciae latae, gluteus maximus, and popliteus 

do not fall naturally into these groups; however, the forces associated with them during 

walking and stair-climbing are small (Shelburne et al., 2006). The quadriceps tendon 

attaches the four quadriceps muscles to the patella and the patellar tendon attaches to the 

tibia. 

The ACL consists of two bundles (anteromedial and posterolateral) adjoining the lateral 

femoral notch with the anterior of the tibia. The ACL restrains the tibia from anterior 

translation and medial rotation while the PCL restrains posterior translation. The LCL and 

MCL, adjoining the sides of the femur to the fibula and tibia, respectively, provide coronal 

stability, particularly during extension.  

3.2 Literature Review 

3.2.1 Overview 

Knee joint forces can be categorised as tibiofemoral and patellofemoral contact forces; 

muscle forces; and ligament forces. The tibiofemoral contact force is split between the 

medial and lateral condyles and includes normal and shear components. The muscles can 

be largely grouped into the quadriceps, hamstrings or gastrocnemius. The quadriceps force 

pulls on the patella which causes it to articulate against the femoral trochlea and pull on the 

patellar ligament to extend the knee. The hamstring muscles attach approximately at the 

level of the tibial tubercle to the medial tibia and lateral fibula and flex the knee. The 

gastrocnemius muscles attach to the posterior femur, just superior to the medial and lateral 

femoral condyles and also flex the knee. The ligaments of the knee can be simplified to the 

cruciate ligaments (anterior and posterior) and the collateral ligaments (medial and lateral). 

Studies in the literature that predict/measure knee forces during specific activities have 

tended to be based on one or a combination of the following methods: (1) inversely resolving 

forces and moments measured from force plates and motion capture techniques; (2) 

optimisation solutions of indeterminate mathematical relationships of the lower limb; (3) 

telemetry from instrumented prostheses of arthroplasty patients. 
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Ideally, the most appropriate method for estimation of knee forces to model fixation of UKRs 

would be from an instrumented UKR; however, such a study does not exist. Results from 

instrumented TKRs and THRs are available in the literature. Telemetric data from 

instrumented prostheses (Bergmann et al., 2008) is the most reliable data set of in-vivo 

forces available; however, TKR and THR subjects tend to have antalgic gait patterns and are 

not representative of normal subjects with intact joints or UKR patients. 

An important early contribution towards understanding knee forces was made by Morrison in 

the late 1960’s (Morrison, 1968, Morrison, 1969, Morrison, 1970a, Morrison, 1970b). 

Morrison used force plates and photogrammetry to measure kinematics and calculate knee 

joint forces of subjects while walking and stair-climbing. He developed a mathematical model 

and made broad assumptions in order to reduce the problem so it could be solved. 

If the broad assumptions that Morrison made are avoided, modelling the dynamic behaviour 

of the lower limb results in a complex multi-body system. The model requires non-linear 

mathematical relationships for skeletal force transmission, dynamic masses, and muscles 

and tendons as redundant actuators. Optimisation methods have been developed to find 

solutions to simulate these muscle groups associated with particular motions. Care must be 

taken with objective functions, as single objective functions, such as reducing energy or 

reducing peak load, are over simplistic and multiple objective functions require 

unsubstantiated weighting. These non-linear optimisation models are computationally 

expensive and often assumptions are required to simplify the problem. Using optimisation 

with a forward dynamics model is an alternative method and shown to reduce solution time 

by two orders of magnitude (Stelzer and von Stryk, 2006). The method involves finding a 

simplified inverse dynamics solution, based solely on the skeletal system, and inputting 

these into a forward dynamics model which is driven by kinematic and sometimes 

electromyographic data. 

The studies using solely optimisation methods have been shown to be sensitive to input 

kinematic data (Fregly et al., 2008). The errors in the optimisation solutions can be reduced 

by using additional sources of data and/or using a combination of methods. Table 7 presents 

the most cited publications for knee force predictions/measurements in the literature 

categorised by the activity analysed and test method. 
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Table 7 - Studies in the literature that predict/measure knee forces categorised by the activity analysed 

(walking, stair climbing and descent, and chair-rise) and test method. 

Subject Test Method 
Activity 

Walking Stair Climbing Stair Descent Chair-rise 

Normal 

Resolving 
Forces and 
Moments 

Morrison (1968) 

Morrison (1970) 

Morrison (1969) 

Andriacchi (1980) 

Kowalk (1996) 

Costigan (2002) 

Morrison (1969) 

Andriacchi (1980) 

Kowalk (1996) 

Rodoski (1989) 

Optimisation 
Anderson (2001) 
Shelburne (2006) 

   

Antalgic 
Gait  

(Post-THA 
and TKA) 

Optimisation Hurwitz (1998) - - - 

Optimisation & 
Telemetry 

Taylor (2004) 
D'Lima (2006) 
Zhao (2007) 

Taylor (2004) 

D'Lima (2006)  
  D'Lima (2006) 

Telemetry 
Taylor (2001) 

Heinlein (2008) 

Taylor (2001) 

Heinlein (2008) 

Taylor (1998) 

Taylor (2001) 

Heinlein (2008)  

To illustrate the variability of the walking gait patterns reported in the literature, a comparison 

is presented in Figure 18. Zhao et al. (2007), Taylor and Walker  (2001) and D’Lima et 

al. (2006) analysed post-TKR gait patterns; the four subjects reported by Taylor et al. (2004) 

are post-THR subjects and the analysis by Shelburne et al. (2006) is based on a normal 

subject. The differences are significant. Although, the distinct two-peak forces of the walking 

gait cycle are visible in all the gait patterns, they are least pronounced in TKR subjects.  

 

Figure 18 - Knee joint load published in 6 studies of walking gait 

The differences in these gait patterns are due to characteristic changes made to the joints 

during arthroplasty. The ACL is resected in a TKA which disrupts tibiofemoral kinematics 

(depending on design the PCL may also be resected). ACL deficient subjects tend to exhibit 

quadriceps avoidance gait (Berchuck et al., 1990). The resurfacing of the tibial plateau and 

femoral condyles also disrupts the articulating surfaces; changes patellar tracking and 

therefore changes kinematics (Pandit et al., 2005) and magnitudes of resultant contact 

forces. Studies comparing UKR and TKR kinematics have found that the patellar tendon 
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length reduces following TKR (Weale et al., 1999) and the patellar tendon length is 

preserved for over ten years following UKR (Price et al., 2004). The kinematics of a hinged 

knee joint (used to derive knee forces by Taylor and Walker (2001)) is significantly different 

to that of normal subject; this is because the joint is artificially constrained.  

Although THR patients exhibit antalgic gait, they may have normal functioning knees. As 

demonstrated by Taylor et al. (2004), the hip force from an instrumented THR can be used 

to derive knee forces and, as presented in Figure 18, the predicted forces are comparable to 

those of normal subjects. The subjects were 17 months post-operation and expected to have 

returned to normal gait (Andersson et al., 2001). For this reason this dataset has previously 

been used in a post-UKR bone adaptation study (Gillies et al., 2007).  

UKR involves replacement of only a single compartment of the knee; the ACL and PCL 

remain intact; and the UKR is less constrained than TKR (particularly in the case of a 

mobile-bearing UKR). Therefore, the kinematics and loading of a UKR knee are expected to 

closer resemble those of a normal subject than those of a TKR patient. However, as 

presented in Figure 19, the differences are more pronounced for stair-climbing activities. 

Another consideration is the effect of surgical trauma and post-arthroplasty recovery period 

on joint loads. Studies done on instrumented TKRs show that joint forces will stabilise within 

6 weeks (D'Lima et al., 2006), increasing from 75% to 90% over the first few weeks and 

more gradually over the next 2 years (Taylor and Walker, 2001).  

To be able to assess implant design for stress shielding and bone remodelling, the pre-

arthroplasty knee forces must be known. Patients with medial osteoarthritis (OA) show 

adapted gait patterns. They tend to off-load the medial compartment (~70% of normal) and 

reduce total tibiofemoral knee force (~90% of normal) (Stauffer et al., 1977, Messier et al., 

1992) using mechanisms such as lateral lean (Briem and Snyder-Mackler, 2009), shortening 

their stride and toeing-out (Wang et al., 1990). These mechanisms reduce external 

adduction moments at the knee (Briem and Snyder-Mackler, 2009). High external moments 

cause high medial contact forces (Zhao et al., 2007). However, these adaptive mechanisms 

exhibited by OA patients, do not mean that they exhibit lower than normal adduction 

moments. In fact studies have found that external adduction moments tend to be 30 percent 

higher than normal (Baliunas et al., 2002, Wada et al., 2001). OA patients also tend to 

exhibit quadriceps avoidance gait (26% of patients compared to 10% of normal subjects) 

where quadriceps force is half its normal amount (Stauffer et al., 1977, Baliunas et al., 2002, 

Wada et al., 2001) and tend to restrict their knee flexion (60% of normal) to avoid high 

patellofemoral forces particularly during activities such as stair climbing and chair-rise 

(Brinkmann and Perry, 1985, Messier et al., 1992, Briem and Snyder-Mackler, 2009). 
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3.2.1 Assessing Daily Activities 

The study by Morrison (1969) reported stair-climbing knee forces of two normal subjects. 

Unfortunately, subsequent studies investigating stair-climbing of normal subjects (Andriacchi 

et al., 1980, Kowalk et al., 1996, Costigan et al., 2002) did not report knee forces. However, 

there are published studies of post-THR and TKR subject knee forces obtained using 

instrumented implants. Taylor et al. (2004) reported stair-ascent and chair-rise knee forces 

of four post-THR subjects, and D’Lima et al. (2006) of a single post-TKR subject. Figure 19 

illustrates the differences between two normal subjects and four post-THR subjects during 

stair-ascent. As presented in Figure 20, normal subjects tend to exhibit greater knee flexion 

and there are distinct differences of knee force magnitudes. 

 

Figure 19 - Comparison of stair-ascent forces between THR subjects (Taylor et al., 2004) and normal 

subjects (Morrison, 1968) 

As presented in Figure 20, the kinematic differences between walking, stair-climbing and 

chair-rise are significant. Although knee flexion is higher in chair-rise than stair climbing, the 

forces are less. Stair and chair-descent activities are reported to generate 10-12% higher 

knee loads than those for stair and chair-ascent activities (Taylor and Walker, 2001, D'Lima 

et al., 2005).  
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Figure 20 - Comparison of knee joint loads verses knee flexion during various daily activities from two 

separate sources (Taylor et al., 2004, D'Lima et al., 2006). 

At a minimum, it is necessary to include walking, and stair-climbing activity knee forces when 

designing and assessing knee replacements. 

3.2.2 Tibiofemoral Medial-Lateral Load-split 

Early studies by Morrison (1970b), Johnson et al. (1980) and Harrington (1976) revealed that 

the medial compartment is more loaded that the lateral compartment and that varus/valgus 

deformity is a major factor (Johnson et al., 1980, Harrington, 1983).  

Using statically determinate muscle models, adduction moment was shown to be a major 

factor in the medial-lateral load-split (Andriacchi et al., 1986, Schipplein and Andriacchi, 

1991) and a positive clinical correlation was demonstrated later by Zhao et al. (2007). It is 

widely known that 70% of the total knee load typically passes through the medial 

compartment (Hurwitz et al., 1998); however this is an average and the medial-lateral load-

split as not constant.  

The adduction moment varies during gait and this affects the medial-lateral load-split. In the 

walking cycle, at toe-off and swing phase the medial-lateral load split is roughly the same. 

The external knee adduction moment peaks just before contralateral toe off, causing higher 

medial forces. During single leg stance the contact force is mainly on the medial side whilst 

the muscles provide most of the resistance against adduction. 

Based on optimisation solutions of walking gait (Anderson and Pandy, 2001), the medial 

compartment is predicted to take up the full joint load during the walking cycle (Shelburne et 

al., 2006). This is also evident from analysis of published results in the early work of 
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Morrison (1970b) : The knee joint forces and centre of pressures were analysed to deduce 

medial compartment forces and Figure 21 compares these to those published by Shelburne 

et al. (2006) (refer to Sub-section 3.3 for calculations method). 

 

Figure 21 - Estimated knee medial loads, based on results published in (Morrison, 1970b), compared with 

results published in (Shelburne et al., 2006). 

Based on studies by Shelburne et al. (2006), Hurwitz et al. (1998) and Schipplein and 

Andriacchi (1991) the peak force in the medial compartment is 2.3-2.4 BW while in the 

lateral compartment it is 0.8 BW. Note that, although Fregly et al. (2008) reported that 

optimisation solutions are sensitive to kinematic measurement and prone to error, the results 

of Morrison (1970b), which are based on traditional mathematical relationships, are in 

agreement with these results. 

Studies of post-arthroplasty patients were also considered: Zhao et al. (2007) used 

telemetric data, from 15 post-TKR patients with instrumented prosthetics, alongside gait 

optimisation solutions to predict maximum medial loads of 70% of the total joint load. The 

peak total knee force was 2.06-2.74 BW and the medial force was 1.73-2.06 BW. A study by 

Hurwitz et al. (1998) assessing 26 subjects found a large variability of load-split. The 

average peak medial force to peak lateral force was 2.2 with a large standard deviation of 

0.9 and range of 0.7 to 4.5. Varus deformity, a common symptom of OA, tends to increase 

adduction moment and medial compartment load, while valgus deformity will have the 

opposite effect. At the time of writing this thesis, it was common practice for surgeons to 

under-correct varus deformity to 1-3 degrees during UKR arthroplasty. Adduction moment is 

also dependent on the strength of the quadriceps, iliotibial band and gait pattern.  

There are currently no published studies on medial-lateral knee load-split for stair-climbing 

activities in the literature; however, there are three published studies of knee adduction 

moments during stair-climbing: Andriacchi et al. (1980), Kowalk et al. (1996), and Costigan 
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et al. (2002). Unfortunately, there is disagreement between these data sets as presented by 

Kowalk et al. (1996) below: 

 

Figure 22 - Comparison of the adduction knee moment data during stair climbing in the literature, 

published in (Kowalk et al., 1996) 

When making conclusions on the validity of these studies, it must be considered that the 

study by Andriacchi et al. (1980) is based on a single subject while those of Kowalk et al. 

(1996) and Costigan et al. (2002) are based on an ensemble of average of multiple subjects. 

For this reason, the medial-lateral load-split and the MCL and LCL ligament contributions 

calculated in Sub-section 3.3 are derived from Kowalk et al. (1996). Sensitivity assessments 

showed that the loads were sensitive to the chosen study results. 

3.2.3 Tibiofemoral Kinematics and Contact 

The geometry and kinematics of the tibia, femur and patellar are complex; however, 

geometry simplifications can aid visualisation and understanding. Early influential studies of 

Goodfellow and O’Connor (1978) describe the femoral condyles as 2 spheres translating on 

a flat tibial surface constrained by a four-bar linkage formed mainly by the cruciate ligaments 

but also in part by the collateral ligaments. The medial tibial plateau is concave while the 

lateral tibial plateau is convex. The extension facet at the anterior of the medial tibial plateau 

rests against the femoral condyle during full extension. As the knee flexes, the femoral 

condyles rotate and slide over the tibia; the femur rotates externally causing the lateral 

condyle to move posteriorly while the medial condyle stays relatively in the same position. In 

deep flexion (greater than 120 degrees) both condyles move posteriorly, with the posterior 

horn of the lateral meniscus dropping over the posterior tibia. Knee kinematics is subject-

specific and are influenced by the level of joint weight bearing, muscle activation (passive or 

active flexion) and internal/external torque (Hill et al., 2000). 

The tibiofemoral kinematics of a normal knee has been well described in the literature.  Early 

studies used in-vitro cadaveric specimens (Andriacchi et al., 1986, Butler et al., 1980, 

Fukubayashi and Kurosawa, 1980) to measure kinematics under simulated loads. Recent 

technologies using fluoroscopy, RSA (radiostereometry)  and computational simulation 
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based on geometrical interpretation from CT and MRI imaging techniques have improved the 

accuracy of kinematic measurement (Martelli et al., 2002);Asano, 2001 #1821;Komistek, 

2003 #1823}. Continuation of the work by Freeman and Pinskerova (2003) , Hill et al. (2000) 

and Johal et al. (2005) assessed ten male subject’s knees in-vivo doing squats at ten degree 

increments under load bearing and non-load bearing activities.  

 

Figure 23 - Weight bearing tibiofemoral contact kinematics as predicted by (Andriacchi et al., 1986) (left) 

and (Johal et al., 2005) (right). 

Figure 23 illustrates the difference in published medial condyle contact positions from two 

separate studies. During knee flexion, under no external joint torque, the medial 

compartment moves only 4-8 mm in the anterior-posterior direction while the lateral 

compartment moves over 10 mm for 60 degrees of flexion. The addition of internal/external 

joint torque mainly affects the position of the lateral condyle (Hill et al., 2000). 

The UKR patient will not have the kinematics of a normal subject; however, it will be very 

different to a TKR patient (refer to Sub-section 3.2.1). A 16-patient radiographic study done 

on the early Oxford UKR design (Bradley et al., 1987), showed that the medial mobile-

bearing moved posteriorly with 90 degrees of flexion, an average 4.4 mm (range of 0-13.5) 

from the implant midline. O’Connor and Imran (2007) computationally modelled the Oxford 

UKR and predicted similar bearing motion of 5 mm. Both studies concluded that the motion 

of the bearing was similar to the tibiofemoral contact movement of a normal subject.  

Pandit et al. (2008) conducted a fluoroscopic analysis of ten medial Oxford UKR patients, 

with and without ACL reconstruction for a step-up (knee extension) activity. As presented in 

Figure 24, at 90 degrees flexion, the bearing was 2 mm posterior to the tibial component 

midline, it moved to the midline at 70 degrees and back posteriorly ending at 7 mm posterior 

to the midline at 0 degrees flexion. The ACL reconstructed UKR knees were shifted 

posteriorly by 2 mm. The average bearing movement was 7 mm ranging from 0.7 mm 

anterior to 9.1 mm posterior to the midline.  
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Figure 24 - In-vivo translation of mobile-bearing position (relative to the tibial component) for intact and 

ACL reconstructed Oxford UKR patients during weight bearing knee flexion (Pandit et al., 2008). 

Li et al. (2006) conducted an in-vivo RSA study comparing kinematics of 28 Miller-Galante 

UKR knees with 28 Oxford UKR knees at two-year follow-up. As presented in Figure 25, the 

tibiofemoral contact point of the Miller-Galante UKR moved anteriorly 4.0 mm (1.2 - 6.6 mm) 

while the Oxford UKR moved posteriorly 2.1 mm (mean of 0.4 - 3.6 mm), from the full 

extension position. The tibial internal rotations of the Oxford UKR knees were larger than the 

Miller-Galante UKR knees (4.3°, 7.6°, 9.5° vs. 3.0°, 3.0°, 4.2°, respectively, at 30°, 60°, 90° 

of knee flexion). The mobile-bearing displacements reported by Li et al. (2006) were smaller 

than those reported by Pandit et al. (2008); however, this may be because the studies were 

done at two-years and one-year, respectively; and may be evidence that mobile-bearings 

seize-up over time. Both studies concluded that the Oxford UKR closer resembled normal 

knee kinematics compared to the TKR. 

 

Figure 25 - In-vivo translation of contact point of Oxford UKR during weight bearing knee flexion (Li et al., 

2006). 



Simulating Knee Forces, Kinematics and Contact 76 

The tibiofemoral contact areas of the medial and lateral condyles are approximately both 

1.2-2.0 cm2 (Huberti and Hayes, 1984, Walker and Hajek, 1972). In the normal knee, the 

meniscus and cartilage spread the load over the tibial condyles. The contact area is halved if 

the menisci are removed (Scuderi et al., 2005). The contact area of the of UKRs depend on 

design, with congruent mobile-bearings having higher contact areas compared to fixed 

bearing designs (Bartley et al., 1994).  

The literature described above relates tibiofemoral contact position to knee flexion angle. 

Fortunately the knee flexion is easy to measure for daily activities: Andriacchi et al. (1980) 

and Anderson and Pandy (2001) have published knee flexion angles during stair climbing 

and walking activities respectively. Stauffer et al. (1977) assessed 95 subjects for knee 

flexion during walking gait; comparing normal knees with those with OA knees (refer to 

Figure 26). The study highlighted the reduced flexion apparent in OA subjects. 

 

Figure 26 - Comparison of flexion angle between normal and diseased knee (Stauffer et al., 1977) 

3.2.4 Patellar kinematics; Tendon Force and Patellofemoral Contact Force 

During knee flexion, the quadriceps muscles pull on the patella; the patella articulates over 

the femoral trochlea and pulls on the patellar tendon that is attached the tibial tubicle. The Q-

angle is defined as the angle between the quadriceps and patellar tendon; it is 

approximately 10 degrees in normal subjects (Livingston and Mandigo, 1999) and ranges up 

to 16 degrees. The articulating surfaces of the patella contact the lateral and medial femoral 

condyles at approximately 61 and 68 degrees from the patella centreline (Ahmed et al., 

1987). The patellar rotates (flexes) about the posterior femoral axis (defined by line joining 

two most posterior points on the femoral condyles) at 0.66 times the knee flexion angle 

(Amis et al., 2006b). During weight-bearing knee flexion, the forces imparted on the femur 

and tibia are substantial (greater than 2 BW) and the load-split of the quadriceps muscles to 
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these bones vary as a function of flexion angle (Ahmed et al., 1987), as presented in Figure 

27. 

 

Figure 27 - Proportion of quadriceps muscle force imparted on femoral trochlea and tibial tubicle (Ahmed 

et al., 1987) 

Using fluoroscopy and magnetic resonance imaging, patellar tracking (relative to the tibia 

and femur) has been documented in the literature (Li et al., 2007) and has been used to 

predict patellar tendon angle (direction of patellar tendon force on the tibial tubicle, refer to 

Sub-section 3.3). At full extension, the patellar tendon angle is 20 degrees anterior to the 

tibial anatomical axis and reduces relatively linearly to 5 degrees at 60 degrees flexion (Gill 

and O'Connor, 1996). Patellofemoral contact area increases from approximately 2.5 to 4 cm2 

from full extension to 60 degrees knee flexion (Matthews et al., 1977, Huberti and Hayes, 

1984) and the contact points vary with flexion (Cohen et al., 2001, Goodfellow et al., 1976a, 

Goodfellow et al., 1976b, Goudakos et al., 2009), as presented in Figure 28. 

 

Figure 28 - Progression of patellofemoral contact areas with knee flexion, starting at full extension, 

leading to two separate contact areas in deep flexion (Goodfellow et al., 1976b). 

3.3 Method: Walking, Stair Ascent & Descent Database of Knee Forces 

A database of tibiofemoral joint contact forces for walking and stair ascent, with muscle and 

ligament forces, was determined from analysis of the literature. The full walking gait dataset 

was obtained from Shelburne et al (2004,2006). The stair climbing dataset was calculated 

from a combination of sources, as described herein.  
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The medial and lateral components of the total tibiofemoral load (Morrison, 1969) were 

calculated from abduction-adduction moments reported by Kowalk et al. (1996). The 

quadriceps, gastrocnemius and hamstring muscle forces, and medial and lateral contact 

forces contribute to resisting the abduction-adduction moments of the knee. The 

gastrocnemius muscles were given equal apportionment between the medial and lateral 

heads (since the muscles are of equal size). The hamstring muscles were also given equal 

apportionment; however, they contribute little to the adduction moment. The quadriceps 

muscles (via the patellar tendon) contribute most of the muscular moment needed to resist 

knee adduction (Shelburne et al., 2006). The medial and lateral condylar forces were 

assumed to be 20 mm from the knee centre (Wretenberg et al., 2002). The MCL and LCL 

were assumed to act only to provide additional moment when the load from medial-lateral 

apportionment was insufficient to resist the adduction moment (Morrison, 1970b). The 

dynamic effects were assumed to be negligible (Shelburne et al., 2004).  

The ACL and PCL forces were estimated by resolving forces and moments for static 

equilibrium at every point of the stair-climbing cycle. The tibial slope was assumed to be 

7 degrees. The positions and directions of the muscles and ligaments were determined from 

literature and from analysis of CT scans of pre-UKR patients. The ACL and PCL attachment 

locations were determined from literature (Amis et al., 2006a, Edwards et al., 2007a, 

Edwards et al., 2008, Edwards et al., 2007b). The force directions of the MCL, LCL and 

hamstring muscles were assumed to be constant with flexion, while the ACL, PCL and 

patellar tendon force directions varied with knee flexion. 

These methods for predicting medial-lateral contact, MCL, LCL, ACL and PCL forces were 

verified by performing them on the total joint forces published for the walking cycle by 

Morrison (1970b) and Shelburne et al. (2006) and comparing the predictions against the 

published forces. 

Using published patellar tendon load-split ratios (as a function of flexion angle) for walking 

and stair-climbing (Ahmed et al., 1987), the patellar tendon force was calculated from 

quadriceps muscle force predictions. Knee flexion angles for stair-ascent and stair-descent 

were obtained from (Andriacchi et al., 1980). 

To verify the reliability of predictions of patellar tendon angle calculated from a simplified 

model of the knee (Gill and O'Connor, 1996), our own predictions were made from a recent 

reliable patellar tracking dataset published by Li et al. (2007). The patellar tendon geometry 

relative to the centre of the tibia was predicted from literature (Basso et al., 2001) and CT 

scans of pre-UKR patients. 
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All the knee forces were converted to multiples of body weight (BW) with a one unit of BW 

equal to 700N. For the purposes of understanding the joint forces with position, Figure 29 

presents the peak medial condylar forces during these basic activities against flexion angle. 

The predicted knee forces (tibiofemoral and patellofemoral contact, muscles and ligaments) 

for walking, stair-ascent and descent activities are displayed in Figure 30. 

 

Figure 29 - Summary of medial compartmental knee forces with flexion angle for daily activities. The plot 

highlights the loading of the femoral condyle. 
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Figure 30 - Plots of the knee forces (joint contact, muscles and ligaments) for daily activities of Walking, 

Stair Ascent and Stair Descent. 
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3.4 Discussion and Limitations 

The medial tibiofemoral and patellofemoral contact forces are the dominant knee forces 

during walking and stair-climbing activities. The peaks occur at approximately 15% and 50% 

of the cycles, which corresponds to contralateral toe-off and contralateral heel-strike, 

respectively. The largest medial tibiofemoral force is 3.5 BW and occurs at 15% stair 

descent. The largest patellofemoral force is also 3.5 BW and occurs at 15% stair ascent. The 

largest ligament and muscle contributors during peak walking and stair ascent loads are the 

ACL and patellar tendon. The FE models are relatively insensitive to the other ligaments and 

muscles, as demonstrated in Sub-section 4.2. The methods used to predict ACL and patellar 

tendon forces for stair-climbing were verified and the predictions compared against other 

literature sources where possible. As demonstrated in Sub-section 2.6, the dataset produces 

realistic bone strains for both the femur and tibia. 

It is important to consider the limitations of this database. Although antalgic post-arthroplasty 

knee forces and kinematics have been reviewed, the database assumes that the kinematics 

and forces of UKR patients are not dissimilar to those of normal subjects. The database is 

generic, and has been amalgamated from multiple subjects and sources. A thorough 

literature review was undertaken to understand the reliability and uncertainty of the data; 

however, the sensitivity of these knee forces to subject specific variations of anatomy are 

unknown. The valgus-varus knee alignment is one such parameter that may be prevalent in 

pre and post-arthroplasty. Due to damage of the medial tibiofemoral cartilage, pre-

arthroplasty patients tend to show slight varus alignment. The patient will regain some of her 

original knee alignment (with ligament balancing procedure); however, often the ligaments 

are imperfect and may have adapted with the arthritic knee. 

Since the literature does not contain a full set of stair-climbing knee forces, they were 

calculated based on data from a number of sources. The forces and moments were resolved 

at each time frame and broad assumptions and simplifications were made. Dynamic effects 

were ignored, muscle groups and force directions were simplified, and the effect of patellar 

Q-angle on adduction moment excluded. 

Chair-rise is another daily activity that produces large knee forces; however, there was 

insufficient data in the literature to derive a full set of knee forces for this activity. The 

database developed was deemed onerous because results from instrumented TKRs have 

shown that chair-rise total tibiofemoral loads (1.9-2.2 BW) are less than those of stair-

climbing (D'Lima et al., 2006).  

The knee forces database developed is complete, sufficiently robust, and appropriate for the 

assessment of UKR tibiae and femora using FE modelling. 
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4 Development of FE Models for UKR Fixation Analysis  

4.1 Introduction 

Structural modelling of bone and the interaction at the interface with engineered prosthetic 

materials is complex and has numerous challenges. Bone is difficult to model accurately 

because it is a living non-uniform structure that is continually adapting to its 

mechanobiological environment. Structural Finite Element (FE) models have traditionally 

been used to design manmade engineering structures. The potential benefits to implant 

design are significant when compared to how much it has reshaped other industries such as 

the civil and aerospace in the last few decades. Traditional FE techniques have to be 

adapted and assumptions have to be made in order to bridge the gap to modelling in the 

biological environment. This section discusses the FE modelling approach used in this thesis 

and presents findings of studies used to investigate the uncertainties associated with 

modelling of the UKR, and how these challenges were overcome. 

4.2 Simplification of Knee Forces 

A full database of knee forces was developed, as described in Section 3. The methods used 

to ascribe these forces to the FE models are described in this section.  

4.2.1 Inclusion of ACL and Patellar Tendon Force 

The ACL force is nearly 50% of Body Weight (BW) at peak loads during walking, and stair-

climbing. The patellar tendon force is over 250% BW during stair-climbing activity and the 

hamstring muscle reaches 30% BW at peak tibio-femoral loads during walking. Assessments 

were conducted investigating the sensitivity of excluding these forces on (1) bone strain (in 

the vicinity of the implant), and (2) bone-implant micromotion. A baseline FE model of the 

tibia with a cementless Oxford UKR implant was developed and the full database of knee 

forces (ACL, PCL, MCL, LCL, patellar tendon, quadriceps, hamstrings, tibiofemoral contact) 

from Section 3 were applied. Six variants of the baseline model were created, each with one 

of the force components omitted. The bone strains in the vicinity of the implant were 

qualitatively compared. The results demonstrated that at peak knee loads (at 15% and 50% 

of walking, stair-ascent and stair-descent activities) the PCL, MCL, LCL and Hamstrings had 

negligible effect on the local strains and interface micromotions. However, the impact of 

excluding the patellar tendon and ACL forces was significant. It is therefore concluded that 

they should be included in computer models for comprehensive analysis of UKR fixation. 
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4.2.2 Load Application 

The three basic methods of applying a force to an FE model are: (1) to nodes as individual 

forces; (2) to elements as pressure; (3) as contact between two defined bodies. Defining 

contact is very computationally expensive; therefore, it is only beneficial if the conditions of 

the contact are well defined (geometry and material) and the region-of-interest is near the 

force application point. Stresses tend to disperse from the force application surface and 

differences become less apparent with depth. In the defence and aerospace industries, a 

rule-of-thumb of 3 elements deep is often used as a precursor for taking readings to ensure 

these errors are minimal. For the lateral compartment, since we are not interested in strains 

near the region of force application, nodal forces are adequate. The same applies for all 

ligament and muscle forces at the knee. 

For the medial compartment of intact bone models, the regions-of-interest are at depths 

6 mm and greater (2-3 elements deep); therefore, the validity of the force application 

methods were considered. Although the geometry and the material properties of the tibia 

and femur bones are defined, the CT scans of the knee are too coarse to define cartilage 

accurately. Modelling contact may therefore be considered inaccurate. A less 

computationally expensive method is to simulate the tibiofemoral interface by using low 

elastic modulus boundary elements between a rigid femur and CT-mapped tibia or vice-

versa. The latter method was used where computational expense could be spared. 

For the implanted bones, strains immediately under the implant are of interest. The implant 

is over 50 times stiffer than the underlying bone; therefore, the nodal forces applied to the 

implant will spread rapidly with depth. An assessment was conducted comparing 4 different 

load application methods: (1) single nodal force to implant surface; (2) 5 nodal forces to 

implant surface; (3) nodal force to a simulated femoral component and PE bearing; (4) nodal 

force to a simulated femoral component and PE bearing with contact defined at the bearing-

implant interface. The friction coefficient at the implant-bearing interface was assumed to be 

0.1 (Cobalt Chrome against UHMWPE surface - estimate based on unpublished in-house 

assessments and Smith and Nephew “Oxinium” documentation). 

As presented in Figure 31, the load application technique considerably influenced the 

cement stresses (in cemented implant models). The strain differences in the bone dissipated 

away within three elements, as presented in Figure 32. For the strain validation study 

(described in Section 6), the nodal force application method was adequate because the 

strain gauges were located far from the implant. For assessment of interface fixation 

(Sections 8 and 9), modelling the bearing was considered important. 
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Figure 31 - Plots of minimum principal stress in the cement-mantle (1mm under implant) in 4 

progressively more detailed models under knee loads at 15% stair descent: (1) all medial condylar load 

applied at a single node; (2) at 5 nodes; (3) a PE bearing with nodes fixed at the bearing-implant 

interface; (4) a PE bearing with contact modelled at bearing-implant interface. 

 

Figure 32 - Plots of minimum principal strain at 9 mm under the implant, in 4 progressively more detailed 

models under knee loads at 15% stair descent: (1) all medial condylar load applied at a single node; (2) at 

5 nodes; (3) a PE bearing with nodes fixed at the bearing-implant interface; (4) a PE bearing with contact 

modelled at bearing-implant interface. 

The curved femoral implant is much stiffer than the flat tibial tray (higher second moment of 

area and less bending); therefore, as presented in Figure 33 a single nodal force applied to 

the femoral implant produced representative stress distribution and the bearing was not 

required. 
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Figure 33 - Plots of Von Mises stress in the femoral cement mantle. The plots show that applying a single 

nodal force to the femoral implant is acceptable. 

4.3 Geometry Generation 

The surface topology of the tibia and femur is complex and varies considerably between 

subjects. It is important that subject-variation is considered and modelled accurately. This 

section describes the methods employed to generate accurate geometry for FE analysis of 

UKR fixation. 

There are distinct geometrical features of a normal tibia. The medial plateau is concave and 

the lateral tibial plateau is convex, each of radius of approximately 70 mm (Goodfellow, 

2006). The tibial plateau slopes posteriorly at approximately 6-7 degrees in females and 4-5 

degrees in males (3 degrees of standard deviation) and the lateral condylar slope is 1-2 

degrees steeper than the medial (Hashemi et al., 2008). The coronal tibia slope is 

approximately 3 degrees to the anatomical axis. The attachment of the ACL is usually 

identifiable with a tubercle just lateral to the anterior portion of the medial condyle. The tibial 

tubercle attachment for the patellar tendon is located anteriorly just medial to the centre of 

the tibial shaft (Cobb et al., 2008). 

The medial and lateral condyles of the distal femur can be represented in the sagittal plane 

by three circular surfaces: (1) the anterior femoral condyles (articulating with the patella from 

10-100 degrees), (2) the posterior femoral condyles (articulating with the tibia from 10-150 

degrees), and (3) the distal condyles (articulating with the tibia from 0-10 degrees) (Elias et 
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al., 1990). The lateral condyle is less prominent than the medial condyle and they are 

separated at the distal end by the intercondylar notch. At the anterior, the patellar groove 

extends from the intercondylar notch and runs between the condyles. 

4.3.1 Computed Tomography Scans 

All patient and cadaveric knees included in this thesis were CT scanned using a “Definition 

AS+” Computed Tomography (CT) scanner (Siemens Healthcare, Germany). The coronal 

voxel sizes were in the range 0.5-0.7 mm and slice thickness’ were 0.5-1.0 mm. Assurances 

were provided by the radiographers that all the quality assurance protocols of the scanner 

were up to date as specified in the operator manual. The scans were phantom-calibrated 

against air and water within 12 hours of performing the scans. The grey scale values 

calibrated as Hounsfield Units (HU) such that water corresponds to ± 4 HU and air to -1000 .  

4.3.2 Segmentation 

Segmentation is the process of partitioning complex digital images into simplified 

representations of entities. In the context of this thesis, it is the partitioning of CT scans of 

the knee into tibia and femur bone geometries. CT scans are compiled of multiple stacks (or 

slices) of data, each stack consisting of a grid of voxels and each voxel assigned a grey-

scale value. The grid is usually square with 512 by 512 divisions (262144 voxels) and a 

human knee typically requires 300-600 slices.  

AVIZO 6.1 software (Visualization Sciences Group, USA) allows individual voxels to be 

selected and labelled as an entity. The femoral and tibial cortical and cancellous bones were 

manually partitioned into separate entities, slice-by-slice, using thresholding tools and 

judgement gained from cadaver dissections (refer to Sub-section 5.2). Triangular surface 

meshes were then automatically generated and smoothened using multiple-point averaging. 

Triangular surface meshes were chosen because they were shown to represent smooth 

surfaces better than quadrilateral surface meshes in the femur (Ulrich et al., 1999). 

Approximately 3-6 smoothing operations were made for each segmented entity. By 

continually comparing against the CT data, accurate surface geometry was preserved. 

Surface triangular meshes were exported to MARC Mentat 2010 where the cortical and 

cancellous bone segments were merged together. 
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Figure 34 - Segmentation from CT Scans and surface smoothed into a triangular surface mesh. 

The ‘manual thresholding’ segmentation technique employed herein is the traditional method 

adopted in the literature. Although automated segmentation algorithms can save 

considerable process time, generally they have not been adopted due to concerns of (1) 

accuracy; (2) high complexity of output surface; (3) algorithm errors (Viceconti et al., 1999). 

Viceconti et al. (1999) showed that the algorithms generated mesh geometries of the femur 

to within 0.9-1.6 mm accuracy; however, there were minor errors in the computation and the 

output meshes were incompatible for FE modelling unless smoothing and mesh 

simplification algorithms were used. A recent study by Varghese et al. (2011) validated 36 

bones generated from an automatic segmentation algorithm (‘active contouring’ method’), 

claiming that the geometry was accurate to approximately a third of a voxel. Although the 

benefits of an automated segmentation algorithm are evident, the accuracy achieved using 

“manual thresholding” is adequate, it allows intelligent decisions around low density regions 

and it is highly credible in the field. Therefore, the FE models in this thesis were developed 

using the “manual thresholding” method.  

4.3.3 Geometry and Axes 

The geometries and relationships between the tibia, femur and patella (including directions 

of ligament and muscle forces) are complex. Including these complex relationships in 

computer models is computationally expensive and time intensive; therefore, simplifications 

were made to the knee models. The tibia and femur were modelled separately, and 

instances of daily activities were simulated in quasi-static implicit FE models. To implement 

these simplifications and enable accurate allocation of boundary conditions, a robust set of 

tibial and femoral axes were defined. 
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The literature contains three main axis systems for the femur: 1) Epicondylar Axis (defined 

by two prominent points on the medial and lateral epicondyles); 2) Posterior Condylar Axis 

(based on a line touching the most posterior points of the femoral condyles); and 3) 

perpendicular to the Anteroposterior Axis. Since the posterior condylar axis is considered 

most reliable (Nagamine et al., 1998), it was used in this thesis. 

A consistent and reliable tibial axis is more difficult to attain because there is no universally 

accepted tibial frame of reference. Three axes used in the literature include: (1) Anatomical 

Tibial axis (a line from the mid-point between the tibial spines, passing 1 mm medial to the 

medial border of the tubercle); (2) Posterior Condylar axis (a transverse line touching the 

most posterior points of the tibial plateau, with coronal plane defined to be perpendicular 

passing through the medial third of the tibial tubercle); and, (3) Sagittal Tubercle axis (a line 

passing through the middle of the posterior cruciate ligament and perpendicular to the 

projected femoral trans-epicondylar axis). Based on analysis of 19 knees, the Anatomical 

Tibial axis was shown to be the most reliable (Cobb et al., 2008) and this axis has been 

demonstrated to be the most applicable for modelling UKR (Fitzpatrick et al., 2007). 

Therefore, the Anatomical Tibial axis was used in this thesis. 

4.3.4 Implant Geometry 

Implants of all sizes of the cemented and cementless versions of the Oxford UKR were 

obtained from Biomet Ltd (Swindon, UK) and the Uniglide UKR were obtained from Corin 

Group Plc (Cirencester, UK). The implant geometries were reverse engineered from 

templates made from the samples. To ensure compatibility with FEA capabilities, chamfers 

and rounded edges were excluded. Nurbs surfaces were used to regenerate implant 

geometries in MARC Mentat and the surfaces simplified to triangular meshes of size 1-1.4 

mm. Figure 35 shows reverse engineered geometry of the Biomet Oxford and Corin Uniglide 

implants. 

 

Figure 35 - Biomet Oxford and Corin Uniglide implants reverse engineered and regenerated as triangular 

surface meshes. 
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The Oxford tibial tray is 3 mm thick; the keel is 9 mm deep, 2.5 mm thick and contains a hole 

3 mm wide; the side plate is 5 mm high and 1 mm thick. The UKRs come in 6 sizes (ranging 

from A-F) and vary in AP and ML dimensions only, as tabulated in Table 8. 

Table 8 - Biomet Oxford tibial tray UKR sizes. 

Size AP length (mm) ML length (mm) 

A 45 26 

B 48 26 

C 51 28 

D 55 30 

E 58 32 

F 60 33 

The Oxford femoral component is 2-3 mm thick and has a single radius spanning from 

hyper-extension to deep flexion. The implant comes in 4 sizes Small, Medium, Large and 

Extra Large and the radii are 22.0, 23.5, 25.0, 26.5 mm, respectively. It is 20 mm wide with 

the same radius forming a spherical surface. The cemented implant has a single cylindrical 

fixation peg of 7 mm diameter that extends to the centre. The cementless implant has an 

additional cylindrical keel 3.5 mm diameter located at the anterior of the implant that extends 

approximately 13 mm. The anterior of the cementless implant protrudes round further than 

the cemented version to accommodate the additional keel. 

The Corin Uniglide is based on similar principles as the Oxford UKR with minor variations to 

the geometry. The transverse profile of the Uniglide tibial tray is symmetrical and only 2 mm 

thick compared to the asymmetrical 3 mm thick Oxford implant. The seven standard sizes 

range from Gr2 to Gr8. The underside of the cementless implant is coated in Hydroxyapatite 

(HA) all over providing a flat recess-free surface. The keel has two 3 mm diameter round 

holes at the anterior and posterior aspects, compared to the single milled hole of the Oxford 

implant. The keel is also 2.5 mm thick but it extends further by 1 mm.  

The Uniglide femoral component has a triple radius bearing surface that is claimed to 

conform to the femur more closely. It comes in 3 standard sizes Gr2, Gr3 and Gr4 with radii 

tabulated in Table 9. The frontal plane radius is the same as the sagittal plane radius 

corresponding to full knee extension (R2). The cemented and cementless implants both 

have two cylindrical stems similar to the Oxford cementless implant. A ridge connects the 

main stem to the posterior end which provides additional rotational support. Although the 

whole of the implant underside is HA coated, it also contains a rim similar to the Oxford 

implant. 

Table 9 - Corin Uniglide femoral component UKR sizes. 

Size R1 (mm) R2 (mm) R3 (mm) 

Gr2 20.0 24.0 26.0 

Gr3 22.5 28.0 30.5 

Gr4 25.0 32.0 35.0 
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Care was taken to accurately model the under-surface of all cementless implants (Oxford 

and Uniglide tibial and femoral components). The HA coating covered the entire surface 

apart from a 3 mm thick rim. This rim sits up to 0.2 mm proud of the HA coating. The ledge 

was modelled by translating the nodes inside of the rim inwards away from the resected 

bone surface, such that only the rim was contacting the bone. To ensure accurate results, 

the mesh density was made finer at the contact interfaces (1-1.4mm), as recommended in 

the literature (Perillo-Marcone et al., 2003). 

4.3.5 Virtual Implantation Tool 

Arthroplasty of the UKR tibia involves a resection formed with two bone cuts: (1) 7 mm under 

the medial tibial plateau, sloping 7-degrees posteriorly to the transverse plane; and (2) just 

medial to the anterior cruciate ligament, in the sagittal plane.  

The surgeon uses a tibial saw guide which is clamped to the distal tibia to align the 

transverse cut. The surgeon then uses the same guide for the sagittal cut by aligning the 

saw direction with the femoral head. These virtual resections of computer models are difficult 

to perform accurately without whole-bone and soft tissue landmarks. The UKR patient CT 

scans used in this thesis include the hip, knee and ankles; however mid-shafts were 

excluded to minimise radiation dose to the patient. The knee cadavers were resected at the 

tibia and femur mid shafts before they were delivered to our laboratory. 

The tibial axis, defined in Sub-section 4.3.3, was used to align the resections. The 

mechanical axis of the tibia was defined as a line joining the centre of the distal-shaft and 

mid-shaft/tibial plateau of the tibia. The centres of the medial and lateral condyles were 

found using the method of least squares to fit a circle the surface nodes. The cross product 

of the line adjoining the condylar centres and the mechanical axis was defined as the frontal 

plane normal. The sagittal plane normal was calculated by the cross product of the frontal 

plane normal and the mechanical axis. The plane of the medial tibial plateau was defined by 

selecting three nodes on the anterior, posterior and medial aspects. Marc Mentat was 

configured to automatically translate selected nodes to the resection surfaces.  

A Microsoft Excel based tool was developed to automate this procedure. The tool calculated 

the tibial axis as defined above and based on user defined parameters it generated MARC 

Mentat procedure scripts to align the implant accurately. 

Once the resection was completed, the models were moved to a common axis in order to be 

compatible with the full set of knee forces (tibiofemoral contact, ligament and muscle), 

described in Sub-section 3.3. However, the model needed to be able to move back to its 

original axis easily so that it was compatible with the material allocation program (to relate to 
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the CT scans). The virtual implantation tool generated procedure scripts to conduct these 

operations efficiently. The tibia models were aligned such that the transverse resection 

surface normal was the z axis. 

The tool was also adapted for femoral implantations. The bone anatomical axis was 

calculated similarly from the centres of the base and mid-shaft. The epicondylar axis was 

calculated from the sagittal centres of the condyles. The frontal plane normal was defined as 

the cross product of the epicondylar and anatomical axis. The mechanical axis was defined 

as 7 degrees from the anatomical axis rotated about the frontal plane normal. The z axis was 

defined as the mechanical axis. 

4.4 Implant & Cement Mantle 

The Biomet Oxford tibial and femoral UKR components are made from cobalt chrome with 

the bearing-implant surfaces coated in titanium nitride, ceramic, Oxinium™ or titanium 

niobium. The Corin Uniglide UKR is also made of cobalt chrome but only comes coated in 

titanium nitride. The undersides of the cemented implants are uncoated while the 

cementless versions are coated in HA. The mobile-bearings are made of compression 

moulded polyethylene (PE). 

The bone is cut to accommodate the keel of the tibial tray using a reciprocating saw. While 

Biomet also make available a special keel resection which provides greater accuracy, its use 

is not widespread due to additional expense to the surgeon. The transverse cut is made 

using an oscillating saw while the sagittal cut is made using a reciprocating blade. The 

resected corner forms a square edge and is sometimes over-cut (Clarius et al., 2009a). The 

transverse cuts are assumed to be flat – although our in-vitro experiments revealed that this 

was not always the case (refer to Section 5). The cementless implants are placed on the 

bone and hammered in place to ensure full contact. For the cemented implants, bone 

cement is placed under the keel and tray and the implant is hammered into place. The 

cement is consequently extruded into the trabecular pores while the cement extruded from 

the sides is removed. The cement-mantle consists of cement inter-digitised within trabecular 

bone. Implant companies tend to recommend 3-4 mm of cement penetration. However, 

based on visual assessment of Oxford UKR of cadaveric specimens (refer to Section 5), the 

cement-mantle was approximately 2 mm thick. This is also supported by cementation 

studies that have reported UKR cement mantles that were thinner than recommended 

(Clarius et al., 2010). 

Studies have shown that mechanical properties are influenced by cement mixing techniques 

(Lewis et al., 1997). Elastic moduli range from 1.8-2.9 GPa (Lewis, 1997). Bone cement fails 
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in compression at approximately 25 MPa (Saha and Pal, 1984). The inter-digitised nature of 

the cement-mantle is such that it contains micro stress raisers and begins to fail under lower 

loads (Harrigan and Harris, 1991).  

Failure of the cement-bone interface is dependent on the degree of inter-digitisation and the 

strength reduces with time (Waanders et al., 2010). Analysis of post-mortem retrieved THR 

implants showed tensile strengths of up to 2 MPa and shear strengths of up to 5 MPa 

(Waanders et al., 2010). 

Fractographic assessments of retrieved THR femoral and acetabular explants have shown 

fatigue failure and fatigue crack propagation as factors that contributed aseptic loosening 

(Zant et al., 2007). Inspection of 3 composite bone femoral TKRs cyclic loaded on knee 

simulators to 1 million cycles showed hidden cracks of up to 10 mm (Cristofolini et al., 2008). 

Jasty et al. (1991) observed fatigue striations in retrieved THR implants, which were 

otherwise satisfactory, suggesting that fatigue may be an undiagnosed initiator of loosening. 

Mann et al. (2001) demonstrated that this inter-digitised region was the most common 

location of failure in femoral THRs. Negligible work has been conducted on the  cement 

mantles of UKRs. 

Damage accumulation in the cement-mantle is linear in low stress levels (Murphy and 

Prendergast, 2002); therefore Minor’s rule is applicable. It becomes highly non-linear with 

increasing stress. Studies of S-N curves for bone cement reported in the literature (Davies et 

al., 1987, Burke et al., 1984, Murphy and Prendergast, 2002) were generated from tensile-

compression load cycles of THRs. Fatigue damage should be considered when stresses 

exceed 10 MPa or 2000 με. 

After bone cement has been applied to the bone-implant interface, it cures and exudes high 

exothermic temperatures that reach 40-110 degrees (Berman et al., 1984), depending on the 

cement-mantle thickness. Experiments conducted on rabbits show that temperature above 

70 degrees can cause bone thermal necrosis. Reaming and cutting of the bone also 

generates heat at the bone interface, rising to temperatures of 36-52 degrees (Giannoudis et 

al., 2002) and higher (Frolke and Reeling Brouwer, 2004). The effects these processes have 

on bone properties are unknown and tend to be neglected in the FE models. 

Another implication of bone cement curing is shrinkage. This can generate residual tensile 

stresses in the cement and can influence fatigue (Lennon and Prendergast, 2002). Although, 

residual stress in bone cement will relax over time due to its viscoelastic properties, the 

immediate effect may be significant. The preloaded structure may initiate crack formation 

and lead to a damage accumulation failure scenario, as described by Huiskes and Stolk 

(2005). 



Development of FE Models for UKR Fixation Analysis 93 

The initial stability of the implant-cement and cement-bone interfaces is good. From a FEA 

perspective, as demonstrated from the results of Section 5, it can be assumed that the 

cement nodes are fully bonded with the adjacent bone and implant. However, with time the 

interface will tend to degrade, with widening gaps at the interfaces. In a recent study, where 

retrieved femoral TKRs were physiologically loaded and micromotions were measured at the 

implant-cement and cement-bone interfaces (Mann et al., 2010) reported average 

micromotions of 131 μm, ranging from 0.6 to 830 μm. These values are much larger than 

would be expected at a bonded interface. Another retrieval study of successful TKRs (Miller 

et al., 2010) demonstrated that changes at the interface post-arthroplasty cause the interface 

to “soften” and lose rigidity. This may be due to reduction of interdigitisation at the boundary 

over time. The complex loading patterns of the THR involving compressive, tensile and 

torsional loads, combined with the effects of this complex interface, influence the mechanical 

response of the underlying bone. However, the loading of UKRs (particularly tibial trays) are 

mainly compressive and distinctly simpler than THRs. Therefore for UKRs, the effect of the 

complex interface is expected to have negligible effect on the mechanical response of bone. 

In all FE models that contained cement, the implant-cement and cement-bone interface 

nodes were fully bonded. 

4.5 Mesh Convergence Study 

Mesh convergence studies are used to find a satisfactory balance between the mesh size 

and computational expense: Typically, a finer mesh produces more accurate solutions but it 

takes longer to create them and solve them. However, the traditional method of modelling 

bone involves material allocation to individual elements which is also influenced by element 

size. A finer mesh does not necessarily produce more accurate solutions (limited by the CT 

voxel size). The overall mesh convergence problem is therefore complicated and has been 

split into two parts: (A) effect of element geometry; and (B) effect of material allocation. 

Hexahedral elements were ruled from the outset for modelling bone in this thesis. This is 

because the methods for generating solid meshes are manual and extremely time 

consuming; therefore, they were deemed unsatisfactory for this thesis. The automeshers 

that are available for tetrahedral elements are well established (this is the preferred method 

for modelling bone in the literature); they produce good quality meshes with controllable 

mesh sizes and follow the complex three-dimensional surface contours of bone more closely 

than hexahedral elements.  
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4.5.1 Method 

A 33-year right male tibia was CT scanned. The long axis of the bone was aligned with the 

scanner axis, the slice thickness was 0.7 mm and the transverse voxels were 0.7 by 0.7 mm. 

The CT scans were segmented slice-by-slice; the surface meshed and smoothed with a fine 

(1 mm element size) triangular mesh using AVIZO software. The geometry was then 

imported into MARC 2010 and 11 different meshes (element size ranging from 1.3 to 6mm) 

were generated. Each new model was created by remeshing the surface elements using the 

“Patran Surface Mesher”, specifying the required element size, and then solid meshed using 

the “Patran Tet Mesher” with a coarsening factor of 1.0. Twenty FE models were created:  

eleven 4-node linear tetrahedral element models and nine 10-node quadratic tetrahedral 

element models. Table 10 presents details of all the models assessed. Note that converged 

solutions were not obtained for models (2) and (16); therefore, they were excluded from the 

analysis 

 

Figure 36 - Range of mesh density of tibia models for mesh convergence study. 

The overall mesh convergence problem was split into two parts: (A) effect of element 

geometry (element size and type); and (B) effect of material allocation. To investigate (A) 

effect of element geometry (excluding the effect of material property allocation), all 20 

models were assigned a uniform isotropic elastic modulus of 1 GPa and a Poisson’s ratio of 

0.3. To investigate (B) effect of material allocation, another 20 models were developed by 

assigning element-by-element isotropic elastic moduli derived from the CT data using an in-

house program (material allocation program, Sub-Section 4.6.6).  Poisson’s ratio was 
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assumed to be 0.3 (Van Rietbergen et al., 1996) for all elements. Note that the results of part 

(B) models included effects of element geometry and material allocation combined; 

therefore, they were normalised based on the results of part (A), to determine material 

allocation effects alone. 

Peak knee forces (medial and lateral joint contact, ACL and Patella tendon forces) during 

walking activity, as described in Sub-section 3, were applied to surface nodes. The surface 

nodes of all the 11 meshes were modified such that the loaded nodes (three for each force) 

were always in the same position. The transverse section of the base of the tibial shaft was 

globally restrained in space.  

Three Regions of Interest (ROI), represented with 3 nodes each, were defined at the medial 

cortex, 10 mm below the tibial plateau, located at the (ROI-1) anterior, (ROI-2) medial, and 

(ROI-3) posterior extent. These were exactly the same positions in all 11 meshes. 

All the models were solved using the MARC 2010 “multifrontal direct sparse” solver. The 

minimum principal strains, minimum principal stresses and vertical displacements at each 

ROI were output and analysed in Microsoft Excel.  

Table 10 - Details of FE models used in convergence study 

Model 
Number 

Element 
Type 

Element 
Size 

Number 
of 

Elements 

Number 
of Nodes 

Degrees 
of 

Freedom 

1
a
 Linear 1.3 471315 84588 251226 

2
b
 Linear 1.5 352152 63158 187521 

3 Linear 2 166537 30527 90330 

4 Linear 2.5 106729 19773 58428 

5 Linear 2.8 65299 12428 36663 

6 Linear 3 53214 10226 30201 

7 Linear 3.5 46884 8977 26517 

8 Linear 4 30516 5992 17598 

9 Linear 4.5 20695 4119 11979 

10 Linear 5 16956 3412 9948 

11 Linear 6 10989 2290 6636 

12 Quadratic 2 166537 233324 698721 

13 Quadratic 2.5 106729 150319 450066 

14 Quadratic 2.8 65299 93250 279129 

15 Quadratic 3 53214 76367 228624 

16 Quadratic 3.5 46884 67148 201030 

17 Quadratic 4 30516 44248 132366 

18 Quadratic 4.5 20695 30219 90279 

19 Quadratic 5 16956 24894 74394 

20 Quadratic 6 10989 16418 49020 

a
 unable to obtain a converged solution. 

b
 unable to obtain solution for model with method (B) (element-by-element material allocation). 

The converged solution was assumed to be the average of the two models which had the 

highest degrees-of-freedom (quadratic element models (12) and (13)). Error was defined as 
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the average of the percentage differences of the nodal solution values from the converged 

solution values:  

         ∑ {
  

          
  }

 

   
 

where, xn is the value at node n; an is the value at node n of the model with the highest 

degrees-of-freedom; bn is the value at node n of the model with the second highest degrees 

of freedom; and N is the total number of nodes for each model. Note that N was 9 nodes for 

each of the 20 models.  

4.5.2 Results – Effect of Element Geometry 

The displacements and minimum principal strain errors were calculated for all models and 

the convergence plots are displayed in Figure 37. Although axial displacement and minimum 

principal strain convergence is achieved with fewer degrees of freedom for the linear 

element models, the converged solution is less than that of the quadratic element converged 

solution. This implies that linear elements are 5-10% stiffer. 

 

Figure 37 - Element geometry convergence plots of (i) axial displacement error (left); and (ii) minimum 

principal strain error (right), comparing ROIs 1-3. 

Element sizes of 2.0 mm (for linear elements) and 3.5 mm (for quadratic elements) produced 

solutions that were within 10% of the converged value. 

4.5.3 Results – Effect of Material Allocation 

The displacement and minimum principal strain error was calculated for all models based on 

method (B) and the convergence plots are displayed in Figure 38. Note that these models 

included effects of element geometry and material allocation 
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Figure 38 - Material allocation and element geometry convergence plots of (i) axial displacement error 

(left); and (ii) minimum principal strain error (right), comparing ROIs 1-3. Error was defined as the 

average of the percentage differences of the nodal solution values from the converged solution values. 

The converged solution was assumed to be the average of the two models which had the highest 

degrees-of-freedom (quadratic element models (12) and (13)). 

Since a solution could not be obtained for model (1) (element size of 1.3 mm) and model (2) 

(element size of 1.5 mm), the maximum attainable degrees of freedom for a linear element 

model was 90k. A model with higher degrees of freedom was attainable if quadratic 

elements were used; and these models provided more stable convergence when the number 

of elements was more than 50k. 

With element sizes of 2 mm, adequate convergence was achieved with linear elements.  

Figure 39 displays the convergence of displacement errors that were normalised against 

errors generated from element geometry alone (from Sub-section 4.5.2) – i.e. the plots 

display effect of material allocation alone. Elements of size 2-4mm provide adequate 

accuracy to within 2% of the converged solution. 
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Figure 39 - Plot showing convergence of displacement errors that were normalised against errors 

generated from element geometry alone (from Sub-section 4.5.2). The plots display the convergence of 

material allocation method with element size alone. Error was defined as the average of the percentage 

differences of the nodal solution values from the converged solution values. The converged solution was 

assumed to be the average of the two models which had the highest degrees-of-freedom (quadratic 

element models (12) and (13)). 

4.5.4 Discussion 

The concept of mesh convergence has traditionally been a topic of “little discussion” due to 

complexity and difficulty of achieving convergence in whole bone level FE models. In this 

study, in order to disaggregate the problem, it was broken down into two components: (A) 

element geometry; and (B) material allocation.  

Although the convergence plots were more scattered than typical convergence plots seen for 

homogenous isotropic materials, convergence was achieved. The study by Polgar et al. 

(2001) also reported unconventional convergence plots when assessing principal stress in 

the femur. It is anticipated that this scatter arises from the material allocation procedure. CT 

scans exhibit ‘patchwork’ values, particularly as voxel sizes approach the size of trabeculae. 

For example an adjacent CT voxel may have an artificially low grey value because it may 

correspond to porosity within trabeculae. Although the average of a few voxels may yield 

accurate grey values, the single grey value corresponding to that artificially low voxel will not. 

With CT scan voxels of 0.7 mm elements of 2 mm or greater span more than 3 voxels. 

Element sizes that are less than 2 mm may yield results with decreasing accuracy. In this 

study, converged solutions were obtained with elements of 2 mm or greater. 

Based on the element geometry convergence study (A), 2 mm linear elements and 3.5 mm 

quadratic elements produced converged solutions (within 10% accuracy). Based on the 

material allocation convergence study (B), elements sizes of 2-4mm produced adequate 

solutions (within 2% accuracy).  
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The results showed that linear and quadratic element models converged to different 

solutions. This may be due to the formulation of the linear tetrahedral element being ‘stiffer’ 

than the quadratic element – this effect has been reported elsewhere in the literature (Polgar 

et al., 2001). 

Based on the conclusions of this study, the computer models in this thesis were developed 

with elements of 2-3 mm size (where possible), with preference for quadratic rather than 

linear elements. There were a few exceptions to the rule: 

 For models where there was contact between two bodies (typically implant and bone 

for cementless implants), a finer element mesh size (typically 1.4 mm) was 

incorporated at the contact surfaces. Not only is modelling contact computationally 

expensive, but the micromotion analysis subroutines (described in Sub-section 4.6.7) 

are not optimised for quadratic elements. For these ‘micromotion’ models, equivalent 

quadratic element models were simultaneously developed (without the micromotion 

subroutines) to check that that errors were small and consistent with conclusions.  

 For simulations of bone remodelling linear elements were used. This is due to 

computational limitations of the bone remodelling subroutine (Sub-section 4.6.8) 

being incompatible with quadratic elements. With linear elements the solution time 

was as much as 12 hours for some simulations. Using quadratic elements would 

have yielded even longer solution times; therefore, they were considered to be 

unsatisfactory for this purpose. 

4.6 Optimising the Model 

4.6.1 Modelling Cancellous Bone 

The convergence study, as described in Sub-section 4.5, revealed that 2-3 mm quadratic 

10-node tetrahedral elements were best for modelling of tibial and femoral cancellous bone. 

The linear 4-node tetrahedral elements were adequate, with solutions within 10% of the 

converged value if they were 2 mm.  

For cemented implant models, quadratic elements were used to model the cancellous bone. 

For cementless implant models, two sets of models were created: for the first set, quadratic 

elements were used for the cancellous bone; and for the second set, linear elements were 

used in order that micromotion subroutines could be effectively incorporated. 
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4.6.2 Modelling Cortex 

The surfaces of the proximal tibia and distal femur are covered by a thin layer of cortical 

bone. The cortical thickness is unreported in the literature and it is subject and site-specific. 

Based on laboratory experience (refer to Section 5) and experience of orthopaedic 

surgeons, the thickness is less than 0.5 mm and estimated to average 0.1  to 0.2 mm thick. 

The materials modelling method described in Section 2 is unable to represent this thin 

cortex. Firstly, the CT scans of minimum voxel size 0.5 mm are too large to detect the 

cortex; and secondly, the FE tetrahedral elements, of minimum achievable size of 1 mm, are 

too large to represent them accurately in the models. 

Shell elements have been used in the literature to model the thin cortex in vertebrae (Imai et 

al., 2006) and pelvis (Anderson et al., 2005, Dalstra and Huiskes, 1995); however, the 

author is not aware of any studies that have modelled the cortex of the proximal tibia or 

distal femur in this way. 

Sensitivity assessments were conducted to identify the implications of inclusion of the tibial 

cortex in FE models of tibial UKR. Figure 40 presents minimum principal strain plots of three 

slices through a proximal tibia. It demonstrates the local reduction of strain at the cortical 

boundary by including the shell elements. Modifying the cortical thickness and elastic 

modulus within the range of uncertainty had a very small effect on the local strains but it did 

slightly change the strains immediately under the implant.  

 

Figure 40 - Sensitivity of bone strain by inclusion of proximal tibial cortex shell elements. 

Figure 41 presents the effect of adjusting cortical parameters on plots of the micromotion at 

the bone-implant interfaces. The inclusion of the cortex reduced the micromotions at the 

lateral edge and increased those towards the medial edge, but had negligible effect on the 

average magnitudes. Modifying the cortical thickness and elastic modulus within the range of 

uncertainty has a very small effect on micromotions, with the greatest change at the centre 

of the implant. A stiffer cortex reduced the micromotions at the implant centre. 
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Figure 41 - Sensitivity of implant-bone micromotions by inclusion of proximal tibial cortex shell elements. 

To assess the suitability of the elements, the inner, middle and outer layers of the shell 

elements were analysed to show that through-thickness strains were similar. This is 

indicative that the shells are deforming under compression not bending; hence, the error 

introduced from incompatibility of midside deformations should be minimal. 

Based on these results, the inclusion of a cortex is important for local strains at the cortex 

and strains immediately under the implant. It has a negligible effect on the magnitudes of 

bone-implant micromotions but it does alter their distribution. In comparison, the uncertainty 

of the cortex parameters (thickness = 0.1-0.5 mm, elastic modulus = 9-18 GPa) have a 

minor effect on the strains and micromotions. Cortical shell elements were included in the 

UKR FE models and adapted depending on the model type: bilinear 3-node thin-triangular 

shell elements were used against linear cancellous bone elements; and quadratic 8-node 

one-side collapsed quadrilateral shell elements were used against quadratic cancellous 

bone elements. 

4.6.3 Osseointegration 

The long-term success of cementless implants is dependent on achievement of initial 

stability (Hungerford and Kenna, 1983, Landon et al., 1986, Waugh, 1985). Stable fixation is 

a prerequisite for osseointegration to occur between the bone and implant; otherwise, a 

fibrous tissue layer forms at the boundary. The precise behaviour of the tissue formation at 

the interface is complex and has been linked to the level of interface motion (micromotion). 

Tangential micromotion is defined as the motion that is tangential to the surface normal (i.e. 
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measure of surface shear strain), while normal micromotion is defined as that which is 

normal to the surface. 

The implant surface coating affects fixation. Carlsson et al. (1988) found that minor gaps of 

0.35mm around stable smooth titanium implants in rabbits were not bridged by bone and the 

critical gap was close to zero. Porous-coated and hydroxyapatite coated implants improve 

fixation (Soballe et al., 1990). Since most modern implants are porous and hydroxyapatite 

coated, press-fit is no longer an important factor for consideration of osseointegration. 

In the search for a threshold for bone ingrowth, a general micro-mechanics point of view 

yields the conclusion that micromotion must be less than the pore size of the porous 

coatings (approximately 150 μm for most porous coatings).  In support of this theory, in-vivo 

canine bone-implant dental studies have demonstrated that bone ingrowth is less likely in 

smooth surfaces compared to porous surfaces (Maniatopoulos et al., 1986). However, the 

reality is further complicated by biological response such that a simple pore-size related 

threshold is inaccurate. 

The biological response is similar to a healing fracture (Kuzyk and Schemitsch, 2011). 

Immediately post-arthroplasty, the implant-bone gap is filled with a blood clot. In the next few 

weeks, the gaps are filled with new trabecular bone with bone fragments (from surgical 

preparation) enveloped. Ossification of fully contacting bone and implant does not occur until 

later. In a stable implant, at 6-12 weeks all trabecular bone and most bone fragments are 

substituted by mature lamellar bone with few marrow spaces (Franchi et al., 2005). In animal 

studies osseointegration occurs by 6 weeks (Jasty et al., 1997a, Soballe et al., 1992, 

Prendergast et al., 1997); however, in humans this may be as long as 16 weeks (Cameron 

et al., 1973). 

Based on an in-vivo canine study of femoral implants at 1-year, Pilliar et al. (1986) observed 

that tangential micromotions in bone-ingrown samples were less than 28 μm, while 

micromotions in samples with interface fibrous tissue were 50-310 μm. Another in-vivo 

canine study (Jasty et al., 1997a, Jasty et al., 1997b), in which daily in-vivo tangential 

micromotions of 0, 20, 40 and 150 μm were induced for six weeks on separate specimens, 

showed distinct histological differences at the bone-implant interfaces. Micromotions of 0 

and 20 μm produced intimate contact between the bone and implant, without intervening 

layers of fibrous tissue. The implants subjected to 40 μm were surrounded by a mixture of 

trabecular bone, fibrocartilage, and fibrous tissue; in some areas the ingrown bone was in 

continuity with the surrounding bone, whereas in other areas it was separated by 

fibrocartilage or fibrous tissue. For implants subjected to 150 μm, the interface was made up 

of a 1-2 mm thick layer of dense fibrous tissue. Jasty et al. (1997b) found that up to 56 μm of 
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micromotion allowed full osseointegration at the bone-implant interface. A review of dental 

implants in animals (Szmukler-Moncler et al., 1998) concluded that a threshold for full 

osseointegration was in the range of 50 to 150 μm. 

The quantitative analysis from animal studies provides a foundation to predict human 

response to implant micromotion, and these have been indirectly verified against human 

studies: A retrieval study of human THR femoral cementless implants found indications that 

micromotions less than 40 μm resulted in osseointegration, while 150 μm resulted in fibrous 

tissue (Engh et al., 1992b).  

In implant fixation studies published in the literature, bone-ingrowth thresholds of 50-150 μm 

have been suggested (Chong et al., 2010, Abdul-Kadir et al., 2008, Gotze et al., 2002, 

Viceconti et al., 2000, Burke et al., 1991). The cementless implants analysed in this thesis 

are porous HA coated, similar to those in the literature. Interfaces with tangential 

micromotions less than 50 μm were defined as firmly-integrated; between 50 and 100 μm as 

semi-integrated; and 100 to 150 μm as poorly integrated. 

4.6.4 Bone-implant Friction 

To successfully model the response of bone to cementless implants, the FE contact 

conditions must be clearly defined with appropriate friction coefficients and computational 

parameters. 

The contact parameters developed by Abdul-Kadir et al. (2008) and Chong et al. (2010), 

during their PhD research at Imperial College London, were adapted to model implant-bone 

contact in UKRs and validated. The Coulomb friction model was used, which is implemented 

in MARC 2010 with a continuous differentiable “arctangent” function. The Coulomb friction 

parameters were adapted to mimic the non-linear response of bone-implant friction 

resistance to displacement (Shirazi-Adl et al., 1993) (‘RVCNST’ = 0.1 and ‘BIAS’ =0.95 

(Abdul-Kadir et al., 2008). Nodes were defined as touching if their relative distance was less 

than 0.01 mm (assessments revealed relative insensitivity for tolerances less than 0.1 mm). 

To ensure that inaccuracies in geometry definition did not create pre-stressed contact, an 

additional parameter available with MARC 2010 was enabled. During the initialisation step, 

overlapping nodes are moved to stress-free contact positions.  

The friction coefficient between tibial cancellous bone cubes and porous-surfaced metal 

plates were measured by Rancourt et al. (1990) and an average of 0.28 was found for 

smooth surfaces. For fibre mesh and beads, the average values were between 0.44 and 

0.63. In published micromotion FE studies, friction coefficients used tended to be 0.0 to 0.42 

for smooth surfaces and 0.20-1.73 for rough surfaces. Kuiper and Huiskes (1996) used zero 
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for smooth surfaces, 0.15 for lubricated surfaces and 0.4 for coated surfaces. Keaveny and 

Bartel (1993) used zero for smooth surfaces and 1.73 for coated surfaces. Two other studies 

(Ando et al., 1999, Biegler et al., 1995) used 0.42 for smooth surfaces and 0.61 for coated 

surfaces. Viceconti et al. (2001) used a much lower friction coefficient of 0.20 for a coated 

implant.  

The Oxford UKR is coated with HA and a friction coefficient of 0.4 is assumed most relevant. 

Five FE models of the implanted UKR tibia were developed with the implant-bone friction 

coefficients ranging from 0.0 to 0.8. The results showed that micromotion predictions were 

insensitive to friction coefficient with variations of up to 5%. 

THRs have been demonstrated to be sensitive to friction coefficient (Abdul-Kadir et al., 

2008); however, the mechanism responsible for inducing micromotion in tibial UKRs is very 

different: In UKRs, the primary load is perpendicular to the bone-implant interface, 

particularly in mobile-bearing UKRs, if the bearing-tray friction force is assumed to be low. In 

THRs, the primary load is parallel to the bone-implant interface; therefore, friction force is the 

primary mechanism resisting the load. 

4.6.5 Press-fit 

UKR patients tend to have a narrow gap between the side-plate of the tibial tray and bone. A 

sensitivity assessment with and without side-plate bone contact revealed that micromotions 

were slightly reduced when side-plate contact was omitted. At first this seemed counter-

intuitive; however, at closer inspection, the removal of the side-plate constraint allowed a 

more stable bed of bone as the implant was no longer influenced by bone deformation at the 

side-plate. Since the existence of a narrow gap (or highly elastic fibrous tissue) is also 

evident in radiographs of UKR patients (radiolucencies), it was deemed most appropriate to 

exclude contact between the side-plate and bone in the FE models. 

As described in Sub-section 5.5.4, the keel resection can be accidentally over-cut, thereby 

removing the 3 mm width of base support. A sensitivity assessment with and without the 

bottom of the keel contacting the bone revealed that the effect on micromotions was 

negligible. 

The keel of the tibial tray tends to be press-fitted with the surgeon hammering the implant 

into place. Pandit et al. (2009) reported that the keel incisions of Oxford cementless UKRs 

were intentionally made smaller than the actual size of the keel. 

Interference fit is a significant factor on initial stability in THRs (Abdul-Kadir et al., 2008); 

however, the effect on the UKR tibial tray is unreported. Due to the viscoelastic nature of 

bone, residual stresses are expected to relax by 50% (Shultz et al., 2006), and remodel 
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depending on the level of bone strain. Five FE models with keel interference fits of 0 to 

50 μm were developed and analysed. Figure 42 shows that micromotions reduce with press-

fits up to 10 μm and increase thereafter. Bone strains approach and exceed its yield limit for 

press-fits greater than 50 μm.  

 

Figure 42 - Effect of keel press-fit on UKR tibial tray micromotion and bone strain. 

With press-fits of greater than 10 μm the implant-bone interface micromotions increased. 

This is because the press-fit is causing the surface of the resected bone (that comes in 

contact with the surface of the implant) to warp, with the region surrounding the keel slot to 

rise superiorly (Figure 43). This distortion of the bone interface enables the implant to be 

able to rock and slide more easily against the bone surface under compressive load. This 

increases the interface micromotions. Bone-implant interface warping is an important factor 

in UKR micromotion. It should be noted that the models assume linear-elastic behaviour and 

do not simulate the viscoelastic behaviour of bone. Viscoelasticity could render this residual 

strain around the keel to become negligible within a period of a few days. 

The benefits of having a small press-fit are outweighed by the detrimental repercussions of 

over doing the press-fit that could lead to fracture initiation, patient pain and implant 

migration. Modelling UKR press-fit is complex, it has a small effect on micromotions, and the 

press-fit predictions are uncertain and unable to be substantiated. That said, the effect on 

bone strain is large and should be kept in mind in the analysis of intra-operative scenarios 

and peri-prosthetic fractures that occasionally occur in patients (Vardi and Strover, 2004). 
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Figure 43 - Plot of superior displacement on the surface of the resected tibia (the interface in contact with 

the implant) caused by a press-fit interference of 50 µm at the keel. There are no knee forces acting on 

the tibia. The top surface has warped superiorly due to the lateral expansion at the keel slot. 

4.6.6 Materials Allocation Program 

A bone material allocation program was developed by Dr Hopkins as part of post-doctoral 

research (2007) at Imperial College London. For the purposes of this thesis, the program 

was adapted to generate elastic moduli from alternative material property relationships (refer 

to Sub-section 2.6). The program defines 9 sampling points at the interior inner two-thirds of 

each tetrahedral element and determines corresponding grey scale values at each location 

from corresponding AVIZO format CT data. The program calculates the average for each 

element, from which it calculates apparent bone densities and elastic moduli, based on the 

material property relationships described in Sub-sections 2.3 and 2.4. 

4.6.7 Micromotion Subroutine 

To compute micromotions at the bone-implant interface, a subroutine initially written by 

Abdul-Kadir et al. (2008) was further developed to output micromotion at the bone-implant 

interface. The algorithm tracks two initially coincident nodes and calculates the relative 

displacement as the model deforms under prescribed loads. For the purposes of this thesis, 

the subroutine was developed to calculate the surface normal at the nodes and resolve the 

relative displacements into tangential and normal components. The output solutions were 

then able to be post-processed both visually and numerically in MARC Mentat. 
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4.6.8 Remodelling Subroutine 

The biological process of bone remodelling plays an important role in understanding long-

term implant fixation. A bone remodelling algorithm called ‘REM3D’, based on the theory of 

Huiskes et al. (1987) as described in Sub-section 8.1, was developed by Chong (2009), 

during his PhD research at Imperial College London. The model was developed for 

MARC 2005 based on the apparent bone density to elastic modulus material property 

relationship proposed by Carter and Hayes (1977)(refer to Sub-section 2.4). In order to 

comply with the conclusions of Sub-section 2.6, the subroutine was developed to include 

capability to model the three-part elastic-modulus relationships outlined in Table 5 

(Section 2). 

The model was updated to be compatible with MARC 2010 and verified by comparing an old 

model solved on both systems. The code was also updated in order to be able to handle 

models with up to 300,000 elements (previously confined to 100,000).   

4.6.9 Bone Failure Subroutine 

To assess implant fixation effectively, it was deemed important to consider the failure limit of 

bone. Based on the strain failure criterion described in Sub-section 2.5, a MARC subroutine 

was developed to visually and numerically post-process bone safety-factor. The subroutine 

calculates the maximum and minimum principal strains from the six isotropic strain 

components and computes the minimum safety factor by dividing with the corresponding 

strain failure limits, as described in Sub-section 2.5 and defined below:  

For Tibia, YTensile = 6500με,  YCompression = 7300με 

For Femur,  YTensile = 6100με  YCompression = 8500με 

The principal strains are determined by calculating the eigen values of the strain matrix using 

Cardano's analytical algorithm. Cardano’s analytical algorithm and the corresponding 

Fortran code were validated by comparing against the maximum and minimum engineering 

strain outputs from MARC 2008. 

4.6.10 Simulated DXA Program 

To compare patient Dual X-Ray Absorptiometry (DXA) scans with those predicted from FE 

models, a Fortran program called “SimDXA” was developed. The program simulates two-

dimensional DXA scan images from three dimensional FE model output files. The program 

outputs both MARC Mentat files and text-files (in matrix form) that can be post-processed 

with alternative software. The SimDXA output files were used to calculate the change of 
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bone mass in user-defined regions. Figure 44 presents the program method in the form of a 

flow diagram. 

 

Figure 44 - Flow diagram of SimDXA program method. 

SimDEXA was validated using a dummy model which contained known regional apparent 

densities. 

4.7 Conclusion 

The FE modelling approach used in this thesis to model fixation of UKR implants has been 

presented and discussed in detail in this section. The traditional techniques used for 

modelling bone in the literature have been reviewed, and adapted where necessary. The 

uncertainties of the modelling parameters have been discussed, reviewed and the risks 

reduced as low as reasonably practicable. A robust foundation of modelling techniques and 

tools has been developed by reviewing literature, conducting sensitivity studies and 

verification and validation processes. The strain validation (presented in Section 6) and 

remodelling validation (presented in Section 8) confirm the FE modelling approach used in 

this thesis. 
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5 In-vitro Mechanical Tests 

5.1 Introduction 

The response of biological bone tissue to mechanical stimulus is difficult to predict. In-vitro 

experiments of cadaveric specimens in the laboratory provide a controlled environment to 

test out primary fixation of implants by measuring bone strain and bone-implant 

displacement. The drawback of using only a laboratory test environment is inefficiency, high 

cost and inability to replicate biological processes such as remodelling. However, if the in-

vitro assessments are conducted alongside computer models, then upon validation of the 

computer models, virtual assessments can be performed to improve implant designs. The 

validation process also helps to understand modelling accuracy so that uncertainty can be 

responsibly managed. 

Since UKR arthroplasty is a minimally invasive technique, it is difficult to identify the precise 

physical state of the tibia and femur post-arthroplasty. The in-vitro experiments were 

designed to understand and identify practical considerations of modelling UKRs accurately. 

UKRs are often available in cemented and cementless versions; however, minimal research 

has been done about how these design features affect fixation. Surgeons often use personal 

experience to decide whether to use cemented or cementless UKRs; experienced surgeons 

tend to use cementless implants on “strong active patients” while cemented implants are 

used in 96 percent of the cases (Schindler et al., 2010). It is postulated that the reason for 

this may be because cementless implants create higher bone strain so only the stiffest and 

strongest bones can respond well. It is also postulated that bone-implant displacements are 

lower in stiffer bone; hence, osseointegration would occur more readily. 

Radiolucencies occur in both cemented and cementless tibial UKR implants and they are 

linked to micromotion at the bone-implant interface (Kwong et al., 1992).  The cemented 

Oxford UKR tends to develop radiolucencies in 60-75% of arthroplasties (Gulati et al., 

2009a) while for the cementless it is as low as 7% (Pandit et al., 2009). The author is not 

aware of any studies that have measured or predicted bone-implant micromotion of tibial 

UKRs.  

A new UKR cementation technique has been developed at Charing Cross Hospital, London 

UK. Suction-cementation involves using a suction unit to apply, a vacuum under the tibial 

tray. It is postulated that the technique aids cement penetration, providing a more stable 

fixation (lower bone-implant displacement and lower bone surface strains). There are no 



In-vitro Mechanical Tests 110 

studies in the literature that have investigated whether suction-cementation aids fixation, 

particularly in UKRs. 

The objectives of the in-vitro mechanical tests were as follows: 

 To obtain in-vitro UKR implanted tibia and femur strains for FE model validation; 

 To obtain in-vitro UKR implanted tibia bone-implant displacements for FE model 

validation; 

 To replicate UKR arthroplasty in the laboratory in order to identify practical surgical 

considerations for modelling UKR implants accurately. 

 To compare fixation (bone strains and bone-implant displacement) of cemented and 

cementless UKR implants; 

 To compare fixation of normal-cemented and suction-cemented UKR tibial implants. 

Ethical approval was obtained in August 2009 for in-vitro mechanical testing of 10 cadaveric 

specimens. 

5.2 Materials & Method – Mechanical Tests 

Cadaveric bones were instrumented and loaded in order to attain the objectives listed above. 

Bone strains were measured by using strain gauges and bone-implant interface micromotion 

was measured using Linear Variable Displacement Transducers (LVDTs). 

Ten (five pairs) of fully intact fresh frozen human knees of donors from the Unites States 

were obtained and kept frozen at -18 °C until use. Table 11 presents the details of the 

cadavers including age, gender, specimen reference and (where available) the weight and 

height. The cadaveric knees were left to thaw naturally for 36 hours before computed 

tomography (CT) scans were taken (refer to Sub-section 6.2.1 for details of image 

parameters). Table 11 includes average bone densities, volume and mass (only distal 

100 mm of femur and proximal 100 mm of tibia). The bone volume and average densities 

were calculated from the individual segmented specimen CT scans (segmented using 

AVIZO 6.1 software (Visualization Sciences Group, USA)). 
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Table 11 - Details of cadaveric knee specimens including bone volume, mass and average density. 

Spec. 
Ref. 

Bone Age Gender 
Weight  

(Kg) 
Height 
 (cm) 

Leg 
Mean ρ 
(g/cm³) 

ρ 

Std Dev 

Vol. 

(cm³) 

Bone  
Mass(g) 

Max. 
 CT 

CAD1 Tibia 65 M 64 183 R 0.344 0.458 199.0 68.5 2619 

CAD2 Tibia 65 M 64 183 L 0.333 0.441 191.8 63.9 2134 

CAD3 Tibia 81 F 91 152 R 0.296 0.443 154.1 45.7 2233 

CAD4 Tibia 81 F 91 152 L 0.292 0.438 149.3 43.6 2169 

CAD5 Tibia 74 M 82 175 R 0.302 0.391 184.9 55.9 2205 

CAD6 Tibia 74 M 82 175 L 0.286 0.392 194.4 55.6 2325 

CAD7 Tibia 96 M - - R 0.334 0.429 191.0 63.9 22343 

CAD8 Tibia 96 M - - L 0.342 0.437 191.5 65.4 2271 

CAD9 Tibia 64 F - - R 0.342 0.486 121.0 41.4 2353 

CAD10 Tibia 64 F - - L 0.325 0.485 125.5 40.9 2330 

CAD1 Femur 65 M 64 183 R 0.334 0.394 255.7 85.3 2218 

CAD2 Femur 65 M 64 183 L 0.320 0.374 246.1 78.8 2171 

CAD3 Femur 81 F 91 152 R 0.296 0.407 212.6 63.0 2114 

CAD4 Femur 81 F 91 152 L 0.290 0.394 199.3 57.8 2180 

CAD6 Femur 74 M 82 175 L 0.301 0.356 238.8 72.0 2138 

CAD7 Femur 96 M - - R 0.354 0.387 239.7 84.9 2370 

CAD8 Femur 96 M - - L 0.360 0.389 232.0 83.6 2351 

CAD9 Femur 64 F - - R 0.392 0.456 150.6 59.1 2296 

CAD10 Femur 64 F - - L 0.380 0.446 149.1 56.7 2291 

The knees were paired as follows: CAD1-2, CAD3-4, CAD5-6, CAD 7-8, and CAD9-10. As 

detailed in Table 11, bone density, volume and mass were similar within the pairs but there 

was a higher density in the right leg (T(8)=2.40, P=0.04). An orthopaedic surgical registrar 

(Amgad Nakhla, Charing Cross Hospital), with experience of performing 50-100 UKR 

arthroplasties using the Oxford UKR (Biomet UK Ltd, Swindon, UK), performed all surgical 

procedures, as outlined in the Oxford UKR surgical procedure manual. Ten surgeries were 

performed on ten knees in two separate sessions (five at a time) with each surgery lasting 

approximately 40 minutes. Surgeries of the first five cadaveric specimens (CAD6-10) were 

done in the first session with the remaining (CAD1-6) in the second session. A full set of 

UKR equipment for performing the surgeries was leased from Biomet UK Ltd, UK. The 

transverse surgical bone cuts (on the tibia and femur) were made using an electric cordless 

Stryker (Stryker Plc., Michigan, USA) oscillating saw with a 12 mm wide oscillating saw 

blade and the sagittal cuts (including the tibial keel cuts) were made using a Stryker 

reciprocating saw. For the second batch of cadavers an alternative Bosch oscillating saw 

was used. 
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Figure 45 - Photographs demonstrating the preparation of the bone constructs. 

All the UKR arthroplasties were medial. The cadaveric knees were mounted on a jig at 

approximately 90 degrees flexion and the implantations were made through a minimally 

invasive medial incision. A full set of cemented and cementless implants were donated by 

Biomet UK Ltd; therefore, as would be performed in the operating theatre, the implant sizes 

were determined during surgery. The correctly sized cementless tibial trays were hammered 

into place. Cementless femoral components were hammered into femoral specimens CAD7 

and CAD10 and cemented femoral components were used in specimens CAD1-4, CAD6 

and CAD8-9. The details of the cementations are described below. Prior to UKR 

implantation, specimen CAD6 had been used in a patellofemoral resurfacing arthroplasty 

trial; therefore the femur was excluded from the study. The anterior facets of the resected 

femoral condyles were trimmed (part of surgical procedure so impingement does not occur). 

Post-surgery the specimens were disarticulated and all soft tissues were removed. The 

bones were re-frozen to -18°C and stored away until bone-construct assembly and testing. 

The bone constructs were prepared as pairs, commencing with the tibiae. Approximately 

40 mm of the distal tibial and proximal femoral shafts were cemented into stainless steel 

pots, using Simplex Polymethyl Methacrylate (PMMA) bone cement (Simplex Rapid, 

Austenal Dental Products Ltd, UK). Three screws, around the rim of the pot, were tightened 

to ensure that the specimens were centralised and fully anchored. The tibiae were aligned 

such that the transverse resections were aligned parallel to the horizontal base of the pots. 

The femora were aligned such that the two most distal points of the medial and lateral 

condyles formed a horizontal line parallel with the base of the pots. 
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Figure 46 - A paired set of femoral bone constructs (from the same donor) with strain gauges carefully 

positioned in similar locations. 

The intended positions of the strain gauge rosettes were marked on the bone using a marker 

pen. Using a scalpel, a half-round hand file, and medium grade sand paper, the soft tissues 

and periosteum were removed until the cortical bone was fully exposed. The bone was 

lightly sanded down to ensure an uninterrupted flat surface. Note that the exact positions of 

the strain gauges were chosen primarily on the quality of the underlying surface: Bone 

surfaces were required to be flat and continuous without porosities. The bone surfaces were 

degreased using CSM degreaser (Vishay Precision Group) and neutralised using MN5A-1 

M-Prep Neutralizer 5 (Vishay Precision Group). Once the bone surfaces were dry, they were 

coated in a layer of M-Bond Catalyst (Vishay Precision Group). The topsides of the rosettes 

were attached temporarily to sellotape while a drop of M-Bond 200 (Vishay Precision Group) 

was placed on the rosettes’ underside. The rosettes were immediately placed on the bone 

and thumb pressure maintained for 2 minutes. The rosettes were 45-degree planar 350 Ohm 

type C2A-06-062LR strain gauge rosettes (Vishay Precision Group Ltd, USA), prewired on a 

matrix measuring 2.8x4.1 mm. They were chosen for their thermal stability and versatility for 

ease of mounting. Although stacked rosettes are smaller than planar rosettes, they are 

stiffer; therefore, they were avoided based on the relatively low stiffness of bone. 

The approximate positions of the five rosettes are illustrated in Figures 47 and 48. Since all 

the implants were medial UKRs, the rosettes were positioned to measure strains at the 

medial regions of both the proximal tibia and distal femur. For the tibiae, three rosettes were 

placed just beneath the implant tray (at medial, central and posterior positions) and the 

remaining two rosettes were placed one beneath each other on the stiff cortical bone of the 

medial tibial shaft. For the femur, a similar approach was adopted; however, the rosettes 

were located further away from the implant because the bone surfaces were not flat enough 

to ensure good gauge attachment. Due to similar surface morphologies, the rosettes could 

be positioned at similar positions for each pair of specimens; however, they were slightly 

different between donors. 
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The LVDTs (Solartron Metrology Ltd, Sussex, UK) were mounted in the configurations 

illustrated in Figure 47. Two different mounting techniques have been used in the literature: 

(1) mounted on to the implant with the pointer resting on the bone surface; and (2) mounted 

to the bone and the pointer resting on the implant. Both techniques were used to measure 

surface-tangent motion, with method (1) used at the implant anterior and posterior and 

method (2) used at the implant medial. Method (2) was used to measure the surface-normal 

motion at the implant anterior and posterior. Figure 49 shows the three LVDT assemblies 

with distances of 2-4 mm between the bone-implant interface and LVDT reference point. 

  



In-vitro Mechanical Tests 115 

 

Figure 47 - Experimental set-up of tibial bone-constructs, with idealised positions of strain gauge 

rosettes (labelled in red), bearing loads and LDVTs. 

 

Figure 48 - Experimental set-up of femoral bone-constructs, with idealised positions of strain gauge 

rosettes (labelled in red) and bearing orientations. 
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Figure 49 - Assembly of LVDTs on tibia bone-constructs. 

Once the bone-constructs were assembled, the positions of the rosettes, bone resections 

and LVDT anchor points were registered relative to bony landmarks and the steel pot, using 

a Polaris Optical Tracking System (Northern Digital Inc., Canada). The system calculates the 

position of a pointer based on visual tracking of two markers (on the pointer) by two 

cameras. The positions were recorded relative to a steel block placed beside the bone-

constructs that defined the vertical and horizontal. 

The bone-constructs were mounted on a screw-driven Linear Instron 5565 materials testing 

machine (Instron Ltd, High Wycombe, UK) with a 5 kN load cell. A jig, bolted to the Instron 

bed, was used to position the bone-constructs accurately; the jig allowed transverse plane 

positioning and dual axis rotation.  

For loading the tibia specimens, a specialised component was manufactured to hold a 

medium sized femoral component to the Instron cross head. A 4 mm polyethylene bearing 

was placed between the tibial tray and femoral component. The centre of the tibial tray side 

plate was marked and extended to the lateral edge of the tray. Two more markers were 

added at 5 mm anterior and posterior to the centre. The centre of the lateral side of the 

bearing was marked to position it accurately on the tibial tray. As presented by Figure 47, 

four bearing positions were tested: (1) 5 mm anterior to centre; (2) centre; (3) 5 mm posterior 

to centre; and (4) 5 mm medial to centre. 

For the femoral specimens, a flat-end load applicator was attached to the Instron crosshead 

and a 4 mm bearing was placed between it and the femoral component. The femur bone-

construct was clamped to the jig such that it could be rotated in the sagittal plane (flexed). 

The jig was manufactured with predrilled slots to clamp the construct at 10 degrees 

increments from the nominal position (0 degree knee flexion).  

Each of the 15 strain gauges (five rosettes) was connected to a quarter Wheatstone bridge 

circuit configured with a 350 Ohm resistor using an FE-MM16 16-channel strain gauge 

amplifier (Fylde Electronic Laboratories Ltd, Preston, UK). The gauges were connected with 
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three wires for increased thermal stability. The quarter Wheatstone bridge circuits were 

balanced at the start of each set of experiments. The voltage across the bridge was 2.5 Volts 

and the gauge factor for all gauges was 2.1. The equipment was connected to a computer 

and MADAQ data acquisition software (Fylde Electronic Laboratories Ltd, Preston, UK) was 

used to record the voltage across the bridge at a sampling rate of 10 Hz. 

The LVDTs were connected a computer. Orbit Digital System software (Solartron Metrology 

Ltd, Sussex, UK) plugin for Microsoft Excel 2007 was used to record the displacements at 

200 Hz. The LVDT readings were reset at the start of each experiment. 

Ten cycles of 1 kN force were applied to all loading configurations, at a linear rate of 100 N 

per second and held for 2 seconds at the extremes. The first two cycles were excluded from 

the analysis of the results. The experiments were repeated three times with a different LVDT 

configuration for each experiment repetition. Therefore, there were three sets of 10-cycle 

strain gauges readings and one set of 10-cycle LVDT displacements for each loading 

configuration. 

Once the testing was complete, the cementless implants on the tibia bone-constructs were 

removed and replaced with cemented versions of the same size. Two-part Palacos 

radiopaque bone cement (Heraeus Holding GmbH, Hanau, Germany) was vacuum mixed for 

40 seconds using a Stryker Mixevac III (Stryker Plc., Michigan, USA) before applying to the 

bone and implants. The cement was applied all over the implants including the keels. The 

implants were hammered into position and a strong pressure was maintained for 10 minutes 

(from the start of cement mixing). Excess cement was removed. 

The same cementation technique was used for the femora. If the resection surface was 

slightly sclerotic, the bone surface was perforated with a 2 mm drill to allow cement 

penetration. Note that only femora CAD07 and CAD10 required second stage cementation 

as all the others were cemented at stage one. 

Half of the tibia bone-constructs were randomly chosen (CAD1, CAD4, CAD6, CAD7, 

CAD10) for a suction cementation: As presented in Figure 50, a suction tube was placed 

approximately 10 mm under the transverse resection, through the predrilled hole at the 

anteromedial aspect (part of the arthroplasty procedure). The position of the tube was 

confirmed by pouring water over the resection to check that it was displaced into the suction 

tube. The vacuum was maintained for 8 minutes after cement application. 
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Figure 50 - Photo showing insertion of suction tube during suction-cementation of a UKR tibial tray. 

After cementation, the same test procedure was repeated on the bone-constructs. 

Throughout the testing, the bones were regularly hydrated and all the tests were performed 

within 5 days of thawing. 

5.3 Method – Data Processing 

The mechanical testing generated 67,500 cycles of strain gauge data and 9,000 cycles of 

LVDT displacements. Matlab software (Mathworks Ltd, Massachusetts, USA) was used to 

process the data. 

The gauge data files were imported into Matlab and saved as a data structure (class 

structure in Matlab) identified by specimen (1-10), fixation type (cemented/cementless), 

version (1-3), load position (tibia: central, anterior, posterior, medial; and femur: 0 to 30 

degrees) and gauge number (1-15). 

Although the gauges were balanced before every set of experiments (0 Volts at 0 kN force), 

the voltages drifted between experiments. Note that the effects of drift were minimised with 

the data processing conducted to analyse the results. The drift occurred because the bone 

exhibited viscoelastic behaviour and the strain gauge was sensitive to heat and moisture. 

With progression of the experiments, slight warping of the bone was visually evident and 

some of the implants migrated with repeated loading. It was therefore deemed important to 

calculate the amplitude of the cycles to calculate the strains accurately. 

Although considerable care was taken when handling strain gauges, some were damaged 

during the mechanical tests; sometimes only temporarily but most damage was permanent 

due to debonding. Each strain gauge dataset (of 6750 datasets) was plotted with time and 

individually checked for reliability. The gauge was considered unreliable if it was 

unresponsive, lagged, or exhibited irregular behaviour against the load profile. Eighty-seven 
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percent of the tibia and 99 percent of the femur rosettes were considered reliable. Of those 

rosettes considered unreliable, sometimes only one of the gauges had stopped working; 

therefore, the working gauges were analysed and if deemed appropriate results extracted. 

For each experiment (set of 15 gauge data), the most prominent response was selected and 

analysed to determine the times at which the peaks and troughs occurred. For all the 

remaining 14 gauges in the experiment, the peak and trough values were determined from 

these times. This was repeated for all 450 experiments. The amplitudes of each cycle were 

determined and the averages and standard deviations calculated with the first two cycles 

excluded. 

A Matlab program was written to find the peaks and troughs in a dataset. The data was 

smoothened with a moving average algorithm of 5 data points (0.5 seconds). The gradient of 

the data series was calculated (difference between consecutive data points). A peak or 

trough was identified when the gradient was zero. The algorithm determined whether the first 

turning point was a peak or a trough and it searched looking for the alternate. Other search 

parameters (such as cycle time of 24 seconds) were included to exclude intermediate local 

peaks and troughs. If all ten cycles were not identified in the first iteration, the algorithm 

automatically modified the search parameters until the correct solution was found. 

The voltage readings were converted to microstrains using the following equation (Vishay 

Measurements Group, Tech Note TN-507-1):  

   
         

      
  

where, GF = 2.1 gauge factor, Vin = 2.5 V, and Vout = gauge readings in mV. 

All the rosettes were oriented with gauge 2 aligned along the bone shaft. The maximum and 

minimum principal strains and principal strain directions were calculated using the following 

equations: 
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If gauges 1 or 3 were identified as unreliable, the principal strain directions in previous 

measurements were checked and if they were aligned within 5 degrees of gauge 2, then the 

minimum principal strain was calculated from gauge 2. If gauge 2 was identified as 
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unreliable, and checks revealed that the principal direction was aligned with the rosette and 

the assumption of uniaxial strain was considered valid, then the minimum principal strain 

was calculated from the mean of gauges 1 and 3: 
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The LVDT displacements were also processed using Matlab. The datasets were imported 

into Matlab and saved as a data structure (class structure in Matlab) identified by specimen 

(1-10), fixation type (cemented/cementless), load position (tibia: central, anterior, posterior, 

medial; femur flexion: 0 to 30 degrees), and LVDT position (tibia: MM1-MM6). The datasets 

were resampled at a rate of 10 Hz and the cycle amplitudes calculated using the algorithm 

described above. The average and standard deviations were calculated with the first two 

cycles excluded. 

5.4 Method - Statistical Analysis 

The Kolmogorov-Smirnov non-parametric test was used to test all variables for normality 

using SPSS software (IBM Software Group, New York, USA). The test confirmed that all 

bone-implant displacement and bone strain variables were normally distributed and that a 

two sample student t-test was suitable for testing statistical difference of the following 

parameters: 

 Minimum principal strains between cemented and cementless implanted tibia; 

 Minimum principal strains between cemented and cementless implanted femur; 

 Bone-implant displacements between cemented and cementless implanted tibia; 

 Minimum principal strains between normal-cemented and suction-cemented 

implanted tibia; 

 Bone-implant displacements between normal-cemented and suction-cemented 

implanted tibia. 

5.5 Results 

The strain readings were repeatable with an average standard deviation of 43 µε ranging 

from 16 µε (for tibia CAD1) to 122 µε (for the tibia CAD3). The average standard deviation 

within each set of 10 load cycles was 24 µε. The average minimum principal strains at each 

rosette under each loading condition are presented in Figure 51 and Figure 52 for the tibia 

and femur, respectively. There was a statistically significant decrease in bone strains when 

tibia implants were cemented (T(164)=-4.30, P=0.00003). With the Bonferronni post-hoc 
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correction used to account for multiple comparisons, this result remained statistically 

significant. A statistical difference was not found between cementless and cemented 

implanted femora. 

Figure 53 and Figure 54 present average minimum principal strains at each rosette location 

for each pair of tibiae and femora, respectively. Assessing a range of bone specimens was 

found to be necessary because the bone strains were different between donors, as 

demonstrated with an ANalyis Of VAriation (ANOVA) test: Performed on the tibia and femur 

pairs, a statistically significant difference in means was observed (tibia: F(4,36)=6.136, 

P=0.001; and femur: F(4,16)=6.952, P=0.001).  
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Figure 51 - Comparison of average measured Min Principal Strains between cemented and cementless 

tibial implants. The full error bar is one standard deviation. Cemented implant bone strains were lower 

(statistically significant). 

 

Figure 52 - Comparison of average measured Min Principal Strains between cemented and cementless 

femoral implants. The full error bar is one standard deviation. No statistical difference. 
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Figure 53 - Average minimum principal strain when the bearing is 5 mm posterior from the centre of the 

tibial tray. Both cemented and cementless bone strains are presented showing the variation amongst the 

specimens. The specimens are in order of increasing density. The error bars represent one standard 

deviation. The results of the pair of specimens from each donor were averaged. 

 

Figure 54 - Average minimum principal strain when the femur is at full extension. Both cemented and 

cementless bone strains are presented showing the variation amongst the specimens. The specimens 

are in order of increasing density. The error bars represent one standard deviation. The results of the 

pair of specimens from each donor were averaged. 
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Figure 55 - Plot of minimum principal strain against bone mass for all tibia specimens. Bone strains 

reduce with bone mass particularly at the proximal posterior. The anterior medial strains were not 

correlated to bone mass. 

 

Figure 56 - Plot of minimum principal strain against bone mass for all femur specimens. The anterior 

medial strains were not correlated to bone mass. 
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Figure 57 - Plot of minimum principal strain against bone density for all specimens at rosette positions 

located on the cortical bone. There was no correlation between density and strain for other gauges. 

 

Figure 58 - Plot of minimum principal strain against bone density for all femur specimens. 

The minimum principal strains were tested for correlation against bone density, bone volume 

and bone mass. The highest pooled correlation was achieved with bone mass (R2 =0.21 for 
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tibia R2=0.40 for femur) and bone volume (R2 =0.18 for tibia and R2 =0.34 for femur) and the 

correlation with bone density was smaller (R2 =0.04 for tibia and R2 =0.27 for femur). When 

individual locations were analysed, bone density was correlated with cortical bone strain, as 

illustrated in Figures 57 and 58. Figures 55 and 56 present correlation coefficients of 

minimum principal strain against bone mass at each strain gauge location.   
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Figure 59 - Average transverse interface displacement at medial aspects of the implant. The error bars 

show one standard deviation from average. 

 

Figure 60 - Average transverse interface displacement at anterior and posterior aspects of the implant. 

The error bars show one standard deviation from average. 

 

Figure 61 - Average surface-normal interface displacement at anterior and posterior aspects of the 

implant. The error bars show one standard deviation from average. 
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Figure 62 - Comparison of surface-tangent interface displacements of a flat (specimen CAD1) and uneven 

(specimen CAD2) UKR resections. 

The measured bone-implant displacements are presented in Figures 59 to 61. They 

demonstrate that cemented displacements 16.8 ± 35.8 μm (mean ± SD) were less than 

cementless displacements 67.3 ± 80.9 μm (T(177)=-9.23, P=0.0001). With the Bonferronni 

post-hoc correction used to account for multiple comparisons, this result remained 

statistically significant. 

There were inter-specimen differences in bone-implant displacement. The quality of the 

bone resection effected displacement, with higher interface motion for uneven resections. 

Figure 62 presents a comparison of two specimens (of the same donor) and demonstrates 

that the difference in means (flat: 14.4 ± 10.6 μm; uneven: 37.9 ± 18.8 μm) was significant 

(T(15)=-5.07, P=0.0001). No correlations were found between bone density/mass and bone-

implant displacements. For specimens CAD3/4 surface-tangent displacements were 33 ± 24 

μm and surface-normal displacements 247 ± 190 µm; these were markedly higher than for 

the other specimens (surface-tangent displacement 15 ± 9 µm and surface-normal 

72 ± 49 µm). 

Bone-implant displacement is indicative of lack of osseointegration (Jasty et al., 1997a) and 

has been linked with radiolucencies (Kwong et al., 1992). The measured results were 

analysed to understand the distribution of the bone-implant displacements. Figure 63 

presents the distribution of surface-tangent and surface-normal displacements between 
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cemented and cementless implanted tibiae. The cemented surface-tangent displacements 

were less than 20 µm while 75% of the cementless displacements were less than 50 µm. 

The surface-normal displacements were significantly higher with 60% greater than 100 µm. 

 

 

Figure 63 - Percentage distribution of measured interface displacements on cemented and cementless 

implant specimens. Surface-normal displacements are significantly higher and spread out.  

 

 

Figure 64 - Comparison of pooled results of normal cementation and suction cementation. Minimum 

principal strains and bone-implant displacements have been compared. Student t-test results showed 

that a difference could not be proved. 

The effect of cementation method on bone strain and bone-implant displacement was 

compared by pooling the results, as illustrated in Figure 64. Comparison of pooled data 

strains and pooled data bone implant displacements revealed no statistical difference; 

however, there were statistically significant differences when specific parameters were 

compared. A comparison of cortical bone strains (rosettes 1 and 2) showed that suction-
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cemented cortical bone strains were lower than normal cemented strains (T(33)=-2.22, 

P=0.03). A comparison of bone-implant displacements revealed that three pairs had 

statistical significance showing displacements were less when suction-cementation was 

used CAD1/2 T(14)=4.15, P=0.001, CAD3/4 T(7)=2.39, P=0.048, CAD5/6 T(12)=2.59, 

P=0.024. The other two tibia pairs showed an opposite trend ( suction-cementation 

displacements higher than normal-cementation) but they were not statistically significant. 

5.5.1 Comparison to Literature 

The measurement techniques used in this study are well established and have been 

adopted in numerous in-vitro cadaveric studies in the literature. Strain gauges on cadaveric 

bone have been shown to accurately measure surface bone strains (Milgrom et al., 2004). 

Strain gauges have even been mounted on living human subjects (Burr et al., 1996, Lanyon 

et al., 1975). Bone-implant micromotion is difficult to measure physically, due to the small 

motions involved and the difficulty in taking measurements at the bone-implant interface. 

Using LVDTs to measure the relative displacement of implant and bone is an established 

technique (Cristofolini et al., 2007, Chong et al., 2010). Assuming that surface deformations 

of adjacent measurement points are small, it is implied that the measured displacements are 

representative of the micromotion at the interface (refer to Sub-section 6.4 for details of an 

in-silico reference study). 

Studies investigating cadaveric tibial bone strains are common in the literature: Gray et al. 

(2008) tested a single UKR implanted cadaveric tibia and Varghese et al. (2011) tested 

multiple intact tibiae. However, this is the first study that has measured multiple UKR 

implanted tibiae. For the femur, studies of multiple cadaveric specimens have been 

published (Schileo et al., 2007); however, none have investigated the distal femur or 

investigated UKR implanted strains. In addition, none have investigated bone strains and 

bone-implant displacements of cemented and cementless UKR implants. 

The bone strains measured are within the large range of strains reported in the literature for 

both in-vivo (Al Nazer et al., 2012) and in-vitro studies. For a comparable in-vitro study, Gray 

et al. (2008) reported tibia strains of up to 500 µε (cortical bone) under 0.5 kN which 

compares to our maximum strains of 1200 µε (most distal tibia rosette) under 1 kN. The 

average standard deviation of 43 µε (24 µε within each set of 10 load cycles) is higher than 

that reported by Gray et al. (2008) (maximum 28 µε) because: (1) final loads were held for 

only 2 seconds (not over 30 seconds as was done in previous studies); (3) final loads were 

greater; (4) multiple specimens were assessed (repeatability was specimen dependent); and 

(5) the experiments were repeated only after all load configurations were tested (specimens 

prone to damage accumulation). 
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Bone is viscoelastic, so to ensure repeatable strains, previous studies have applied a single 

specimen load (non-cyclic) and maintained it for at least 30 seconds before taking readings. 

The drawback of this technique is that it is unrepresentative of in-vivo conditions where high 

loads are usually applied in multiple cycles with short periods e.g. walking, stair climbing, 

jogging etc. It was postulated that if repeated cycles were applied, it would provide some 

repeatability and would also help to understand the uncertainty of predicting such bone 

strains. In this respect the methodology employed in this study was unorthodox compared to 

the literature but more realistic for assessing in-vivo strains.  

5.5.2 Viscoelasticity and Implant Migration 

Bone exhibits viscoelasticity, which is the behaviour of a material to exhibit the mechanical 

characteristics of viscous flow and elastic deformation. It deforms very slowly and 

progressively under constant stress (creep). Bone strain is made up of both recoverable 

(temporary deformation) and permanent deformation. The viscoelastic nature of bone was 

evident from the strain response measured on the strain gauges; two cycles of load were 

usually required for the bone to reach a stable and consistent lower strain value, as 

presented in Figure 65.  

 

Figure 65 - Typical strain gauge reading, showing two cycles to reach a stable repetitive cyclic bone 

strain response. 

The permanent deformation of bone was not observed in the strain measurements, because 

the measurement period was too short, but was noted visually when comparing photographs 

of the shape at the start and end of the set of experiments. The implants migrated as 

displayed by the photographs of specimen CAD4 in Figure 66. A similar pattern of implant 

migration is commonly seen in UKR patients (Ryd et al., 1983). Although implant migration 

was clearly apparent in tibia specimens CAD3/4, it was not apparent in all the specimens. 

The femoral components of the same donor CAD3/4 did not migrate enough to be visually 

apparent. Tibial trays may be more prone to migration than femoral components and 

particularly in subjects with low quality bone.  
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Figure 66 - Migration of tibial implant under cyclic loading leading to bone collapse at the anterior-lateral 

resection corner. 

The displacement of the load applicator gradually increased at a declining rate with 

consecutive cycles. For cementless implants, during the first ten cycles, the displacement 

increase ranged from 0.005 to 0.02 mm per cycle depending on bone density. This gradually 

reduced with progression of the experiment. Unfortunately, it could not be ascertained what 

portion of this displacement was migration and viscoelasticity and whether migration settled 

(the recoverable and permanent components of deformation could not be differentiated).  

The permanent deformation of bone (under reasonable but not excessive strains) is partly 

due to accumulation of fatigue damage under repeated cycles. The resected bone 

immediately under the implant is weaker than the surrounding bone because it is primarily 

composed of half cut open trabeculae. As a result, this is the first region to fail and collapse, 

exhibiting what appears to be implant migration (Figure 67). The resected corner is the 

region of highest bone strain (refer to Section 9); therefore, this is where tibia specimens are 

most likely to fail next (Figure 67). 
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Figure 67 - Posterior of tibial specimen CAD4, showing emergence of a crack at the resection corner. 

5.5.3 Bone Failure 

Micro-cracks develop during cyclic loading of bone (Donahue et al., 2000, Fazzalari et al., 

1998); however, in living tissue the rate at which they develop is usually less than the rate of 

repair of the damage by bone remodelling (the osteoblasts counterbalance the damage). 

How these micro-cracks develop is unclear; however, studies have shown that they can 

develop under low strains (900 µε) (Donahue et al., 2000) and are significant above 4000 µε 

(Pattin et al., 1996). A low load of 1 kN was chosen to minimise damage accumulation; 

however, due to the wide inter-specimen variation highlighted in this study, the weaker 

specimens may have suffered accumulated damage. The effects of accumulated damage 

would be: the measured strains would alter as micro-fractures coalesced forming cracks that 

spanned across whole trabeculae;  measurements would be less repeatable with higher 

standard deviations; these damaged specimens would also exhibit principal strain direction 

change (deviating from axial alignment); and near the implant surface this would manifest as 

higher bone-implant micromotions. Tibia specimens CAD3/4 exhibited these characteristics 

and part-failed during cementless implant testing, as displayed in Figure 67. This was 

probably due to rapid damage accumulation as bone strains in the vicinity of the implant 

were higher than average. 

Retrospective analysis of CT measured parameters (bone mass and density) did not identify 

CAD3/4 to be at increased risk of premature fracture compared to the other specimens: 

Specimen CAD5 had the lowest bone density and CAD10 had the lowest bone mass and 

neither failed prematurely. Bone architecture may have an important role to play (Lee et al., 

1991). It was apparent when handling CAD3/4 that trabecular pore sizes were larger than 

other specimens; a property that isn’t identifiable from standard CT scanners.  

As discussed in Sub-section 5.5.5 and supported by computer models (Sub-section 0), 

cementless implants may be more susceptible to migration and bone failure. The results 
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reveal a statistically significant increase in strains in cementless implants (T(164)=-4.30, 

P=0.00003) and this is supported in the literature (Seeger et al.). 

5.5.4 Clinical Considerations 

The UKR arthroplasties were performed in the laboratory and dissected to remove all soft 

tissues. Examination of the tibia resection surfaces revealed that they were not perfectly flat. 

Specimen CAD2 had a dip in the posterior-middle that extended up to 3 mm deep, and this 

had a degrading effect on fixation performance (refer to Section 6). This occurred because 

under minimally invasive surgery (51.5% of surgeries (Schindler et al., 2010)) the posterior 

part of the resection is visually hidden from the surgeon. In the clinic the surgeon may have 

been more careful with the preparation and the final state may not have been so poor. 

However, the flatness of the resection is clearly an important factor to consider for UKR 

fixation. 

The keel resection is usually performed using a reciprocating saw followed by press-fit 

implant template. Upon dissection it was found that one of the tibiae had been over-cut, 

penetrating through the posterior cortex, as illustrated in Figure 68. Although the tibia did not 

fail here, the observation is crucial for improving future implant designs and operating 

procedures, and consideration for investigating fixation at the keel. This error can occur in 

clinical cases, when the tip of the saw passes down into softer bone (D.W. Murray, personal 

communication). 

 

Figure 68 - Overcut keel resection. The reciprocating saw penetrated through the proximal-posterior tibia 

and was unnoticed by the surgeon. 

The posterior resection of the femur is also visually hidden from the surgeon during 

minimally invasive arthroplasty. Figure 69 shows an overcut of one of the femora. The 

femoral bone is not in contact at the implant posteriorly which creates higher strains at the 

stem. If the surgeon is aware of the overcut, the surgeon may be able to repair with cement; 

however, it is difficult to get it perfect due to visual restrictions. As presented in Figure 69, 

the femoral posterior can be overcut. Even when the femoral posterior resection is 

performed parallel to the implant, the design does not encourage cement pressurisation 
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when the implant is inserted (Clarius et al., 2010). Note that the cementation of the femur in 

Figure 69 was done once all soft tissue was removed. 

 

Figure 69 - Overcut femur posterior (left) and cemented to fill the gap (right). Since the femur posterior is 

hidden from view during arthroplasty, it is difficult to achieve a perfect resection. 

The femoral spherical reamer penetrates deep into the anterior surface of the femoral 

condyle. Significant trimming of the sharp anterior rim is required to prevent impingement 

exposing a potential stress raiser. 

 

Figure 70 - Femoral condyle after spherical milling. The cutter penetrates deep into the anterior surface 

and significant anterior trimming is required to prevent impingment. 

Once all testing was complete the specimens were loaded to fracture. The tibiae fractured at 

the resected corner (Figure 71) and the femora fractured at the reamed corner (Figure 72). 

 

Figure 71 - Implanted tibia which failed at the resection corner. The bone around the whole implant 

fractured at a depth of 2-8 mm from the cement-line. 
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Figure 72 - Implanted femur which failed at the anterior resection. 

The implications of the observations on fixation have been considered and discussed in the 

preceding chapters of this thesis. 

5.5.5 Cemented Versus Cementless Fixation 

The cemented fixation of tibial implants produced lower bone strains compared to 

cementless fixation (T(164)=-4.30, P=0.00003). However, a statistically significant difference 

was not found between cemented and cementless femoral implants. 

The reasons for this difference (for tibial trays) were two-fold: (1) due to load distribution of 

the cement-layer and mantle; and (2) due to slight differences in tibial tray design. The tibial 

implant included a recess around the rim which was approximately 0.2-1.0 mm proud of the 

under-surface. When cemented, the rim had no effect on load distribution because the 

cement filled the void. Although the cementless version of the implant was coated in HA, the 

rim was still proud. Therefore, the load path was through the outside rim of the implant, 

creating higher strains on the cortex of the proximal tibia. The implications for fixation are 

that cementless implants may be more prone to migration, particularly in weaker bone. The 

interior bone was shielded against strain. In the clinic, the interior bone would be shielded for 

the first few weeks post-arthroplasty until osseointegration occurred. Once osseointegration 

has occurred, it is anticipated that the load path may return towards the centre. The 

implications of stress-shielding on osseointegration are unclear; however, clinical 

observations show good osseointegration with this particular type of cementless implant 

(Pandit et al., 2009). It must be noted that since cementless implants are chosen for patients 

with good quality of bone, high migration would not be observed in retrospective patient 

studies unless a randomised trial was conducted.  

The small bone strain differences between cemented and cementless femora may be 

because there is negligible difference to load distribution over the implant interface. Full 

bone-implant contact may be occurring for both implants. The effect of the following 

differences must be small: (1) inclusion of a cement-mantle; and (2) design differences 
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(underside rim thickness of cementless implant has negligible effect when placed on a 

spherical bone resected surface or the bone at the rim deforms sufficiently to enable load 

path through the whole implant under-surface). 

The bone-implant displacements of the cemented implants were less than cementless 

implants (statistically significant T(177)=-9.23, P=0.0001). Therefore if no changes occurred 

to primary fixation, we would expect it would be most likely that radiolucencies would 

develop in the cementless cases rather than the cemented. Since current evidence for the 

Oxford UKR is on the contrary (Pandit et al., 2009), we must conclude that cemented 

radiolucencies must be occurring due to changes to the bone-implant interface post-

arthroplasty. Miller et al. (2010) reported post-mortem-retrieved cement-bone interfaces of 

THRs to be more compliant compared to laboratory prepared specimens. Possible factors 

excluded in laboratory assessments that may influence interface micro-mechanics post-

arthroplasty include: (1) bone resorption due to stress-shielding; (2) bone thermal necrosis 

from exothermic cement or cutting tools (3) fatigue-damage accumulation with inhibited bone 

regenerative response. 

Excessive stress-shielding can lead to bone resorption and has been related to 

radiolucencies and implant loosening. As presented in Sections 7 and 8 and supported by 

the literature (Gillies et al., 2007, Dabirrahmani et al., 2008), bone resorption can occur 

under the UKR tibial tray. However, there is little evidence to suggest that bone resorption in 

UKR is catastrophic and is solely responsible for failures; this is supported by the studies 

presented in Sections 7 and 8, but it may well be a contributing factor. 

Thermal necrosis of bone can occur from temperature elevation from exothermic cement or 

reciprocating surgical tools. A study of UKR and TKR arthroplasties showed that median 

maximum temperatures, 2 mm below the resection surface, were 47 °C during cutting and 

37 °C during cement curing (Larsen and Ryd, 1989). A threshold temperature for bone 

necrosis is dependent on temperature and exposure time; estimates range from 44 °C 

(Eriksson and Albrektsson, 1984) to 70 °C (Berman et al., 1984). A study on rabbits 

(Eriksson and Albrektsson, 1984) showed that temperatures above 44 °C impaired bone 

regeneration. 

As discussed above, bone accumulates fatigue damage and if bone regeneration is 

impaired, micro-fractures will coalesce and bone will fail. Figure 71 illustrates how one of the 

tibia bones failed just under the bone-cement interface. With inhibited bone regeneration, 

micromotion may increase, causing fibrous tissue to form or leaving a region of osteoporotic 

bone. These would appear as radiolucencies (Kwong et al., 1992) that are commonly seen 

in the clinic (Gulati et al., 2009a). If bone regeneration was impaired at isolated regions of 
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the bone-implant interface, then incomplete radiolucencies would be indicative that there 

was some fixation, sufficient to prevent complete failure.  

5.5.6 Suction-Cementation 

Although there were no statistical differences between suction-cemented and normal-

cemented UKR bone strains or bone-implant displacements with the pooled data, there were 

statistical differences when individual parameters were assessed. Comparing cortical bone 

strains (rosettes 1 and 2) showed that suction-cemented cortical bone strains were lower 

than normal cemented strains (T(33)=-2.22, P=0.03).  

There were also statistical differences between individual pairs of knees: In all pairs, except 

CAD3/4, the higher density tibia pair (irrespective of cementation method) had lower strains - 

statistically significant for CAD1/2 (T(19)=-2.69, P=0.015) and CAD5/6 (T(19)=-2.56, 

P=0.024). For the exception CAD3/4, the lower density tibia pair (suction-cemented) had 

lower strains (T(19)=-3.11, P=0.006). Out of all the specimens, CAD3/4 had the smallest 

difference in average density (difference of 0.004 g/cm3); however, CAD3/4 also fractured 

during cementless experiments and had to be repaired for the cemented experiments. 

Therefore these results may reflect the quality of the repair conducted and not suction-

cementation. Note that there was no statistical difference in bone density between the 

randomly selected normal-cemented and suction-cemented knees (T(4)=1.34, P=0.25). 

The results suggest that both higher bone density and suction-cementation cause bone 

strain to reduce. However, the effect of suction-cementation is minimal compared to the 

effect of small changes in bone density.  

Bone-implant displacements of normal-cemented and suction-cemented tibiae were also 

individually tested for statistical significance. Of the three pairs that had statistical 

significance, they all showed that displacements were less when suction-cementation was 

used CAD1/2 T(14)=4.15, P=0.001, CAD3/4 T(7)=2.39, P=0.048, CAD5/6 T(12)=2.59, 

P=0.024. Although the other two tibia pairs did not demonstrate statistical significance, they 

showed an opposite trend with suction-cementation displacements higher than normal-

cementation. 

Only 5 cadaver pairs were compared for suction-cementation and based on the analysis 

described above, there was not enough statistical power in the experiments to prove overall 

statistical difference. It would be useful to test more specimens. 
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5.6 Conclusion 

Ten tibiae and femora implanted with the Oxford mobile-bearing UKR were mechanically 

tested in-vitro and bone strains and bone-implant displacements were obtained for FE model 

validation. UKR arthroplasty was performed on all ten cadaveric specimens by a practicing 

surgeon. Practical considerations such as surgical technique, surgical error and qualitative 

observations of bone response, were noted.  Effects of fixation type were assessed. 

Cementless fixation produced higher proximal tibia surface strains and bone-implant 

displacement than cemented fixation. A statistical difference between normal-cemented and 

suction-cemented UKR tibial implants was not demonstrated with the small number of 

specimens available. 

Bone strains reduced with bone mass; however, no indications from CT scans were evident 

to identify premature failure of one of the donors. There were no observable correlations 

between bone mass/density and bone-implant displacements; however, the two specimens 

that failed prematurely exhibited elevated displacements compared to the others. 
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6 Validation of FEA Predictions of Bone Strain and Bone-Implant 

Motion  

6.1 Introduction 

Finite Element (FE) models require simplifications and assumptions regarding geometry, 

materials and boundary conditions. The impact of these simplifications and assumptions 

must be verified and understood in order to use the models effectively. Sensitivity 

assessments provide an initial verification (refer to Section 4) and physical validation 

provides a final check to confirm that results reflect reality.  

This section describes the validation of the FE models of the tibia and femur post-UKR. 

Development of bone material property input parameters were described in Section 2, the 

boundary conditions for walking and stair-climbing were described in Section 3, and the FE 

techniques developed to model the UKR tibia and femur were described in Section 4. In light 

of the literature review and studies described in Sections 2 to 4, validation is important to 

prove credibility of the computer predictions of UKR bone strains and bone-implant 

micromotions.  

In Section 5, the in-vitro mechanical experiments conducted on 10 human cadaveric knees 

were described, and the results presented and analysed. The measured bone strains and 

bone-implant displacements have been compared to FE model predictions in this section.  

There are distinct challenges with modelling the proximal tibia and distal femur: (1) 2-4mm 

tetrahedral elements will not capture the thin 0.2 mm cortical bone (cortex) surrounding the 

proximal tibia or distal femur; (2) bone strains are sensitive to bone material property 

allocation; (3) there is uncertainty in the knee forces due to limitations of the literature. Most 

validation studies performed in the literature are of diaphyseal bone strains (of thick cortical 

bone). Validating metaphyseal bone strains (of the proximal tibia and distal femur) is 

distinctly more challenging: Not only is modelling difficult (thin cortex), but measurement of 

bone strains is difficult (due to difficulty of attaching strain rosettes to such regions).  

There are numerous examples of the validation of predictions of bone strains in the 

literature. A basic form of validation (and by far the most economical) is validation against 

composite bones (Cristofolini et al., 1996). However, composite bones are simplistic, they do 

not accurately capture: (1) the inhomogeneous and anisotropic behaviour of bone; and (2) 

inter-specimen variation. In-vitro validation against cadaveric specimens is more challenging 
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due to the complexities associated with specimen preparation; bone cortices have to be 

carefully prepared for strain gauge attachment and the experiments have to be conducted 

within a few days to ensure that specimens do not decompose. Most cadaveric validation 

studies in the literature have used only one specimen (Barker et al., 2005, Bitsakos et al., 

2005, Chong et al., 2010, Gray et al., 2008, Gupta et al., 2004). Recent studies have 

included multiple specimens (Schileo et al., 2007, Varghese et al., 2011). 

The following study is the first to validate multiple UKR tibiae and femora for bone strain and 

bone-implant displacement. This section demonstrates the reliability of the method 

developed in Section 4 and the FE models developed herein. 

6.2 Method 

6.2.1 Geometry Generation 

Eight separate FE models (4 femora and 4 tibiae) were developed to represent cadaveric 

bone specimens tested in the laboratory. The models were developed in line with the 

conclusions of Section 4. Solid tetrahedral quadratic elements, of mesh size 2-4mm, were 

used. The bones were CT scanned using a “Definition AS+” Computed Tomography (CT) 

scanner (Siemens Healthcare, Germany) as described in Sub-section 4.3.1. The coronal 

voxel sizes were in the range 0.5-0.7 mm and slice thicknesses were 0.5-0.7 mm.  

As described in Sub-section 4.3.2, the tibiae and femora were segmented manually using 

AVIZO 6.1 software (Visualization Sciences Group, USA) and the surfaces smoothed and 

meshed using triangular elements of 3 mm length. Separate meshes of the cortical bone 

geometries were generated. The surface geometries were imported into MARC Mentat 2010 

software (MSC Software Corporation, USA) where the cortical and cancellous geometries 

were merged together while maintaining the cortical-cancellous boundary. The bones were 

transformed into a new axis (Anatomical Tibial axis for the tibia and Posterior Condylar axis 

for the femur, as described in Sub-section 4.3.2) based on identifiable bone landmarks.  
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Figure 73 - Development of FE models from CT scans. 

As described in Sub-section 5.2, the cadaveric specimens were registered using the Polaris 

Optical Tracking System (Northern Digital Inc., Ontari, Canada). The positions of the strain 

gauges, LVDT anchor points, implant resections, and steel base were measured relative to 

the surface profile of the specimen. The registered points were mapped onto the bone 

models. The virtual implantations were performed as described in Sub-section 4.3.5 so that 

the implants were aligned to the mapped points. The five 5x8 mm strain gauge rosettes were 

represented with eight elements forming a diamond around a central node, four corner 

nodes and 4 mid-side nodes. Single nodes were positioned at the LVDT anchor points. The 

surface nodes of the bone shafts that corresponded to the positions of the steel pots were 

fixed in x, y and z coordinates. 

6.2.2 Mesh Parameters 

Both cemented and cementless implant models were developed for the tibiae. The 

cementless implant models included a contact interface between the implant and bone, with 

a friction coefficient of 0.4. The implant was in contact around the rim (four elements wide, 

1.2 mm size elements), and the underside inner surface (hydroxyapatite coated region) 

recessed by 0.2 mm. The cementless models were formed of linear tetrahedral type 134 

elements and the proximal tibial cortex modelled using 0.2 mm thick linear triangle shell type 

138 elements (refer to Sub-section 4.5). The cemented implant models shared nodes at the 

bone-cement and cement-implant interfaces. A 2 mm deep cement-mantle was modelled 

(refer to Sub-section 4.4). The cemented models were formed of quadratic tetrahedral type 

127 elements, with the proximal tibial cortex modelled using 0.2 mm thick quadratic one-side 

collapsed quadrilateral shell type 22 elements (refer to Sub-section 4.5). The shell and 
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tetrahedral element edge nodes were shared while the mid-side nodes were left coincident 

and independent (for algebraic compatibility). 

The cemented implant models of the femur were similarly formed of quadratic tetrahedral 

type 127 elements. The models were fully fixed at the bone-cement and cement-implant 

interfaces with the 2 mm deep cement mantle. One of the femur models was also modelled 

with a cementless implant. Note that the cementless femoral implant has an additional 

fixation peg at the anterior portion and stretches slightly more anteriorly than the cemented 

version. The model was formed of linear tetrahedral type 134 elements with 1.2 mm size 

elements at the bone-implant interface. The implant underside inner surface (the hydroxy-

apatite coated region) was recessed by 0.2 mm. 

6.2.3 Material Parameters 

The implants were assigned with an isotropic elastic modulus of 210 GPa (corresponding to 

Cobalt Chrome) and the cement mantles were assigned with 1.8 GPa (refer to Sub-

section 4.4). 

For the baseline model, bone elastic moduli were assigned separately to the cancellous and 

cortical materials. The cancellous moduli were assigned on an element-by-element basis, 

assuming isotropy, using a linear relationship to calculate apparent density from CT grey 

scale values (as described in Sub-section 2.3) followed by a three-part relationship to 

calculate elastic moduli (as described in Sub-section 2.4). The cortical bone was 

represented with a single isotropic elastic modulus that was determined from an estimation 

of the average CT value of the cancellous bone. As illustrated by Figure 74, the elastic 

moduli predictions of cortical bone were lower than expected; the literature reports cortical 

bone moduli ranging from 14-20 GPa. The tibia showed the greatest inter-specimen variation 

of cancellous bone. Since the cortical bone elastic moduli predictions were unconvincing, a 

single cortical modulus was assigned based on the relative density of the cancellous bone.    



Validation of FEA Predictions of Bone Strain and Bone-Implant Motion  144 

 

Figure 74 - Distribution of bone volume per 0.5 GPa interval of elastic moduli in proximal 10 cm of tibia 

and distal 10 cm of femur specimens. The cortical bone elastic moduli were assigned based on the 

average of the actual cancellous bone elastic modulus (derived as described in Sub-section 2.4). 

To confirm that this material allocation technique was appropriate, variations of this baseline 

model were created for tibia specimen CAD1:  

Baseline. Cancellous element moduli were derived from site-specific CT data. A single 

modulus of 18 GPa was assigned to all cortical solid elements and cortex shell 

elements. 

Model 2. Cancellous element moduli were derived from site-specific CT data. The cortical 

element moduli were scaled from site-specific CT data such that average was 

18 GPa (scaling factor of 1.3). A single modulus of 18 GPa was assigned to all 

cortex shell elements. 

Model 3. Cancellous element moduli were derived from site-specific CT data. The cortical 

element densities were derived using an alternative linear relationship (gradient 

scaled by 1.2 of the original). The elastic moduli were derived as per normal from 

these new densities, using site-specific CT data. A single modulus of 18 GPa 

was assigned to all cortex shell elements. 

Model 4. A single modulus of 1.8 GPa (based on average CT data) was assigned to all 

cancellous elements and 18 GPa to all cortical and cortex shell elements. 

Model 5. Cancellous and cortical element moduli were derived from site-specific CT data. 

The cortical elements on the outside boundary were identified and a single 

modulus of 18 GPa was assigned to these solid elements and all cortex shell 

elements. 

Model 6. Cancellous element moduli were derived from site-specific CT data. A single 

modulus of 18 GPa was assigned to all cortical solid elements. Cortex shell 

elements were omitted. 
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Model 7. All cancellous and cortical element moduli were derived from site-specific CT 

data. A single modulus of 18 GPa was assigned to cortex shell elements. 

Figure 75 illustrates the adjustments made to the cortical bone elastic moduli based on the 

variations of models 2, 4, and 6 (described above) from baseline. 

 

Figure 75 - Transverse slices of FE models of specimen CAD1, illustrating the effect of adjustments made 

to cortical bone elastic moduli. 

6.2.4 Boundary Conditions 

The boundary conditions applied to the models represented the experiments performed in 

the laboratory. On the tibia models, a force of 1 kN was applied sequentially at 4 bearing 

positions: the bearing centre at (1) 5 mm anterior to the centre; (2) centre; (3) 5 mm posterior 

to the centre; and (4) 5 mm medial to the centre. The full 1 kN force was applied to a single 

node (since the implant stiffness was 50-200 fold greater than that of the bone, the force 

distribution is insensitive to how the force is applied to the implant). On the femur models, 

the force of 1 kN was applied sequentially from -10 degrees to 60 degrees knee flexion at 

increments of 10 degrees. 

The forces were aligned to match the laboratory experiments. However, it was noticed that 

during the experimentation, the specimens deformed (unloaded state) with time and implants 

migrated under repeated forces. As the force on the bone construct was increased, the 

increased deformation caused small changes to the force direction. This accompanied with 

unavoidable misalignment errors generated friction at the implant-bearing interface. This 

effect was pronounced with tibial trays and was negligible in femoral components (due the 
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curved implant-bearing interface). In-house experiments estimated the friction coefficient of 

the Oxford UKR bearing-implant (of the tibial component) to be approximately 0.1; thereby 

imparting a potential friction force of 100 N in any direction (dependent on the deformed 

implant slope of the loaded bone construct). Additional micromotion FE models were 

developed to include bearing-implant interface friction. Four perturbations of the baseline 

model were assessed that included 100 N friction forces in four different directions (anterior, 

posterior, medial, and lateral). 

One of the tibia specimens (CAD2) was imperfectly resected such that the surface was 

noticeably uneven. A mould was taken of the surface profile and replicated in the cementless 

tibia FE model in order to assess the impact on micromotion. The cemented version of 

model CAD2 was assumed to have a perfectly flat resection similar to all the other specimen 

models.   

6.2.5 Post-processing 

The models were solved using the MARC 2010 CASI solver and post-processed in MARC 

Mentat 2010. The minimum principal strains at the rosette positions were calculated by 

averaging the values of nine nodes for each rosette (mid-side nodal values of quadratic 

elements were ignored). The simulated LVDT motions were calculated by outputting the x y 

z displacements at each anchor point and calculating the component of the relative motion in 

the direction of the LVDT. The post-processing was automated using MARC procedure files. 

The output text files were computed in Microsoft Excel and statistically analysed.  

6.3 Results 

6.3.1 Bone Strain 

The minimum principal strains at five rosettes, under 4 loading configurations, for eight FE 

models were post-processed and compared against measured values from the laboratory. 

The results of the cemented tibia and femur correlated more closely with laboratory values 

than those from cementless fixation.  

Figures 76 and 77 present measured and predicted strains for all specimens of the 

cemented tibia and femur respectively. Although four load configurations were assessed, for 

clarity only one configuration has been presented (5 mm posterior to the tibial tray centre 

corresponds to approximately full extension of the knee (Pandit et al., 2008, Li et al., 2006)). 

Since sensitivity assessments of uncertainty in modelling parameters revealed that the 

greatest uncertainty in the modelling predictions was the position of the rosette, error bars 

based on a ± 2mm variation were included in the plots.  
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Figures 78 and 79 present measured and predicted strains at one load configuration for all 

specimens of the cementless implant tibia and femur respectively.  
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Figure 76 - Comparison of predicted and measured minimum principal strains of the cemented UKR tibia. 

The tibial tray was cemented and the bearing was positioned 5 mm posterior from the centre of the tibial 

tray. The “measured strain” error bars represent measured range and the “predicted strain” error bars 

represent the sensitivity to gauge location (± 2 mm). 

 

Figure 77 - Comparison of predicted and measured minimum principal strains of the cemented UKR 

femur. The femur was positioned at full extension. The “measured strain” error bars represent measured 

range and the “predicted strain” error bars represent the sensitivity to gauge location (± 2 mm). 
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Figure 78 - Comparison of predicted and measured minimum principal strains of the cementless UKR 

tibia. The bearing was positioned 5 mm posterior from the centre of the tibial tray. The “measured strain” 

error bars represent measured range and the “predicted strain” error bars represent the sensitivity to 

gauge location (± 2 mm). 

 

Figure 79 - Comparison of predicted and measured minimum principal strains of the cementless UKR 

femur. The femur was positioned at full extension. The “measured strain” error bars represent measured 

range and the “predicted strain” error bars represent the sensitivity to gauge location (± 2 mm).  
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The square of the Pearson product-moment correlation coefficient (R2) was calculated for 

both cemented and cementless implant models. Pooled R2 values were also calculated and 

those for the cemented tibia and femur are illustrated in Figure 80.  

 

Figure 80 - Correlation between predicted and measured strains of implanted tibia and femur of eight 

specimens. The plots show correlations for cemented tibial UKR (left) and cemented femoral UKR (right). 

The cemented R2 values (0.85 and 0.92 for tibia and femur respectively) were significantly 

better than those of the cementless implants (0.62 and 0.73 for the tibia and femur, 

respectively).  

A perfect correlation should yield a linear gradient of unity, with an under-unity gradient 

signifying over-predicted strains. A breakdown of correlation parameters is presented in 

Figure 81. The cemented femur correlation gradients were all higher than unity (for the tibia 

they were just below unity). This may suggest that the true femoral bone elastic moduli are 

slightly less than what was used in the models. Note that in Section 2, the most appropriate 

femoral bone density to elastic modulus relationship was found to be of the proximal femur 

(not distal femur). 

The reason for the under-predicted strains of cementless tibia CAD2 may be due to errors 

introduced from imperfect resection. A mould of the resected surface showed that the cut 

varied as much as 3 mm from the ideal flat level (discussed below). The cementless femur 

correlation was skewed because of one over-predicted strain (close to the anterior 

cementless implant peg Figure 79). This is likely to be because there is a large strain 

gradient at this location for the cementless femur, (not present for the cemented femur). 
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Figure 81 - Pearson’s Correlation R
2
 values and regression slope for cemented and cementless UKR 

specimens of the tibia and femur. A regression slope less than unity is representative of over predicted 

strains i.e. elastic moduli are too low. 

6.3.2 Bone-Implant Displacement 

Surface-tangent (transverse) and surface-normal (superior-inferior) bone-implant 

displacements, under 4 loading configurations, for eight specimens were post-processed 

and compared against measured values from the laboratory. Since these displacements 

were close to the boundary of the bone-implant interface, they were considered to be 

representative of micromotion.  

Sensitivity assessments of uncertainty in modelling parameters revealed that displacements 

were most sensitive to friction at the bearing-implant interface. Figure 82 compares 

measured and predicted transverse displacements of cementless tibial trays in specimens 

CAD1, CAD4 and CAD5. Predicted displacements were comparable with measured values. 

Specimen CAD2 is the corresponding pair to CAD1 and is presented separately in Figure 

83. As demonstrated, the flatness of the resection has a significant effect on bone-implant 

displacement.   
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Figure 82 - Comparison of measured and predicted transverse displacements of the cementless tibial 

implant. The error bars show the upper and lower bounds of displacement generated from implant-

bearing friction (µ=0.1). 

 

Figure 83 - Transverse displacements at 4 points of the cementless bone-implant interface. The two 

specimens are a pair from the same cadaver. While FE predicted displacements were similar to those 

measured for the flat resection, the uneven resection predictions were less accurate. The error bars 

show the upper and lower bounds of displacement generated from implant-bearing friction (µ=0.1).  
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The pooled Pearson correlation R2 values (cemented and cementless implant specimens) 

are presented in Figure 84. The predicted displacements adjusted for inclusion of friction 

coefficient are also presented and produce R2 values of 0.91 and 0.84 for cemented and 

cementless fixations, respectively. 

 

Figure 84 - Correlation between predicted and measured tangential micromotions of the implanted tibia. 

The plots show correlations for cemented and cementless fixation. The bottom plots include the effect of 

implant-bearing friction (µ=0.1). 

There was a discrepancy between measured and predicted superior-inferior displacements 

which was particularly noticeable for cementless fixation as displayed by Figure 85. 

Interestingly, specimen CAD2, which had a dip in the middle of the resection, produced the 

closest displacements to those predicted. This may be because the centre dip inhibited 

rocking of the implant. Figure 85 shows that the superior-inferior displacements of the 

cemented tibial trays were small (excluding CAD4) and correlated more closely to the 

predicted values. The reason for the discrepancy in specimen CAD4 may be due to 

premature fracture of the CAD4 bone (refer to Section 5), that occurred in the vicinity of the 

strain rosettes.  
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Figure 85 - Average inter-specimen superior-inferior displacements at the anterior and posterior of the 

cemented tibial tray. The “measured displacement” error bars represent measured range and the 

“predicted displacement” error bars represent the effect of implant-bearing friction (µ=0.1). 

 

 

Figure 86 - Average inter-specimen superior-inferior displacements at the anterior and posterior of the 

cementless tibial tray. The plots show the discrepancy between measured and predicted displacements. 

The “measured displacement” error bars represent measured range and the “predicted displacement” 

error bars represent the effect of implant-bearing friction (µ=0.1). 
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6.4 Discussion 

6.4.1 Bone Elastic Modulus 

The process of validation revealed the unexpectedly low predicted elastic moduli of cortical 

bone in all bones based on the relationship developed in Sub-section 2.4. Figure 87 

presents a comparison of the correlations of different cortical bone modulus assignment 

strategies applied to model CAD1 (cemented implant). Sensitivity model 6 (traditional 

method employed in literature) produced inaccurate strain predictions; however, if the moduli 

were scaled up (sensitivity models 1-3), such that average modulus was 18 GPa, then the 

strains correlated well. 

 

Figure 87 - Sensitivity study assessing correlation of 6 different model predictions against measured 

minimum principal strains. Results are for tibia cemented specimen CAD1 only. A regression slope less 

than unity is representative of over-predicted strains i.e. elastic moduli are too low. 

There are two possible reasons for the cortical elastic modulus discrepancy: (1) cortical bone 

density-modulus relationship; and/or (2) partial volume effects at the cortical-cancellous 

boundary. The first reason may be due to errors in the cortical bone range of density-

modulus relationship proposed by Snyder and Schneider (1991). Although the method was 

anatomic and species specific (human tibia), the accuracy of the clinical equipment used in 

the study was questioned in the conclusions. The gradient of the linear relationship between 

density and Hounsfield Unit was reported to be 4.45 x 10-4 HU/(g/cm3) which is less than half 
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the value used in this study (9.2 x 10-4 HU/(g/cm3)). Although scaling the cortical densities 

linearly by a factor of 1.2 (Sensitivity Model 3 in Figure 87) improved the correlation, it is 

actually contrary to the study conclusions of Snyder and Schneider (1991). Note also that 

after scaling (sensitivity models 2 and 3), cortical elastic moduli values exceeded maximum 

known values of cortical bone (14-16 % of the elements had elastic moduli values greater 

than 22 GPa).That said, there is evidence in the literature that bone elastic moduli (of FE 

models) have been scaled to improve correlation but with no explanation given: In a previous 

validation study of the tibia conducted by Gray et al. (2008), separate CT-density 

relationships were used for the cancellous and cortical bone - unfortunately the precise 

relationship was not included in the article. Discrepancies regarding cortical bone densities 

have recently been highlighted (Schileo et al., 2008a) and this may extend to density to 

elastic moduli relationships. It is recommended that a detailed study, similar to that 

performed for cancellous bone by Morgan et al. (2003), is necessary for cortical bone, to 

ascertain an accurate and consistent relationship between density and elastic modulus. 

Without further detailed investigation of cortical bone elastic moduli relationships, the 

conservative approach is to use a single elastic modulus for all cortical bone. Since the UKR 

implant does not rest on the thick cortical bone region of the shaft, this assumption has no 

impact on the conclusions of Section 9. 

The second reason for the low predicted cortical elastic moduli may be due to partial volume 

effects generated at the boundaries of cortical bone. Geometry errors from the segmentation 

process are in the region of 1-2 mm (1.6 mm reported by Viceconti et al. (1999)); therefore, 

FE elements can span across air and bone. This effect is exacerbated by the limited 

resolution of the CT scans - the pixels of width 0.5-0.7 mm also span across the boundary. 

The bone material allocation program (described in Sub-section 4.6.6) calculates the 

material properties based on 9 sampling points at the interior inner two-thirds of each 

tetrahedral element. Based on an element size of 3 mm, the program is tolerant to 0.5 mm of 

geometry error. Since this tolerance is insufficient, some of the outer boundary elements 

have artificially low moduli. The same effect occurs at the cortical-cancellous bone boundary; 

however, it is less pronounced - particularly in the diaphysis where the cortical bone is 

thicker. The improved correlation of sensitivity model 4 (compared to sensitivity model 6), as 

presented in Figure 87, demonstrates that the partial volume error may have some validity. 

However, it cannot be the sole reason for this discrepancy because the correlation is not as 

good as the baseline model. 

It is clear that material allocation strategy has a large effect on the accuracy of the results 

and the literature supports this conclusion. Taddei et al. (2007) compared two material 

mapping strategies: (1) elastic modulus calculated from an average element density; and (2) 
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elastic modulus calculated from the average derived from each voxel Hounsfield Unit. The 

study showed that changing this simple strategy could improve correlation R2 coefficient 

from 0.69 to 0.79. Schileo et al. (2007) compared three different material relationships 

against in-vitro laboratory measured strains and demonstrated R2 coefficient improvements 

of 0.55 to 0.91. The author is unaware of any studies that have compared cortical bone 

material allocation strategies. 

6.4.2 Strains: Comparison with Literature and Limitations 

The R2 correlations reported in this study are comparable to FE models of the tibia and 

femur reported the literature. For the femur: Keyak et al. (1993) reported a R2 = 0.59; Ota et 

al. (1999) reported 0.66; Gupta et al. (2004) reported R2 = 0.89; Anderson et al. (2005) 

reported R2 =0.82; Taddei et al. (2006) reported a R2 0.89; and Schileo et al. (2007) reported 

0.91. For the tibia: Gray et al. (2008) reported R2 = 0.97 (regression gradient = 1.25); 

Varghese et al. (2011) report R2 = 0.98 (with incomparable method using optimised material 

properties). Gray et al. (2008) found that the model was 25% less stiff than those measured 

on a cadaver. This study has improved on this by using more credible material relationships 

proposed by Morgan et al. (2003) (refer to Sub-section 2.6 for an explanation of why the 

model was 25% less stiff). 

It is important to look at the literature carefully to understand the uncertainty in these types of 

models. Stresses and strains can give remarkably different correlations (Taddei et al., 2007) 

depending on the boundary conditions of the model. Lotz et al. (1991) showed that although 

strains did not match in-vitro experiments, femoral fractures did correlate well. The errors in 

these studies can be over 100% (Gupta et al., 2004) and can generate anomalies that can 

be omitted from the analysis (Keyak et al., 1993). It is also important to consider the 

magnitudes of bone strain since error increases with strain (Schileo et al., 2008a); with 

strains above 500 µε showing exponentially increasing errors. Since the standard error for 

elastic modulus prediction alone (from material derivation studies), is at least 30% (for 

anatomic and site-specific as used in this study) (Morgan et al., 2003), these large strain 

errors are inevitable.  

In addition to modelling errors, there are practical errors generated from correlating predicted 

strains with in-vitro measurements. The error from misalignment/misplacement of strain 

gauges can be large (Cristofolini et al., 1997); therefore, the rosette positions were 

determined using an optical tracking system and strain gauge rosettes were used instead of 

single gauges to remove the need for accurate alignment. Sensitivity assessments of 

uncertainty in modelling parameters revealed that misalignment of strain gauges generated 

the greatest uncertainty in strains. This was exacerbated if rosettes were located in regions 
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of steep strain gradient which tended to be towards the proximal tibia and distal femur 

regions (rosette locations 3-5). Since planar rosettes were used, the minimum principal 

strain was made up of strains from three gauges that were aligned transversely a distance of 

2 mm from each other (maximum distance of 4 mm). There was also error in the accuracy of 

the optical markers used to locate the rosettes of maximum 1 mm. The possible errors from 

misalignment were included in plots of strain comparison (Figures 76 to 79). Despite not 

including the effects of these misalignment errors in the calculations of correlation coefficient 

R2, the values were good. Other errors associated with the in-vitro experiments have not 

been included (refer to Sub-section 0). 

Previous studies have applied tensile loads (as well as compressive) to specimens (Gray et 

al., 2008, Schileo et al., 2007) to improve the range of strain values and therefore improve 

the correlation coefficient. Due to the nature of the physiological knee loads and 

experimental set up of the implanted tibia and femur, tensile strains could not be applied to 

the bones. In order to produce representative linear regressions start strains of zero were 

included in the regression calculations. Figure 88 presents a typical strain rosette reading 

with strains consistently returning to the same state under repeated loading. 

 

Figure 88 - Typical strain rosette reading showing strains return to same state under repeated loading 

cycles. 

6.4.3 Bone-implant Micromotion: Comparison with Literature and Limitations 

Validation of bone-implant interface micromotion predictions is difficult due to the physical 

impracticalities of measuring bone-implant micromotion of cadavers in the laboratory. The in-

vitro experimental set-up used in this study is the most common approach used in the 

literature (Cristofolini et al., 2007). Figure 89 compares bone-implant surface-tangent 

micromotion against transverse displacements (comparable to those measured in the 

laboratory) for one of the cementless tibia models. Although the displacements are indicative 

of interface micromotion, they are not directly related to the micromotion distributions. For 

example, high displacement at the medial extent does not mean high micromotion at the 

bone-implant medial extent. FE models must be analysed with caution. 
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Figure 89 - Comparison of bone-implant interface micromotion and interface displacements 

(representative of those measured in laboratory). Results represent model CAD1 with the cementless 

tibial tray. 

Implant-bone interface mechanics is complex and was greatly simplified in these FE models 

(a classical approach used in the literature). The laboratory measured surface-tangent 

(transverse) displacements were vastly different to the surface-normal (superior-inferior) 

displacements at the interface; therefore, they have been treated separately. As presented 

by Figure 84, the transverse displacements were comparable to measured values once 

frictional errors were taken into account. However, the superior-inferior displacements were 

orders of magnitude larger than predicted displacements. The largest differences were seen 

for the cementless implant, as presented in Figure 86. The reasons for this discrepancy are 

probably due to a combination of: (1) a simplistic interface model; and (2) non-flat implant 

resections.  

The bone-implant interfaces were assumed to be perfectly flat with isotropic linear elastic 

properties and frictional response based on a modified Coulomb’s model. The resected 

surface actually consists of open trabecular cells that are cut leaving thin pillar-like structures 

resting against the implant. The assumed elastic moduli are for interior bulk trabecular 

cellular structures (refer to Sub-section 2.1 for a detailed discussion of theory), i.e. for non-

resected bone. The properties of open pillar-like structures are different because they are 

more prone to distortion, buckling and fracture. These interface structures are highly 
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deformable (in the direction of the loading); hence producing high superior-inferior 

displacements. Under repeated loading, without biological repair processes, these interface 

structures would fracture and collapse manifesting in implant migration. Implant migration 

was visually evident in the experiments. This phenomenon is documented in the literature; it 

created errors in pre-1990 measurements of bone elastic modulus that used the early 

version of the platen technique for resected specimens. Once this error was highlighted 

(Keaveny et al., 1997, Linde et al., 1992), the method was modernised to avoid end-effect 

errors by using extensometers to measure strain at the centre of resected specimens (refer 

to Sub-section 2.4).  

Another reason for the high superior-inferior displacements may be due to non-flat bone 

resections causing implant rocking. Figure 83 shows how an uneven resection (dipping in 

the middle) produced higher transverse displacements. This uneven surface was included in 

the FE model (from a cast of the actual surface) and improved the correlation against 

measured values. This dip in the surface also reduced the magnitude of superior-inferior 

displacements (Figure 86) which may be because an implant can’t rock on a concave 

surface. If the bone-implant interfaces of specimens CAD1, CAD4 and CAD5 were 

accidently resected to be convex (or became convex due to failure of outer bone edge), 

these high displacements could be explained. 

The superior-inferior micromotion was also high in the cemented fixated implants. Studies of 

retrieved THR explants with micro-CT FE studies show that the cement-bone interfaces are 

compliant and not fully rigid (Waanders et al., 2011). Although the compliant nature of the 

cement-bone interface will affect strain distribution at a curved interface (acetabular-cup of 

THR)(Waanders et al., 2011), it should have a less pronounced effect on a flat cement-bone 

interface. 

There is negligible literature about surface-normal micromotion and its impact on implant 

fixation. Surface-tangent micromotion is considered to be the more meaningful parameter in 

assessing osseointegration (refer to Sub-section 4.6.3 for discussion of osseointegration 

thresholds). Since the predicted surface-tangent micromotions were correlated with 

laboratory measured interface motions, this parameter is considered adequate for analysing 

implant fixation.  

6.4.1 Multi-specimen Validation 

The most recent validation studies in the literature have included multi-specimens (Schileo et 

al., 2007, Varghese et al., 2011) and produced better correlations than older studies. Schileo 

et al. (2007) used an anatomy-specific material relationship that had not been previously 

used for femora (Morgan et al., 2003) and produced excellent correlations. Since there are 
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no credible cortical bone material relationships in the literature, they extrapolated the 

cancellous relationship into the cortical region without substantiation. Although the same 

source (Morgan et al., 2003) for material relationship was used in this study, the 

relationships weren’t extrapolated into the cortical region due to unrealistic high predictions 

of elastic modulus. Varghese et al. (2011) got round this problem by optimising the material 

properties in order to improve the correlation; this supports our concern about cortical bone 

material property relationships being inadequate for the proximal tibia. 

The value of a multi-specimen validation is important. As detailed in Section 5, there was 

high variation of bone strain between specimens. The specimens validated in this study were 

chosen based on their response to mechanical testing; they represent extremes of bone 

density (specimen CAD1/CAD2 most dense to CAD3/CAD4 least dense, and 

CAD5/CAD6/CAD7 representing the average). The denser bones produced better 

correlations because the strains were smaller under the same load (increased error with 

larger deformations (Schileo et al., 2008a)). The added complication of tibia specimen CAD4 

was that it fractured during testing (refer to Section 5) and was repaired for cemented 

implantation. The fracture developed over repeated loading by coalescence of micro-

fractures. The femur specimen CAD4 would have also developed these micro fractures, 

thereby modifying the effective bone moduli with repeated loads. The FE models are based 

on linear elastic material properties (exclude micro-fracture damage and accumulation of 

micro-fractures), and therefore become less accurate with increased strains and repeated 

loading. 

6.5 Conclusions 

Specimen-specific FE models of 4 cadaveric tibiae and 4 femora were developed. The 

predicted strains and bone-implant interface displacements were correlated against 

measured values from laboratory in-vitro experiments and the models were validated. The 

models are fit-for-purpose for analysis of implant fixation by predicting bone strains and 

bone-implant interface micromotions. 
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7 BMD Changes Post-UKR - Results of a Clinical DXA Study 

7.1 Introduction 

Bone adapts to the functional mechanical requirements to which it is exposed. Reduced 

activity causes bone loss whilst increased activity causes bone apposition. Trauma also 

causes bone to grow, and excessive forces can cause bone to migrate or deform. Functional 

adaptation of bone is described by Wolf’s law. 

After Unicompartmental Knee Replacement (UKR) arthroplasty, the bone in the vicinity of 

the implant will remodel to adapt to trauma and biomechanical changes. In Sections 5 and 6, 

primary fixation was assessed and was demonstrated to be good for both cemented and 

cementless Oxford UKRs. Long-term fixation is also important to assess success. Since 

biological processes are the driving factors for long-term implant fixation, and these are not 

able to be replicated with in-vitro tests, a prospective clinical study was undertaken to follow-

up 12 UKR patients post-arthroplasty. 

Most bone remodelling occurs within the first year post-arthroplasty (Seitz et al., 1987, Engh 

et al., 1987). The signs for good long-term fixation are minimal bone loss around the implant; 

which is usually due to minimal stress-shielding imposed by the implant. Dual X-Ray 

Absorptiometry (DXA) is commonly used to measure Bone Mineral Density (BMD) to 

quantify bone density changes of patients. Although numerous studies have been conducted 

on Total Knee Replacement (TKR) patients (Bohr and Lund, 1987, Petersen et al., 1995b, 

Trevisan et al., 1998, Li and Nilsson, 2000, Lonner et al., 2001) and Total Hip Replacement 

(THR) patients (McCarthy et al., 1991, Kiratli et al., 1992, Cohen and Rushton, 1995), no 

studies have been conducted or published on UKR patients. 

The objectives of the study were: 

 To identify which regions of the knee undergo BMD changes; 

 To quantify BMD changes, in order to calibrate computer simulations of bone 

remodelling ; 

 To identify whether there are any signs of stress-shielding of UKR tibial and femoral 

implants. 

Although several studies have suggested that UKR femoral components are more likely to 

undergo loosening than their tibial counterparts (Saldanha et al., 2007, Goodfellow, 2006, 

Monk et al., 2009, Kalra et al., 2011), there are few studies in the literature that have 



BMD Changes Post-UKR – Results of a Clinical DXA Study 163 

investigated femoral component fixation. This may be because radiographic studies are 

difficult to interpret (Monk et al., 2009, Kalra et al., 2011), because (particularly in TKRs) the 

underlying bone is hidden from view due to the curvature of the femoral implant. Since the 

UKR only involves a single condylar implant, the radiographs were easier to interpret. The 

clinical DXA study described herein (coupled with the computational analysis of Section 8) 

provided a new perspective on femoral component fixation. 

7.2 Materials & Methods 

7.2.1 Patient Recruitment 

The research ethics approval was agreed in August 2009 and patient recruitment 

commenced immediately thereafter. 

All UKR arthroplasty patients of consultant surgeon Professor Justin Cobb (Charing Cross 

Hospital, London, UK and King Edward VII Hospital, London UK) were assessed for 

eligibility for the study and twelve patients were recruited over the course of a year. The first 

patient was recruited on 30th October 2009 and the final patient on 22nd October 2010. All 

surgeries were performed by consultant surgeon Prof. Justin Cobb and registrar Amgad 

Nahkla. 

Patients were selected upon satisfying three conditions: (1) that they had a pre-operative 

knee CT scan; (2) that they would have the Oxford UKR (Biomet Ltd, Swindon, UK) on their 

medial condyle; (3) that they lived within 10 miles of Charing Cross Hospital. The patients 

were recruited regardless of whether cemented or cementless implants were used. Table 12 

presents the details of all patients in the study. Patients were approached pre-surgery for 

initial consultation and consent was taken post-surgery. The first DXA scan was taken within 

10 days from the date of surgery, with the remaining scans taken at 3, 6, and 12 months. 

Patients were scanned in both frontal and lateral knee orientations. 
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Table 12 - Details of patients recruited for the UKR follow-up study. 

Patient 
ID 

Gender 

(M/F) 

Age 
(Y) 

Weight 
(Kg) 

Height 
(cm) 

Implant 
Type 

Notes 

1 M 63 77 175 CD 
ACL deficient, significant pain in 

contralateral knee. Active (gardening). 

2 M 70 110 192 CL Happy with UKR. Active. 

3 F 68 64 161 CD (S) Lost patient at 1-Year. 

4 F 55 76 155 CD (S) 
Using walking stick due to contralateral 
knee pain. Being treated for spinal pain. 

Weight loss. Happy with UKR. 

5 M 67 91 176 CL Bilateral UKR. Happy with UKR. 

6 M 79 91 173 CD 
Intermittent pain with no correlation to 

activity, sometimes ‘unbearable’. 

7 X X X X X Declined after 1
st
 Scan 

8 F 50 81 150 CD 

‘Stiff’ knee & low flexion at 3-months, 
happier at 6-months with more exercise. 
Ant. tibial pain during stair-descent. Post. 
tibial pain  and ant. tibial pain at 1-year. 

9 F 63 75 152 CD (S) 
Using walking stick due to contralateral 

knee pain. Lateral tibial pain at 6 months. 
No pain at 1-year. 

10 M 79 95 185 CL Happy with UKR. Active (swimming). 

11 F 42 58 153 CD (S) 
Taking steroids for kidney problems, 

substantial weight gain. 

12 F 62 86 159 CD 
Resumed playing golf 3 times a week at 

1-year. Happy with UKR. 

13 M 61 81 176 CL Limp and pain at 6-months. 

At 6-months, two sets of scans were taken with the patient repositioned between scans. The 

purpose of this was to assess the accuracy of patient positioning and repeatability of the 

scans. 

7.2.2 Set-up & Equipment 

All DXA scans were performed using a GE Lunar Prodigy Scanner (GE Healthcare, Chalfont 

St Giles, UK). Frontal and lateral scans were performed, as illustrated in Figure 90, using 

equipment specifically designed and manufactured for the study. The frontal scan was taken 

with the tibia inclined at 7 degrees to the scanner bed (the Oxford UKR operative technique 

recommends a 7 degree posterior slope) while and lateral scan was taken at a knee flexion 

angle of 30 degrees. 
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Figure 90 - Frontal and lateral scan patient alignment using specialised equipment. 

Since the scanner did not have a pre-defined setting for knee scans, the ‘AP Spine’ mode 

was selected with ‘Smart Scan’ mode setting deactivated. As is commonly used for knee 

scans (Trevisan et al., 1998), two rice bags were also used as a soft tissue substitute. 

The reproducibility of the BMD measurements was calculated in each subject by making two 

consecutive scans at 6-months in both frontal and lateral projections, with the subject being 

repositioned after each scan. 

7.2.3 Quality Assurance 

Due to organisational changes at Charing Cross Hospital, a second DXA scanner (identical 

type and same manufacturer, GE Lunar Prodigy) was used for scans taken from 1st January 

2011 onwards. A crossover study was conducted using an aluminium spine phantom as 

displayed in Figure 91.  

 

Figure 91 - Lunar aluminium spine phantom used for the crossover study (left) with an image of the DXA 

scan showing the Regions-Of-Interests (right).  

Thirty-five scans were taken on each scanner over the course of four months. The average 

BMD and standard deviation for each spinal region L1-L4 was calculated for each group. 

The error was calculated based on a 95% confidence interval (2 standard deviations) from 
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the average. Figure 92 presents the results of the crossover study in tabular and graphical 

form. There was a good match between the scanners. 

 

Figure 92 - Summary of crossover study results demonstrating a good match between the two DXA 

scanners used in this study. The table (left) presents the average measurements of BMD and the 

associated percentage errors. The chart (right) compares the averages with the error bars indicating one 

standard deviation from average. There was an excellent match between the scanner measurements. 

Each time the scanner was used, it was calibrated with a standard Lunar Prodigy Quality 

Assurance (QA) Calibration Block to ensure that the measurements were consistent and 

comparable. All QA checks were passed. For scanner 1, between 1st July 2009 and 27th 

November 2010, the mean BMD medium (3.000 mA) was 0.993 g/cm2 with a coefficient of 

variation of 0.08%. For scanner 2, between 27th November 2010 and 28th January 2012, the 

mean BMD medium (3.000 mA) was 0.995 g/cm2 with a coefficient of variation of 0.09%. 

These were considered to be with satisfactory levels of accuracy (Faulkner and McClung, 

1995).  

 

Figure 93 - Plot of secondary calibration check results of aluminium spine phantom. The standard 

deviations were 0.52%, 0.96%, 0.91%, 1.09%, and 0.73% for regions L1-L4, L1, L2, L3, and L4 respectively. 
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At regular intervals, a secondary calibration check was made using an aluminium spine 

phantom and these are plotted in Figure 93. The standard deviations were 0.52%, 0.96%, 

0.91%, 1.09%, and 0.73% for regions L1-L4, L1, L2, L3, and L4 respectively. These were 

considered acceptable. 

7.2.4 Analysis 

The patient data was anonymised and analysed using EnCore 2008 (GE Healthcare, 

Chalfont St Giles, UK). The scans were converted to ‘knee’ mode and ten Regions-Of-

Interest (ROIs) were defined for the frontal and lateral scans as displayed in Figure 94. All 

the 1-year data was analysed at the same time to maintain consistency between scans. 

 

Figure 94 - Positions of ROIs on the Frontal (left) and Lateral (right) DXA scans. 

The data was exported in to Microsoft Excel software (version 2011, Microsoft Corporation, 

USA) and analysed for trends and graphical output. 

The Kolmogorov-Smirnov non-parametric test was used to test all variables for normality 

using SPSS software (IBM Software Group, New York, USA). The test confirmed that all 

BMD variables were normally distributed and that a paired student t-test was suitable for 

testing statistical difference. 

7.3 Results 

Figure 95 shows the error associated with patient repositioning. The error was calculated as 

follows: 

         
 

 
∑

√               

 
 
              

 

   
 



BMD Changes Post-UKR – Results of a Clinical DXA Study 168 

where, BMDi is the first BMD reading of patient n, BMDii is the second reading of patient n, 

and N is the total number of patients. 

The errors for ROIs F7 and F8 were large because the results were sensitive to the medial 

position of the patella (sensitive to the alignment of the knee). BMD was higher when the 

patella was medial (i.e. when it was overlapping ROIs F7 and F8). The high error of ROI L6 

was for similar reasons (the BMD was sensitive to the position of the fibula). 

 

Figure 95 - Average accuracy of the DXA BMD measurements for each ROI. ROIs F1-10 are frontal scan 

and L1-10 are lateral scan ROIs. The error bars display 1 standard deviation. 

7.3.1 Tibia 

Figure 96 presents 1-year post arthroplasty BMD change beneath the tibial intercondylar 

eminence; the BMD drop at 6-months was 17.9% ± 9.5% (mean ± standard deviation)  and 

this decrease was statistically significant (T(10)=6.251, P=0.0001).  At 1-year the mean BMD 

drop reduced to 15.1% ± 12.3% and this reduction was also statistically significant 

(T(10)=-4.071, P=0.0022). 
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Figure 96 - One year post-UKR arthroplasty BMD change at ROI F6 for all DXA subjects. A statistically 

significant drop of BMD was observed beneath the tibial intercondylar eminence at 6-months and 1-year. 

Figure 97 displays the BMD changes at three ROIs located beneath the UKR tibial tray of all 

subjects in the DXA study. The total average decrease in BMD under the tibial tray at 1-year 

was -4.0% ±16.6% (mean ± standard deviation). As presented in Figure 100, the average 

BMD increased under the keel (0.4%±18.2%) while it decreased in the medial region 

(-6.2% ± 17.6) and lateral region (-6.2% ± 14.5%). There was considerable variation 

between the subjects. 

From the lateral view (Figure 98) it was clear that on average, the BMD under the keel was 

stable (-1.5%±16.4%) while it decreased significantly at the anterior region (13.7% ± 13.9%). 

The reduction of 13.7% at the anterior region was statistically significant (T(9)=3.106, 

P=0.0126). 
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Figure 97 - Frontal scan BMD changes under the tibial tray, of all subjects, for the course of one year 

following UKR arthroplasty. 
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Figure 98 - Lateral scan BMD changes under the tibial tray, of all subjects, for the course of one year 

following UKR arthroplasty. 
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7.3.1 Femur 

Figure 99 displays the BMD changes at three ROIs located beneath the UKR femoral 

component of all subjects in the DXA study. As presented in Figure 100, the average BMD 

decreased under the femoral component by -12.9% ± 12.3%. The average BMD under the 

central peg decreased by -14.4% ± 17.5%, while under the posterior of the implant it was -

11.0% ± 10.8%, and the anterior it was -13.5 ± 7.7%. These decreases were statistically 

significant (T(9)=3.226, P=0.0104, T(9)=5.525, P=0.0004, and T(9)=2.597, P=0.0289, 

respectively). 

 

Figure 99 - Lateral scan BMD changes under the femoral component, of all subjects, for the course of 

one year following UKR arthroplasty. 
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7.3.2 Overall Observations 

Figure 100 summarises the BMD changes by plotting the average response of all patients 

during the course of one year following UKR arthroplasty. There was considerable difference 

of BMD change between the regions of the tibia while less difference was observed for the 

chosen regions of the femur. 

 

 

Figure 100 - Summary of BMD changes under UKR tibial and femoral implants. The averages of all 11 

subjects’ BMD changes are presented for the course of one year following UKR arthroplasty. 
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The overall BMD in the proximal tibia and distal femur declined by 2-5% over the course of 

the year, as displayed in Figure 101. There was good agreement between frontal and lateral 

scans of the femur. The spread and average BMD change was similar for ROIs F10 and 

L10/8. Although the spread of tibial BMD change was slightly different between the frontal 

and lateral scans (compare ROIs F4 and L7), the average BMD changes were similar. 

 

Figure 101 - Comparison of proximal tibia and distal femur BMD change during the course of one year 

following UKR arthroplasty. The BMD units were normalised for bone depth for comparison of lateral and 

frontal scans. 
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Figure 102 shows that there was an average drop of 5% BMD over the course of the year at 

the lateral compartment of the knee. Since the overall drop of BMD in the whole knee was 

similar, then this was suggestive that there was negligible change in adduction moments 

during daily activities. This is probably due to the combined effect of two counteractive 

factors: (1) varus-valgus correction (increase loading at lateral compartment), and (2) gait 

normalisation due to a pain-free medial compartment (reduce loading at lateral 

compartment). 

 

Figure 102 - Post-operative BMD loss at the lateral condyle at 1-year. 

7.4 Discussion 

7.4.1 Comparison with Literature 

This study demonstrates that there are post-arthroplasty bone density changes to the knees 

of UKR patients. The biggest change surprisingly occurred under the tibia intercondylar 

eminence which decreased steadily by an average of -17.9% at 6-months and which then 

reduced slightly to -15.1% at 1-year (statistically significant changes). This regional bone 

loss may have occurred due to (1) ACL inactivity or deficiency (Lonner et al., 2001); (2) 

reduced forces on the medial aspect of the intercondylar eminence post-arthroplasty; or (3) 

the sagittal resection may have reduced compressive strains dissipating from the medial 

condyle. FE analysis showed that the largest of these effects was (2). Refer to Section 8 for 

details of the FE modelling. The FE models showed that unless large pre-operative contact 

at the medial aspect of the tibial eminence was included in the model, there was bone 

apposition in region ROI F6, not bone resorption as seen in the radiographs.  

The bone loss under the tibial tray was negligible; it was on average 1.8% which is 

equivalent to the overall bone loss that occurred in the whole knee (2-5%). However, the 

bone loss at the anterior portion was higher with an average decrease of -13.7% (statistically 

significant). This was balanced with 0.4% bone gain occurring under the tibial keel. 



BMD Changes Post-UKR – Results of a Clinical DXA Study 176 

 

Figure 103 - Available radiographs of study patients showing bone resorption at the anterior proximal 

tibia. 

The bone loss under the femoral component was more significant (-12.9% compared to 5% 

bone loss of the whole knee in the first year). The regions anterior and posterior to the 

central implant peg saw the largest bone loss (-13.5% and 14.4%, statistically significant).  

Most subjects saw a large drop in BMD in the first 6 months following surgery, followed by a 

steady recovery. This trend is common following both THRs (Trevisan et al., 1997) and 

TKRs (Levitz et al., 1995). This is probably due to a metabolic reaction of the bone to 

operative trauma combined with the effect of the post-operative immobilization.  

Although bone recovery is reported to stabilise after about one year post-TKR (Seitz et al., 

1987) and THR (Engh et al., 1987)), longer-term reactions of TKRs have been reported in 

the literature. Seitz et al. (1987) reported a 1.5-7.5% decrease of bone mineral density at 6-

12 months and Bohr and Lund (1987) found that TKR bone density recovered to pre-

arthroplasty levels at 1.5-2 years. Hvid et al. (1988) found an 11% decrease in bone mineral 

density at 2 years and Petersen et al. (1995a) reported a statistically significant decrease of 

22% at 3 years. Although Levitz et al. (1995) observed small changes in bone mineral 

density at 1 year, they found a statistically significant decrease (36.4%) at 8 years. 

The reported regional BMD changes must be considered with respect to the overall 5% 

decline of bone density of the whole knee. This overall decline occurs in normal subjects 

with age (Khodadadyan-Klostermann et al., 2004) and has been similarly reported for TKR 

patients (Seitz et al., 1987, Levitz et al., 1995). 

Although the patient sample sizes of cemented and cementless fixated implants were small, 

there were observational differences in bone density response. Figure 104 shows the 

average response of cemented and cementless fixation beneath both the tibial tray and 

femoral components. Bone loss was less for cementless tibial fixation (cementless -

0.02±0.18) compared to cemented fixation (cemented -0.05±0.16) at 1-year post-

arthroplasty. However, there was negligible difference for the femur (cementless -0.12±0.13 
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and cemented -0.11±0.06). For the tibia, the difference was most significant at 6 months 

(cementless fixation 0.03±0.18 compared to cemented fixation -0.08±0.10). This correlates 

with the conclusions of primary fixation presented in Sections 5 and 6, where it was 

demonstrated that tibial cementless fixation strains were higher than cemented strains 

(difference of femoral bone strains was small). The bone strains under the cementless tibial 

tray are initially high (first 6 months) and gradually reduce as osseointegration of the central 

tray region occurs. Similar behaviour has also been seen in TKR tibial trays, with bone loss 

in in the 1st 3 months for cemented fixation (Lonner et al., 2001, Li and Nilsson, 2000) and 

bone gain for cementless fixation (Bohr and Lund, 1987). It must noted that the decision to 

use a cemented or cementless implants was not randomised; surgeons tend to use 

cementless implants on denser (‘stronger’) bone which is a judgement made based on 

individual surgical experience. We would therefore expect that the cementless group would 

naturally respond better to UKR implants, particularly with evidence from the findings of 

Sections 5 and 6 and evidence from TKRs (Lee et al., 1991). 

 

Figure 104 - Comparison of Cemented and Cementless UKR implant average BMD changes over the 

course of one year post-arthroplasty, tibial tray (left) and femoral component (right). The error bars 

indicate one standard deviation. 

There were large differences in bone response between subjects, which is a common 

characteristic of post-arthroplasty DXA studies (Li and Nilsson, 2000, Bohr and Lund, 1987, 

Seitz et al., 1987, Lonner et al., 2001). With such a large variability between subjects, it is 

often difficult to ascertain the reasons for observed differences, without doing well-controlled 

studies with large cohorts of subjects. For example, investigations of TKR designs have 

revealed conflicting results: a statistical difference was found between cemented rotating 

and fixed bearing TKRs in a DXA follow-up study (Minoda et al., 2010) while no difference 

was found when a similar sample size was assessed using CT scans (Munro et al., 2010). 
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Another study found that a pegged tibial tray design produced less bone loss than a tibial 

tray with a cemented stem (Lonner et al., 2001). 

7.4.2 Limitations 

The results of this study must be considered with regard to the limitations of the study. The 

sample size of 11 subjects is small and although general conclusions regarding UKR 

response is possible, conclusions comparing fixation (cemented verses cementless) are 

difficult and further complicated because choices were not randomised. 

There are unavoidable confounding factors inherent in all clinical DXA trials based on 

individual subject characteristics that are difficult to monitor or measure. For gait 

characteristics, activity level, knee alignment are all factors that affect the level of knee 

loading: Petersen et al. (1995a) concluded that slight changes in knee loading resulted in 

changes in BMD under a TKR tibial tray within 3-6 months with some patients showing an 

increase of 2-7% and others showing a loss of 7-20%. 

Although bone response is expected to stabilise after 1 year post-arthroplasty (TKR (Seitz et 

al., 1987) and THR (Engh et al., 1987)), individual subjects responses are variable and 

progressive late reactions have also been found (Brown and Ring, 1985). Year 2 data would 

add further confidence to the results. 

The accuracy and precision of DXA for the evaluation of bone density in the proximity of 

metal implants has been thoroughly assessed in several studies of patients undergoing THR 

arthroplasty (McCarthy et al., 1991, Kiratli et al., 1992). Further evidence of the feasibility of 

DXA in this field comes from the studies of Robertson et al. (1994), who showed that DXA 

was better than the other considered methods at assessing bone mineral changes in the 

proximity of the TKR. DXA   has  a  reported  precision  of  1.1- 7.5%  when  applied  to  THR  

(McCarthy et al., 1991, Kiratli et al., 1992, Cohen and Rushton, 1995) and  0.9-8.3% when 

applied to TKR (Petersen et al., 1996, Trevisan et al., 1998, Li and Nilsson, 2000). The 

precision of the present study is comparable with those reported in the literature. 

The use of DXA has its shortcomings. The images are not three-dimensional so precise 

regional differences are difficult to assess and limited by accuracy of alignment. 

Repeatability between DXA scans was addressed by using the alignment features shown in 

Figure 90. Since images cannot be seen in real time (as is possible with fluoroscopy), the 

projections could not be accurately aligned parallel to the tibial tray – the rig ensured 7 

degrees posterior slope as is outlined in the surgical manual. 
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7.5 Conclusions 

The DXA study of the knees of 11 UKR patients showed that there were statistically 

significant post-arthroplasty bone density changes to the knees post-arthroplasty. Most 

subjects saw a large drop in BMD in the first 6 months following surgery, followed by a 

steady recovery. The biggest change occurred under the tibia intercondylar eminence which 

decreased steadily by an average of -17.9% at 6-months and which then recovered slightly 

to -15.1% at 1-year (statistically significant). The average bone loss under the tibial tray was 

low; however, the bone loss at the anterior portion was higher with an average decrease of -

13.7% (statistically significant). There was a 0.4% bone gain occurring under the tibial keel. 

The bone loss under the femoral component was more significant (-12.9%). The anterior and 

posterior regions to the central implant peg saw greater bone loss (-13.5% and 14.4%, 

statistically significant)). The bone response of all patients was dissimilar and patient-

specific. The study suggests that short-term stress-shielding of the Oxford UKR implant 

should not be a major concern but the study should be repeated with a larger cohort of 

patients to strengthen the evidence. 
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8 FEA Bone Remodelling Validation 

8.1 Introduction 

The ability to predict bone-adaptation following arthroplasty is of significant value for future 

development of orthopaedic implants. Numerous algorithms to model the bone-adaptation 

process have been proposed in the literature and some have been shown to produce 

realistic predictions when coupled with Finite Element Analysis (FEA) techniques. However, 

due to the difficulty in acquiring in-vivo bone-adaptation data there is a notable lack of clinical 

validation, particularly for human knee arthroplasty patients. The purpose of this section is to 

evaluate the algorithm developed by Huiskes et al. (1987), Kerner et al. (1999) and Chong et 

al. (2011) against in-vivo clinical data obtained from a one-year DXA follow-up study 

(presented in Section 7). 

8.2 Background 

The primary function of bone is to be stiff (resist deformation in response to both internal, 

and external forces) and to maintain stiffness it must be strong (resist breakage). Bone 

stiffness and strength can be increased by adding bone mass, by changing bone geometry, 

or by altering its microstructure. This process is called bone remodelling. It involves the 

continual replacement of old bone to maintain integrity and prevent micro-crack damage 

accumulation. Osteoblasts and osteoclasts are cells that are responsible for bone formation 

and bone resorption, respectively, and they closely collaborate in the bone remodelling 

process. In trabecular bone, remodelling occurs at the surface of the trabeculae and due to 

high surface area to volume ratios, remodelling rates are up to ten times higher than in 

cortical bone.  

Bone adapts to the functional mechanical requirements to which it is exposed. Wolff’s law 

describes the functional adaptation of bone, as self-optimising and able to control its mass 

and structure in direct relationship to its mechanical demands. Functional adaption of bone 

involves changes to bone architecture as well as to bone mass, which is why bone 

architecture is different between anatomical locations, species and levels of skeletal 

maturity. 

The trigger for the bone remodelling process is uncertain (Pearson and Lieberman, 2004); 

however, it is generally assumed that micro-cracks and damage due to repeated mechanical 

deformation are an important factor.  Since strain is a primary and directly measurable 
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physical quantity representing deformation, while stress is secondary (calculated indirectly), 

it is logical that the stimulus is a strain based variable (Cowin, 1984). The precise 

relationship between strain magnitude, number of cyclic deformations and strain rate with 

remodelling is unresolved. Animal studies have shown that bone remodelling has a 

non-linear dependence on strain and number of cycles (Ozcivici et al., 2010). Studies of 

cortical bone of rats have revealed that strain rates and magnitudes must be high (Mosley 

and Lanyon, 1998, Mosley et al., 1997) and strain rate affects the bone morphology (Turner 

et al., 1994). Studies investigating how the number of cycles affects bone remodelling have 

shown that temporary inactive episodes are required; increasing the number of cycles is not 

enough (Robling et al., 2000). Although these patterns may be similar for cancellous bone, 

this is unconfirmed due to the difficulties of conducting non-invasive tests for assessing 

cancellous bone in rats.  

 

Figure 105 - Schematic diagram for bone remodelling proposed by (Hart et al., 1984) 

Osteocytes that are distributed in the bone matrix have been suggested to be bone’s 

mechanosensing cells (Cowin et al., 1995). Osteocytes are speculated to produce a signal 

proportional to mechanical loading by sensing strain on bone surfaces through stretch-

activated ion channels (Duncan and Misler, 1989), flow of interstitial fluid (Cowin et al., 

1995), electrical potentials (Harrigan and Hamilton, 1993) or cell deformation (as a result of 

fluid flow and matrix strain)(Nicolella and Lankford, 2002). It has also been suggested that 

they can sense fatigue micro-damage (Burr et al., 1985). The osteocytes send an inhibitory 

signal to osteoblasts that reduces their rate of bone formation (Marotti et al., 1992) and the 

osteoblasts control the osteoclasts (Rodan and Martin, 1981). The unified theory proposed 

by Martin (2000), proposes a system of cell-to-cell communication that is all based on 

inhibition of signals (including between osteoblasts to bone lining cells). 
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Strain energy density (U) (Fyhrie and Carter, 1986, Huiskes et al., 1987, Harrigan and 

Hamilton, 1992) is probably the most widely used mechanical stimulus for computer models 

in the literature (Ruimerman et al., 2005). Variations of a strain based stimulus include: 

principal strain (Gray et al., 2010), equivalent strain (Hart et al., 1984, Turner et al., 2005), 

strain energy density per unit bone density (Weinans et al., 1992b). Other stimuli 

investigated in the literature are von Mises stress (Herrera et al., 2007), strain rate (Lanyon 

and Rubin, 1984), damage-predictors (Prendergast and Taylor, 1994, Doblaré and García, 

2001), and combinations of these (McNamara and Prendergast, 2007). 

The bone remodelling response is influenced by anatomical site and time. For example the 

biological environments at different bone locations, such as the tibia and metatarsals or 

periosteal and endocortical surfaces of the same bone, may be different. No single bone 

remodelling response is applicable for all bones or in all regions of a single bone (Beaupre et 

al., 1990). The remodelling rate is also variable because it reduces with age (Sontag, 1992) 

and it is influenced by genetic predisposition (including gender) (Akhter et al., 1998) and 

environmental factors (such as metabolism and drug treatment). 

Furthermore, the bone remodelling rate is suggested to be dependent on the free-surface 

available in the bone. This is because bone apposition and resorption can only occur at the 

free bone surfaces (Martin, 1972).  

There are numerous bone remodelling theories reported in the literature with the common 

themes described above. The “Theory of Adaptive Elasticity” was developed by Cowin et al. 

(Cowin and Hegedus, 1976, Hegedus and Cowin, 1976, Cowin and Nachlinger, 1978, Cowin 

and Van Buskirk, 1978, Cowin and Firoozbakhsh, 1981). Constitutive remodelling rate 

equations relate the rate of bone tissue deposition and resorption to the mechanical stimulus 

(Cowin, 1993). External and internal remodelling are considered separately; the following 

equation is relevant for internal remodelling: 

  

  
     (            ) 

where A is a remodelling constant, S is the stimulus, Sref is the reference stimulus at 

homeostatic equilibrium, and these are all functions of an anatomical site x.  

The “Theory of Adaptive Elasticity” neglects (1) the influence of strain history on bone 

remodelling rate; and (2) trabecular alignment and material anisotropy.  

Based on the principle of “self-optimisation”, the “Bone Maintenance Theory” was later 

developed by Carter et al. (Carter and Hayes, 1977, Fyhrie and Carter, 1986, Carter et al., 

1987a, Carter et al., 1987b). Strain energy density was assumed to be the mechanical 

stimulus and the equations are derived assuming that bone optimises its stiffness to the 
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given loading with minimal material gain. The trabecular orientations align with the principal 

stress directions and the apparent density is proportional to an “effective stress”. The theory 

includes the daily load history (Carter et al. 1987a). The stimulus is a function of the strain 

energy density, loading cycles and apparent density: 

  (∑    
 )

   

 

where U is the strain energy density, i is the number of different loading conditions, n is the 

number of loading cycles, and k is a constant. 

A credible combined comprehensive theory of “Adaptive Elasticity” and “Maintenance 

Theory” does not currently exist, although efforts have been made (Lekszycki,1999). 

Mathematical models of both theories have been developed and incorporated into FE 

programs to study bone remodelling post-arthroplasty. Studies by Kerner et al. (1999), 

Bitsakos et al. (2005) and Turner et al.(2005) compared FE predicted bone changes with 

measured bone changes of post-THR patients and found that the results had a similar order 

of magnitude.  

In this study, the strain adaptive bone remodelling FE algorithm developed by Huiskes et al. 

(1987) has been used. This algorithm is based on an alternative formulation of the theory of 

“Adaptive Elasticity” and it uses strain energy density (U) as the mechanical stimulus: 

  
 

 
       

where εij is the local strain tensor and σij is the local stress tensor.  

The remodelling is stimulated when the difference between the actual U and a homeostatic 

equilibrium Uref is greater than a threshold which is defined by the lazy-zone, as illustrated in 

Figure 106. The remodelling response can be assumed to be linear (as originally formulated 

by Huiskes) or represented as a nonlinear response (Weinans et al., 1992a) with bone 

resorption faster (proportional to the cube of stimulus difference) than bone apposition 

(proportional to the square of stimulus difference). 
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Figure 106 - Strain adaptive bone remodelling relationship. The red line represents the nonlinear 

response purposed by Weinans et al. (1992a) and the linear response was proposed by 

Huiskes et al. (1987). 

To account for free-surface of bone on the rate of bone remodelling, the theory of Martin 

(1972) is incorporated into the algorithm. The internal free-surface area A(ρ) is estimated 

from bone apparent density, using the following empirical equation:  

                                     

where:      
 

    
 

The ‘Huiskes’ algorithm was validated against canine experiments (Weinans et al., 1993) by 

comparing computer predictions against in-vivo response of animal bone to THR. Kerner et 

al. (1999) evaluated the computer predictions against human THR retrieval studies and 

Bitsakos et al. (2005) compared subject-specific THR patient computer predictions against 

DXA scans. The algorithm explained the qualitative changes that occurred but was less 

accurate for predicting regional and patient-specific quantitative changes. The algorithm 

parameters were optimised for the models and there was a distinct difference in lazy-zone 

parameter (animal s=35% compared to the human s=75-85%). Weinans et al. (1993) used 

U/ρ as the stimulus while Bitsakos et al. (2005) found U and principal strain produced better 

results. Although studies have used the algorithm for predicting stress shielding of Total 

Knee Replacements (TKRs) (Chong et al., 2011) and Unicompartmental Knee 

Replacements (UKRs) (Gillies et al., 2007),  no study has yet comprehensively evaluated the 

algorithm against in-vivo DXA scans of knee arthroplasty patients. 
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8.3 Method 

8.3.1 Patient Selection 

Two UKR patients from the Dual X-Ray Absorptiometry (DXA) clinical study (presented in 

Section 7) were chosen based on one having had cemented fixation (patient-9) and the 

other cementless fixation (patient-2).  Figures 107 and 108 show the frontal and lateral 

scans of both patients assessed, highlighting the positions of the chosen Regions-Of-Interest 

(ROIs). Four separate Finite Element (FE) models were developed (two tibia and two femur) 

from pre-operative Computed Tomography (CT) scans. The models were developed in line 

with the conclusions of Chapter 6.  

 

Figure 107 - Frontal and lateral DXA scans of patient-2. 

 

Figure 108 - Frontal and lateral DXA scans of patient-9. 
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8.3.2 Geometry and Materials 

The patients’ knees were CT scanned using a “Definition AS+” Computed Tomography (CT) 

scanner (Siemens Healthcare, Germany). The coronal voxel sizes were in the range 0.5-

0.7 mm and slice thickness’ were 0.6-1.0 mm. Assurances were provided by the 

radiographers that all the quality assurance protocols of the scanner were up to date as 

specified in the operator manual. The scans were phantom-calibrated against air and water 

within 12 hours of performing the scans; the grey scale values were equivalent to Hounsfield 

Units (water corresponds to ± 4 HU and air to -1000 .  

As described in Sub-section 4.3.2, the tibiae and femora were segmented manually using 

AVIZO 6.1 software (Visualization Sciences Group, USA) and the surfaces smoothed and 

meshed using triangular elements of 2-3 mm length. A separate mesh of the cortical bone 

geometry was generated. The surface geometries were imported into MARC Mentat 2010 

software where the cortical and cancellous geometries were merged together while 

maintaining the cortical-cancellous boundary. The bones were transformed into a new axis 

(Anatomical Tibial axis for the tibia and Posterior Condylar axis for the femur, as described in 

Sub-section 4.3.2) based on identifiable bone landmarks. 

Virtual implantations were performed, as described in Sub-section 4.3.5. The DXA scans 

were used to verify the final orientations of the implants. The femoral component of patient-9 

was over-rotated posteriorly by no more than 5 degrees. Patient-2 had a ‘Size F’ tibial tray 

and ‘Large’ femoral component while patient-9 had a ‘Size C’ tibial tray and ‘Medium’ 

femoral component. Although the femoral reaming cutter creates a corner stress raiser at the 

anterior edge, usually the surgeon tends to chisel away to round off the corner. A single 

element chamfer was added to the models to remove the unrealistic stress raiser.  

The cementless tibial and femoral implants of patient-2 included a contact interface between 

the implant and bone, with a friction coefficient of 0.4 (assuming no osseointegration). Once 

osseointegration had occurred (at three months), the implant-bone interface was fully 

bonded with shared nodes at the interface. The implant was in contact around the rim (four 

elements wide, 1.2 mm size elements), and the underside inner surface (hydroxy-apatite 

coated region) recessed by 0.2 mm. The cementless femoral component had 1.2 mm size 

elements at the bone-implant interface and the implant underside inner surface (the hydroxy-

apatite coated region) was recessed by 0.2 mm. 

For the cemented tibial and femoral implants of patient-9, shared nodes were modelled at 

the bone-cement and cement-implant interfaces. Note that the nodes at the tibial implant 

side-plate and sagittal bone resection were not shared and were modelled as non-

contacting. This is because clinical evidence (radiolucencies) suggests that the side-plate is 
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often not bonded to the bone (Simpson et al., 2011). A 2 mm thick cement-mantle was 

modelled with an elastic modulus of 1.8 GPa (refer to Sub-section 4.4).  

All the models were formed of linear tetrahedral type 134 elements of size 2-4 mm. A higher 

mesh density was assigned to the medial compartment to capture the bone remodelling 

changes more accurately. The proximal tibial and distal femoral cortices were not included 

as sensitivity assessments showed only local effects on bone strain (refer to Sub-section 

4.5).  

The bone elastic moduli were assigned separately to the cancellous and cortical materials. 

The cancellous moduli were assigned on an element-by-element basis, assuming isotropy, 

using a linear relationship to calculate apparent density from CT grey scale values (as 

described in Sub-section 2.3) followed by a three-part relationship to calculate elastic moduli 

(as described in Sub-section 2.4). The cortical bone was represented with a single isotropic 

elastic modulus of 17.9 GPa representing the maximum apparent bone density of 1.73g/cm3. 

In order to accurately determine the tibiofemoral contact conditions, the tibia and femur 

models were developed simultaneously. The bones were orientated to determine the contact 

points in both pre and post-arthroplasty conditions. The bone density was also taken into 

account: higher surface bone densities were considered to be indicative of highly loaded 

regions. In both patient knees, the medial aspects of the tibial intercondylar eminences were 

highly loaded compared to normal knees. 

Figures 109 and 110 show the tibia and femur of patient-2 and patient-9 respectively, at pre 

and post-arthroplasty states. The bearings were 5 mm posterior of the tibial tray centre; and 

4 mm from the side-plate for patient-2 and 0-1 mm for patient-9. 
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Figure 109 - Determination of tibiofemoral contact conditions/positions/orientations at pre and post-

arthroplasty states for patient-2. 

 

Figure 110 - Determination of tibiofemoral contact conditions/positions/orientations at pre and post-

arthroplasty states for patient-9. 

The first iteration of all post-arthroplasty models included basic representations of the 

polyethylene mobile-bearing. Since modelling contact is computationally expensive, the 

implant-bearing interfaces were simplified by assuming shared nodes. In the final models, 

the mobile-bearings were removed from the femoral models to optimise them for 

computational efficiency. Loads were applied directly to the implant surface nodes. 

The reference model was developed to represent the pre-operative state of the knee. The 

mesh and element numbers were identical to the UKR models, with additional bone 
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elements added to represent the intact medial condyles. Although basic representations of 

the menisci were included in the first iterations of the models, they were later removed from 

all the models to improve computational efficiency. Although the elastic modulus of the 

meniscus is non-linear (at 20% strain elastic modulus is 20 MPa and increases to 300 MPa 

with increased strain (Leslie et al., 2000)), a single linear elastic modulus of 20 MPa was 

assigned because it produced strains of approximately 20%. 

8.3.3 Remodelling Algorithm and Parameters 

The strain adaptive bone remodelling FE algorithm developed by Huiskes et al. (1987) was 

used. The objective of the remodelling process was defined as: 

                      

where: S is the stimulus; Sref is the Reference Stimulus (pre-operative state); and the interval 

between (1-s)Sref and (1+s)Sref represents the lazy-zone (bone is assumed to be 

unresponsive). 

Bone remodelling was stimulated when the difference between the actual S and a 

homeostatic equilibrium Sref was greater than a threshold which was defined by the lazy-

zone, as illustrated in Figure 106. The remodelling rate was assumed to be linear because 

(1) this was the original formulation by Huiskes and (2) for the algorithm to be compatible 

with the theory of Martin (1972). The nonlinear response proposed by Weinans et al. (1992a) 

was not considered. The bone remodelling rate (positive for apposition and negative for 

resorption) is illustrated in Figure 111. 

 

Figure 111 - The strain adaptive algorithm developed by Huiskes et al. (1987) and used in the study. 

The remodelling rate was defined as: 
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where: 

  = time constant parameter, s-1; 

 A(ρ) = free-surface area of bone, mm2; 

 V = volume of element, mm3; 

 S = Stimulus, U (MPa) or U/ρ (MPa/mm3); 

 Sref = Reference Stimulus, U (MPa) or U/ρ (MPa/mm3); 

 s = lazy zone parameter. 

The maximum apparent density was defined to be 1.73 g/cm3 (in accordance with Martin 

(1972)) and the maximum change in apparent density defined as 0.437 g/cm3. 

The following parametric studies were conducted to optimise parameters to accurately 

predict bone remodelling following UKR arthroplasty: 

 Two mechanical stimuli: (i) strain energy density (U); and (ii) strain energy density 

per unit mass (U/ρ). 

 Four lazy-zone parameters: (i) 50%; (ii) 65%; (iii) 75%; and (iv) 90%. 

 Six time-constant parameters: (i) 1; (ii) 12; (iii) 25; (iv) 50; (v) 75; (vi) 99. 

 Theory of Martin: (i) include theory of Martin; (ii) exclude theory of Martin. 

Since there are a number of different parameters to investigate, a starting point was 

required. A review of the literature demonstrated that the strain energy density (U) stimulus 

was the most widely adopted, lazy-zones of 75% and 90% were most accepted, and the 

theory of Martin was considered necessary. A total of 48 incremental FE analyses (four 

models, two lazy-zones, six time parameters) were developed with increasing time 

parameter  = 1, 12, 25, 50, 99.  

Once the optimal time-parameter was found, the remaining parametric studies were 

conducted. 
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8.3.4 Knee Loading 

As described in Section 3, walking, stair-ascent and stair-descent activities were represented 

by 120 load configurations (representing every 2.5% increment of each activity). For the tibia 

models, 6 load configurations were chosen (Table 13); two peaks for each activity. 

Table 13 - Loads applied to tibia models 

Flexion 
(degree) 

Activity % Cycle 

Force (% Body Weight) 

Medial 
Contact 

Lateral 
Contact 

Patella 
Tendon 

ACL PCL 

26º Walking 15% 221% 44% 149% 43% 0% 

19º Walking 50% 218% 31% 25% 14% 0% 

14º Stair Ascent 15% 142% 121% 266% 44% 0% 

58º Stair Ascent 50% 268% 82% 25% 40% 0% 

70º Stair Descent 15% 354% 72% 67% 50% 0% 

11º Stair Descent 50% 174% 49% 222% 51% 0% 

For the femur models, 8 load configurations were chosen (Table 14) based on the highest 

medial loads covering the full 0-70 degree flexion. 

Table 14 - Loads applied to femur models. 

Flexion 
(degree) 

Activity % Cycle 

Force (% Body Weight) 

Medial 
Contact 

Lateral 
Contact 

Patella 
Contact 

ACL PCL 

11º Walking 10% 196% 0% 27% 28% 1% 

12º Stair Descent 48% 182% 31% 219% 64% 0% 

22º Walking 13% 229% 0% 64% 30% 0% 

26º Walking 15% 221% 44% 108% 43% 0% 

28º Stair Ascent 45% 232% 69% 11% 35% 0% 

43º Stair Ascent 48% 251% 74% 12% 39% 0% 

65º Stair Descent 10% 257% 109% 32% 45% 0% 

70º Stair Descent 15% 354% 72% 37% 50% 0% 

The knee forces were adapted for each patient by taking into account their body-weight. 

Patient-2 weighed 110 kg while patient-9 weighed 75 kg. 

It has been reported that joint forces can stabilise in the first 6 weeks (D'Lima et al., 2006) 

but can increase up to 2 years post-operative (D'Lima et al., 2005). In active patients, the 

joint forces are expected to reach nearly full loading after 3 months (Taylor and Walker, 

2001, D'Lima et al., 2007). Unfortunately the activity levels of patients were not available, so 

assumptions were made based on conversations with the patients. Patient-2 was 

significantly more active than patient-9. For patient-2, it was assumed that the knee forces 

were 50% of those experienced pre-arthroplasty in the first 3-months and rose to 100% 

thereafter. Patient 9 was using a walking stick at 6-months due to pain in both operated and 

contralateral knee. At 12 months, she had no pain on the operated knee, but due to pain on 

the contralateral knee she was relatively inactive. For patient-9, it was assumed that the 
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knee forces were 50% of those experienced pre-arthroplasty for the first 3-months, rose to 

75% at 6 months, 90% at 9 months and 100% at 1-year.  

Based on analysis of the geometry of each patient’s knee joint, a ‘pinch’ force was applied to 

the pre-arthroplasty reference tibia models and the opposite to the femur models. The 

pinching force was calculated based on approximation of the average surface contact 

normal; approximately 7 degrees in both patients.   

The remodelling algorithm calculated the maximum stimulus for each bone element based 

on consideration of all load configurations. After each remodelling increment (8 FEA 

increments for femur and 6 FEA increments for tibia), the algorithm calculated the change in 

bone density of each bone element. 

8.3.5 Modelling Osseointegration of Cementless Implants 

The immediate post-arthroplasty condition of the cementless UKR patient was modelled by 

defining contact at the bone-implant interface, as described in Sub-section 4.6.3. Once 

osseointegration had occurred, the bone-implant interface was modelled as a shared 

interface. 

Since bone-implant micromotion was low at the entire interface of the cementless UKR (refer 

to Sub-section 6.4.3), full osseointegration at the bone-implant interface was assumed at 

3 months. Therefore after running 3 months of simulated bone remodelling, the FE model 

was updated to include a fully fixed bone-implant interface (shared nodes at the interface). 

Note that the implant-side was not fixed to the bone. The model was then run for another 9 

months of simulated bone remodelling. 

For the first 3 months of the tibia simulation, the hole in the implant keel was assumed to be 

a void (no structural significance). At 3 months, this void was filled with bone with density of 

0.1 g/cm3 and allowed to remodel in the subsequent 9 months of simulation. 

8.3.6 Post-processing 

The results were post-processed by simulating each analysis as a frontal and lateral DXA 

scan (refer to Sub-section 4.6.10) and calculating the total bone mass in each ROI (as 

presented in Figures 107 and 108). The results were exported into Microsoft Excel, and 

post-processed to calculate the percentage change (∆BMD) at 3, 6, 9, and 12 months and 

the percentage difference change against the actual measured DXA values. 
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8.4 Results 

8.4.1 Parametric Study Results 

To determine the optimum time parameter, the difference between the predicted ∆BMD and 

measured ∆BMD were plotted against time-parameter as presented in Figures 112 and 113. 
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Figure 112 - Plots display error of tibia BMD change predictions (∆BMD Error = Predicted ∆BMD Error – 

Measured ∆BMD Error) against algorithm time parameter. A suitable time parameter is  = 50. 

 

Figure 113 - Plots display error of femur BMD change predictions (∆BMD Error = Predicted ∆BMD Error – 

Measured ∆BMD Error) against algorithm time parameter. 
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The optimal time parameter was difficult to determine from the results (Figures 112 and 113) 

because they were dependent on patient and on region of interest. However, after 

consideration of the results, and careful judgement based on a detailed review of the 

literature (refer to Sub-section 8.2) a time-parameter of  = 50 was judged to be most 

suitable. With the time-parameter set at  = 50, the remaining parametric studies were 

conducted. Figures 114 to 117 display changes to ΔBMD error due to variations of algorithm 

parameters: (1) Stimulus; (2) Lazy-zone; and (3) inclusion of Theory of Martin. Figures 114 

to 115 display results for tibia models patient-2 and patient-9 respectively; and Figures 116 

to 117 display results for femur models patient-2 and patient-9 respectively. 
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Figure 114 - Comparison of bone remodelling algorithm parameters for the tibia of patient-2. Plots 

display error of BMD change predictions (∆BMD Error = Predicted ∆BMD Error – Measured ∆BMD Error) 

against algorithm parameters: (1) Stimulus; (2) Lazy-zone; and (3) inclusion of Theory of Martin. A 

degradation of 4% (measured from neutral DXA scan ROIs) was included in the patient-2 predictions. 

 

Figure 115 - Comparison of bone remodelling algorithm parameters for the tibia of patient-9. Plots 

display error of BMD change predictions (∆BMD Error = Predicted ∆BMD Error – Measured ∆BMD Error) 

against algorithm parameters: (1) Stimulus; (2) Lazy-zone; and (3) inclusion of Theory of Martin. A 

degradation of 7% (measured from neutral DXA scan ROIs) was included in the patient-9 predictions.  
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Figure 116 - Comparison of bone remodelling algorithm parameters for the femur of patient-2. Plots 

display error of BMD change predictions (∆BMD Error = Predicted ∆BMD Error – Measured ∆BMD Error) 

against algorithm parameters: (1) Stimulus; and (2) Lazy-zone. A degradation of 4% (measured from 

neutral DXA scan ROIs) was included in the patient-2 predictions. 

 

Figure 117 - Comparison of bone remodelling algorithm parameters for the femur of patient-9. Plots 

display error of BMD change predictions (∆BMD Error = Predicted ∆BMD Error – Measured ∆BMD Error) 

against algorithm parameters: (1) Stimulus; and (2) Lazy-zone. A degradation of 7% (measured from 

neutral DXA scan ROIs) was included in the patient-9 predictions. 

The results presented in Figures 114 to 117 are variable and inconclusive. In general the 

most realistic results were produced when stimulus U was used; however, there was no 

significant evidence to exclude the use of stimulus U/ρ. In general, the error reduced with 

increasing lazy-zone (except patient-2 femur with U/ρ as stimulus), and the most suitable 

lazy-zone was 75%. Using the Theory of Martin made little difference to bone remodelling in 

most of the models; however a large effect was observed for patient-2 tibia. This was 

because bone apposition was stimulated in a high density cortical region on the medial 
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proximal tibia, and the Theory of Martin significantly reduced the remodelling rate in this 

region when activated. Therefore, inclusion of the Theory of Martin was considered 

necessary. 

8.4.2 Predicted BMD Changes in the Knee 

The parameters chosen to be most optimal for BMD change predictions were as follows: 

 Stimulus = strain energy density (U);  

 Lazy-zone = 75%; 

 Time-parameter   = 50; 

 Theory of Martin activated. 

Figures 118 and 120 display simulated DXA scans of BMD of the tibia and femur, 

respectively. The figures highlight the BMD changes for both patients, with green circles 

indicating bone apposition and red indicating bone resorption. The arrows highlight the load 

path dissipating from the implant. 

Figures 121 and 122 display how the BMD changes occur over the 12 month period for both 

patients and both tibia and femur. 

Although the simulated 2D DXA scans are useful to clinicians who are familiar with using 

them, 3D images provide significant improvement. An advantage of developing computer 

models is that these can be analysed in 3D, adding further perspective to 2D clinical 

radiographs. Particularly for UKRs, 3D images can be used to separate BMD changes in the 

lateral compartment (which can distort the 2D radiographs). Figures 123 to 131 present 3D 

bone remodelling plots of the tibia and femur, respectively.  
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Figure 118 - Simulated frontal tibia DXA scans of FEA bone remodelling predictions of patient-2 and 

patient-9. 

 

Figure 119 - Simulated lateral tibia DXA scans of FEA bone remodelling predictions of patient-2 and 

patient-9. 
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Figure 120 - Simulated femur DXA scans of FEA bone remodelling predictions of patient-2 and patient-9. 
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Figure 121 - Plots of Tibia DXA BMD changes for the period of 1 year of patient-2 and patient-9. The 

predicted BMD changes are compared against the measured changes.  

 

Figure 122 - Plots of Femur DXA BMD changes for the period of 1 year of patient-2 and patient-9. The 

predicted BMD changes are compared against the measured changes. 
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Figures 123 to 127 display the bone remodelling changes in patient-2 tibia and Figures 124 

to 128 in patient-9. Figures 123 and 124 show slices of bone density with time and 

demonstrate that bone apposition occurs under the tibial tray keel. In both patients, the 

apposition forms a stiff load-path between the posterior keel and the cortical bone. In patient-

9, the keel rests close to the cortical bone; therefore, bone apposition in this region is low. 

On the other hand, patient-2 has a wide proximal tibia and since the anterior of the keel is 

located in a region of low density bone, bone apposition has caused a second stiff load-path 

from the anterior keel to the cortical bone.   

 

Figure 123 - Bone remodelling under tibial keel of patient-2. 

 

Figure 124 - Bone remodelling under tibial keel of patient-9. 
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Figures 125 and 126 show plots of bone apposition at the resected corner of the tibial 

implant. There was significant bone apposition at the anterior side-plate in both patients, and 

this corresponds to the sclerotic regions often seen in frontal radiographs. This highly 

strained region could be responsible for the pain that a large portion of Oxford UKR patients 

complain about. Note that the implant side-plate is not osseointegrated to the bone. 

 

 

Figure 125 - Bone apposition at the resected corner of the tibial tray of patient-2. 

 

Figure 126 - Bone apposition at the resected corner of the tibial tray of patient-9. 
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Figures 127 and 128 display the bone remodelling changes at a slice 1 mm under the 

implant (for patient-2 cementless implant) and 1 mm under the cement-mantle (for patient-9 

cemented implant), respectively. There was noticeable bone resorption on the lateral side of 

the cementless implant keel (Figure 127) while there was negligible change for the 

cemented implant (Figure 128). 

 

Figure 127 - Bone remodelling of tibia bone 1 mm under the tibial tray of patient-2. 

 

 

Figure 128 - Bone remodelling of tibia bone 1 mm under the tibial tray of patient-9. 
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Figures 129 and 130 show the bone apposition that takes place in the femur; leading from 

the anterior of the femoral implant to the anterior cortical bone. There was minimal bone 

apposition beneath the central peg, suggesting that this was not the main load-path. This is 

a distinct difference to what is commonly observed in TKRs. It was clear from these figures 

that the dense regions beneath the implant peg commonly seen in 2D radiographs (Figure 

120) correspond to the intercondylar notch not the medial condyle. Since the load-path isn’t 

through the implant stem, there was bone apposition beneath the central and anterior 

femoral implant. 

 

Figure 129 - Bone remodelling at a slice through centre of femoral implant of patient-2. 

 

Figure 130 - Bone remodelling at a slice through centre of femoral implant of patient-9. 
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Figure 131 presents a slice 1 mm beneath the posterior femoral implant, with plots of bone 

density against time. There is bone resorption at the posterior of the implant in patient-9; this 

is also clear from Figure 130. 

 

Figure 131 - Bone resorption at a slice 1 mm beneath the posterior section of the femoral implant of 

patient-9. 

8.5 Discussion 

8.5.1 Summary 

A study of bone remodelling parameters to model UKR human tibiae was completed. The 

following parameters were chosen to produce the most realistic predictions of the actual 

measured patient knees: a stimulus of strain energy density (U); lazy-zone of 75%; time-

parameter of  = 50; and with the theory of Martin activated. The decision to use these 

parameters was based on judgement and qualitative analysis of quantitative assessment 

measures.  

There was insufficient evidence to exclude the stimulus of strain energy density per unit 

mass (U/ρ) (used by Chong et al. (2011)). One of the reasons for rejecting stimulus U/ρ was 

that it was found to be more sensitive to the parameters, particularly the lazy-zone. The lazy-

zones of 50% and 65% were excluded on the grounds that they stimulated too much bone-

remodelling, and both lazy-zones of 75% and 90% produced realistic results. It is likely that 

the lazy-zone and time-parameters differ between patients and anatomy; however, for this 

study they were assumed to be the constant. The time parameter was chosen based on (1) 

clinical evidence that bone remodelling tends to stabilise at 1-2 years (Seitz et al., 1987, 

Engh et al., 1987), and (2) the model solutions were showing signs of convergence at 1 year 

with time parameter values of above 50. 
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The final models of post-UKR ∆BMD produced realistic DXA simulated radiographs that 

qualitatively matched with clinical results. The models followed the trends seen in the clinic, 

highlighting regions of bone loss and adding a further perspective to explain the clinical 

results. The quantitative ∆BMD predictions of ROIs were in general similar to those 

measured in the clinic; however, the error margins were high (as much as 20% compared to 

clinical measurement errors of up to 8%, refer to Section 7). The models could be useful 

tools for assessing how different design features may affect implant fixation. To improve the 

credibility of these tools, the sensitivity of the results to the input parameters was assessed. 

The following describes the main findings of the sensitivity assessments and discusses its 

implications. 

8.5.2 Sensitivity to Activity and Load Configurations 

Bone remodelling predictions are sensitive to the magnitude, direction and position of knee 

forces. For the modelling algorithm used in this study, the following three knee force 

parameters were identified to be most uncertain: 

 load configurations included in the analysis; 

 rehabilitation and activity level of the patient before and after surgery;  

 position of the tibiofemoral and patellofemoral contact locations. 

Sensitivity of the remodelling predictions was assessed by making probable perturbations to 

these parameters.  

Figure 132 shows the effect on BMD changes by using only three load configurations in the 

femur model, rather than the 8 used for the baseline model. The three loads assessed 

excluded any loads above 30 degrees of flexion. The reduced flexion model has more 

realistic results; this corroborates with discussions and observations of patient-9 who 

showed signs of likely low activity following arthroplasty and possibly reduced flexion.  Note 

that although there were changes to the ROI ∆BMD predictions, the bone-apposition at the 

anterior reamed corner remained. 
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Figure 132 - Comparison of measured and predicted BMD changes over one year. ROI BMD plots show 

how reducing the range of flexion angle loads improves predictions. The bone density contour plots of a 

slice through the centre of the implant show how, when flexion is reduced, there is increased BMD under 

the keel and less BMD at the anterior reamed corner. 

The sensitivity of the results to rehabilitation was simulated by varying how quickly the 

patient resumed full (pre-arthroplasty state) knee loads. Figure 133 plots BMD changes in 

the ROIs based on five progressively reducing recovery times. The quicker the patient 

resumes full activity, the less will be the bone resorption under the femoral implant. 
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Figure 133 - Comparison of measured and predicted BMD changes over one year. Plots show how 

reducing the ramping up of load significantly improves predictions. 

The contact locations of the pre-arthroplasty and post-arthroplasty state were modified to 

assess the sensitivity of the BMD predictions. The tibia models were found to be sensitive 

the mediolateral position of the medial condylar tibiofemoral contact forces in the reference 

(pre-arthroplasty state) model. Figure 134 shows the sensitivity of ROI 6 to changes to 

tibiofemoral contact at the intercondylar eminence in the pre-arthroplasty state. Figure 134 

also demonstrates the effect of ACL function post-UKR. As discussed in Section 7.4, 

significant BMD drop was observed at ROI 6 in the UKR patient group and this analysis 

demonstrates that this may be due to some loss of ACL function. 

 

Figure 134 - Plots showing the sensitivity of patient-9 ROI6 predictions to: (1) tibiofemoral contact at the 

intercondylar eminence in the pre-UKR state; and (2) ACL function post-arthroplasty. 

Figure 135 shows images of the model of patient-2 and demonstrates how UKR moves the 

centre of tibiofemoral medial condylar contact laterally and removes contact that may have 

existed at the tibial eminence. Since the tibiofemoral contact spans up the tibial eminence 

and this surface is sloping into the centre of the condyle, there is a ‘pinching force’ imparted 

on the tibia. Although the effect of this ‘pinching force’ is small (refer to Figure 134), it is not 

negligible. 



FEA Bone Remodelling Validation 210 

 

Figure 135 - Plot showing how arthroplasty removes contact with tibial eminence. 

8.5.3 Sensitivity to Stress Raisers 

A stress raiser is a discontinuity in a structure which causes high localised stresses and 

strains. The arthroplasty creates two distinct stress raisers in the bone: at the resected 

corner of the tibia; and the anterior edge of the reamed area of the femur. The former is a 

real stress raiser that is produced by the arthroplasty technique and is often made worse by 

inexperienced surgeons who overcut the tibia (Clarius et al., 2009b). The strains at the tibia 

resection corner reach 3500 µε (compared to tibia bone failure limit of 6500 µε). As 

presented in Figures 125 and 126, this causes bone apposition lateral to the implant side-

plate; this is representative of the typical sclerotic bone regions seen in such UKR patients 

as presented in Figure 141.  

 

Figure 136 - Bone strains at tibia resected corner approach bone failure limit of 6500 με during stair 

climbing activities. 

Simpson et al. (2011) also predicted high strains at the side wall of the UKR implant and 

these high strains may be conducive for development of fibrocartilage and lamellar bone 

around the tibial UKR (Gray et al., 2010). 
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The femoral anterior reamed corner stress raiser is produced because the femoral condyle 

does not conform to a single radius; the radius increases towards the anterior. The severity 

of the cut is dependent on patient anatomy and some patients are more prone to it than 

others. This was prominent in patient-9 as illustrated in Figure 137. Surgeons should chisel 

the bone away to round-off the corner; however a step is often evident. Note that in the 

femur model of patient-9 the osteophytes have not been removed; osteophytes are normal in 

osteoarthritis knees and the surgeon would usually remove these. A single element chamfer 

was added to the models to remove this stress raiser, as plotted in Figure 138.  

 

Figure 137 - [Left] Removal of stress raiser at anterior reamed corner of the medial femoral condyle. 

[Right] Contour plots present bone strains at the anterior corner; strains approach the failure limit of 

femoral bone (6100 με) during stair climbing activities when forces act at 70 degrees flexion. 

 

Figure 138 - Sensitivity assessments conducted investigating how fixation and stress raisers effect BMD 

changes. Effect of removing corner stress raiser at the anterior reamed femur of patient-9 was negligible. 

Additional assessments were conducted investigating whether imperfect fixation at the 

anterior flange of the femoral component (reduction of shear force transfer due to tangential 
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micromotion) would reduce the high bone-apposition at this corner. Figure 138 shows that 

reducing fixation at the anterior bone-cement-implant interfaces had a negligible effect on 

the BMD predictions but reducing the shear fixation at the whole cement-implant interface 

did improve the BMD predictions. There is unfortunately insufficient evidence for reducing 

the shear fixation because the low interface micromotion (mainly less than 50 με with the 

posterior implant tip reaching 65 με during stair-climbing) should produce good fixation (refer 

to Sub-Section 4.6.3). Note, however, that the fixation modifications did not alter the high 

bone apposition seen at the anterior corner of the femur.  

The bone apposition seen at the anterior corner is mainly stimulated from loads at 50-70 

degree flexion angles (during stair-climbing activities). The minimum principal strain at this 

corner reaches close to its failure limit of 6100 με (Figure 137) and may be responsible for 

the discomfort felt by most patients immediately post-arthroplasty (patients tend to be very 

unaware of the precise location of the pain, personal discussion with Prof. Justin Cobb). The 

bone strains at this anterior corner may be too high for normal bone remodelling to take 

place; these limitations are discussed in Sub-Section 8.5.3 below. 

8.5.4 Sensitivity to Osseointegration Parameters 

The models assume that osseointegration occurs at 3 months and this is a discontinuous 

change in boundary conditions. In reality, the process is gradual. The actual result lies in 

between the conditions that (1) osseointegration occurs immediately post-UKR; and (2) 

osseointegration occurs at 3 months. A sensitivity study was conducted to assess the impact 

of assuming condition (1) or (2), and the results are presented in Figure 139.  
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Figure 139 - Effect of osseointegration parameter on remodelling predictions. 

The time at which full osseointegration is assumed has an effect on bone remodelling, with 

the largest difference occurring at ROI F6 (assuming =50) of 7% error. The differences to 

ROIs F1-3 and L4-5 are less than 3% error. Noting the large inter-subject variations, this has 

a small effect. Overall, it was judged to be more accurate to assume osseointegration at 

3-months. 

8.5.1 Reduced ACL Function 

The significant bone loss under the tibial eminence (displayed by most patients in the clinical 

study of Section 7) has been shown to be due to a combination of lack of fixation on the 

implant side-wall, removal of lateral tibiofemoral ‘pinch’ forces at the medial condyle upon 

arthroplasty, and reduced ACL function. The former two reasons can explain up to 15% of 

the bone loss; higher bone loss is suggestive of reduced ACL function. Half of the clinical 

patients (Section 7) displayed bone loss greater than 15%. A possible explanation for the 

reduced ACL function could be because the femoral component of the Oxford UKR rests too 

posteriorly on the condyle. In vivo fluoroscopic analysis of UKR patients has shown that the 
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centre of pressure shifts posteriorly by an average of 5 mm post-arthroplasty (refer to Sub-

Section 3.2.3). In this posterior position the implant bearing could be restricted from 

translating further posteriorly, which would in turn reduce the ACL force. This restriction 

could be caused by soft tissues, swelling, scar tissue, or fibrous tissue ingrowth. This would 

be more significant in small tibiae where the bearings are larger in comparison to the tibial 

tray. Although statistically insignificant (due to insufficient numbers), this trend exists in the 

clinical patient results (Figure 140). 

 

Figure 140 - Plot of measured BMD loss at ROI F6 against tibia implant size. 

8.5.2 Comparison to Literature  

This is the first clinical follow-up DXA study conducted on UKR patients (none reported in the 

literature). Gillies et al. (2007) compared two fixed bearing polyethylene UKR designs (with 

and without keel), and concluded that the bone loss under a keeled tibial implant was 

approximately 5%. Unfortunately their models were never validated with clinical data. The 

present study found similar bone loss predictions for the mobile-bearing tibial implant and 

were based on validated patient specific models. This study also investigated the femoral 

implant, predicting bone-apposition at the anterior reamed corner and potential bone loss at 

the posterior of the condyle. While Gillies et al. (2007) only investigated cemented fixation, 

this study has compared both cemented and cementless implant patients. Although 

differences were observed between the cemented and cementless fixation patient models, 

they should not be compared because patient-specific anatomical differences can 

overshadow the effects due to the fixation. Section 9.1 compares predicted outcomes for 

both patients if alternative fixation was used. 

This study is the first patient-specific bone-remodelling validation study conducted in-vivo on 

humans. Weinans et al. (1993) conducted the first bone-remodelling validation study on 

canine specimens and demonstrated that such models could predict bone loss in animals. 

Following on with this work, Kerner et al. (1999) repeated the study on human THR femora 
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from data produced earlier in a post-mortem retrieval study (Engh et al., 1992a). The pre-

arthroplasty bone geometries (and reference stimuli) were generated from generic cases 

and the contralateral limbs. The study lacked detail on the time-course of the remodelling 

predictions; therefore, Bitsakos (2005) conducted another study on seven retrieved THR 

femora to find a time-parameter suitable for humans. The study used CT scans taken over 

the course of two-years which were previously published by Lengsfeld et al. (2002). Since 

pre-arthroplasty data was unavailable, the pre-arthroplasty bone geometries (and reference 

stimuli) were also generated from the contralateral limbs. During the same period, Turner et 

al. (2005) conducted a generic (non-patient-specific) validation study using 3 human 

cadaveric femora and compared the predictions against a generic data set of 56 DXA 

scanned THR patients over the course of two-years (data unpublished). Herrera et al. (2007) 

conducted a similar generic study looking at the long-term (12 year) effects of a THR 

implant. This study is unique because it was conducted prospectively on living patients using 

real DXA scans; all data was patient-specific including the pre-arthroplasty models, and the 

study was performed on both the tibia and femur. 

The canine validation study by Weinans et al. (1993) found that a time-parameter of =129 

produced most optimal predictions of bone remodelling. With humans having a slower 

metabolism than canines, we would expect this time-parameter to be lower in humans. With 

addition of a fading memory function, Bitsakos (2005) found =50 produced the most 

realistic results. Turner et al. (2005) did not publish their optimised time-parameter. In the 

current study, =50 produced the most realistic BMD predictions.  

In the literature, the lazy-zone threshold levels for stimulus vary from 60-90%, and this study 

found that the choice of stimulus affects the optimal lazy-zone. Weinans et al. (1993) found 

that on canines the most suitable lazy-zone was 35%.  

In a study of human THR femora that were  retrieved at autopsy, Maloney et al. (1989) found 

that cortical strain reduced by as much as 50% post-arthroplasty and did not reach pre-

arthroplasty levels even at 17 years. This is suggestive that lazy-zones are higher in 

humans. In the study of humans, Bitsakos (2005) found 75% was more suitable and this has 

been used widely in the literature (Weinans et al., 1993, Huiskes and Rietbergen, 1995, Van 

Lenthe et al., 1997, Kerner et al., 1999, van Lenthe et al., 2002, Bitsakos, 2005). In studies 

utilising a stimulus other than strain energy density or strain energy density per unit mass, 

lower lazy zones have been used: Turner et al. (2005) used a stimulus of equivalent strain 

and found a lazy-zone of 60% to be most suitable, and a number of studies have followed 

suit (Gillies et al., 2007, Gray et al., 2010). In this study, it was found that lazy-zones of 75% 
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(and up to 90%) were more suitable. It has been speculated that these lazy-zones may be 

individual to each patient and to vary with age (Frost, 1988). 

Studies of THR femora have tended to find that the algorithm over-estimated bone 

resorption (Weinans et al., 1993, Kerner et al., 1999, van Lenthe et al., 2002, Bitsakos, 

2005), particularly if allowed to converge. Bitsakos (2005) showed that predictions improved 

if a ‘memory loss’ function was included in the algorithm. The present study did not find that 

the predictions were over-estimating bone loss, and bone-apposition predictions were higher 

than expected. To account for the gradual bone decline seen in older patients (Frost, 2001), 

a percentage of BMD reduction (determined from the average decline in DXA readings at 

regions that were unaffected by operative trauma and implant load distribution) was 

included. The reason for the difference (compared to the findings of Bitsakos (2005)) may be 

associated with the additional level of refinement in the present models: The present FE 

modelling method was validated for bone strain (as described in Section 6) and as a result of 

a material study (described in Sub-section 2.6), the method for assigning bone elastic moduli 

to the bone models was improved. The changes made a significant improvement to the 

accuracy of the bone strain predictions compared to previous elastic modulus estimations 

(Carter and Hayes, 1977) (used by Weinans et al. (1993), Kerner et al. (1999), Bitsakos 

(2005) and Chong et al. (2011)). 

In this study, the results were sensitive to the simulated activities. Also, excluding the effects 

of activity, both patients’ bones responded differently. This quantitative variability is common 

in patient-specific remodelling FE models in the literature (Bitsakos et al., 2005) and may be 

attributed to pre-arthroplasty bone density (Huiskes and Rietbergen, 1995) and anatomy 

differences. The qualitative bone changes can be better seen in X-Ray radiographs rather 

than DXA scans. Figure 141 shows frontal and lateral radiographs taken at 12 years of an 

Oxford UKR patient. The radiographs corroborate some of the findings of this study, showing 

bone apposition at (1) the tibia resected corner, (2) the tibia posterior under keel, (3) femur 

anterior reamed corner; and bone resorption at (1) anterior tibia, (2) base of femoral implant 

stem. The bone loss seen at the medial region under the tibial implant was not observed in 

the FE study of two patients. The bone loss here may be due to unloading of the medial 

compartment with tibiofemoral contact occurring at the medial tibial eminence. The present 

study highlighted that BMD changes were sensitive to this condition. 
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Figure 141 - Radiograph of Oxford UKR patient knee at 12 years, showing bone apposition at (1) the tibia 

resected corner, (2) the tibia posterior under keel, (3) femur anterior reamed corner; and bone resorption 

at (1) anterior tibia, (2) base of femoral implant stem, (3) medial region under tibia implant. 

8.5.3 Limitations of the Bone Remodelling Algorithm 

Bone remodelling stimuli of U and U/ρ were both assessed in this study. The following 

discusses why U/ρ2 would be a better stimulus for the bone remodelling algorithm than U/ρ. 

The original derivation of U/ρ (Huiskes et al., 1987) is discussed herein and it is argued that 

due to better understanding of bone since the publication of this work  a better stimulus can 

be postulated. 

Bone is assumed to be a self-optimizing material with the objective of aligning trabecular 

architecture with principal stress orientation and adapting its apparent density (Carter and 

Hayes, 1977) to an ‘effective stress’ σeff. Hence the following optimisation objective is 

defined: 

               
   

 

where ρ is the average apparent density of bone. Using the definition of the strain energy 

density of a unit of mass, the following is expressed: 

     √    
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where U is average strain energy density and E is average elastic modulus. It is assumed 

that cortical and cancellous bone can be defined with a single relationship proposed by 

Carter and Hayes (1977): 

              

Based on these equations, the optimisation objective can be rearranged to demonstrate that 

bone remodels with time to try to maintain a steady-state constant U/ρ. Since we now know 

that elastic modulus is not proportional to ρ3, and is in fact a better estimate would be to ρ2 

(for cancellous bone) then we can show that U/ρ2 should prove to be a better remodelling 

stimulus. This has not been assessed in this study. 

Bitsakos (2005) found that neither U nor U/ρ produced accurate converged solutions (that 

correlated with clinical results). He never considered U/ρ2 as a stimulus but he did consider 

principal strain and found that the converged results were better. The BMD predictions, in 

the present study, showed signs of convergence which is as expected of patients at one-

year post-arthroplasty. The most likely cause of the improvement of accuracy is the use of 

improved elastic modulus estimations in the FE models. 

Bone resorption and apposition are assumed to occur at the same rate, but there is evidence 

to suggest that resorption occurs at a faster rate than bone-apposition (Lanyon, 1987, Frost, 

2001). Faster resorption and slower apposition rates in the models could potentially improve 

the BMD predictions. However, a sensitivity study conducted by Bitsakos (2005) on THRs 

showed that altering bone remodelling rates had negligible effect to the BMD predictions. 

The algorithm disregards bone ‘memory loss’. This theory is based on the assumption that 

recent loading events affect bone adaptation more than those in the past (Levenston et al., 

1994). An histological study of the proximal femur showed that after 17 years cortical bone 

strain had still not stabilised to its pre-arthroplasty levels (Maloney et al., 1989). Petersen et 

al. (1995b) and Saari et al.(2007) concluded that the adaptive process stops after 5 years. A 

canine study (Jaworski et al., 1980) showed that full bone resorption did not occur after 

complete immobilisation of forelimbs, in fact it stabilised after 6 months post immobilisation. 

‘Memory loss’ algorithms have been proposed by authors in the past (Bitsakos, 2005, 

Levenston et al., 1994, Kerner et al., 1999). Bitsakos (2005) considered a fading ‘memory 

loss’ function (proposed by Levenston et al. (1994)) with stimulus U and found this to reduce 

BMD change predictions and in some cases improve predictions. However optimal function 

parameters varied between subjects and it would be problematic to find a reasonable 

parameter in this study. Additionally, bone loss has only been investigated over a short 

period of one year, for which the effect of a ‘memory loss’ function would be minimal. 
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The algorithm assumes that lazy-zone is constant throughout the bone. Bitsakos (2005) 

speculated that lazy-zone may be site-specific and that this would explain differences 

between predicted and clinically observed results. Unfortunately with this assumption, the 

study becomes substantially complex; validation would not be possible with 2D scans and it 

would require optimisation algorithms to allocate site-specific lazy-zones from 3D post-

arthroplasty scans. 

The effect of age on bone-apposition rate is significant (Pearson and Lieberman, 2004) and 

has been neglected in the bone remodelling algorithm. An in-vivo animal study (Jaworski et 

al., 1980) showed that there was a reduction of 30% in bone apposition rate in older dogs. 

The age range of the UKR patients investigated in Section 7 was 42-79 years and the two 

patients used for the validation study were 70 and 63 years (patient-2 and 9 respectively). 

Although quantitative effects have been studied in animals (Sontag, 1992), the precise 

effects are unknown in humans and inclusion in our models would be unverified. The effects 

of age were considered in BMD predictions by inclusion of a patient-specific rate of decline 

of BMD.  

In Sub-Section 8.5.3, it was highlighted that bone strains at the stress raisers may be too 

high for normal bone remodelling to take place. Figure 142 illustrates a tissue differentiation 

diagram proposed by Claes and Heigele (1999) and reproduced by Shefelbine et al. (2005) 

and demonstrates how high strains could form connective tissue rather than bone. The 

formation of low stiffness tissue (connective tissue) at this region could inhibit the anterior 

load path and instead distribute the load through the implant stem and posterior aspect of 

the femoral condyle. 
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Figure 142 - Tissue differentiation diagram based on Claes and Heigele (1999) and reproduced by 

Shefelbine et al. (2005).  

Traditionally, critical strain thresholds have not been included in remodelling algorithms; 

however, a recent 2D FEA feasibility study by McNamara and Prendergast (2007) 

implemented a simple critical strain threshold of 3500 με in their remodelling algorithm. A 

more sophisticated algorithm could also include tissue differentiation rules such that lower 

elastic modulus tissue is generated under particular mechanical conditions. Shefelbine et al. 

(2005) used a “Fuzzy Logic” algorithm, based on Claes and Heigele (1999), neglecting fluid 

flow and assuming linear elastic material properties to simulate fracture healing. Gray et al. 

(2010) implemented a similar tissue differentiation algorithm model at a predefined zone 

under an implant. Both studies assumed that tissue differentiation would be determined by 

mechanical stimuli alone. Although validation of these studies was not possible, the results 

of Gray et al. (2010) produced predictions that matched patient radiographs.  

Another limitation of the algorithm is that it neglects surface bone modelling. This anterior 

corner is an exposed resected surface and it has propensity to accumulate micro-fractures 

(because it has been demonstrated to have very high strains). A callus could potentially 

grow from this corner altering the load distribution through this region. This ossified callus 

could potentially redistribute the load to reduce the strains at the corner and hence reduce 

bone-apposition. 

The model assumes isotropic and heterogeneous elastic moduli so that the axial bone 

stiffness is the same as the transverse stiffness. This assumption is valid when the peak 

loads are in the direction of the assumed modulus; i.e. always valid for the tibia but with 
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decreasing validity at the femur with increasing knee flexion forces. The transverse elastic 

modulus of distal femoral bone is less than the axial modulus (Morgan et al., 2003); 

therefore, with anisotropic moduli the transverse loads may dissipate through the bone 

differently. Although recent studies have published new FE techniques for assigning 

anisotropic elastic moduli to bone (San Antonio et al., 2011), the remodelling algorithm in its 

current form is incapable of modelling anisotropic material properties. 

Although improvements could be made to the bone remodelling algorithm, it is satisfactory in 

its current form to compare implant design features, particularly of UKRs for which the FE 

models have been validated. It is important that the users of the bone remodelling algorithm 

are aware of its limitations and that it is not used beyond the validated zone. 

8.5.4 Limitations of Study 

The main limitation of this study is that only four patient-specific FE models (two patients) 

were validated and the patients had successful outcomes. As demonstrated by the high 

variability of patient outcomes in Section 7, the bone adaptation process is patient-specific. 

All patients included in the clinical study (Section 7) were happy with their outcomes and 

there were no revisions. An FE model assessing bone remodelling of a failed UKR would be 

beneficial for assessing the small portion of patients that have poor outcomes and using this 

as an additional case for comparing UKR designs in outlier patients. Although including more 

than two of the clinical patients would have improved confidence in the conclusions, the 

benefits were considered insufficient compared to the substantial work-effort required in 

developing the models. The two patients included in the study were representative of the 

cemented and cementless UKR patient population groups of the clinical study. 

Due to computational and remodelling algorithm limitations, the FE models were developed 

using linear tetrahedral elements (4-node elements) and not quadratic elements (10-node 

elements) as recommended in Section 4. Therefore, there is potentially a 10% error in 

predicted bone strains (refer to Figure 37 of Section 4.5). Note that the error reported in 

Section 4.5 was consistent between models with 10% lower strains. Therefore, the 

difference in stimulus values (between the pre-arthroplasty (reference) model and the 

arthroplasty model) would be consistently 10% less and this error would be made negligible 

with the choice of optimum lazy-zone parameter. 

Based on the conclusions of Section 4.5, the mesh density used in this study was deemed 

adequate. In comparison to previous implant studies employing this remodelling algorithm 

(Weinans et al., 1993, Kerner et al., 1999, Bitsakos, 2005, Chong et al., 2011), the models in 

this study were of finer mesh. 
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8.6 Conclusions 

Four patient-specific FE models were developed to predict bone adaptation following UKR 

arthroplasty and validated against BMD DXA results of a clinical patient follow-up study. 

Using the bone remodelling algorithm developed by Huiskes et al. (1987), the following 

parameters were found to produce the most realistic predictions of the actual measured 

patient knees: a stimulus of strain energy density (U); lazy-zone of 75%; time-parameter of 

 = 50; and with the theory of Martin activated. 

The rate at which the UKR patient resumed normal activity had a distinct effect on the BMD 

predictions and potentially on the future success of the implant. Maintaining activity levels 

following arthroplasty minimised bone loss in the high risk regions (posterior femoral condyle 

and proximal tibial tray keel). The quicker the adoption of normal activity levels the better the 

outcome was at one year, in relation to the preservation of bone mass. 

The significant bone loss under the tibial eminence (displayed by most patients in the clinical 

study of Section 7) was shown to be due to a combination of lack of fixation on the side-wall 

of the implant, removal of lateral tibiofemoral forces at the medial condyle after arthroplasty 

and reduced ACL function. The former two reasons explained up to 15% of the bone loss. 

Greater bone loss was seen in half of the patients and was suggestive of reduced ACL 

function. A possible explanation for the reduced ACL function could be because the femoral 

component of the Oxford UKR lies too posteriorly on the condyle, inhibiting bearing 

movement (particularly in small size implants) and thus not being able to tense the ACL. 

The developed FE models are a useful tool for comparing UKR implant designs; however, it 

is important that users are aware of the limitations of both the bone remodelling algorithm 

and the FE techniques employed.  
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9 Studies Investigating UKR Design 

9.1 Introduction 

This section compares Unicompartmental Knee Replacement (UKR) design features using 

the validated computer simulations developed in previous sections of this thesis. Bone 

strains in the vicinity of the implant were validated in 8 models (4 tibiae and 4 femora) in 

Section 6. High bone strain is an indicator of pain and should be maintained below the failure 

limit of bone for a successful outcome. Osseointegration of implant to bone is another factor 

for success; implant-bone micromotions of cementless implants should be maintained below 

100 µε for adequate fixation to develop. The 8 Finite Element (FE) models (4 tibiae and 4 

femora) described in Section 6 were also validated for bone-implant micromotion. From the 

pool of in-vitro knee cadavers assessed (10 knees, 5 pairs from 5 cadavers as described in 

Section 5), three were chosen to represent a range of bone densities. Cadaver CAD1/2 had 

the densest bone while CAD3/4 had the least dense bone (fractured during testing), and 

CAD5/6 was considered to be average. A total of twelve FE models were used to assess 

fixation stresses, strains and bone-implant micromotions associated with cementless and 

cemented UKRs. 

Table 15 - FE models used to represent a range of bone densities for assessing UKR designs for fixation. 

 
Weakest 

CADLOW 

Average 

CADAV 

Densest 

CADHIGH 

Tibia CAD4 CAD5 CAD1 

Femur CAD3 CAD6 CAD1 

The long-term fixation of implants is governed partly by bone remodelling. Four FE models of 

two clinical UKR patients (PAT2 and PAT9) were validated in Section 8 against one-year 

Dual X-Ray Absorptiometry (DXA) scans of BMD change around the implants. The models 

were duplicated to include both cemented and cementless fixation; therefore, a total of eight 

FE models were used to compare UKR designs for bone remodelling.  

Table 16 - FE models used to represent two UKR patients for assessing UKR designs for fixation. 

 
Active Patient 

PATCL 

Less Active Patient 

PATCD 

Tibia PAT2 PAT9 

Femur PAT2 PAT9 

A total of 20 validated models (cemented and cementless versions of ten specimens) were 

used as a baseline to compare UKR designs for initial and long-term fixation.   
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9.2 Cementless or Cemented Fixation? 

9.2.1 Introduction 

UKR arthroplasty can be performed using either cemented or cementless implants. Recent 

studies have published good clinical results for cementless UKR implants (Pandit et al., 

2009); however, 96% of surgeons prefer cemented fixation (Schindler et al., 2010). There is 

an increasing trend in Australia for using cementless fixation on UKR patients, particularly for 

the femur; however, cemented fixation still accounts for more than 75% (Australian National 

Joint Replacement Registry (2011)). Currently in the literature, there is no real clinical 

evidence specific to UKRs to suggest that cemented fixation is any better.  

Only experienced surgeons tend to consider cementless UKRs. In addition they tend to 

make the decision of fixation method during surgery when they can actually see and feel the 

resected bone surface. It is speculated that surgeons inadvertently categorise patients into 

sub-groups and this categorisation differs from surgeon to surgeon based on their 

experience and training. This knowledge is mostly unrecorded for UKRs (and often 

unsupported by scientific evidence as it is based on knowledge accumulated from trial-and-

error in part by the specific surgeon). It is therefore not possible to obtain retrospective 

clinical data from existing national registers to compare fixation method success rates with 

like-for-like patient sub-groups. Surgical experience tends to dominate UKR success rates, 

particularly from large multi-centre national registers and it is difficult to ascertain which 

fixation methods are most successful and to identify which are the best for particular patient 

sub-groups. 

This study presents the findings of an in-silico study comparing identical bones with 

cemented and cementless fixation methods for the UKR. The computer models were used to 

simulate post-operative bone strains and bone-remodelling changes at 1 year. The 

performance of cementless and cemented fixation using the Oxford mobile-bearing UKR 

was compared for three specimen and two patient knees to identify the best fixation method. 

9.2.2 Method 

The validated FE models (strain-validated CADLOW, CADAV and CADHIGH; and remodelling-

validated PATCD and PATCL) were used to compare the fixation performance of cemented 

and cementless Oxford mobile-bearing UKRs. 

The existing cemented and cementless versions of the strain-validated models were used 

with the only modification being that a full set of knee forces were applied (medial and lateral 

tibiofemoral contact, muscles and ligaments) to simulate walking and stair-climbing activities. 
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Two load cases were applied to each of the five tibia models to simulate peak walking (50% 

of the walking cycle) and stair-climbing (15% of stair-climbing cycle) knee forces. Eight load 

cases were applied to each femur model representing the peak knee forces at 10 degree 

increments of flexion angle taken from the pool of data for walking and stair-climbing 

activities. The knee forces applied to the models are tabulated in Sub-section 8.3.4. The 

polyethylene (PE) mobile-bearing and the femoral implant were included in the model to 

ensure that the medial condylar load onto the implant was represented as accurately as 

possible. Contact between the mobile-bearing and tibial tray was simulated using a 

Coulomb’s friction model with coefficient of 0.1. No other changes were made to these 

strain-validated models. The development and validation of the FE models are detailed in 

Sections 4 and 6. 

 

Figure 143 - Forces applied to the UKR implanted tibia and femur models. 

Since the two remodelling-validated models only simulated the actual fixation used for the 

UKR patient, two additional models were developed to simulate what would have occurred if 

the alternative fixation was used (i.e. simulating a cemented implant for PATCL and a 

cementless implant for PATCD). Note that the rehabilitation activity levels were different 

between the two patients, with a rapid rehabilitation to full activity taken by patient PATCL and 

a gentle approach taken by PATCD. Eight additional FE models were developed from the 

remodelling models to assess initial bone strain and final bone strain at 1-year. No other 

changes were made to these strain-validated models. The validation of the FE models is 

detailed in Section 8.  
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Initial fixation is a measure of the immediate post-operative stability of the implant. Under 

daily activities, good initial fixation will exhibit low bone strains (less than 50% of the failure 

limit of bone). Good initial fixation also requires low micro-movements between the bone and 

implant at the interface (micromotion). Although micromotion is an important factor for 

cementless implants to ensure adequate osseointegration, it is not as important for 

cemented implants. For the purposes of direct comparison with cementless and cemented 

implants, micromotion was not considered in this section of the thesis.  

To ensure long-term fixation is maintained, the integrity of the implant and bone must be 

kept intact. Bone-resorption caused by implant stress-shielding can degrade the integrity of 

the underlying bone. In this study, the bone density of two real UKR patients was assessed 

immediately after and at 1-year post-arthroplasty. The model of the UKR patient with the 

cemented implant was modified for a cementless implant to investigate what the effects 

would have been if she was to have had the alternative cementless fixation. Similarly, the 

model of the UKR patient with the cementless implant was modified for a cemented implant. 

It was assumed that all cementless implants developed fully osseointegrated bone-implant 

interfaces after three months (refer to Sub-section 4.6.3).  

Initial fixation was assessed by comparing bone strains, simulated using all five tibiae and 

femora models. Long-term fixation was assessed by comparing bone density reduction at 

1-year post-arthroplasty, simulated using the two remodelling-validated patient models.  

9.2.1 Results: Initial Fixation 

Figures 144 to 146 , display bone strains plots at three cross-sections of the tibia. They 

demonstrate how bone strains increased with reduced bone density. The regions of highest 

bone strain are different for cemented and cementless implants, with higher strains produced 

with cementless fixation. 

Under cemented fixation, the highest bone strains were produced beneath the keel, and 

these exceeded the failure limit of bone for the lowest density tibia (CADLOW). High bone 

strains can lead to progressive migration and tibial subsidence. Increased migration has 

been linked with higher probability of loosening (Ryd et al., 1995). It should be noted that 

only full activity loads were simulated in this study; with a more gentle rehabilitation 

programme the bone strains could be kept at sustainable levels. For the patient who had a 

cemented UKR (PATCD), the peak bone strains were as high as 85% of the failure limit of 

bone which could have caused some discomfort. However from clinical observation, it was 

deemed likely that she resumed full activity very gently (refer to Section 7), allowing time for 

the bone to adapt to these high strains. 
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With cementless fixation, the highest bone strains were produced around the rim of the tibial 

tray and at the anterior region of the resected corner. These bone strains exceeded the 

failure limit of bone for the average density (CADAV) and lowest density tibiae (CADLOW). For 

the patient who had a cementless UKR (PATCL), the peak bone strains under the tibial 

implant were within 60% of the failure limit of bone; however at the posterior of the keel, the 

strains approached the bone failure limit. From clinical observation, this patient’s progress 

was very good: he resumed full activity immediately (with some pain initially) and he was 

very happy with his outcome. His initial pain may correspond to the high bone strains 

beneath the keel. Upon osseointegration of the cementless implants, the plots show that 

bone strains reduced by approximately 30%, particularly at the resected corner and posterior 

of the keel. 

 

Figure 144 - Initial fixation of cemented and cementless tibial implants. Minimum principal strain of tibia 

bone at transverse section 3 mm below the tibia-implant interface. The strain increased with reduced 

bone density, in particular for cementless implants (highlighted top). Cementation reduced peak bone 

strains, in particular for PATCD (highlighted bottom). 
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Figure 145 - Initial fixation of cemented and cementless tibial implants. Minimum principal strain of tibia 

bone at transverse section 3 mm below the tibia-implant keel interface. The strain increased with reduced 

bone density, in particular for cementless implants (highlighted top). Cementation reduced peak bone 

strains, in particular for PATCD (highlighted bottom). 

 

Figure 146 - Initial fixation of cemented and cementless tibial implants. Minimum principal strain of tibia 

bone at sagittal section through centre of tibia implant keel. The strain increased with reduced bone 

density, in particular for cementless implants (highlighted top). Cementation reduced peak bone strains, 

in particular for PATCD (highlighted bottom).  
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Figures 147 to 149 display contour plots of bone strains at three cross-sections of the femur. 

The bone strains increased with reduced bone density and these support the results of the 

tibia simulations. A common feature of the strain plots is the high strains located at the 

anterior reamed edge. These strains approached the failure limit of bone. Note that for 

PATCD, the peak strains were located further anteriorly at the edge which is why they are not 

visible on the plots. 

There were significant differences between the strain contour plots of the cemented and 

cementless femoral implants mainly due to the existence of a second peg for the cementless 

implant. In general, the second peg reduced the strains at the anterior reamed corner; 

however, this was not the case for all specimens. The results were variable because the 

bone density distributions and bone geometries were highly variable between specimens. 

For the cemented implant, the load was more equally distributed (compared to the 

cementless implant). However the region posterior to the central peg was shielded from 

strain. There was also some initial stress-shielding beneath the posterior of the implant 

(Figure 149) with cementless fixation. This shielding occurred because the component of 

force in the anterior direction (this component increases with knee flexion) was reacted 

mostly by the bone surrounding the pegs (due to a stiff implant) and not the bone beneath 

the posterior shell. 

For the cementless implant, the bone strains were sensitive to whether the base of the pegs 

rested against bone. In practice, the peg slot is longer than the peg itself so the peg base is 

“floating”. As a result, the main load-path is through the implant outer-shell. Once 

osseointegration has occurred the load-path through the keel increases depending on the 

relative density of the bone beneath it compared to that under the shell.  
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Figure 147 - Initial fixation of cemented and cementless femoral implants. Minimum principal strain of 

femur bone at sagittal section through the centre of the implant stem. The strain increased with reduced 

bone density, in particular for cementless implants (highlighted top). Cementation had a negligible effect 

on peak bone strains (highlighted bottom). 

 

Figure 148 - Initial fixation of cemented and cementless femoral implants. Minimum principal strain of 

femur bone at transverse section midway along implant stem. The strain increased with reduced bone 

density, in particular for cementless implants (highlighted top). Cementation reduced peak bone strains 

around the peg (highlighted bottom). 
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Figure 149 - Initial fixation of cemented and cementless femoral implants. Minimum principal strain of 

femur bone at frontal section 3 mm beneath posterior femoral implant. The strain increased with reduced 

bone density, in particular for cementless implants (highlighted top). Cementation had a small effect on 

peak bone strains (highlighted bottom). 
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9.2.2 Results: Long-term Fixation 

Figure 150 displays the bone density changes for the tibia under both cemented and 

cementless fixation. The average bone density beneath the cementless implant was higher 

than that of the cemented implant at 1-year. However, the regions of lowest density were 

also less for the cementless implant. This is because the cement acts as an intermediate 

layer that is significantly more flexible than the metal implant and spreads the pressure more 

equally than a simple metal-on-bone interface.  

Figure 151 presents the bone density changes for the femur under both cemented and 

cementless fixation. The inclusion of the second peg for the cementless implant caused 

some bone densification anteriorly for patient PATCL. The difference in bone density at 1 

year was generally insignificant. 

Figures 152 to 157 present the changes to bone strain as the tibia and femur remodel in 

response to daily activities. The plots show that the bone strains reduced at 1 year, with the 

greatest reduction occurring for the cementless implant. The final bone strains were lower for 

the cementless implant than the cemented implant. This difference is because the higher 

strains produced by the cementless implant were enough to trigger bone remodelling while 

those of the cemented implants did not go above the threshold. 

The bone strain changes that developed in the femora were more complex than those in the 

tibia. As the base of the peg osseointegrated with the bone, for patient PATCL, a greater 

proportion of the load transferred though it causing high bone strain at the distal region of the 

medial condyle (refer to Figure 155). This could potentially lead to pain for the patient. 
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Figure 150 - Bone remodelling comparison of cemented and cementless tibial implants. Both UKR patient 

bone models were implanted with both types of implants to compare the differences of bone densities at 

1 year. Bone apposition was greater with cementless fixation (highlighted). 
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Figure 151 - Bone remodelling comparison of cemented and cementless femoral implants. Both UKR 

patient bone models were implanted with both types of implants to compare the differences of bone 

densities at 1 year. Bone apposition was only slightly greater with cementless fixation (highlighted). 
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Figure 152 - Fixation of cemented and cementless tibial implants at 1 year post-arthroplasty. Plots of 

minimum principal strain of tibia bone at transverse sections at 3 mm below the tibial implant. After one 

year, the cemented implant produced higher bone strains for PATCD (highlighted), but not for PATCL. 

 

Figure 153 - Fixation of cemented and cementless tibial implants at 1 year post-arthroplasty. Plots of 

minimum principal strain of tibia bone at transverse sections at 3 mm below the tibial keel. After one 

year, the cemented implant produced higher bone strains for PATCD (highlighted). 
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Figure 154 - Fixation of cemented and cementless tibial implants at 1 year post-arthroplasty. Plots of 

minimum principal strain of tibia bone at sagittal sections through centre of the tibial keel. After one year, 

the cemented implant produced higher bone strains for PATCD (highlighted), but not for PATCL. 

 

Figure 155 - Fixation of cemented and cementless femoral implants at 1 year post-arthroplasty. Plots of 

minimum principal strain of femur bone at sagittal sections through the centre of the implant. 
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Figure 156 - Fixation of cemented and cementless femoral implants at 1 year post-arthroplasty. Plots of 

minimum principal strain of femur bone at transverse sections through the middle of implant peg. 

 

Figure 157 - Fixation of cemented and cementless femoral implants at 1 year post-arthroplasty. Plots of 

minimum principal strain of femur bone at frontal sections at 3 mm beneath the posterior of the implant. 
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9.2.3 Discussion 

This study highlights the differences in fixation of cemented and cementless UKR implants. 

Cemented implants provided best initial fixation independent of bone density. This was 

apparent because the bone strains were consistently lower. Cemented fixation was the 

preferred choice for the lowest density tibia because this reduced the bone strains as much 

as possible. For the tibia, the highest bone strains occurred at the resected corner and these 

approached the failure limit of bone for low density bone. Specifically for the cementless 

implant, there were high strains around the rim of the tray (before osseointegration 

occurred); once the implant had osseointegrated, these high rim-strains diminished. For the 

femur, the highest bone strains occurred at the anterior reamed-corner and these 

approached the failure limit of bone. Two of the strain-validated models showed a reduction 

in bone strain at the anterior reamed corner with inclusion of a secondary fixation peg. 

Although this reduction was not evident in the other three models, the inclusion of a 

secondary fixation peg may help to improve initial fixation and reduce these high bone 

strains. Bone strains tended to increase with knee flexion.  

Cementless UKR implants provided the best long-term fixation for the tibia because stress-

shielding was less, particularly at the anterior tibia. However, if initial bone strains are too 

high, this could cause migration, bone loss and could lead to early revision. These results 

may explain why four of the five cementless implant patients in the DXA study (presented in 

Section 7) maintained bone density beneath the tibial implant, while for one patient there 

was a significant decline. 

The stress-shielding in the femur (posteromedial to the central peg) occurred irrespective of 

whether cemented or cementless fixation was used. This may explain why there was a 

negligible difference in bone density decline between cementless and cemented femoral 

implants in the DXA study. Therefore, the benefit of using cementless fixation over cemented 

fixation for the femur was found to be negligible. 

9.2.4 Recommendations 

This study found that the Oxford mobile-bearing UKR provided adequate fixation irrespective 

of whether cemented or cementless fixation was used. Bone density was found to be an 

important factor in fixation performance, with low density bone being more susceptible to 

excessive bone strains that may exceed the failure limit of bone during daily activities. There 

was potential to improve the performance based on the decision to use cemented or 

cementless fixation from patient- specific characteristics of the knee. 
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The short-term fixation performance of the tibial components was best with cemented 

fixation; however, long-term success was compromised with patients of dense tibia who 

would benefit more with cementless fixation. The small rim around the Oxford mobile-

bearing UKR cementless implant significantly reduced the contact area against the bone and 

increased bone strains. These high strains may be responsible for the increased pain that 

cementless UKR patients tend to feel (compared to cemented UKR patients) immediately 

post-arthroplasty (personal communication with Prof. Justin Cobb). This pain tends to 

diminish within a few months and these patients tend to have better radiographs at 1 year. 

Removing this rim would reduce these high bone strains and could improve success rates 

for patients with average bone density (provided this does not compromise osseointegration 

with the HA coating). 

Analysis of multiple patient and cadaveric UKR knees highlighted stress-raisers at the 

resected corner of the tibia and at the reamed anterior edge of the femur. The bone strains 

approached the failure limit of bone; in particular for low density bone where it exceeded the 

failure threshold of bone. Although cementation reduced the bone strains, the UKR design 

and operative technique could be modified to reduce these stress-raisers. 

The fixation of the femoral component was more complicated. Cemented fixation did not 

reduce bone strains. In fact, the omission of a secondary peg increased the bone strains at 

the anterior reamed corner of two of the five knees assessed. In order to benefit patients 

who have low density bone, cemented fixation used with an implant with a secondary peg 

may improve fixation. For patients with dense bone, for whom cementless fixation would 

reduce stress-shielding for the tibia and provide improved long-term success, the secondary 

peg of the cementless femoral implant could cause greater stress-shielding and the benefits 

over cemented fixation would be negligible. In this study, there was negligible long-term 

fixation benefit observed for using a cementless femoral implant; and since the accuracy of 

the resections involved in preparing cementless fixation is more critical to the success and 

the procedure is considered more difficult, this study suggests that only cemented fixation 

should be used for the femur. 
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9.3 Cementless Fixation: Is it good enough? 

9.3.1 Introduction 

Of the orthopaedic surgeons that perform UKR in the UK, only 4% use cementless fixation 

(Schindler et al., 2010). This is very low given the benefits that cementless fixation could 

provide to selected UKR patients (those with high bone quality, who are active and have an 

average body mass index). This study presents micromotion predictions at the implant-bone 

interface and makes recommendations on how to obtain high success rates with cementless 

fixation.  

In clinical practice, radiolucencies are often used as an indicator of bone-implant 

osseointegration. This technique is adequate for flat implant interfaces such as that of the 

tibial tray. There is clinical evidence to suggest that for selected patients that have had 

cementless UKRs, tibial osseointegration has occurred very successfully. There tends to be 

minimal radiolucencies beneath the tibial tray and in fact the clinical results tend to better 

than those of cemented UKRs (Pandit et al., 2009). This is also the experience of surgeons 

at Charing Cross Hospital (personal communication with Prof. Justin Cobb). However, the 

status of the osseointegration of the femoral implants is unknown due to the difficulty of 

identifying radiolucencies under the curved interfaces of the femoral UKR (Clarius et al., 

2010). Some survival studies of the Oxford mobile-bearing UKR have reported higher rates 

of loosening for the femoral implants (compared to tibial implants) (Svard and Price, 2001, 

Murray et al., 1998). Investigation of femoral interface micromotion using computer models is 

valuable information that may help to identify the reasons for these failures. 

The previous sections of this thesis have provided evidence to suggest that osseointegration 

of the implant and tibia should occur under normal knee forces for good quality bone 

(in-silico sensitivity assessments of Section 4, in-vitro studies of Section 5 and supporting 

validation studies of Section 6). Bone-implant micromotion is an indicator of the likelihood of 

osseointegration (refer to Sub-section 4.6.3). In this study, bone-implant interface 

micromotion plots, produced by the validated computer models, have been systematically 

presented and discussed. The three micromotion-validated models (CADLOW, CADAV and 

CADHIGH) and the two remodelling-validated models (PATCL and PATCD) have been adapted 

to simulate the extremes of bone-implant micromotion. 

Bone-implant micromotions are difficult to measure particularly for curved interfaces such as 

the femoral implant. The tibial implant has a flat interface so it is easier to measure in-vitro 

(using displacement transducers) and easier to calculate from computer models (because 

the relative motions can be broken down into normal and tangential directions). Very little is 
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known about the bone-implant interface of UKR femur. This study is believed to be the first 

to investigate the bone-implant micromotions of the UKR femoral implant.  

9.3.2 Method 

The validated FE models (micromotion-validated CADLOW, CADAV and CADHIGH; and 

remodelling-validated PATCD and PATCL) were used to generate bone-implant micromotion 

plots of cementless Oxford UKR implants. The development and validations of the FE 

models are detailed in Sections 4, 6 and 8.  

As described in Section 4, the FE mesh was composed of linear elastic 4-node tetrahedral 

elements, with elements of size 1.4 mm at the bone-implant contact interface, 2 mm in the 

medial condyle and increasing to 3 mm towards the lateral condyle and shaft of the bones. 

Contact was modelled at the bone-implant interface assuming a friction coefficient of 0.4. 

Contact was also modelled at the bearing-implant interface with a Coulomb friction model of 

coefficient 0.1. Algorithms written into Marc software subroutines (refer to Sub-section 4.6.7) 

were used to calculate relative displacements between the bone and the implant. These 

displacements were broken down into surface-normal and surface-tangent direction 

components. The micromotion plots were generated for both the femur and tibia models in 

Marc Mentat 2010 (MSC Software Corporation, USA). 

Peak walking and stair-climbing knee forces were applied to all models (at 50% walking and 

15% stair-ascent activity cycles, refer to Section 3). Note that in practice, patients will 

probably not resume full activity immediately. However, since there is so much disagreement 

between surgeons regarding speed of rehabilitation, the most onerous scenario was 

simulated which assumed regaining full activity and full knee forces immediately post-

surgery. 

For the tibia models, frictional shear forces at the bone-implant interfaces were simulated by 

applying a “sticking” contact condition at the bearing-implant interface and applying 10% of 

the medial condylar contact force (corresponding to a friction coefficient of 0.1) in the 

anterior, posterior, medial and lateral surface-tangent directions in four subsequent separate 

load cases. It was speculated that the highest micromotions would occur under accidental 

over-twisting or lateral sliding of the knee, whereby the bearing may contact the side-plate 

and impose an external turning moment onto the tibial implant. Three additional load cases 

were developed, that applied a single lateral force to the bearing of 0.2 body-weight (BW), 

0.4 BW and 0.6 BW. A spring of the stiffness 1 BW/mm was used to constrain the bearing 

from lifting in the superior direction. Note that the superior-inferior stiffness of the medial 

compartment is dependent on ligament stiffness, muscle activation, bodyweight and inertial 

body forces. The stiffness of 1 BW/mm was chosen based on consideration of ligament 



Studies Investigating UKR Design 242 

stiffness. The medial collateral ligament is the greatest constraint to medial knee 

compartment separation laxity (Markolf et al., 1976), with a stiffness of 400-2000 N/mm 

(Reeves et al., 2003). 

For the femur models, the whole database of walking and stair-climbing knee forces was 

analysed to retrieve the peak knee forces at knee flexion increments of ten degrees. Eight 

separate sets of knee forces were applied to each femur model (two load cases at 10 degree 

and 30 degree flexion angles, because it was not obvious which one of the two was more 

onerous, and single load cases at 20, 40, 60 and 70 degree flexion angles). Another sixteen 

load cases were included in the femur models to simulate frictional shear forces in the 

anterior and posterior directions (depending on whether the knee was flexing or extending). 

These friction forces were simulated by similarly adding a tangential force equivalent to 10% 

of the medial condylar contact force to the surface of the implants. 

9.3.3 Results 

Figures 158 and 159 present implant-bone micromotion plots of the three cadaveric tibia 

specimen models (CADLOW, CADAV and CADHIGH) and the patient models (PATCD and 

PATCL).  Figure 158 presents the relative micromotion which highlights the high micromotion 

at the centres of the implant, while Figure 159 presents the surface-tangent micromotion. 

The results demonstrate the degrading impact that low bone density has on micromotions. 

Micromotions greater than 100 µm were considered indicative of poor osseointegration and 

those less than 50 μm were considered to have very good osseointegration.  

The tibial results of the cementless UKR patient (PATCL) displayed peak micromotions of 

less than 50 μm. This is indicative of good osseointegration and is supported by the clinical 

observations described in Section 7.  
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Figure 158 - Relative micromotion plots at the bone-implant interfaces of cementless mobile bearing 

tibial UKRs. The plots show the most extreme micromotions under different directions of mobile bearing 

friction shear forces on the tibial tray under peak knee forces of stair-climbing.  

There was considerable variation in the locations of the tibial tray peak micromotions as this 

was dependent on the position of the bearing and on the stiffness of the underlying bone. 

The micromotions at the side-plate were consistently higher than the underside of the 

implant. This corroborates with typical radiographs of UKR patients that often show 

radiolucencies beside the side-plate (Figure 5 in Section 1). 

The peak micromotions of the lowest and average density tibiae (CADLOW and CADAV) were 

over 100 µm; therefore poor osseointegration would be expected at the lateral corners of 

these tibial components. In cementless UKR patients of lower than average bone density, 

full activity should not be resumed immediately. As displayed by Figure 160, under walking 

activity knee forces, peak micromotions were less than 100 µm beneath the implants of the 

least dense tibiae CADLOW and CADAV. Although osseointegration would occur, there would 
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probably be some fibrous tissue allowing some interface movement lateral to the keel (Jasty 

et al., 1997a). 

 

Figure 159 - Surface-tangent micromotion plots at the bone-implant interfaces of cementless mobile 

bearing tibial UKRs. The plots show the most extreme micromotions under different directions of mobile 

bearing friction shear forces on the tibial tray under peak knee forces of stair-climbing. 
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Figure 160 - Surface-tangent micromotion plots at the bone-implant interfaces of cementless mobile 

bearing tibial UKRs. The plots show the extreme micromotions if the bearing was to knock the side-plate 

with increasing force. 

Figure 160 presents the results of the tibial implant micromotion simulations of the bearing 

contacting the tibial implant side-plate with a forces of 0.2 - 0.6 BW. Although 0.6 BW is a 

small force, the results demonstrate that it can generate micromotions significantly higher 

than 100 µm. Note that the implant does not actually lift off from the bone, so the surface-

normal micromotions are maintained low. If the UKR was not aligned correctly such that the 

bearing contacted the side-plate during regular activity, the fixation would be significantly 

weakened. A one-off incident during the first few weeks post-arthroplasty could also impair 

fixation. 

Figure 161 presents the peak bone-implant micromotions on the femoral UKR implant. 

Similarly to the tibia, the magnitudes of the micromotions are sensitive to the density of the 

bone. The micromotions significantly exceed 100 µm for the low density tibia (CADLOW). The 

magnitudes of the micromotions tended to increase with knee flexion, with the peaks 

occurring at the posterior of the implant, particularly at the posterior tip. The pegs 

consistently produced low micromotions. The cementless UKR patient showed low femoral 

micromotions indicating good osseointegration and corroborated with the clinical evidence in 

Section 7. 
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Figure 161 - Surface-tangent micromotion plots at the bone-implant interfaces of cementless mobile 

bearing femoral UKRs. The plots show the most extreme micromotions at flexion angles up to 70 degrees 

under the peak knee forces of stair-climbing.  

9.3.4 Discussion and Recommendations 

The main finding of this study was that the UKR bone-implant micromotion was greater with 

lower bone densities of the tibia and femur. Since increased micromotion is indicative of 

weaker bone-implant osseointegration, the fixation performance of cementless fixation 

degraded with lower density tibiae and femora. 

For the densest cadaveric specimen (CADHIGH) and the actual UKR patient who had a 

cementless UKR implanted (PATCL), the micromotions were below the threshold of 50 µm to 

allow firm osseointegration. The patient who had a cemented UKR (PATCD) showed low 

micromotions (less than 50 μm) at the tibia but moderate micromotions (approaching 100 

µm) at the femur. The surgeon made a conservative choice with using a cemented implant 
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for this patient; however, a cementless implant may have osseointegrated well under gentle 

rehabilitation. 

The average density cadaveric specimen (CADAV) produced moderate tibial micromotions 

and low femoral micromotions. Cementless fixation alongside a gentle rehabilitation 

programme could provide the average density knee with a good fixation outcome. The low 

density specimen (CADLOW) produced high micromotions in both the tibia and femur and 

based on this study, cementless fixation is not recommended for such bone. It should be 

appropriate for a clinical/biomechanical study to derive an evidence-based method which 

would guide the choice of implant. 

A significant contributor to interface micromotions is considered to be shear forces on the 

implant. For the Preservation mobile-bearing UKR (DePuy Orthopaedics Inc., Warsaw, 

USA), the constrained bearing could have produced shear forces of 1-3 BW and this 

probably led to its poor success rates (Arastu et al., 2009). The mobile-bearing UKR is a 

good design to allow good osseointegration because the decoupled bearing minimises shear 

forces on the tibial and femoral implants. The shear forces are dependent on the friction at 

the implant-bearing interface. In-house experiments revealed that the Coulomb friction 

coefficient was approximately 0.1 for the Oxford mobile-bearing UKR. Over time bearing 

movement may seize, thereby increasing shear forces on the implant. However, since 

osseointegration would have already occurred, as long as the forces do not exceed the 

failure limit of the interface, good fixation should be preserved. The results also show that 

Impact onto the tibial implant side-plate has the potential to create excessive micromotions if 

the UKR is misaligned.  
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Figure 162 - Surface-tangent micromotion plots at the bone-implant interfaces of cementless mobile 

bearing tibial UKRs. The plots show the reduction of micromotions with an improved flat tibial tray 

underside. 

In Sub-section 9.2, it was found that the rim around the tibial implant caused excessively 

high edge strains on the bone beneath. There would likely be inferior implant migration as 

the rim crushed bone and settled. A sensitivity study was conducted to investigate how 

removing this recess affected the interface micromotions. Figure 162 demonstrates that a 

flat tray underside would only reduce micromotions ensuring a more successful 

osseointegrated fixation.  

In Sub-section 9.2, cementless fixation bone strains were identified to be high at the 

resected corner and around the rim of the tibial tray. The removal of the rim around the tibial 

tray will partly relieve these strains; however, the bone strains at the resected corner will still 

be higher than necessary. Possible solutions to reducing these strains have been 

investigated in preceding sections of this thesis. 
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9.4 Cemented Fixation: Are radiolucencies a problem? 

9.4.1 Introduction 

Cemented Oxford UKR patients often display radiolucencies beneath the tibial implant 

(Gulati et al., 2009a, Pandit et al., 2009, Rea et al., 2007). Most are considered 

“physiological” and do not show any signs of progressive loosening (Gulati et al., 2009a). 

A computer simulation study based on a single specimen (Gray et al., 2010), showed that 

soft tissue beneath the implant was responsible for the stiffening of underlying bone and the 

sclerotic margin often seen in patient radiographs. The following study aims to understand 

how the radiolucent lines affect fixation and how a range of specimens behave to such 

changes.  

9.4.2 Method 

The validated FE models (strain-validated CADLOW, CADAV and CADHIGH; and remodelling-

validated PATCD and PATCL) were used to compare the fixation performance of cemented 

Oxford UKRs taking into account potential degradation of the cement-bone interface and 

remodelling changes to the underlying bone. 

The cemented versions of the strain-validated (Section 6 ) and remodelling-validated models 

(Section 8) were modified for this study. The elastic moduli of the regions 2 mm beneath the 

implants (simulated as a cement-mantle in the validated models) were reduced to 17% of 

their original value (Mann et al., 2008). This was to simulate the increased compliance that 

tends to occur at the cement-bone interface surrounding implants. The remodelling-validated 

models were used to simulate a rigid fixation from 0 to 12 months, followed by a simulation 

of compliant fixation for the period 12-24 months. No other changes were made to the 

models. The development and validation of the FE models are detailed in Sections 4, 6 

and 8. 

The bone strains of the strain-validated models and the bone densities at 0, 12 and 24 

months of the remodelling-validated models were compared to identify the fixation effects of 

degradation of the cement-bone layer (compliant fixation).  

9.4.3 Results 

Figures 163 and 164 show plots of minimum principal strain and the effect of a soft tissue 

layer on bone strains. The bone strains beneath the tibial tray increased with the compliant 

fixation (compared to the stiff fixation) for all the specimens. The increase was less 
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pronounced for the dense tibia suggesting that dense tibiae may be less likely to show 

radiolucencies. The bone strain differences under the keel were less pronounced. 

 

Figure 163 - Minimum principal strain plots of strain-validated tibia models at transverse sections 3 mm 

below the implant interfaces. The plots compare the bone strains under (1) a solid cement-mantle (elastic 

modulus of 1.8 GPa) and (2) a degraded compliant cement-bone interface with reduced elastic modulus 

(0.3 GPa). 



Studies Investigating UKR Design 251 

 

Figure 164 - Minimum principal strain plots of strain-validated tibia models at sagittal sections through 

the centre of the keels. The plots compare the bone strains under (1) a solid cement-mantle (elastic 

modulus of 1.8 GPa) and (2) a degraded compliant cement-bone interface with reduced elastic modulus 

(0.3 GPa).  
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Figures 165 to 167 show simulated apparent density plots at 0, 12 and 24 months based on 

the models of two UKR patients. The plots show that bone apposition occurs from 12-24 

months if the cement-mantle layer becomes more compliant. This apposition occurred just 

beneath the tibial tray at the lateral region for both patients. 

 

Figure 165 - Apparent density plots of remodelling-validated tibia models at transverse sections 3 mm 

below the implant interface. The plots compare how the bone densities adapt under (1) a solid cement-

mantle (elastic modulus of 1.8 GPa) during the first year, and (2) a degraded compliant cement-bone 

interface with reduced elastic modulus (0.3 GPa) from 1 to 2 years post-arthroplasty. 
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Figure 166 - Apparent density plots of remodelling-validated tibia models at transverse sections 3 mm 

below the implant keel. The plots compare the how the bone densities adapt under (1) a solid cement-

mantle (elastic modulus of 1.8 GPa) at 1-year and (2) a degraded compliant cement-bone interface with 

reduced elastic modulus (0.3 GPa) at 2-years post-arthroplasty. 

 

Figure 167 - Apparent density plots of remodelling-validated tibia models at sagittal sections through the 

centres of the keels. The plots compare the how the bone densities adapt under (1) a solid cement-

mantle (elastic modulus of 1.8 GPa) during the first year, and (2) a degraded compliant cement-bone 

interface with reduced elastic modulus (0.3 GPa) from 1 to 2 years post-arthroplasty. 
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9.4.4 Conclusions and Recommendations 

The main finding of this study was that the reduction of stiffness of the cement-mantle layer 

(17% of its initial stiffness based on explants of THRs (Mann et al., 2008)) caused bone 

strains in the underlying bone to increase and bone apposition occurred. This may explain 

the sclerotic margin typically seen under radiolucencies of UKR tibiae (Gray et al., 2010). 

This study also concludes that a lower density tibia may be more susceptible to forming 

sclerotic margins following development of radiolucencies. 

Reducing the elastic modulus of the cement-mantle of the tibial component caused small 

changes to the tibial strains. The load path changed such that a larger proportion was 

transmitted through the tibial tray rather than the keel. As a consequence the bone strains 

beneath the implant increased and the bone strain beneath the keel decreased. 

Based on the analysis of bone strain and bone remodelling simulations, the development of 

a more compliant cement-mantle merely improved fixation and did not degrade it. Bone-

implant and cement-bone micromotion was disregarded in this analysis due to the 

complexities in modelling these mechanisms upon fibrous tissue formation. It is expected 

that the micromotions would increase, but not to levels that would cause pain to the patient – 

there is no evidence that UKR patients who show physiological radiolucencies have 

additional pain (Gulati et al., 2009a). 
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9.5 Tibial Resection Depth: Does it affect fixation? 

9.5.1 Introduction 

Post-arthroplasty, bone strains should be as close as possible to the pre-arthroplasty state to 

ensure good fixation. High strain increases will cause pain, migration or even bone collapse 

while large decreases will cause bone resorption. Based on the literature, researchers have 

speculated that shallower resections would provide better fixation (Goldstein et al., 1983). It 

was therefore hypothesised that shallower resections would reduce strain change and 

improve fixation of the Oxford mobile-bearing UKR. 

The following multi-specimen computer simulation study is an investigation of bone strain in 

the vicinity of Oxford mobile-bearing tibial implants (both cemented and cementless 

versions) immediately post-arthroplasty. It is assumed that cementless implants have not yet 

osseointegrated and cemented implants are fully bonded all over (including the keel). 

9.5.2 Method 

Six validated tibia models (cemented and cementless versions of CADLOW CADAV CADHIGH) 

were used for this study. Each validated model was taken to be resected at the nominal 

position and a further two versions of each model were developed based on resections 

4 mm inferior and 4 mm superior relative to the nominal. 

 

Figure 168 - FE model of tibia CADHIGH implanted with a mobile bearing UKR at nominal resection. 

Three intact tibia models of the specimens were also developed with the medial condylar 

forces applied to a simplified representation of the femur and meniscus. The implanted 

proximal tibiae were split into 30 zones (refer to Figure 169): each zone was 2 mm thick 
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(axial dimension); with nine zones in each of the first three layers (split into thirds); and three 

single-zone layers representing the region directly under the keel. The intact tibia models 

were defined with 93 zones corresponding to the same resection model locations (different 

for each resection depth).  

 

Figure 169 - FE model of tibia CADHIGH showing zones and the layers analysed. 

All 21 FE models were loaded with two loading conditions of peak walking and peak stair-

climbing with the forces adjusted for body-weight. They were solved using the MARC Solver 

and the nodal minimum principal strains at each zone were output using Marc Mentat. Bone 

strain changes from the pre-arthroplasty to post-arthroplasty states were post-processed 

using Matlab software (Mathworks, USA). The model meshes were generated by a 

sponsored undergraduate student (Ryo Kashihara) under the instruction of the author. 

9.5.3 Results 

The minimum principal bone strains were very different between specimens and varied 

depending on the bone density distribution in the vicinity of the implant. In the cementless 

cases, the overall peak bone strains correlated with the density of the bone immediately 

under the tray surface; i.e. strains were lower with reduced resection depth. The cemented 

cases were more complicated because peak bone strains depended on bone density both 

under the tray surface and under the keel. If the keel was close to the posterior cortical shell, 

peak bone strains reduced with deeper resection. This occurred with smaller tibiae (CADLOW 

and CADAV). Figure 170 shows the apparent density distributions of all nine tibial resections 

(relative to the position of the implant) at a sagittal cross-section through the centre of the 
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keel. Figure 171 shows the apparent density distributions of the transverse sections and 

provides a comparison of relative tibia size. 

 

Figure 170 - Apparent bone densities of all implant FE models assessed. Plots display cancellous bone 

density range at sagittal cross-section through centre of tibial tray keel. 

Post-arthroplasty, the average bone strains in the 30 zones immediately below the implant 

decreased by 18% for cemented UKRs and increased by 17% for cementless UKRs. For 

cementless fixation, bone strains under the tray increased with increased resection depth 

while for cemented fixation there was no consistent trend. This is because for the cemented 

cases, the load path depended on the bone density distribution in the vicinity of the implant 

keel. Figure 172 shows the inconsistent nature of the peak minimum principal bone strains 

with resection depth. 
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Figure 171 - Apparent bone densities of all implant FE models assessed. Plots display cancellous bone 

density range at 1 mm below the transverse resection level of all resection models: (1) nominal, (2) 4 mm 

superior, and (3) 4 mm inferior. 

The specimen bone density (i.e. bone density difference between CADLOW, CADAV and 

CADHIGH specimens) proved to be a far more important factor on peak bone strains than 

resection depth. Peak minimum principal bone strains were larger for lower density tibiae 

and the differences (from intact condition) were also magnified (i.e. there was less variation 

of peak bone strain with depth below resection line for the dense tibia CADHIGH). The use of 

a cementless implant produced significant increases of bone strain under the tray surface 

(with less significant changes on strains under the keel).  
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Figure 172 - Plots of peak minimum principal bone strain with depth below the resection line for all 18 

UKR models. At each depth, the minimum zone average of minimum principal strain was calculated and 

plotted. The tibial keel extended 9 mm the below implant tray and for cemented implants, the cement-

mantle extended 2 mm below the implant. 

In general terms, the bone strain changes from pre- to post-arthroplasty decreased for 

cemented implants and increased for cementless implants (see Figure 173). Figure 174 

shows how bone strains changed after arthroplasty by plotting the peak difference at each 

layer under the resection line. 
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Figure 173 - Effect of resection depth on change of average minimum principal bone strain (relative to 

pre-arthroplasty tibia). 

As illustrated by Figure 174, the dense tibia, with the cementless implant at nominal and 

inferior resections, produced average strains that most closely resembled the pre-

arthroplasty state. Peak bone strain differences reduced with depth under the resection line 

with the largest differences occurring for the lowest density tibia and smallest differences for 

the densest tibia.  
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Figure 174 - The peak increases and decreases of minimum principal strain relative to the intact tibia 

upon cemented and cementless implantation of a tibial UKR. The tibial keel extended 9 mm below the 

implant. For the cemented cases, the cement-mantle extended 2 mm below the implant.  

The studies of Sections 7 and 8 showed that the central region under the implant was most 

likely to experience stress-shielding and bone loss. For the central bone region (zone C-C), 

Figure 175 shows the average percentage change of bone strain relative to the intact tibia 

with bone depth. For the cemented case, the greatest decrease occurred in the cement-

mantle under the tray (70% for tibia CADLOW for inferior and nominal resections) and the 

anterior regions of the CADAV and CADLOW (60% and 80% respectively). This corroborates 

well with the DXA study results presented in Section 7. The reason for this decrease in bone 

strain may be because, for the smaller tibiae, the keel is very close to the dense cortical 
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bone of the posterior medial condyle, creating a direct load path. This stress-shielding was 

made worse with increased resection depth. 

For the cementless UKR, strain decreased by up to 80% under the centre of the tray and 

increased by up to 80% under the keel. However, this does not imply bone loss at 1 year. 

This reduction of bone strain only occurs immediately post-arthroplasty. Within 3 months the 

bone strains increase, as the implant osseointegrates to the bone, and the tiny void under 

the tibial tray is filled or the rim crushes into the bone. Note that the Oxford cementless 

implant has a recess around the rim of the tray through which most of the load is transferred 

upon initial implantation. 

 

Figure 175 - Percentage change in average minimum principal strain at centre of implant (zone C-C) 

relative to the intact tibia upon cemented and cementless implantation of the tibial UKR. The tibial keel 

extended 9 mm below the implant. For the cemented cases, the cement-mantle extended 2 mm below the 

implant. 
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9.5.4 Discussion 

As presented in former sections of this thesis, there are distinct differences in bone strain for 

cementless and cemented UKRs. This is supported with in-vitro, in-vivo and in-silico studies. 

The effect of resection depth is also dependent on the fixation method. Cementation 

distributed the load over the entire tray and keel (with reduced peak strains in the vicinity of 

the implant), while cementless fixation loaded the edge of the tray. 

Although some “stress shielding” under the centre of the tray was observed, it was not 

considerable: bone strain dropped by less than 70% for cemented implants which is at the 

threshold of whether bone loss would occur. More superior resections reduced the strain 

drop. Although bone strain dropped by 80% for cementless UKRs (under the tray centre), 

this would reduce with implant-bone osseointegration to become less than that of the 

cemented case. These results corroborated with results of the 1-year DXA follow-up study of 

11 UKA patients described in Section 7.  

The effect of the resection depth was dependent on how bone density differed due to 

location. Although superior resection preserved greater density under the tray, it moved the 

keel to an area of lower density (2 of 3 cases), the strains under the tibial tray were thus 

higher. The superior resection also changed the relative density between the medial and 

lateral aspects under the tibial tray; when loaded the implant rotated into the resected corner 

and this had the consequence of increasing the strains at the lateral resected corner. 

These changes were tolerable for the normal and dense tibiae but caused bone yielding for 

the low density tibia. Two strategies for reducing the strains with superior resections may be: 

(1) increase the lateral-medial slope of the resection (to maintain an equal bone density 

distribution); and (2) shortening the keel with superior resections so that it is anchored in a 

region of high density bone. The effect of resection depth on strain changes under the centre 

of the cementless implant tray was small. However, around the rim of the implant tray it was 

more significant (particularly the anterior and posterior of the low density tibia) such that 

more superior resections reduced strain change. 

The cementless implant produced on average 50% higher strains in the anterior region than 

the cemented (highest at the lateral side). Moving the cementless resection depth inferiorly 

caused the osteopenic tibia to yield in this region (it also failed here during in-vitro tests).  

These assessments are relevant for the first few weeks post-arthroplasty because 

osseointegration and bone remodelling have not been considered. Knee forces were 

simplified such that the same loading states were applied to all tibiae adjusted for body-

weight. The two common activities were assessed for which the bearing positions were 
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assumed to be similar (5 mm posterior from tray centre) – the effect of the bearing 

movements with different activities was neglected. 

9.5.5 Recommendations 

One objective of the UKR implant fixation design is to minimise the bone strain changes from 

pre- to post-arthroplasty. If the bone strains increase significantly, they may cause pain, 

implant migration, bone collapse and lead to implant loosening. If the bone strains decrease 

significantly, they may cause bone resorption and lead to implant loosening. Although the 

resection depth makes a difference to bone strain changes, the effect was highly dependent 

on the patient (tibia density and geometry), whether cemented or cementless fixation was 

used, and the fit of the implant to the bone. 

Based on the findings of this study, the hypothesis that “shallower resections would reduce 

strain change and improve fixation”, was found to be incorrect. The reason for this was two-

fold: With superior resections (1) the keel was moved into a region of lower density, thus 

increasing the strains under the tray; and (2) the tray underside was moved into a region 

where the density under the lateral side was lower than the medial side, causing tilt when 

loaded, thus increasing the strains under the lateral side of the tray. 

Cementless fixation produced higher bone strains (than cemented fixation) that less closely 

matched the pre-arthroplasty condition. Although the resection depth made little overall 

difference to the bone strains, the strains tended to increase with more superior resections. 

With osseointegration, these strains are expected to match the intact condition more closely 

than cemented fixation. The high bone strains could be reduced with (1) a shallower keel 

that was embedded in denser bone; and (2) the transverse resection made such that it is 

sloping to the medial aspect. 

Cemented fixation produced lower bone strains (than cementless fixation), with some stress-

shielding under the central region of the tibial tray. Stress shielding was higher with a lower 

density tibia. While superior resection reduced the magnitude of stress-shielding, it did not 

necessarily reduce the strain difference from the pre-arthroplasty state. With deeper 

resections, the keel moved closer towards the dense posterior cortex of the tibia – this was 

more obvious in the smaller tibiae. This created a load transmission pathway which was 

clear in the DXA results (Section 7). Reducing the posterior length of the keel in smaller 

implants would reduce this effect. Leaving the keel uncemented would also reduce stress-

shielding. 

Analysis of bone density plots of the transverse resections shows that the highest cancellous 

density is at the centre of the implant. This corresponds to the position of the centre of 
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pressure of the natural articulation, and also the implant keel; therefore the high stiffness of 

this region is not utilised in this design. If there was no keel at the centre of the implant, the 

fixation would be improved. A keel extending into the lateral side wall or anterior region 

might be a better option.  

The biggest factor on bone strain and change of bone strain (from pre-arthroplasty state) 

was the bone density/size of the tibia. The highest density tibia produced strains that most 

closely matched the pre-arthroplasty state with stress-shielding under the tibial tray 

minimised. This was true for either cemented or cementless implants.  

This study suggests that fixation of the tibial tray can be improved, by adapting the fixation 

design based on the patient’s bone density. For low density bone, patient-specific fixation 

(for resection depth and keel depth) that utilises the regions of higher bone density may 

improve implant fixation. For high density bone, reduced keel length may improve fixation. 
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9.6 PE Tibial Trays: How do they compare? 

9.6.1 Introduction 

The legacy of the failure of all-PE TKR tibial implants and the success of their metal-backed 

counterparts has influenced UKR implant designs. However, there is evidence that all-PE 

TKR tibial implants can be successful (Rodriguez et al., 2001, Adalberth et al., 2001, Rand, 

1993, Apel et al., 1991) and it is therefore important not to infer conclusions to UKR designs.   

 

Figure 176 - Common all-PE UKR designs. 

Tibial subsidence has been clinically reported to be a cause of failure of UKRs with all-

polyethylene (PE) tibial implants. (Aleto et al., 2008) reported that 87% of all UKR revisions 

that were caused by medial tibial collapse were all PE designs. Metal backing has been 

linked with improved success rates (Saenz et al., 2010) yet the role of metal backing on 

bone strains and cement stresses is not fully understood. Studies with composite tibiae have 

confirmed that bone strains are higher with all-PE implants (Small et al., 2010); however, it is 

not known how the bone strain distributions change and how PE thickness affects fixation 

(Lingaraj et al., 2010). 

The early problems of all-PE implants were largely due to high wear rates and osteolysis. 

With recent developments of wear properties of PE materials (sterilized and highly cross-

linked PE (Kurtz et al., 1999) and vitamin E infused PE (Kurtz et al., 2009a)), these are no 

longer significant barriers. The use of PE in implant design may once again become a viable 

option. 

The following study compares bone strains and cement stresses of a mobile bearing (Oxford 

Biomet) tibial implant and a fixed bearing metal-backed (Oxford Biomet) implant with all-PE 

designs varying in thickness from 3 mm to 12 mm. The study also assesses the long-term 

implications on bone density and fixation with bone remodelling simulations. 
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9.6.2 Method 

Three strain-validated tibia models (cemented versions of CADLOW CADAV CADHIGH, refer to 

Section 6) and two remodelling-validated tibia models (PATCD and PATCL, refer to Section 8) 

were used for this study. Fixation was assessed and compared between the Biomet Oxford 

mobile-bearing, Biomet Vanguard M PE metal-backed fixed-bearing, and a hypothetical all-

PE fixed-bearing tibial tray UKR. FE geometry of the metal-backed tibial implant, as 

displayed in Figure 177, was developed and the validated FE models adapted to include 

these without disrupting the bone mesh. Only the implant mesh was changed, with the tibia 

and cement-mantle meshes kept exactly the same.  

 

Figure 177 - Development of metal-backed PE UKR (Oxford Vanguard M). 

The Vanguard M tibial implant consists of a 3 mm Cobalt Chrome base (assumed to be 

same geometry as the Oxford mobile bearing tibial tray but with the side plate removed) and 

a 9 mm PE upper insert. The 12 mm thick all-PE implant was assumed to have exactly the 

same geometry with only the material properties modified (i.e. the previous metal base was 

changed to be PE). The 9 mm all-PE implant had the same mesh as the 12 mm all-PE 

implant except the top 3 mm was removed. The 6 mm and 3 mm all-PE implant models were 

similarly generated. The PE was assumed to have an elastic modulus of 600 MPa (Kurtz et 

al., 1998). The base of the implants shared nodes with the 2 mm thick cement-mantle while 

the lateral side-wall nodes were not shared. 

The strain-validated FE models (CADLOW CADAV CADHIGH models) were loaded with two sets 

of peak walking and peak stair-climbing forces that were adjusted for body-weight. The 

remodelling-validated FE models (PATCD, PATCL) were loaded with exactly the same sets of 

forces used to validate them in Section 8. Note that a cemented version of the model PATCL 

was developed because the validated version was for a cementless UKR. The loads were 

applied to the femoral implant, with the bearing centre positioned 5 mm posterior to the 

centre of the implant.  

Contact was simulated between the cobalt chrome femoral implant and PE tibial implant 

upper surface. Sensitivity assessments showed that the all-PE implants results were 
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sensitive to whether contact was simulated or not. Therefore, since contact was considered 

mandatory, computational memory requirements had to be reduced by using linear elements 

(4-node tetrahedral and 3-node shell). The meshes at the regions of interest (tibial implant, 

cement and medial tibial condyle) were on average of 2 mm element size. 

The models were solved using the MARC Solver and the nodal bone minimum principal 

strains and cement-mantle stresses at each zone were output using Marc Mentat. The 

average minimum principal strain was calculated for each zone; in addition the average 

minimum principal stress was calculated for each of the ten cement zones. The results were 

post-processed using Matlab software (Mathworks, USA) and Excel (Microsoft Corporation, 

USA).  

The following comparisons were made: (1) compare bone strain and cement stresses of (i) 

mobile bearing (ii) metal backed and (iii) all PE; and (2) compare bone density at 12 months 

of (i) mobile bearing (ii) metal backed and (iii) all PE. 
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9.6.3 Results 

The tibial bone strains and cement stresses were similar between the Oxford mobile-bearing 

and metal-backed fixed bearing UKR designs. The all-PE implant produced larger peak 

minimum principal strains that increased with reduced PE thickness. Figure 178 plots the 

minimum principal bone strains at 4 levels under the tibial implant and compares all-PE, 

metal-backed and mobile bearing tibial trays. Bone strains above 7300 με have been 

highlighted in red and show that the all-PE produced strains which could cause subsidence 

in specimen CADLOW (i.e. lowest density tibia). There was an approximately 10% increase in 

peak bone strains using a mobile-bearing (Oxford design) UKR compared to a metal-backed 

(Vanguard M design) UKR. A further 120% increase in peak bone strains occurred when 

using an all-PE UKR. The densest tibia CADHIGH was the most resilient to these implant 

design changes and the lowest density tibia had bone strains in excess of 12000 με (below 

the plateau with thin all-PE components); this would probably lead to implant migration. 

 

Figure 178 - Plots of minimum principal bone strain at 4 levels under the tibial implant. The plots 

compare all-PE, metal-backed and mobile bearing tibial implant designs. 

Figures 179 and 180 display bone strains at a transverse section 3 mm below the implant 

(1 mm below the cement mantle) and a sagittal section through the centre of the keel. The 

all-PE implant increases compressive bone strains at the centre/posterior region of the tibia. 

For the low density tibia (CADLOW) fitted with any of the all-PE implants, tibial collapse would 

probably have occurred towards the medial/posterior region. For the normal density tibia 

(CADAV), tibial collapse would probably have occurred with PE thicknesses of 6 mm or less. 

Figure 179 shows that, for all three tibial bone densities (low, medium, high), the introduction 

of a metal baseplate reduced the tibial compressive bone strains below the implant. 
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Figure 179 - Plots of minimum principal bone strain at 1 mm beneath the cement-mantle (3 mm under 

implant). The plots show the high bone strains produced by the all-PE UKR, particularly for low density 

tibia. 
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Figure 180 - Plots of minimum principal bone strain at a sagittal section through centre of implant keel. 

The plots show the high bone strains produced by the all-PE UKR, particularly for low density tibia. 

The all-PE tibial implants produced the largest bone strains and these were located beneath 

the centre of the implant, followed by the centre of the resected corner. Note that an all-PE 

tibial implant with a deeper central keel may increase the stiffness of the implant (reduce 

bending of the implant) and provide better load transmission to the distal cortices; thereby 
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reducing peak bone strains. However, the location of the keel is important (refer to Sub-

section 9.5), because bending strains may be higher if the distal tip of the keel rests in lower 

density bone. Since bone density reduces distally, an implant with no keel may also produce 

lower peak strains than one with a medium length keel. 

 

Figure 181 - Plots of maximum and minimum principal cement stresses. The principal stresses displayed 

are peak values of zone averages calculated during walking and stair-climbing activities. The plots 

compare full PE with metal-backed and mobile bearing tibial trays. 

 

Figure 182 - Plots of peak maximum principal cement stresses. The principal stresses displayed are 

average peak zone values (average of 4 peak nodal stresses in each zone) calculated during walking and 

stair-climbing activities. The plots compare full PE with metal-backed and mobile bearing tibial trays. 

The average maximum principal (tensile) cement stresses (average for each zone) were 

below the threshold limit that would cause fatigue failure of the cement (Figure 181). 

Stresses above 10 MPa were considered to be under moderate risk of fatigue damage, while 

stresses above 12 MPa were considered significant risk (Davies et al., 1987, Burke et al., 
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1984, Murphy and Prendergast, 2002). There were, however, localised peak tensile stresses 

that could initiate fatigue cracking (Figure 182). The peak stresses were as high as 10 MPa 

for the all-PE UKR implanted in CADLOW. PE thickness had a small effect on peak stresses 

but the effect of bone density was significant (decreased to 3 MPa for the densest bone 

CADHIGH). The lowest cement peak stresses were for the metal-backed PE implant. 

Figure 183 presents plots of tensile cement stresses through the middle of the cement-

mantle. The peak stresses were higher for lower density bone and PE thickness made only a 

small difference to the magnitude of the stresses. The peak tensile stresses were located in 

two regions: (i) under loading point (mainly for lower density bone and thinner PE thickness), 

and (ii) at the lateral edge (just beneath the resected corner). Minimum principal 

(compressive) stresses in the cement-mantle are presented in Figure 184. The peak 

compressive stresses were in the same regions as the peak strains in the underlying bone. 
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Figure 183 - Maximum principal stresses at a transverse section through the middle of the 

cement-mantle. 

 

Figure 184 - Minimum principal stresses at a transverse section through the middle of the cement-mantle. 
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The cement-mantle stresses of the tibial implant were mostly compressive and bone cement 

fatigue usually occurs in tension. However, cement curing causes shrinkage and this can 

generate residual tensile stresses in the cement; hence generating tensile load cycles and 

can influence fatigue (Lennon and Prendergast, 2002). Although, residual stress in bone 

cement will relax over time due to its viscoelastic properties, the immediate effect may be 

significant. The preloaded structure may initiate crack formation and lead to a damage 

accumulation failure scenario, as described by Huiskes and Stolk (2005). The minimum 

principal (compressive) stresses should therefore be considered. The peak average cement 

minimum principal stresses of 3-5 MPa were similar between the metal-backed and mobile 

bearing UKRs. The peak stresses rose to 5-7 MPa with 12 mm thick all-PE implants and 

increased by 3 MPa with subsequent reductions of 3 mm in PE thickness (Figure 181). 

Figure 184 plots the minimum principal stresses in specimens CADLOW, CADAV and CADHIGH 

at the cement-mantle of all implant designs. 

A 9 mm all-PE thick was considered to be adequate to maintain cement integrity, while 6 mm 

thick (or less) was conservatively considered under increased risk of cement fatigue and 

tibial subsidence. All the ten cement zones produced average stresses that were 

compressive; however, there were localised regions of tensile stress that could initiate 

cracking. Fatigue failure is most likely to occur at the central region for low density bone and 

may occur laterally for denser bone and stiffer implants. There are three subsequent 

scenarios with this type of failed cement mantle: (1) tibial subsidence; (2) increased interface 

micromotion and development of interface fibrous tissue; and (3) if the surrounding cement 

and bone were able to maintain integrity (under increased cement stresses at the periphery), 

bone loss could occur at the centre of the tray. 

The bone remodelling simulations (remodelling-validated PATCD and PATCL models) 

correlated with the findings of the strain-validated models (CADLOW, CADAV and CADHIGH). 

High strains were observed at the centre/posterior of the all-PE implants and subsequently 

bone apposition occurred in these regions. Figures 185 and 186 present plots of bone 

density at a transverse section 3 mm beneath the implant (1 mm beneath the cement 

mantle) and at a sagittal section through the centre of the keel, respectively. 

There was some bone loss in patient PATCL at the anteromedial region with both the mobile-

bearing and metal-backed implants. Note that PATCL had higher bone density and activity 

levels compared to PATCD (refer to Section 7). With a 12 mm thick all-PE implant, patient 

PATCL experienced no bone loss and instead bone apposition occurred at the anteromedial 

region. There was also a distinct difference in load path with the all-PE implant. The mobile-

bearing and metal-backed implants caused bone apposition at the posterior region of the 

keel, whilst with the all-PE implants there was no change in bone density under the keel. A 
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higher proportion of the load transferred through the top bone-implant interface thereby 

reducing stress-shielding. 

The less active (with less tibia bone density) patient tibia PATCD behaved similarly but with 

notable differences to PATCL. For both mobile-bearing and metal-backed implants, whilst 

there was bone loss at the central region beneath the implant, there was slight bone 

apposition on the lateral side of the keel. The bone apposition was greater for the metal-

backed implant, with some bone apposition occurring at the anterior resected corner. The 

all-PE implant had the effect of producing a significant amount of bone apposition beneath 

the centre of the implant, extending onto the lateral side of the keel. Since the centre of 

pressure of the femoral implant was above the keel, there was increased load transfer 

through the keel with reduced PE thickness. Although the load path changed (similarly to 

PATCL), bone apposition occurred under the keel because the centre of femoral implant 

pressure was location above it. Note that the centre of pressure on PATCL was located 

medial to the keel due to the proportions of a larger tibia and implant. 

A thick all-PE implant may provide reduced bone loss and improved long-term fixation 

provided that initial fixation is not compromised with the high bone strains immediately post-

arthroplasty. Although a 12 mm thick all-PE implant produced the most suitable bone strains 

for patient PATCL, it produced significantly higher bone strains for patient PATCD. If an all-PE 

implant was used on patient PATCD it would have to be thicker than 12 mm. This would be 

contrary to the philosophy of minimally invasive surgery, with deeper resection and could 

cause other complications. A possible alternative could be an implant with an elastic 

modulus between Cobalt Chrome and PE (i.e. the elastic modulus would be adapted to suit 

the patient rather than the implant thickness). 
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Figure 185 - Bone remodelling at 1 mm under the tibial tray. The plots compare the mobile bearing Oxford 

UKR and the metal-backed Oxford UKR against all PE versions of reducing thicknesses for apparent 

density at 1 year. 

 

Figure 186 - Bone remodelling at sagittal plane through the centre of the tibial tray. The plots compare 

the mobile bearing Oxford UKR and the metal-backed Oxford UKR against all PE versions of reducing 

thicknesses for apparent density at 1 year. 
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9.6.4 Recommendations: What tibial tray PE thickness is required to have 

successful fixation? 

Based on the study of three cadaveric tibia specimens simulating low, medium and high 

density bone, the bone strains and cement stresses of all-PE tibial implants were compared 

to metal-backed and mobile-bearing implants. Since PE material has a lower stiffness than 

cobalt-chrome (or titanium), a thicker implant is required to provide comparable load 

distribution to that of a mobile-bearing or metal-backed tibial tray.  

This study showed that a 12 mm thick all-PE tibial implant provided less rigidity compared to 

the mobile-bearing and metal-backed designs. There was up to a 120% increase in peak 

bone strains beneath the implant with a further 25% increase with every subsequent 3 mm 

reduced from the thickness. Bone strains were severe for the lowest density specimen with 

likely tibial collapse upon use of any all-PE implant up to 12 mm thickness. For the normal 

and highest density tibia specimens, the bone strains were within acceptable limits with 

all-PE implant thicknesses of 9 mm or greater. 

The peak compressive cement stresses rose by 2 MPa to 5-7 MPa with a 12 mm all-PE 

implant and increased by 3 MPa with subsequent reductions of 3 mm in PE thickness. PE 

thickness had a small effect on the peak tensile cement stresses; however they were as high 

as 10 MPa for the lowest density tibia. They were within safe limits for the average and 

dense tibias. The tensile stresses were located either at the lateral edge or under the centre 

of the implant. PE thicknesses of 9 mm or greater were considered safe from cement fatigue 

failure.  

Two actual UKR patient knees (an inactive patient with low density tibia and an active patient 

with high density tibia) were also simulated with all-PE implant of variable thicknesses. With 

the all-PE implant, both the simulated patient tibiae developed bone apposition at 1 year 

(regardless of PE thickness). The all-PE implants produced negligible bone loss. The bone 

apposition in the low density tibia patient was extreme while the 12 mm thickness all-PE 

implant produced the most optimum results for the high density tibia patient. In both cases, 

stress shielding was negligible. The trade-off was that the magnitudes of the bone strains 

were high and must be considered as they can cause tibial collapse and pain.  

For the 9 mm and 12 mm all-PE implants, the highest bone strains occurred at 3 months 

Note that there was a gradual increase in activity levels which was different for both patients 

(50%, 75%, 90%, and 100% at 3, 6, 9, and 12 months for low density tibia patient and 50% 

at 3 months and 100% thereafter for high density tibia patient, refer to Section 8). With the 

6 mm all-PE implant, both patients may have experienced significant pain with possible tibial 

subsidence as bone strains approached their failure limit (even under the very gradual 
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increase in activity levels for the low density tibia patient). The 3 mm all-PE implant would 

have caused tibial collapse for both patients (unless activity level increases were reduced 

significantly). The study shows that rehabilitation should be dependent on the patient tibia 

density, with activity levels resumed more slowly for lower density tibia. 

The minimum thickness of PE required for fixation success is dependent on the bone 

density, patient weight and expected resumption of activity levels. For the active patient with 

high density bone, a 9 mm thick all-PE implant produced good results, while a 12 mm thick 

implant was required for normal bone density patients. Note that the three specimens and 2 

patients assessed in this study did not consider the effect of obesity; the simulations 

assumed the actual body-weight of the donors and patients. Excess weight would require a 

thicker PE bearing to maintain the stresses and strains at safe levels. Based on this study, 

the all-PE implant performed poorly on the patient with low quality bone; therefore it is 

recommended that it is not used on patients that fall in this category. 

This study demonstrates that the highest bone strains are located beneath the centre of 

pressure on the implant. If bone density is high in these regions, bone strains should be 

maintained below their failure limits. In was demonstrated in Sub-section 9.5 that with 

shallower resections, the bone density is higher particularly at the centre of the condyle. The 

performance of these all-PE implants would therefore be significantly enhanced with 

shallower resections where dense bone is in the regions where the highest bone strains are 

located. 

There is clinical evidence to support the claims of this study. Failure of the UKR associated 

with tibial subsidence is more common with all-PE designs (Saenz et al., 2010, Aleto et al., 

2008, Squire et al., 1999, Tabor Jr and Tabor, 1998). Poor performance has been linked with 

excess weight (Saenz et al., 2010) and younger more active patients (O'Rourke et al., 2005). 

Although, thinner PE bearings have been also associated with poorer outcomes, their failure 

has been associated with substantial wear (Argenson and Parratte, 2006, Hernigou et al., 

2008). This is the first study (known to the author) that has investigated the effect of PE 

thickness on tibial subsidence. With improved PE wear properties, it is important to consider 

the implications of reduced PE thickness on tibial subsidence.  

In general the performance of thin all-PE UKR implants have compared poorly with mobile 

bearing and metal-backed UKRs (Saenz et al., 2010), in particular UKRs with PE 

thicknesses less than 6 mm (Argenson and Parratte, 2006, Hernigou et al., 2008). These 

failures have been associated to high wear and osteolysis and studies have shown that 

thicker implants produced less wear (Argenson and Parratte, 2006, Hernigou et al., 2008). 

PE bearing stresses have been shown to be an important factor (Simpson et al., 2008). This 
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study demonstrates that for normal UKR patients, PE thicknesses greater than 9 mm are 

significantly less likely to produce tibial subsidence based on an assessment of bone strain, 

cement stress and bone remodelling. The Evolution UKR (Tornier Inc., France) is an 

example of a thick all-PE UKR that has demonstrated good results with specific patients 

(93.5% survival rate at 10 years (Lustig et al., 2009)). 

In addition to understanding the failure mechanics, the study highlights the potential benefits 

using of all-PE tibial UKRs. If designed adequately, the benefits of reduced stress-shielding 

will improve long-term fixation. However, the study has demonstrated the sensitivity of the 

results to the quality of the bone and this may explain the current higher proportion of 

failures associated with all-PE implants compared to mobile-bearing and metal-backed 

designs. Potentially, the PE bearing could be customised based on a simple pre-assessment 

of the patient’s bone density.  

9.6.5 Recommendations: Are metal-backed tibial trays better than all-PE trays? 

The advantage of all-PE implants is that they could reduce stress-shielding (Hyldahl et al., 

2001) in patients with high density bone. The drawback is that if the correct PE thickness is 

not used, they can produce high bone strains that can cause pain and tibial subsidence in 

patients with adverse bone quality. 

This study adds further evidence to the body of clinical studies, for the recommendation of a 

minimum PE bearing thickness. However, this study recommends not to use a “one size fits 

all” philosophy and to determine the PE thickness from patient bone quality (assuming they 

are not obese, and have normal activity levels): PE bearings should not be used if the 

patient bone quality is poor; a minimum of 9 mm is used for patients of normal bone quality; 

and a minimum of 6 mm for patients of good bone quality. If the quality of the bone is 

unknown (this is particularly likely with surgeons of limited experience), the all-PE tibial UKR 

should not be used.  

Despite the potential benefits of all-PE tibial UKRs, thick implants are not in-line with 

minimally invasive approach that is so strongly associated with the UKR philosophy. In this 

regard, mobile-bearing and metal-backed tibial trays may be a better solution for (1) patients 

of reduced bone quality, (2) obese patients, and (3) highly active patients (i.e. a stiffer 

implant with less thickness). Metal-backing reduces bone strains and cement stresses; 

therefore metal-backed PE implants have performed well (Small et al., 2010) and despite 

their bearing thicknesses being less than 6 mm (Lingaraj et al., 2010). 

Mobile-bearing and metal-backed tibial UKRs have in general performed clinically better 

than all-PE UKRs (Saenz et al., 2010, Small et al., 2010). This may be because the “one 
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size (and design) fits all” philosophy is incompatible with the all-PE tibial UKR design. There 

is clinical evidence that with carefully selected patients, the all-PE implant improves long-

term fixation compared to metal-backed designs; a Swedish randomised prospective trial 

showed reduced subsidence after 24 months compared to metal-backed designs (Hyldahl et 

al., 2001). For specific patients, all-PE UKRs may provide an improved outcome.  
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9.7 Tibial Tray Keel: Does it provide better fixation? 

9.7.1 Introduction 

Initial fixation is important for the success of UKR implants, particularly for cementless 

implants. Initial fixation is usually provided using one or more of the following methods 

(1) cement, (2) keel, (3) pegs or (4) screws. The trade-off of using these initial fixation 

techniques is that they can compromise long-term fixation by stress-shielding; therefore they 

should be used carefully.  

 

Figure 187 - Different UKR cemented fixation designs. 

The cemented and cementless Oxford mobile-bearing tibial implants have identical keel 

geometries and this study investigates whether the cemented keel compromises long-term 

fixation.  

9.7.2 Method 

Three strain-validated tibia models (cemented versions of CADLOW CADAV CADHIGH, refer to 

Section 6) and two remodelling-validated tibia models (PATCD and PATCL, refer to Section 8) 

were adapted for this study. FE models of the metal-backed PE UKR tibial tray (Oxford 

Vanguard M) and a 12 mm thick all-PE UKR tibial tray were developed, as presented in 

Figure 188. The keels of all three of the different implants were adapted to simulate (1) 

standard large keel, (2) short keel and (3) no keel, as illustrated in Figure 189. Only the 

implant meshes were adapted, with the tibia and cement-mantle meshes maintained exactly 

the same as the original validated models. 
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Figure 188 - FE models of mobile-bearing, metal-backed PE and all-PE UKRs. The tibia bone was 

separated into zones as illustrated on the left. 

The strain-validated FE models (CADLOW CADAV CADHIGH models) were loaded with two sets 

of peak walking and peak stair-climbing forces that were adjusted for body-weight. The 

remodelling-validated FE models (PATCD, PATCL) were loaded with exactly the same sets of 

forces used to validate them in Section 8. The loads were applied to a femoral implant that 

was positioned with the centre of pressure 5 mm posterior to the centre of the tibial implant.  

 

Figure 189 - Schematic diagram presenting the geometries of the implant keel designs assessed. 

For the metal-backed and all-PE models, contact was simulated between the cobalt chrome 

femoral implant and PE tibial implant upper surface. Sensitivity assessments showed that 

the all-PE implants results were sensitive to whether contact was simulated or not. In order 

to compare accurately to the mobile-bearing designs, these models also incorporated 

contact (between the bearing and tibial implant). Since contact was considered mandatory, 

the computational memory requirements had to be reduced by using linear elements (4-node 

tetrahedral and 3-node shell). The meshes at the regions of interest (tibial implant, cement 

and medial tibial condyle) were on average of 1.5 - 2.0 mm element size. 

The strain-validated tibia models were split into 30 zones (refer to Figure 188): each zone 

was 2 mm thick (axial dimension); with nine zones in each of the first three layers (split into 

thirds); and three single-zone layers representing the region directly under the large keel. 

Intact tibia models of each specimen were also developed, each defined with the same 

zones corresponding to the implanted tibia models.  
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The models were solved using the MARC Solver and the nodal bone minimum principal 

strains and cement-mantle stresses at each zone were output using Marc Mentat. The 

average minimum principal strain was calculated for each zone; in addition the average 

minimum and maximum principal stress was calculated for each of the ten cement zones. 

The results were post-processed using Matlab software (Mathworks, USA) and Excel 

(Microsoft Corporation, USA).  

For each of the three implant designs (mobile-bearing, metal backed, and all-PE), the bone 

strains, cement stresses and bone-adaptation of the following keel designs were compared: 

(1) fully cemented 10 mm tibial keel;  (2) uncemented 10 mm tibial keel;  (3) uncemented 

2 mm tibial keel; and (4) no tibial keel. A total of 60 simulations were developed and 

analysed. 

9.7.3 Results 

Figures 190 and 191 present comparisons of bone strains beneath tibial UKRs of different 

keel designs. The bone strains were compared against those of the pre-arthroplasty state, 

and demonstrated increased stress-shielding with more bulky and stiffer keels, particularly 

for low density bone. Reduced keel size increased the bone strains immediately beneath the 

implant. For metal implants this bought the bone strains closer to the pre-arthroplasty 

strains. However for all-PE implants, the peak bone strains were closer to the pre-

arthroplasty strains when a 10 mm keel was cemented, because the keel stiffened the PE 

tray. 

The magnitude of stress shielding varied between specimens; this was most significant in 

the lowest density tibia. Figure 192 compares minimum principal bone strain plots at a 

transverse section 3 mm beneath the implant for the different keel designs of a mobile-

bearing UKR. For the mobile-bearing UKR, cementing the keel made negligible difference to 

the strains, while for the metal-backed and all-PE UKRs it increased bone strains 

immediately beneath the implant. The difference in bone strains between the small 

uncemented keel and no keel designs was small.  
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Figure 190 - Comparison of UKR keel designs for peak bone strains beneath the implant. The bone 

strains are compared to those of the pre-arthroplasty state and the plots show that shortening the keel 

reduces stress-shielding. 
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Figure 191 - Comparison of UKR keel designs for average bone strains beneath the implant. The bone 

strains are compared to those of the pre-arthroplasty state and the plots show that shortening the keel 

reduces stress-shielding. 
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Figure 192 - Plots of minimum principal bone strains of the mobile-bearing UKR of various keel designs 

and compared against pre-arthroplasty. The plots show strains at a transverse section 3 mm beneath the 

tibial implant, under peak stair-climbing knees forces. 
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Figure 193 compares compressive and tensile cement stresses between three UKR designs 

and four keel designs. In general there were only small changes in cement stresses with 

reductions in keel sizes. For the lowest density tibia implanted with the all-PE UKR, the 

tensile stresses increased significantly because removal of the keel reduced bending 

stiffness. 

 

Figure 193 - Effect of keel design on tensile and compressive cement stresses beneath the tibial tray in 

mobile-bearing and all-PE tibial UKRs. Keel design has a small effect on compressive cement stresses. 

Figures 194 and 195 show the effects of keel designs on bone-adaptation for both mobile-

bearing and all-PE UKRs. The metal-backed UKR was omitted because the changes were 

similar to those of the mobile-bearing. The bone beneath the implant has better integrity than 

those with large keels. The uncemented keels produce better results than the cemented 

keels but the difference is small compared to the effect of reducing keel size. 

The sagittal plots of Figure 195 show significant differences between the two patients. 

Patient PATCD developed bone apposition at the posterior while patient PATCL developed 

apposition at the anterior of the tibia because the load-paths were different. The shorter keel 

designs moved the load-path closer to the centre of the implant. Reduction of the keel size 

also tended to move the load-path medially. The significant bone apposition that occurred up 

to 5 mm beneath the centre of the all-PE implants was shallow because the load transferred 

medially through the medial cortex. The reduction in keel size for all-PE implants made a 

small difference to bone adaptation. 
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Figure 194 - Effect of UKR keel design on bone adaptation. The plots are simulations of transverse 

sections of apparent density 3 mm beneath the implant at 1-year. The effect of keel design on the fixation 

performance of the mobile-bearing UKR is more significant compared to the all-PE design. 

 

Figure 195 - Effect of UKR keel design on bone adaptation. The plots are simulations of sagittal sections 

through the centre of the keel of apparent density at 1-year. The effect of keel design on the fixation 

performance of the mobile-bearing UKR is more significant compared to the all-PE design. 
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9.7.4 Discussion and Recommendations 

The main finding of this study was that shorter keels increased bone strains beneath the 

implant and reduced stress-shielding, particularly for cemented mobile-bearing and metal-

backed UKR tibial implants. The effect on all-PE UKRs was small. 

For mobile-bearing and metal-backed UKRs, the reduction in keel size produced a negligible 

increase in cement stresses and these stresses were safely within failure limits. For normal 

and high density tibiae, the bone strains were also within safe limits; however, for the lowest 

density tibia the bone strains approached the failure limit of bone. Full cementation of the 

large keel helped to reduce the strains for this particular specimen. 

For the all-PE UKR, the reduction in keel size produced increases of bone strains at the 

centre of pressure of the implant. If the tibia contained dense bone in this central region then 

bone strains were tolerable; however, for the low density tibiae (or deep resections) the 

keel-less all-PE UKR caused high bone strains that could potentially cause pain and tibial 

subsidence or even collapse. 

This study has not investigated the possibility of bone fractures emanating from the keel and 

the impact of press-fit on the results. Peri-prosthetic tibial fractures from the keel do occur in 

some patients (Vardi and Strover, 2004). The in-vitro experiments, described in Section 5, 

also identified the potential risk of overcutting the keel resection. In Section 4, a sensitivity 

study of the effect of press- fit on bone strains revealed that 50 με interference fit caused 

high bone strains that approached the failure limit of bone. Reducing the keel size of UKR 

implants may also simplify the surgical procedure and reduce the likelihood of such fractures 

occurring. 

Current mobile-bearing UKR designs have keels that extend 10 mm (Oxford Biomet and 

Uniglide Corin). The metal-backed UKR designs are variable; however the majority have 

keels. The all-PE UKR designs tend also to be variable with very short keels (Evolution 

Tornier, Accuris Smith & Nephew, and EIUS Stryker) and large keels (Uniglide Corin). In this 

study, the standard 10 mm cemented keel improved fixation of all-PE UKRs. However, for 

mobile-bearing and metal-backed UKRs they caused stress-shielding that could compromise 

long-term fixation. Therefore the keel size may be reduced for patients with good bone 

quality. Large cemented keels on metal implants provided good fixation for patients with low 

density bone. 
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9.8 Tibial Sagittal Overcutting: Is it a problem? 

9.8.1 Introduction 

Recently in the literature, there has been increased attention on sagittal overcutting of the 

UKR tibial resection corner (Clarius et al., 2009b, Clarius et al., 2009a, Seeger et al., 2011). 

A study of 100 UKR bone composite preparations by experienced surgeons showed that 

18% had posterior tibia cortex overcuts of greater than 4 mm (Clarius et al., 2009a). These 

tibial overcuts can lead to peri-prosthetic fractures (Clarius et al., 2009a) and cementless 

(compared to cemented) UKRs are more susceptible to these fractures (Seeger et al., 2011). 

This is because the overcuts tend to increase the bone strains at the stress-raiser (Simpson 

et al., 2011). Sourcing from clinical experience and relevant literature, it has been found that 

knee pain and tibial plateau fracture occur more commonly in the early postoperative period 

(Simpson et al., 2009, Pandit et al., 2007). Analysis of initial fixation of both cemented and 

cementless UKRs is therefore relevant. 

A computer study by Chang et al. (2011), claimed that a radius at the resection corner would 

alleviate these high strains and reduce the likelihood of fracture. Unfortunately this study was 

based only on cemented tibia sawbones, and assumed a homogeneous elastic modulus 

throughout the tibia. This study neglected cementless fixated implants (which are probably 

more susceptible to peri-prosthetic fractures  (Seeger et al., 2011)) and neglected the 

importance of the heterogeneous nature of bone (shown to be important in Section 2). 

The number of peri-prosthetic fractures seen in the clinic is far less than the proportion of 

overcuts claimed to be the made by surgeons. This is probably because only a small group 

of patients are susceptible to such fractures. It is therefore important to understand clearly 

which group of patients are most susceptible so that surgeons can make better decisions. 

The study presented in this section investigates how the heterogeneous nature of bone 

affects the bone strains when comparing cemented and cementless tibial fixation of: (1) a 

correct resection; (2) a posterior overcut of 10 degrees; and (3) a rounded corner. 

9.8.2 Method 

The strain-validated FE models (specimens CADLOW, CADAV and CADHIGH) were adapted to 

assess and compare bone strains generated from (1) a correctly resected tibia, (2) a 

10 degree sagittal overcut tibia; and (3) rounded resected corner tibia (using a modified 

Oxford UKR tibial tray with a 3 mm radius). The development and validation of the FE 

models are detailed in Sections 4 and 6. 
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A full set of knee forces were applied (medial and lateral tibiofemoral contact, muscles and 

ligaments) to simulate walking and stair-climbing activities to the existing models. Two load 

cases were applied to each tibia and femur model (ten models) to simulate peak walking 

(50% of the walking cycle) and stair-climbing (15% of stair-climbing cycle) knee forces. The 

mobile bearing and femoral implant was modelled to ensure that the medial condylar load 

onto the implant was as accurate as possible. Contact between the mobile-bearing and tibial 

tray was simulated using a Coulomb friction model with coefficient of 0.1. 

 

Figure 196 - The tibia geometry for and (1) a 10 degree sagittal overcut corner; (2) a correct standard 

corner resection; (3) a rounded 3mm radius corner. 

The meshes surrounding the tibial resected corners were refined to improve bone strain 

predictions in these regions. The mesh size was reduced to 0.5 mm towards the corner with 

a gradual increase to 1.5 mm towards the implant-bone interface and 2-3 mm towards the 

body of the tibial cancellous bone. A 10-degree over-cut was simulated by separating 

elements by 0.1 mm down the sagittal plane from the resected corner. The rounded corner 

model was developed by adapting the cement-mantle to include a 3 mm radius fillet across 

the transverse-sagittal corner and a 3 mm radius fillet was added to the implant corner. 

Figure 196 presents a typical mesh and geometry of the three models developed.  In all of 

the models, it was assumed that the tibial tray side-plate was not bonded to the adjacent 

bone. No other changes were made to the cemented and cementless models (six models in 

total) such that the same material and computational properties were used as the validated 

models. 

A total of 9 simulations were developed based on three different specimens. The following 

scenarios were analysed for each specimen: (1) a correctly resected tibia, (2) a 10 degree 

sagittal overcut tibia; and (3) rounded resected corner tibia. Bone strains were compared 

against the failure limit of tibia bone (Morgan and Keaveny, 2001) as described in Section 2. 
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9.8.3 Results 

Figure 197 presents plots of the distribution of maximum principal (tensile) bone strain at the 

resection corner regions of all three specimens under peak knee load activity of stair-

climbing. Figure 198 presents plots of the distribution of minimum principal (compressive) 

bone strain. The bone strains were higher with cementless fixation and in tibia of lower 

density. The lowest density tibia was most vulnerable to fracture with the red circle 

highlighting bone exceeding the failure limit of cancellous bone.  
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Figure 197 - Distribution of maximum principal (tensile) bone strain at the resection corner region under 

peak knee load activity of stair-climbing. The red circles highlight bone exceeding the failure limit of 

cancellous bone in the lowest density tibia. 

 

Figure 198 - Distribution of minimum principal (compressive) bone strain at the resection corner region 

under peak knee load activity of stair-climbing. The red circle highlight bone exceeding and the amber 

circles highlight bone approaching the failure limit of bone. 
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Since the lowest density tibia was identified to be the most susceptible to fracture, this 

specimen was analysed in more detail to understand how cementation and resection corner 

geometry affected bone strains: Figure 199 presents a bar chart illustrating the percentage 

of bone volume that exhibited tensile bone strains greater than 4000 µε. Figure 200 includes 

compressive strains for the lowest density tibia only. The overcut doubled the volume of 

bone that exhibited bone strains approaching the failure limit of bone. The rounded corner 

produced the lowest bone strains. 

 

Figure 199 - Bar charts illustrating the percentage of bone volume that exhibited maximum principal 

(tensile) strains greater than 4000 µε under walking and stair-climbing knee forces. The tensile bone 

strains were highest for an overcut resection corner. 

 

Figure 200 - Bar chart illustrating the percentage of bone volume that exhibited principal (tensile and 

compressive) strains greater than 4000 µε for the lowest density tibia under stair-climbing knee forces. 
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Figure 201 shows plots of bone safety factor and tensile strain, comparing all three different 

resection corner geometries for cementless fixated simulations of the lowest density tibia 

(CADLOW). The overcut transferred the region of high bone strain distally towards the tip of 

the overcut. The bone density at the tip of the overcut was therefore important. It is difficult to 

appreciate the reduction of bone strain with a rounded corner resection because the surface 

contour plots do not show the internal bone strains beneath the surface.  

 

Figure 201 - Plots of cementless fixated simulations of the lowest density tibia (CADLOW), showing bone 

safety factor (top) and tensile strain (bottom) comparing simulations of (1) a 10 degree overcut; (2) a 

standard resection; and (3) a rounded corner. The grey regions highlight bone that exceeded its failure 

strength. 
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It should be noted that these simulations assumed elastic material properties of bone with no 

failure limit, so they did not simulate bone failure. In practice, when bone exceeds its failure 

strength, it separates or collapses causing the bone in the vicinity to take up the additional 

load. If the surrounding bone cannot sustain this additional load then the failure progresses 

and can become unstable causing fracture. Crack arrest can occur, when the surrounding 

bone is denser and can sustain lower bone strains with additional load. Figure 202 shows 

apparent density plots of the posterior of each tibia specimen and shows that the cracks 

opened more for lower density tibia. 

 

Figure 202 - Apparent density plots with deformation of cementless UKR models with 10 degree posterior 

overcuts. The deformations have been magnified by a factor of 20 to illustrate crack opening. 

9.8.4 Conclusions and Recommendations 

This study supports the claim made in the literature that posterior tibial overcuts can cause 

fracture (Clarius et al., 2009b) and that cementless implanted UKR are more susceptible 

(Seeger et al., 2011). It is also supports the claim that bone strains are increased at the 

resected corner (Simpson et al., 2011) and that overcutting increases these strains (Chang 

et al., 2011). The important findings of this study were that tibiae of lower density were found 

to be more susceptible and the rounded corner produced the lowest bone strains at the 

resected corner. The heterogeneous nature of the bone seemed to add some inter-specimen 

differences depending on what the density of bone was at the tip of the resection.  

It is recommended that surgeons are extra careful with patients with low density bone, not 

only because it is easier to make overcuts but because these tibiae are more susceptible to 

fracture. It is also recommended that inexperienced surgeons use UKR implants that have 

been redesigned with rounded corners. 
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9.9 Femoral Implant Conformity: Is tri-radius better than single-radius? 

9.9.1 Introduction 

With a resurgence of interest in UKRs, implant companies have launched competitor 

designs to the original Oxford UKR. One of the perceived shortcomings of the Oxford UKR is 

that the single radius femoral implant produces a deep cut into the anterior region of the 

femur. This design feature was adopted due to the poor wear properties of PE in the early 

1970s and that the single radius conformity with the mobile bearing would reduce wear.  

 

Figure 203 - The Biomet Oxford and Corin Uniglide cemented femoral UKR implants.  

With improvements in PE wear resistance, the Corin Uniglide femoral implant has a tri-radius 

femoral implant claiming that it fits the profile of the femur more closely while maintaining low 

wear rates. The Uniglide also has a second smaller fixation peg similar to the cementless 

version of the Oxford UKR. Both implants are approximately the same thickness and the peg 

lengths are of similar length. Figure 203 illustrates the differences between the implants. The 

author is unaware of any studies in the literature that have attempted to answer the question 

of whether the improved conformity of the Uniglide femoral implant to the shape of the femur 

actually improves fixation compared to the Oxford UKR. 

This section presents a comparative computer simulation study of the initial fixation of the 

Oxford and the Uniglide femoral UKR implants. 
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9.9.2 Method 

The fixation performance of the cemented Biomet Oxford single-radius femoral implant was 

compared to the Corin Uniglide tri-radius femoral implant. 

The validated cemented versions of the Biomet Oxford implanted femur FE models (strain-

validated CADLOW, CADAV and CADHIGH; and remodelling-validated PATCD and PATCL) were 

used to represent the single-radius femoral implant. The development and validation of the 

FE models are detailed in Sections 4 and 6. 

Five additional FE models were built using the same method to represent the same 

specimens/patients with cemented Corin Uniglide implanted femora. The implants were 

positioned identically to the Oxford implant (the central pegs were aligned) and sized with 

the equivalent implant. The bone was resected such that the implant surface at 0-30° flexion 

was aligned with the Oxford implant. The mesh densities were similar for both sets of 

models. Both implants were made of cobalt chrome assuming identical material properties. 

The Uniglide implant had a second smaller anterior peg and a thin rib that stretched from the 

base of the large peg to the posterior of the implant. Refer to Sub-section 4.3.4 for details of 

the implant geometries. 

A full set of knee forces were applied to all the models (medial and lateral tibiofemoral 

contact, muscles and ligaments) to simulate walking and stair-climbing activities. Eight load 

cases were applied to each strain-validated femur model representing the peak knee forces 

at 10 degree increments of flexion angle taken from the pool of data for walking and stair-

climbing activities. The knee forces applied to the models are tabulated in Sub-section 8.3.4. 

Bone strains were compared at identical locations for the Oxford and Uniglide femoral 

implants.  

The remodelling-validated FE models (PATCD, PATCL) were loaded with exactly the same 

sets of forces used to validate them in Section 8. Note that a cemented version of the model 

PATCL was developed because the validated version was for a cementless UKR. Note that 

the rehabilitation activity levels were different between the two patients, with a rapid 

rehabilitation to full activity taken by patient PATCL and a gentle approach taken by PATCD. 

Bone remodelling was simulated for a period of 12 months and bone density changes were 

predicted for both Oxford and Uniglide femoral implants.  
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9.9.3 Results 

Figures 204 and 205 present plots of femoral bone strain in all three specimens implanted 

with the Oxford and Uniglide femoral implants. The magnitudes and locations of the 

compressive bone strains were similar for both implants.  

 

 

Figure 204 - Comparison of minimum principal (compressive) bone strain plots of three femurs implanted 

with (i) Oxford and (ii) Uniglide mobile UKRs. 
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When the femurs were loaded at knee flexions of 60 and 70° (during stair-climbing knee 

forces), the tensile strains were slightly higher for the Uniglide implant, particularly beneath 

the main peg. This may be because when loaded in flexion, (i) the wedge-shaped rib of the 

Uniglide implant may be generating a pull-out force; and (ii) the pull-out bending moments 

(about the anterior edge of the implant) are higher with the inclusion of a secondary anterior 

peg of the Uniglide implant (increased leverage). 

 

 

Figure 205 - Comparison of maximum principal (tensile) bone strain plots of three femurs implanted with 

(i) Oxford and (ii) Uniglide mobile UKRs. 
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Figures 206 and 207 present plots of minimum principal (compressive) and maximum 

principal (tensile) stress in the cement-mantle. The differences between the Oxford and 

Uniglide implants were insignificant. 

 

Figure 206 - Femoral implant cement minimum principal (compressive) stress plots. Comparison of (1) 

Oxford and (2) Uniglide mobile UKRs. 

 

Figure 207 - Femoral implant cement maximum principal (tensile) stress plots. Comparison of (1) Oxford 

and (2) Uniglide mobile UKRs. High tensile stresses anteriorly for both implant designs. Inclusion of a 

second keel reduced the tensile stresses at the posterior of the peg. 
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9.9.4 Discussion and Recommendations 

The main finding of this study was that both the Oxford and Uniglide UKRs generated very 

similar bone strains with negligible differences. They both generated high strains at the 

anterior reamed corner. It was observed that the reamer cut very deep into the trochlear 

groove, potentially affecting the patellar tracking during deep flexion activities (angles greater 

than 60 degrees). Figure 208 presents images of the implanted Oxford and Uniglide UKRs, 

illustrating the extended cut towards the trochlea. There was negligible difference in fixation 

performance by using the Uniglide UKR instead of the Oxford UKR. 

 

Figure 208 - Images of femoral UKRs demonstrating the anterior reamed corner on both Oxford and 

Uniglide UKR designs. The Uniglide resection extends slightly further into the intercondylar notch whilst 

the Oxford resection is deeper and less conforming. 

The limitation of this study was that it did not consider the effects on tibiofemoral kinematics. 

It is likely that if the profile of the femur is not recreated in arthroplasty then the ligaments will 

not maintain their original laxity through the full range of flexion. The results of the DXA study 

in Section 7 found that there was significant bone loss under the tibial eminence following 

Oxford UKR and this could be due to reduced ACL function. With an improved femoral 

conformity, particularly at extension, the Uniglide UKR may enable better ACL function. A 

comparative DXA study of Oxford and Uniglide UKR patients may help to answer this 

question. 
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9.10 PE Femoral Implant: Is it an option? 

9.10.1 Introduction 

The metal UKR femoral implant is stiff because it is constructed from a high elastic modulus 

material (cobalt chrome) and because of its rigid shape. Based on the results of the DXA 

study (presented in Section 7) and the computer simulations (presented in Section 6), stress 

shielding is more of a concern in the UKR femur than the tibia. It is hypothesised that using a 

material with a lower elastic modulus may reduce stress-shielding and improve the longevity 

of the UKR implant. 

Due to traditionally high wear rates of PE implants prevalent in joint replacement, PE has not 

previously been a viable option for the femoral UKR implant. With recent improvements in 

PE wear properties, this option should be reviewed. It was hypothesised that PE would 

deform more under daily knee forces, transfer increased forces to the bone beneath the 

central region of the implant and reduce stress-shielding and bone resorption. Since PE is 

significantly less stiff than cobalt chrome, it should also be more forgiving towards irregular 

bone resections that do not fully conform against the implant under surface. The potential 

downsides, however, include the probability of increased wear rates and bone-implant 

micromotions. 

This section presents the findings of a comparative computer simulation study assessing the 

differences between the Oxford UKR femoral implant and a hypothetical all-PE femoral 

implant with identical geometry. 

9.10.2 Method 

The fixation performance of the cemented Oxford mobile-bearing single-radius femoral 

implant was compared to a hypothetical all-PE femoral implant with identical geometry. 

The validated cemented versions of the implanted femur FE models (strain-validated 

CADLOW, CADAV and CADHIGH; and remodelling-validated PATCD and PATCL) were used in 

this study. The development and validation of the FE models are detailed in Sections 4 

and 6. 

The only change made to the Oxford UKR models was that a full set of knee forces (medial 

and lateral tibiofemoral contact, muscles and ligaments) were applied to simulate walking 

and stair-climbing activities. Eight load cases were applied to each strain-validated femur 

model representing the peak knee forces at 10 degree increments of flexion angle taken 

from the pool of data for walking and stair-climbing activities. The knee forces applied to the 

models are tabulated in Section 8.  
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The geometry and setup of the all-PE femoral implant models were identical to the validated 

models, with the only difference being the material properties of the implant. The all-PE 

implants were assumed to be isotropic and homogeneous with an elastic modulus of 

600 MPa (Kurtz et al., 1998). For the purposes of direct comparison, the all-PE implant was 

loaded identically to the Oxford implant. Bone strains were compared at identical locations of 

the bone for the Oxford and all-PE implant models.  

The remodelling-validated FE models (PATCD, PATCL) were loaded with exactly the same 

sets of forces used to validate them in Section 8. Note that a cemented version of the model 

PATCL was developed because the validated version was for a cementless UKR. Note that 

the rehabilitation activity levels were different between the two patients, with a rapid 

rehabilitation to full activity taken by patient PATCL and a gentle approach taken by PATCD. 

Bone remodelling was simulated for a period of 12 months and bone density changes were 

predicted for both Oxford and all-PE femoral implants.  

9.10.3 Results 

Figures 209 to 211 present plots of minimum principal strain at particular sections of all three 

strain-validated specimens. The plots show that bone strains were higher in the regions 

posterior to the peg with the all-PE implant (compared to the current cobalt chrome implant). 

This region was previously reported to experience some stress-shielding (refer to Sections 7, 

8 and Sub-section 10.2). 

Figures 212 to 214 present plots of maximum and minimum principal (compressive and 

tensile) stress at the cement-mantle. The small increase of compressive stresses in the all-

PE cement-mantles are within safe limits while the tensile stresses are reduced. 
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Figure 209 - Plots of minimum principal (compressive) strain at the lateral section through the centre of 

the implant. Comparison of the Oxford UKR with the all-PE femoral implant. 

 

Figure 210 - Plots of minimum principal (compressive) strain at the lateral section through the centre of 

the implant. Comparison of the Oxford UKR with the all-PE femoral implant. 
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Figure 211 - Plots of minimum principal (compressive) strain at a frontal section beneath the cement-

mantle of the femoral implant. Comparison of the Oxford UKR with the all-PE femoral implant. 

 

Figure 212 - Plots of minimum principal (compressive) stress at the cement mantle. Comparison of the 

Oxford UKR with the all-PE femoral implant. 
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Figure 213 - Plots of maximum principal (tensile) stress at the distal region of the cement-mantle. 

Comparison of the Oxford UKR with the all-PE femoral implant. 

 

 

Figure 214 - Plots of maximum principal (tensile) stress at the proximal region of the cement-mantle. 

Comparison of the Oxford UKR with the all-PE femoral implant. 



Studies Investigating UKR Design 309 

 

Figure 215 - Bone remodelling comparison of the standard Oxford cobalt chrome femoral implant and the 

hypothetical all-PE UKR. The differences of bone densities at 1 year are compared. 

Figure 215 presents the results of the bone-remodelling simulations and compares the 

all-PE and cobalt chrome implants for bone density at 1 year post-arthroplasty. The all-PE 

implants stimulated bone apposition beneath the shell while there was bone resorption for 

the cobalt chrome implant.  
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9.10.4 Discussion 

The main finding of this study was that a hypothetical all-PE cemented femoral UKR implant 

reduced stress-shielding in the underlying bone when compared to the Oxford mobile-

bearing femoral implant which is made of cobalt chrome.  Using the all-PE implant, the 

increase in bone strains occurred in regions that were under-strained (posterior to the peg) 

and not in regions that were over-strained (the anterior reamed corner bone strains did not 

increase). The bone density under the all-PE implant was maintained; in fact it increased in 

some regions compared to the traditional design.  

The long-term fixation performance of an all-polymer implant could therefore be better than 

the current cobalt-chrome implant provided that there are no deleterious effects such as (i) 

substantial wear rates; (ii) fatigue of the PE; (iii) development of high implant-cement or 

cement-bone micromotions with degradation of the cement-mantle. 

Although this study neglected the effects of wear, there is evidence in the literature that wear 

of polymer materials used for femoral components could be low (Moore et al., 1998). 

Provided wear rates are low, the all-PE cemented UKR could improve longevity compared to 

metal femoral UKRs. With significant improvements in wear resistance of polymer based 

materials in recent years (Kurtz et al., 1999, Kurtz et al., 2009a), this may now be a viable 

option for femoral implants. 
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9.11 Femoral Implant Peg: Does it improve fixation? 

9.11.1 Introduction 

It was demonstrated in Section 7 that stress-shielding was a more important consideration in 

the UKR femur than the tibia. It is widely speculated (based on experience of the TKR and 

THR designs) that shorter pegs reduce stress-shielding. The purpose of this study was to 

test this hypothesis by comparing the Oxford mobile bearing femoral UKR with hypothetical 

designs with decreasing peg lengths. 

9.11.2 Method 

The cemented fixation performance of the Biomet Oxford UKR femoral implant was 

compared to modified versions of the implant with different peg configurations and lengths. 

The validated cemented versions of the Biomet Oxford implanted femur FE models (strain-

validated CADLOW, CADAV and CADHIGH; and remodelling-validated PATCD and PATCL) were 

used to represent the baseline Oxford UKR femoral implant. The development and validation 

of the FE models are detailed in Sections 4 and 6. 

The validated models were modified to generate a refined mesh for the peg as illustrated in 

Figure 216. From each validated models, five simulations were developed, to simulate: (1) 

an uncemented full-length peg; (2) an uncemented half-length peg; (3) an uncemented 2 mm 

peg; and (4) no peg. A total of 25 simulations were generated. The fixation outcomes were 

compared against the cemented Oxford UKR. 

 

Figure 216 - Different variations of peg designs investigated for fixation. 

A full set of knee forces were applied to all the models (medial and lateral tibiofemoral 

contact, muscles and ligaments) to simulate walking and stair-climbing activities. Eight load 

cases were applied to each strain-validated femur model representing the peak knee forces 

at 10 degree increments of flexion angle taken from the pool of data for walking and stair-
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climbing activities. The knee forces applied to the models are tabulated in Sub-section 8.3.4. 

Bone strains were compared at identical locations for each peg design.  

The remodelling-validated FE models (PATCD, PATCL) were loaded with exactly the same 

sets of forces used to validate them in Section 8. Note that a cemented version of the model 

PATCL was developed although the validated version was for a cementless UKR. Note that 

the rehabilitation activity levels were different between the two patients, with a rapid 

rehabilitation to full activity taken by patient PATCL and a gentle approach taken by PATCD. 

Bone remodelling was simulated for a period of 12 months and bone density changes were 

predicted for each peg design. 

9.11.3 Results 

A total of 25 simulations were developed and the results analysed. Figures 217 and 218 

present plots of minimum principal strain through sections of all three strain-validated 

specimen models. The plots show a small reduction in bone strain in the region posterior to 

the peg as peg length was increased. This was consistent amongst all specimens.  

Figures 219 and 220 present equivalent plots for the remodelling-validated patient models at 

0 and 12 months post-arthroplasty. The patient simulations showed that the difference in 

bone strain was negligible for the different peg configurations. 
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Figure 217 - Plots of minimum principal bone strain through the lateral section of femoral implant. The 

plots show cemented femur specimens with different peg designs. 

 

Figure 218 - Plots of minimum principal bone strain at the coronal section midway through the standard 

femoral implant peg. The plots show cemented femur specimens with different peg designs. 
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Figures 221 and 222 present plots of bone apparent density for the remodelling-validated 

patient models at 0 and 12 months. With the exception of changes to bone density under the 

base of the pegs, the differences in bone adaptation were insignificant between the different 

peg configurations.  

The simulations did, however, show increased bone apposition under the base of the 

uncemented full-length peg compared to the cemented peg configuration. A sensitivity study 

was conducted to assess how the bone strains would be affected if the femoral peg base 

rested against bone as opposed to resting in a void. Figures 223 and 224 show how a higher 

portion of the load is transferred under the shell of the implant if the peg does not rest 

against bone. As the peg osseointegrates, this load transfers through the peg, therefore 

increasing the effect of stress-shielding on the underlying bone. 
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Figure 219 - Plots of minimum principal bone strain through the lateral section of femoral implant. The 

plots show the effect of 12 months bone remodelling simulation on the cemented femora of patient 

models with different peg designs. Note that these are different knees to those shown in Figures 217-218. 

 

Figure 220 - Plots of minimum principal bone strain at the coronal section midway through the standard 

femoral implant peg. The plots show the effect of 12 months bone remodelling simulation on the 

cemented femora of patient models with different peg designs. 
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Figure 221 - Plots of apparent density through the lateral section of femoral implant at 0 and 12 months 

post-arthroplasty. The plots show the effect of 12 months bone remodelling simulation on the cemented 

femora of patient models with different peg designs 

 

Figure 222 - Plots of apparent density at the coronal section midway through the standard femoral 

implant peg at 0 and 12 months post-arthroplasty. The plots show the effect of 12 months bone 

remodelling simulation on the cemented femora of patient models with different peg designs   
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Figure 223 - Initial fixation of cemented UKR, comparison of bone strain for (1) femoral stem resting 

against bone and (2) not resting against bone. 

 

Figure 224 - Initial fixation of cemented UKR, comparison of bone strain for (1) femoral stem resting 

against bone and (2) not resting against bone. 
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9.11.4 Discussion and Recommendations 

The main finding of this study was that there was negligible improvement in fixation by using 

shorter pegs. Although some improvement was gained with a pegless design, more research 

is recommended to understand how such a design would perform under lateral knocks and 

whether a surgical method providing reliable positioning is possible. 

The reason why reduced peg sizes did not reduce stress-shielding is because a significant 

portion of the simulated knee forces transferred through the thick cortices of the femoral 

trochlea and the posterior aspects of the femoral condyles. Reducing the peg length 

therefore, had a negligible effect on reducing stress-shielding. With a pegless design, the 

implant flexed significantly more under loading and the bone mass just beneath the implant 

surface was maintained. There was little improvement by reducing the peg length from full to 

half-length. 
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9.12 Femoral Implant Posterior Overcutting: Is it a problem? 

9.12.1 Introduction 

While simulating UKR surgery in the laboratory on cadaveric knees, it was found that 

surgeons sometimes overcut the posterior of the femur. A study of 100 UKR bone composite 

preparations by experienced surgeons showed that the average posterior femur overcut was 

1.3 mm (Clarius et al., 2009a). Since this region is difficult to reach and UKR implants are 

not designed to provide adequate cement compression, subsequent cementation is difficult. 

There are no published studies about how this surgical error would affect fixation. The 

following study presents a multi-specimen comparative computer simulation study 

comparing validated simulations of the Oxford UKR to scenarios simulating these surgical 

errors. 

9.12.2 Method 

The cemented fixation performance of the Oxford mobile bearing UKR was simulated with 

four scenarios of an overcut posterior condyle: (1) correct resection; (2) 0.2 mm overcut; (3) 

1 degree overcut; and (4) 1 degree overcut with the anterior region cement bonded. Note 

that the reason for simulating a small overcut is for the purposes of having a near-identical 

mesh between the models such that potential errors due to imperfect mesh are removed. 

Contact between the overcut surface and the implant was ignored; therefore the depth of the 

overcut should be irrelevant.  

The validated cemented versions of the Biomet Oxford implanted femur FE models (strain-

validated CADLOW, CADAV and CADHIGH; and remodelling-validated PATCD and PATCL) were 

modified with small changes to mesh at the posterior condyle so that all four scenarios could 

be generated with the same mesh. Bone remodelling was only simulated for two of the 

scenarios (1) correct resection and (2) 1 degree overcut. The development and validation of 

the FE models are detailed in Sections 6 and 8. 

The FE mesh geometry of the posterior condyles used to simulate all four scenarios are 

presented in Figure 225. A total of 12 simulations were generated for the strain-validated 

models and 4 for the remodelling-validated models. 
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Figure 225 - Illustration showing how the posterior cuts were represented. 

A full set of knee forces were applied to all the models (medial and lateral tibiofemoral 

contact, muscles and ligaments) to simulate walking and stair-climbing activities. Eight load 

cases were applied to each strain-validated femur model representing the peak knee forces 

at 10 degree increments of flexion angle taken from the pool of data for walking and stair-

climbing activities. The knee forces applied to the models are tabulated in Section 8. Bone 

strains were compared at identical locations for each scenario.  

The remodelling-validated FE models (PATCD and PATCL) were loaded with exactly the same 

sets of forces used to validate them in Section 8. Note that a cemented version of the model 

PATCL was developed (because the validated version was for a cementless UKR) and that 

the rehabilitation activity levels were different between the two patients (a rapid rehabilitation 

to full activity was taken by patient PATCL and a gentle approach was taken by PATCD). Bone 

remodelling was simulated for a period of 12 months and bone density changes were 

predicted for each scenario. 
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9.12.3 Results 

Figures 226 to 233 present plots of minimum principal strain at sections of all three strain-

validated specimen models under peak knee forces at 20 and 70 degrees of knee flexion. 

The differences of bone strains between the correct resection and the overcut scenario were 

small at knee flexion angles of under 30 degrees (Figures 226, 229 and 231).  

Of the load cases assessed, the largest difference occurred at 70 degrees flexion with an 

increase in bone strain at the region posterior to the peg (Figures 227, 228 and 230). This 

increase may be enough to cause pain. However, this region was also shown to be 

associated with stress-shielding in Section 7; therefore, the overcut may act as a method of 

reducing these effects (provided the strains aren’t too high).  

There were also small increases in tensile bone strain at the anterior region of the implant 

(Figure 233). Figures 231 and 232 show that there were negligible differences in 

compressive bone strain to other regions of the knee. 
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Figure 226 - Plots of minimum principal strain through the lateral section of the femoral implant at 20 

degrees flexion. The plots compare cemented femora of cadaveric specimen models that have posterior 

femoral overcuts. 

 

Figure 227 - Plots of minimum principal strain through the lateral section of the femoral implant at 70 

degrees flexion. The plots show an increase in compressive strains posterior to the peg with posterior 

femoral overcuts. 
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Figure 228 - Plots of maximum principal strain through the lateral section of the femoral implant at 70 

degrees flexion. The plots show an increase in tensile strains around the peg with posterior femoral 

overcuts. 
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Figure 229 - Plots of minimum principal strain at a frontal section 1 mm beneath the cement-mantle of 

femoral implant at 20 degrees flexion. The plots compare cemented femora of cadaveric specimen 

models that have posterior femoral overcuts. 

 

Figure 230 - Plots of minimum principal strain at a frontal section 1 mm beneath the cement-mantle of 

femoral implant at 70 degrees flexion. The plots compare cemented femora of cadaveric specimen 

models that have posterior femoral overcuts. 
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Figure 231 - Plots of minimum principal strain at the coronal section midway through the standard 

femoral implant peg at 20 degrees flexion. The plots compare cemented femora of cadaveric specimen 

models that have posterior femoral overcuts. 

 

Figure 232 - Plots of minimum principal strain at the coronal section midway through the standard 

femoral implant peg at 70 degrees flexion. The plots compare cemented femora of cadaveric specimen 

models that have posterior femoral overcuts. 
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Figure 233 - Plots of maximum principal strain at the coronal section midway through the standard 

femoral implant peg at 70 degrees flexion. The plots show an increase in anterior tensile strains with 

posterior femoral overcuts. 
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Figure 234 presents plots of maximum principal (tensile) stress at the cement-mantle at 70° 

knee flexion under stair-climbing knee forces. There was negligible change in cement 

stresses with inclusion of a posterior femoral cut. 

 

Figure 234 - Plots of maximum principal (tensile) stress at the cement mantle. 
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Figures 235 and 236 present plots of bone density at 0 and 12 months post-arthroplasty in 

the remodelling-validated patient simulations. The results show that the overcut actually 

increased bone apposition in the region posterior to the peg. This is in line with the results of 

the strain-validated models and demonstrates that an overcut may actually act as a method 

of relieving stress-shielding of this region. 

 

Figure 235 - Plots of minimum principal strain of bone at three sections of the UKR implanted femur at 0 

and 12 months post-arthroplasty. The plots compare the cemented femora of patient models with and 

without a femoral posterior overcut. 
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Figure 236 - Plots of apparent density of bone at three sections of the UKR implanted femur at 0 and 12 

months post-arthroplasty. The plots compare the cemented femora of patient models with and without a 

femoral posterior overcut. 
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9.12.4 Discussion 

The main finding of this study was that the surgical error of overcutting the posterior condyle 

followed by inadequate cement fixation in this region created (i) elevated bone strains 

posterior to the peg that may cause pain to the patient, and (ii) bone resorption 

superoposteriorly beneath the posterior tip of the implant. 

Due to inadequate fixation at the posterior, none of the load transferred through the posterior 

part of the implant. The load transferred through to a region located more anteriorly (the 

region just posterior to the peg) which is a region that experienced stress-shielding in the 

fully bonded scenario. Based on bone remodelling simulations, the results showed that an 

unbonded posterior region may reduce stress-shielding in the region posterior to the peg and 

may in fact stimulate bone apposition (or sclerotic bone). 

However, the region superoposterior beneath the implant experienced stress-shielding 

(particularly when loaded under high knee flexions) and displayed some bone resorption. 

The bone remodelling simulations assumed that the posterior gap did not model into bone. 

In order to postulate whether this gap would develop into bone or fibrous tissue, a sensitivity 

study was conducted on specimen CADAV to measure the micromotions between the implant 

and the bone. The simulations showed that the micromotions were less than 50 µm for knee 

flexions less than 30°, but they increased significantly exceeding 100 µm (relative motion) 

with increased flexions of up to 70°. This region would therefore probably develop into a 

highly compliant fibrous tissue that would prevent load transmission into this superoposterior 

region and cause bone resorption as predicted in the simulations. 

With deeper flexion angles of 70 degrees, the high medial tibio-femoral contact force 

coupled with the inadequate fixation at this posterior generated a torque to rotate the implant 

about its peg, creating higher than normal bending moments in the implant. The implant is 

however stiff and of sufficient material strength to resist these increased loads. The 

simulations showed that the cemented peg provided sufficient anchorage to resist these high 

forces and there were only small differences in bone strain in other regions compared to the 

correctly resected cemented UKR knee. 

The prevalence of posterior femur overcutting could be widespread amongst inexperienced 

surgeons; but there is no clinical evidence to substantiate this, therefore little research has 

been conducted on this subject. However, this study suggests that those patients who are 

more active and load their knees under higher flexions may be more susceptible to poor 

fixation outcomes. The study suggests that this problem would be more significant if there 

was insignificant peg anchorage in UKR femoral implants or the pegs were shorter. This 

should be a consideration in future UKR design alterations. 
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10 Conclusions and Proposed Future Work 

10.1 Introduction 

The overall aim of this research was to understand fixation of Unicondylar or 

Unicompartmental Knee Replacements (UKR) and make recommendations for improvement 

to designers and surgeons. Various medical research techniques were utilised for this 

project, including in-vivo, in-vitro and in-silico studies. 

Following a detailed literature review of the current state of UKR, the project was structured 

around the Oxford mobile-bearing UKR because it is the most widely used implant in the UK 

(Schindler et al., 2010). A prospective UKR follow-up study of 11 Oxford UKR patients was 

developed and conducted for one-year, taking measurements of bone density through the 

course of a year using Dual X-Ray Absorptiometry (DXA) scanning. Detailed bone geometry 

and density distributions of the patients knees were gathered pre-operatively using 

computed tomography (CT) scanning.  

The Oxford UKR surgical procedure was simulated in the laboratory on ten fresh frozen 

human cadavers by a surgeon of appreciable experience. The cadaveric soft tissues were 

then dissected to analyse the resections and the specimens prepared for in-vitro mechanical 

testing. The specimens were tested for bone strain and bone-implant interface motion with 

the implants fixed using first cementless and then cemented methods. 

A detailed review of Finite Element (FE) computer models of implants was undertaken to 

utilise and develop current techniques to simulate the implanted UKR for investigation of 

bone strain, bone-implant interface micromotion and bone remodelling to assess initial and 

long-term fixation performance. Computer simulations of the tibiae and femora of 2 patients 

and 4 cadaveric specimens (obtained from the in-vivo and in-vitro studies) were developed 

and validated for bone strain, bone-implant interface micromotion and bone remodelling. 

Comparative multi-specimen computational studies were conducted to answer pertinent 

fixation questions and understand how particular design features affect fixation.  

This thesis has numerous novel features including: (1) the first study to complete in-vivo 

validation of human bone remodelling simulations of knee arthroplasty patients; (2) the first 

study to validate multiple UKR tibiae and femora for bone strain and bone-implant 

displacement; and (3) the development of the most detailed multi-specimen FE models of 

UKR. This section outlines the conclusions of this thesis, the contributions to biomechanics 

research and recommendations for the future. 
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10.2 Conclusions and Contributions to Biomechanics Research 

The evolving market of knee joint replacements is putting increased challenges on surgeons 

and implant designers to produce improved outcomes with greater efficiency. The younger 

demographics of patients with severe knee arthritis and their higher expected mobility 

outcomes have pushed surgeons and designers to consider alternative solutions. The UKR 

is considered a good option for younger patients with arthritis confined to a single condyle 

with the remaining knee fully functional.  However there is remarkably little research on the 

fixation performance of the UKR and how it could be improved for primary fixation and 

longevity. A comprehensive analysis of the fixation performance of the UKR has been 

presented in this thesis and summarised below. 

Developments in computer simulations of the UKR knee 

Some published apparent bone density to elastic modulus relationships led to predictions of 

bone strains which exceeded published failure criteria under loads imposed by normal 

activities. Bone strains were found to be sensitive to the uncertainty of bone elastic modulus 

reported in the literature. The most reasonable moduli for the tibia and femur were found to 

be those which were anatomic site and human specific. 

The traditional techniques for modelling bone were developed to reduce partial volume 

effects and reduce the uncertainty of bone strain predictions. The cortical and cancellous 

regions were meshed separately with local mesh refinement based on the results of 

convergence studies and the requirements of the specific simulations. The thin cortices of 

the proximal tibia and distal femur were modelled with shell elements.  

Computer simulation sensitivity studies of the tibia and femur revealed that patella and ACL 

forces were important in modelling fixation performance of UKR knees. A comprehensive 

literature review was performed to understand and limit the uncertainty in knee force 

predictions reported in the literature. A full database of knee contact, muscle and ligament 

forces was generated to model the UKR knee. 

Bone strain validation 

In-vitro mechanical experiments were conducted on ten human cadaveric knees (Section 5) 

and the results of bone strain measurements used to validate four tibia and four femur 

models of the UKR implanted knee (Section 6). The cemented UKR pooled R2 values were 

0.85 and 0.92 for the tibia and femur respectively, while the cementless UKR pooled R2 

values were slightly lower at 0.62 and 0.73. This may have been due to the irregularity of 

bone resections. The validation results were shown to be comparable to those reported in 

the literature (for similar computer models) and the improved correlation was attributed to the 
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improved material property techniques used in this project. This study is the first to validate 

multiple UKR tibiae and femora for bone strain. 

Bone-implant interface micromotion validation 

The results of bone-implant displacements measured in the in-vitro mechanical experiments 

conducted on ten human cadaveric knees (Section 5), were used to validate four tibia and 

four femur models for micromotion. The predicted transverse displacements adjusted for 

inclusion of friction coefficient produced R2 values of 0.91 and 0.84 for cemented and 

cementless UKR fixation, respectively. This study is the first to validate multiple UKR knee 

cadaveric specimens for bone-implant micromotion. 

Bone remodelling validation 

Due to the difficulty in acquiring in-vivo bone-adaptation data there is a notable lack of 

clinical validation of bone remodelling computer simulations of human joints. A DXA follow-

up study was conducted on UKR patients and bone density changes were measured at the 

UKR tibia and femur at 0, 3, 6 and 12-months. Two of the patients were used to develop 

bone remodelling computer simulations of the cemented and cementless Oxford UKR tibia 

and femur and the results compared to the measured DXA results. 

Using the bone remodelling algorithm developed by Huiskes et al. (1987), the following 

parameters were found to produce the most realistic predictions of the actual measured 

patient knees: a stimulus of strain energy density (U); lazy-zone of 75%; time-parameter of 

 = 50; and with the theory of Martin activated. The rate at which the UKR patient resumed 

normal activity had a distinct effect on the bone density changes and potentially on the future 

success of the implant.  

This study was the first to attempt to validate bone remodelling changes following UKR 

arthroplasty to computer simulations. 

Stress-raisers in UKR resected tibia and femur 

Analysis of multiple patient and cadaveric UKR knees highlighted stress-raisers at the 

resected corner of the tibia and at the reamed anterior edge of the femur. The bone strains 

approached the failure limit of bone; in particular for low density bone where it exceeded the 

failure threshold of bone. Although cementation reduced the bone strains, the UKR design 

and operative technique could be modified to reduce these stress-raisers. 

Bone loss in Oxford UKR patients is manageable 

A DXA study was conducted on 11 UKR patients, for a follow-up period of one year, 

measuring bone density changes at 20 predetermined regions-of-interest on the tibia and 
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femur. There were statistically significant post-arthroplasty bone density changes to the 

knees of the UKR patients. Most subjects saw a large drop in BMD in the first 6 months 

following surgery, followed by a steady recovery. The biggest change surprisingly occurred 

under the tibia intercondylar eminence which decreased steadily by an average of -17.9% at 

6-months and which then reduced slightly to -15.1% at 1-year (statistically significant). The 

average bone loss under the tibial tray was negligible; however, the bone loss at the anterior 

portion was higher with an average decrease of -13.7% (statistically significant). There was 

no change (0.4% mean bone gain) under the tibial keel. The bone loss under the femoral 

component was more significant (-12.9%). The regions anterior and posterior to the central 

implant peg saw greater bone loss (-13.5% and 14.4%, statistically significant)).  

The results of the computer simulations demonstrated that maintaining activity levels 

following arthroplasty minimised bone loss in the high risk regions (posterior femoral condyle 

and proximal tibial tray keel). The quicker the adoption of normal activity levels the better the 

outcome was at one year. The significant bone loss under the tibial eminence was shown to 

be due to a combination of lack of fixation on implant side-wall, removal of lateral 

tibiofemoral forces at the medial condyle upon arthroplasty and reduced ACL function. The 

former two reasons explained up to 15% of the bone loss. Greater bone loss was seen in 

half of the patients and was suggestive of reduced ACL function. A possible explanation for 

the reduced ACL function could be because the femoral component of the Oxford UKR lies 

too posteriorly on the condyle, inhibiting bearing movement particularly in small size 

implants. 

Cementation reduces bone strain in the UKR implant tibia 

In-vitro mechanical experiments, conducted on ten human cadaveric knees (Section 5) 

comparing bone strains of cementless Oxford UKR knees, showed that cemented fixation 

produced a statistically significant reduction in bone strains at the proximal tibial cortices. 

The bone strain changes on the UKR implanted distal femur upon cementation were 

insignificant. Computer simulations (Section 6) showed that cementation distributed the knee 

force more evenly through the bone while the cementless implant created regions of high 

bone strain around the rim of the implant (Sub-Section 9.2). Upon osseointegration of the 

bone-implant interface, the simulations showed the bone strains reduced to similar levels 

experienced in the cemented UKR knee (Sub-Section 9.2). Further evidence for this 

difference were seen in the patient tibiae of the DXA study (Section 7), where the cemented 

fixation patients saw a larger drop in bone density compared to the cementless fixation 

patients.  
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These higher strains in cementless UKR patients may be responsible for the increased pain 

that these patients tend to feel (compared to cemented UKR patients) immediately post-

arthroplasty (personal communication with Prof. Justin Cobb). This pain tends to diminish 

within a few months and these patients tend to have radiographs with no radiolucencies at 1 

year (Pandit et al., 2009). 

The cemented and cementless Oxford UKR were both shown to provide adequate fixation 

for most patients irrespective of whether cemented or cementless fixation is used; however, 

success rates could be improved with careful choice of fixation method. Cementless fixation 

in patients with a low density tibia generated bone strains that exceeded the failure strength 

of bone under normal peak daily activity knee loads. This could lead to tibial subsidence or 

even fracture. Therefore cementless fixation is not recommended for patients of low density 

bone.  

Provided that there was no implant subsidence or fracture, the long-term fixation 

performance of cementless implants was slightly better than cemented implants because 

there was more bone gain and less bone loss (Sub-section 9.2). Although the short-term 

performance of the tibial components was best with cemented fixation, the long-term 

success may be compromised for patients with a dense tibia who would benefit more with 

cementless fixation. 

Cementless fixation of UKRs is good in dense bone 

Based on computer simulated predictions of bone-implant micromotion, the performance of 

the UKR cementless fixation osseointegration degraded for knees of decreasing bone 

density (Sub-Section 9.3). For dense bone, the micromotions were below the threshold of 

50 µm to allow firm osseointegration. The average density knee produced moderate tibial 

and femoral micromotions (less than 100 µm) and although cementless fixation could be 

used in such patients, a gentle rehabilitation programme would be recommended. The low 

density knee produced high micromotions (greater than 100 µm) in both the tibia and femur; 

therefore cementless fixation is not recommended for such patients. Note also that 

cementless fixation was also shown to produce higher tibial bone strains (compared to 

cemented fixation) with potential tibial subsidence or fracture. This is further evidence to 

exclude patients with low density bone. 

Incomplete tibial UKR radiolucencies are not a problem 

Cemented Oxford UKR patients often display radiolucencies beneath the tibial implant 

(Gulati et al., 2009a, Pandit et al., 2009, Rea et al., 2007). Most are considered physiological 

and do not show any signs of loosening (Gulati et al., 2009a). A comparative study was 
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performed to assess the fixation performance based on increased compliance of the 

cement-mantle over time. 

The reduction of stiffness of the cement-mantle layer (17% of its initial stiffness based on 

explants of THRs (Mann et al., 2008)) caused bone strains in the underlying bone to 

increase and bone apposition occurred. This may explain the sclerotic margin typically seen 

under radiolucencies of UKR tibiae (Gray et al., 2010). This study also concludes that lower 

density tibia may be more susceptible to forming sclerotic margins following development of 

radiolucencies. 

Reducing the elastic modulus of the cement-mantle of the tibial component made small 

changes to the tibial strains. The load path changed such that a larger proportion was 

through the tibial tray rather than the keel. As a consequence the bone strains beneath the 

implant increased and the bone strain beneath the keel decreased. 

Shallower resections of keeled tibial UKRs do not improve fixation 

A multi-specimen comparative computer simulation study, of tibial implant UKR knees each 

resected at three depths (4 mm superior and 4 mm inferior to the nominal), demonstrated 

that the effect of the resection depth on bone strains was highly dependent on the geometry 

and density of the specimen. 

The hypothesis that “shallower resections would reduce strain change and improve fixation”, 

was found to be incorrect. The reason for this was two-fold: With superior resections (1) the 

keel was moved into a region of lower density, thus increasing the strains under the tray; and 

(2) the tray underside was moved into a region where the density under the lateral side was 

lower than at the medial side, causing tilt when loaded, thus increasing the strains under the 

lateral side of the tray. 

The highest density tibia produced bone strains that most closely matched the pre-

arthroplasty state with stress-shielding under the tibial tray minimised. This was true for 

either cemented or cementless implants. Stress shielding was higher with a lower density 

tibia. While superior resections reduced the magnitude of stress-shielding, they did not 

necessarily reduce the strain difference from the pre-arthroplasty state. 

Analysis of bone density plots of the transverse resections showed that the highest 

cancellous density was at the centre of the implant. This corresponded to the position of the 

implant keel; therefore the high stiffness of this region was not utilised in these Oxford UKR 

designs, particularly with more superior resections. If there was no keel at the centre of the 

implant, the fixation would be improved. Otherwise a keel extending into the lateral side wall 

(Simpson et al., 2011) or anterior region would be an improvement on the current design.  



Conclusions and Proposed Future Work 337 

All-PE tibial implants should not be less than 9 mm thick 

A multi-specimen comparative computer simulation study (Sub-Section 9.6), of tibial implant 

UKR knees implanted with various thicknesses of all-PE tibial implants, demonstrated that 

the bone strain distribution beneath all-PE UKR knees was significantly different to those of 

metal-backed and mobile-bearing UKR knees. 

Bone strains were severe for the low density tibia with likely tibial collapse upon use of any 

all-PE implant less than 12 mm thickness. For the normal and highest density tibia 

specimens, the bone strains were within acceptable limits with all-PE implant thicknesses of 

9 mm or greater. 

Metal-backed or All-Polyethylene UKR decision is patient dependent 

Based on the results of a multi-specimen comparative computer simulation study (Sub-

Section 9.6), the fixation performances of the all-PE and metal-backed UKRs depended on 

the bone density of the tibia. The study recommends not to use a “one size fits all” 

philosophy and to determine the PE thickness from patient bone quality (assuming they are 

not obese, and have normal activity levels): PE bearings should not be used if the patient 

bone density is low; a minimum of 9 mm is used for patients of average bone density; and a 

minimum of 6 mm for patients of high bone density. If the quality of the bone is unknown 

(this is particularly likely with surgeons of limited experience), the all-PE tibial UKR should 

not be used as the all-PE implant was considered “unforgiving”. 

Shorter tibial UKR keels provide improved fixation for dense tibia 

Current mobile-bearing UKR designs have keels that extend 10 mm (Oxford Biomet and 

Uniglide Corin). The metal-backed UKR designs are variable; however the majority have 

keels. The all-PE UKR designs tend also to be variable with very short keels (Evolution 

Tornier, Accuris Smith & Nephew, EIUS Stryker) and large keels (Uniglide Corin). 

Based on the results of multi-specimen comparative computer simulation study (Sub-Section 

9.7), a large cemented keel improved fixation of all-PE UKRs. Although the large cemented 

keels of metal implants provided good fixation for patients with poor quality bone, they 

caused stress-shielding in the average and high density tibiae that could compromise long-

term fixation. Tibia keels of 2 mm depth may improve fixation of average to high density 

tibiae of UKR patients. 

Tibial sagittal overcutting must be avoided 

A multi-specimen comparative computer simulation study (Sub-Section 9.8), comparing the 

standard UKR tibia to the 10 degree overcut tibia and a rounded resection corner tibia, was 
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conducted. The results showed that overcutting was not necessarily a problem for average 

and high density tibiae, but a significant hazard for low density tibiae. 

If the knee is drilled at the resected corner before the transverse and lateral resections are 

made, that may help surgeons to reduce the over-resections which were shown to 

exacerbate bone strains in this study. The rounded corner also reduced the tensile bone 

strains at this region.  

The fixation of the tri-radius and the single-radius femoral UKR are similar 

It was hypothesised that the tri-radius femoral UKR would improve bone strains compared to 

the single-radius implant because it was better conforming and did not create a deep notch 

at the anterior of the femur. A multi-specimen comparative computer simulation study (Sub-

Section 9.9), showed that the difference of bone strains was small because the major 

contributing factor was the impact of using a rotating reamer that cut into the trochlear 

groove. 

Nevertheless, there were negligible differences in bone strains using the tri-radius femoral 

UKR compared to the Oxford UKR. The tri-radius UKR should perform equally as well with 

added potential improvements in kinematics, due to the implant shape conforming closer to 

the shape of the natural femur.  

The All-Polyethylene femoral UKR could provide better fixation 

The metal UKR femoral implant is very stiff because of its material and its shape and it has 

been demonstrated that stress shielding is more of a concern in the UKR femur than the tibia 

(Section 7). It was hypothesised that using a material with a lower elastic modulus may 

reduce stress shielding. 

The results of a multi-specimen computer simulation study showed that an all-polymer 

femoral UKR reduced stress shielding and could improve longevity compared to metal 

femoral UKRs in relation to transmission of strains. This is provided that there are no 

deleterious effects such as (i) substantial wear rates; (ii) fatigue of the PE; (iii) development 

of high implant-cement or cement-bone micromotions with degradation of the cement-

mantle. With significant improvements in wear resistance of polymers in recent years (Kurtz 

et al., 1999, Kurtz et al., 2009a), polymers may now be a viable option for femoral implants. 

The benefit of a shorter femoral UKR peg is small 

It has been demonstrated that stress shielding is more of a concern in the UKR femur than 

the tibia (Section 7). A comparative multi-specimen computer simulation study (Sub-Section 

11) was conducted comparing bone strains and bone loss of femoral UKR knees of different 
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peg lengths. There was negligible improvement in using shorter pegs, but some 

improvement with no peg. The reason for this finding is because a significant portion of the 

UKR knee force transfers through the thick cortex of the femoral trochlea and the posterior 

aspect of the femoral condyle. With no peg the bone mass in this region was maintained; 

however there was little improvement by reducing the peg length from full to half-length. 

Femoral implant posterior overcutting may cause pain and stress-shielding 

While simulating UKR surgery in the laboratory on cadaveric knees, it was found that 

surgeons sometimes overcut the posterior of the femur. Since this region is difficult to reach 

and the implants are not designed to provide cement compression, subsequent cementation 

is difficult. In order to understand whether an unbounded posterior femoral implant would 

degrade the fixation performance of the femoral UKR, a multi-specimen comparative 

computer simulation study was conducted.  

The main finding of this study was that the surgical error of overcutting the posterior condyle 

followed by inadequate cement fixation in this region created (i) elevated bone strains 

posterior to the peg that may cause pain to the patient, and (ii) bone resorption 

superoposteriorly beneath the posterior tip of the implant. 

The prevalence of posterior femur overcutting could be widespread amongst inexperienced 

surgeons; but there is no clinical evidence to substantiate this, therefore little research has 

been conducted on this subject. However, this study suggests that those patients who are 

more active and load their knees under higher flexions may be more susceptible to poor 

fixation outcomes. The study suggests that this problem would be more significant if there 

was insignificant peg anchorage in UKR femoral implants or the pegs were shorter. This 

should be a consideration in future UKR design alterations. 

Overall Conclusions 

This thesis describes the most comprehensive study of UKR fixation. It includes the most 

thorough validation of computer models, using both imaging of patients in-vivo, and 

mechanical testing in-vitro. It has led onto a number of UKR design evaluations. A recurring 

theme has been the dependence of UKR fixation on overall bone density. 

10.3 Future Work 

The computer models developed and used in this research are capable of simulating the 

biomechanical and bone remodelling responses in the bone after implantation of UKRs. 

However the simulations are limited by the quality of the input data and the analysis 

capabilities and throughout this thesis the importance of understanding these limitations has 
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been emphasised. There are improvements that should be made in order to improve the 

capability and confidence of these simulations. These are outlined below: 

Understanding the UKR patient group 

The dependence of UKR fixation on overall bone density has been shown to be an important 

factor in fixation outcome; however, the bone density range of tibiae and femora of UKR 

patients is unknown. Although, human cadaveric knees were used to determine the range of 

bone densities analysed in this thesis, these knees were not real UKR patients. It is likely 

that UKR patients are more varus-aligned and have denser medial compartments compared 

to the normal population. Prospective or retrospective analysis of UKR patient computed-

tomography scans could help to determine the range and distribution of bone density in this 

group of patients. The density range of the tibiae and femora assessed in this thesis could 

then be defined in relation to UKR patients. 

Although bone density has been highlighted as an important factor in fixation outcome, body 

mass and the level of patient activity should also be important in determining fixation 

outcome. Body mass was factored into the knee forces used to assess UKR fixation, but due 

to the small number of specimens and patients assessed, the extremes of body mass in 

relation to bone density is unlikely to have been represented. Due to limitations in the 

literature, the effect of the difference in activity levels between patients was not assessed for 

determining fixation. With the availability of data, the effect of body mass and the level of 

activity within the UKR patient group should be investigated in more detail. 

Material properties of bone 

The results of Section 2 cast doubt on the use of some of the published density-modulus 

relationships for analysis of the human proximal tibia; it also highlighted the need for further 

experimental work to characterise the behaviour of bone with intermediate densities. Further 

work is recommended to increase the pool of bone property data for specific anatomy of 

human bone. This is particularly relevant for the distal femur where this data was not 

available. More data is also required to support and improve confidence in the range of 

human tibia and femur bone covering the cortical range. Although this data was available for 

human tibial cortical bone, there was some doubt over the experimental method used to 

obtain the data. 

Database of knee forces 

The open source dataset of knee forces provided by Prof. Bergmann (www.orthoload.com) 

is of substantial relevance and importance for simulating the knee. This is because this set 

of forces was generated from instrumented TKR prostheses so the post-TKR kinematics is 
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relevant. The kinematics of the UKR knee is different to those of the TKR. This thesis has 

also emphasised the importance of considering muscle and ligament forces, particularly for 

the UKR. Further research is required to improve the quality and confidence of knee forces 

data with the aim of obtaining patient-specific knee force datasets. Developing a minimally 

invasive instrumented UKR would be a good next step and would provide significant benefits 

for modelling both the intact knee and the UKR knee. 

Computational techniques 

With expected steady improvements in computational capability, larger and more complex 

simulations will be possible. The problem of simulating implant fixation is complex and 

fundamentally involves multi-scale modelling from tissue to whole bone-level. In this thesis, 

assumptions were made to define and develop relevant macro-scale models for the 

purposes of understanding UKR fixation. It is recommended that further studies are 

completed at the tissue-level with the aim of fully integrating multi-scale models. 

This research highlighted some complex micro-mechanisms involved in simulating bone-

implant micromotion that the macro-scale models could not accurately simulate. Although 

these assumptions proved to be valid for predicting surface-tangent micromotions, there 

were large discrepancies in predicted surface-normal micromotions. Tissue-level simulations 

of the bone-implant interface are required to understand and explain these differences and 

develop cohesive models that could be added to the macro-scale models used in this study. 

Based on tissue-level models developed from Total Hip Replacement (THR) explants, 

cohesive models have been developed for non-linear behaviour of the cement-bone 

interface (Mann et al., 2010). These have been included in macro-level simulations of THRs 

(Waanders et al., 2011). Similar research should be carried out for the implant-bone, 

implant-cement and cement-bone interfaces of UKRs and incorporated into macro-level 

models developed in this research. 

The bone remodelling algorithm used to model long-term fixation assumes that all bone is 

remodelled as bone. Under specific biomechanical loads the bone could remodel as fibrous 

tissue. It is recommended that the remodelling algorithm is updated to account for these 

changes as implemented by Gray et al. (2010). 

With very low wear rates of mobile-bearing UKRs, osteolysis is not a major concern for 

implant loosening; however, it can be for fixed bearing UKRs. Incorporating a parameter for 

osteolysis of adjacent bone would add value for assessing fixed bearing UKR designs. As a 

first step, this could be implemented using cohesive models developed from in-vivo studies 

of animals (Ren et al., 2004) in conjunction with FEA wear simulations to predict the volumes 

of PE particles.  



References 342 

11 References 

ABDUL-KADIR, M. R., HANSEN, U., KLABUNDE, R., LUCAS, D. & AMIS, A. 2008. Finite 
element modelling of primary hip stem stability: the effect of interference fit. J Biomech, 41, 
587-94. 

ADALBERTH, G., NILSSON, K. G., BYSTROM, S., KOLSTAD, K. & MILBRINK, J. 2001. All-
polyethylene versus metal-backed and stemmed tibial components in cemented total knee 
arthroplasty. A prospective, randomised RSA study. J Bone Joint Surg Br, 83, 825-31. 

AHLBERG, A. & LINDEN, B. 1977. The radiolucent zone in arthroplasty of the knee. Acta 
Orthop Scand, 48, 687-90. 

AHMED, A. M., BURKE, D. L. & HYDER, A. 1987. Force analysis of the patellar mechanism. 
J Orthop Res, 5, 69-85. 

AKHTER, M. P., CULLEN, D. M., PEDERSEN, E. A., KIMMEL, D. B. & RECKER, R. R. 
1998. Bone response to in vivo mechanical loading in two breeds of mice. Calcified tissue 
international, 63, 442-9. 

AL NAZER, R., LANOVAZ, J., KAWALILAK, C., JOHNSTON, J. D. & KONTULAINEN, S. 
2012. Direct in vivo strain measurements in human bone—A systematic literature review. 
Journal of Biomechanics, 45, 27-40. 

ALETO, T. J., BEREND, M. E., RITTER, M. A., FARIS, P. M. & MENEGHINI, R. M. 2008. 
Early Failure of Unicompartmental Knee Arthroplasty Leading to Revision. The Journal of 
Arthroplasty, 23, 159-163. 

AMIS, A. A., GUPTE, C. M., BULL, A. M. & EDWARDS, A. 2006a. Anatomy of the posterior 
cruciate ligament and the meniscofemoral ligaments. Knee Surg Sports Traumatol Arthrosc, 
14, 257-63. 

AMIS, A. A., SENAVONGSE, W. & BULL, A. M. 2006b. Patellofemoral kinematics during 
knee flexion-extension: an in vitro study. Journal of orthopaedic research : official publication 
of the Orthopaedic Research Society, 24, 2201-11. 

ANDERSON, A. E., PETERS, C. L., TUTTLE, B. D. & WEISS, J. A. 2005. Subject-specific 
finite element model of the pelvis: development, validation and sensitivity studies. J Biomech 
Eng, 127, 364-73. 

ANDERSON, F. C. & PANDY, M. G. 2001. Dynamic optimization of human walking. J 
Biomech Eng, 123, 381-90. 

ANDERSSON, L., WESSLAU, A., BODEN, H. & DALEN, N. 2001. Immediate or late weight 
bearing after uncemented total hip arthroplasty: a study of functional recovery. J 
Arthroplasty, 16, 1063-5. 

ANDO, M., IMURA, S., OMORI, H., OKUMURA, Y., BO, A. & BABA, H. 1999. Nonlinear 
three-dimensional finite element analysis of newly designed cementless total hip stems. Artif 
Organs, 23, 339-46. 

ANDRIACCHI, T. P., ANDERSSON, G. B., FERMIER, R. W., STERN, D. & GALANTE, J. O. 
1980. A study of lower-limb mechanics during stair-climbing. The Journal of bone and joint 
surgery. American volume, 62, 749-57. 

ANDRIACCHI, T. P., STANWYCK, T. S. & GALANTE, J. O. 1986. Knee biomechanics and 
total knee replacement. J Arthroplasty, 1, 211-9. 



References 343 

ANSARI, S., NEWMAN, J. H. & ACKROYD, C. E. 1997. St. Georg sledge for medial 
compartment knee replacement. 461 arthroplasties followed for 4 (1-17) years. Acta Orthop 
Scand, 68, 430-4. 

APEL, D. M., TOZZI, J. M. & DORR, L. D. 1991. Clinical comparison of all-polyethylene and 
metal-backed tibial components in total knee arthroplasty. Clin Orthop Relat Res, 243-52. 

ARASTU, M. H., VIJAYARAGHAVAN, J., CHISSELL, H., HULL, J. B., NEWMAN, J. H. & 
ROBINSON, J. R. 2009. Early failure of a mobile-bearing unicompartmental knee 
replacement. Knee Surg Sports Traumatol Arthrosc, 17, 1178-83. 

ARGENSON, J. N., CHEVROL-BENKEDDACHE, Y. & AUBANIAC, J. M. 2002. Modern 
unicompartmental knee arthroplasty with cement: a three to ten-year follow-up study. J Bone 
Joint Surg Am, 84-A, 2235-9. 

ARGENSON, J. N. & PARRATTE, S. 2006. The unicompartmental knee: design and 
technical considerations in minimizing wear. Clin Orthop Relat Res, 452, 137-42. 

ASSOR, M. & AUBANIAC, J. M. 2006. [Influence of rotatory malposition of femoral implant in 
failure of unicompartimental medial knee prosthesis]. Rev Chir Orthop Reparatrice Appar 
Mot, 92, 473-84. 

BALIUNAS, A. J., HURWITZ, D. E., RYALS, A. B., KARRAR, A., CASE, J. P., BLOCK, J. A. 
& ANDRIACCHI, T. P. 2002. Increased knee joint loads during walking are present in 
subjects with knee osteoarthritis. Osteoarthritis Cartilage, 10, 573-9. 

BARÉ, J. V., GILL, H. S., BEARD, D. J. & MURRAY, D. W. 2006. A convex lateral tibial 
plateau for knee replacement. The Knee, 13, 122-126. 

BARKER, D. S., NETHERWAY, D. J., KRISHNAN, J. & HEARN, T. C. 2005. Validation of a 
finite element model of the human metacarpal. Medical engineering & physics, 27, 103-13. 

BARTLEY, R. E., STULBERG, S. D., ROBB, W. J., 3RD & SWEENEY, H. J. 1994. 
Polyethylene wear in unicompartmental knee arthroplasty. Clin Orthop Relat Res, 18-24. 

BASSO, O., JOHNSON, D. P. & AMIS, A. A. 2001. The anatomy of the patellar tendon. 
Knee Surg Sports Traumatol Arthrosc, 9, 2-5. 

BAYRAKTAR, H. H., GUPTA, A., KWON, R. Y., PAPADOPOULOS, P. & KEAVENY, T. M. 
2004a. The modified super-ellipsoid yield criterion for human trabecular bone. J Biomech 
Eng, 126, 677-84. 

BAYRAKTAR, H. H. & KEAVENY, T. M. 2004. Mechanisms of uniformity of yield strains for 
trabecular bone. J Biomech, 37, 1671-8. 

BAYRAKTAR, H. H., MORGAN, E. F., NIEBUR, G. L., MORRIS, G. E., WONG, E. K. & 
KEAVENY, T. M. 2004b. Comparison of the elastic and yield properties of human femoral 
trabecular and cortical bone tissue. J Biomech, 37, 27-35. 

BEAUPRE, G. S., ORR, T. E. & CARTER, D. R. 1990. An approach for time-dependent 
bone modeling and remodeling-application: a preliminary remodeling simulation. J Orthop 
Res, 8, 662-70. 

BECKER, R., JOHN, M. & NEUMANN, W. H. 2004. Clinical outcomes in the revision of 
unicondylar arthoplasties to bicondylar arthroplasties. A matched-pair study. Arch Orthop 
Trauma Surg, 124, 702-7. 

BERCHUCK, M., ANDRIACCHI, T. P., BACH, B. R. & REIDER, B. 1990. Gait adaptations by 
patients who have a deficient anterior cruciate ligament. J Bone Joint Surg Am, 72, 871-7. 

BERGER, R. A., MENEGHINI, R. M., SHEINKOP, M. B., DELLA VALLE, C. J., JACOBS, J. 
J., ROSENBERG, A. G. & GALANTE, J. O. 2004. The progression of patellofemoral 
arthrosis after medial unicompartmental replacement: results at 11 to 15 years. Clin Orthop 
Relat Res, 92-9. 



References 344 

BERGER, R. A., NEDEFF, D. D., BARDEN, R. M., SHEINKOP, M. M., JACOBS, J. J., 
ROSENBERG, A. G. & GALANTE, J. O. 1999. Unicompartmental knee arthroplasty. Clinical 
experience at 6- to 10-year followup. Clin Orthop Relat Res, 50-60. 

BERGMANN, G., GRAICHEN, F., ROHLMANN, A., WESTERHOFF, P., HEINLEIN, B., 
BENDER, A. & EHRIG, R. 2008. Design and calibration of load sensing orthopaedic 
implants. J Biomech Eng, 130, 021009. 

BERMAN, A. T., REID, J. S., YANICKO, D. R., JR., SIH, G. C. & ZIMMERMAN, M. R. 1984. 
Thermally induced bone necrosis in rabbits. Relation to implant failure in humans. Clin 
Orthop Relat Res, 284-92. 

BERT, J. M. 1998. 10-year survivorship of metal-backed, unicompartmental arthroplasty. J 
Arthroplasty, 13, 901-5. 

BESSHO, M., OHNISHI, I., OKAZAKI, H., SATO, W., KOMINAMI, H., MATSUNAGA, S. & 
NAKAMURA, K. 2004. Prediction of the strength and fracture location of the femoral neck by 
CT-based finite-element method: a preliminary study on patients with hip fracture. Journal of 
Orthopaedic Science, 9, 545-550. 

BIEGLER, F. B., REUBEN, J. D., HARRIGAN, T. P., HOU, F. J. & AKIN, J. E. 1995. Effect of 
porous coating and loading conditions on total hip femoral stem stability. J Arthroplasty, 10, 
839-47. 

BITSAKOS, C. 2005. Computer Simulation of Periprosthetic Bone Remodelling after Total 
Hip Arthroplasty. Imperial College London. 

BITSAKOS, C., KERNER, J., FISHER, I. & AMIS, A. A. 2005. The effect of muscle loading 
on the simulation of bone remodelling in the proximal femur. J Biomech, 38, 133-9. 

BOHL, J. R., BOHL, W. R., POSTAK, P. D. & GREENWALD, A. S. 1999. The Coventry 
Award. The effects of shelf life on clinical outcome for gamma sterilized polyethylene tibial 
components. Clin Orthop Relat Res, 28-38. 

BOHM, I. & LANDSIEDL, F. 2000. Revision surgery after failed unicompartmental knee 
arthroplasty: a study of 35 cases. J Arthroplasty, 15, 982-9. 

BOHR, H. H. & LUND, B. 1987. Bone mineral density of the proximal tibia following 
uncemented arthroplasty. The Journal of arthroplasty, 2, 309-12. 

BOURNE, R. B. & FINLAY, J. B. 1986. The influence of tibial component intramedullary 
stems and implant-cortex contact on the strain distribution of the proximal tibia following total 
knee arthroplasty. An in vitro study. Clin Orthop Relat Res, 95-9. 

BRADLEY, J., GOODFELLOW, J. W. & O'CONNOR, J. J. 1987. A radiographic study of 
bearing movement in unicompartmental Oxford knee replacements. J Bone Joint Surg Br, 
69, 598-601. 

BRIEM, K. & SNYDER-MACKLER, L. 2009. Proximal gait adaptations in medial knee OA. J 
Orthop Res, 27, 78-83. 

BRINKMANN, J. R. & PERRY, J. 1985. Rate and range of knee motion during ambulation in 
healthy and arthritic subjects. Phys Ther, 65, 1055-60. 

BROWN, I. W. & RING, P. A. 1985. Osteolytic changes in the upper femoral shaft following 
porous-coated hip replacement. J Bone Joint Surg Br, 67, 218-21. 

BUCKWALTER, J. A., SALTZMAN, C. & BROWN, T. 2004. The Impact of Osteoarthritis: 
Implications for Research. Clinical Orthopaedics and Related Research, 427, S6-S15 
10.1097/01.blo.0000143938.30681.9d. 

BURKE, D. W., GATES, E. I. & HARRIS, W. H. 1984. Centrifugation as a method of 
improving tensile and fatigue properties of acrylic bone cement. J Bone Joint Surg Am, 66, 
1265-73. 



References 345 

BURKE, D. W., O'CONNOR, D. O., ZALENSKI, E. B., JASTY, M. & HARRIS, W. H. 1991. 
Micromotion of cemented and uncemented femoral components. J Bone Joint Surg Br, 73, 
33-7. 

BURR, D. B., MARTIN, R. B., SCHAFFLER, M. B. & RADIN, E. L. 1985. Bone remodeling in 
response to in vivo fatigue microdamage. Journal of Biomechanics, 18, 189-200. 

BURR, D. B., MILGROM, C., FYHRIE, D., FORWOOD, M., NYSKA, M., FINESTONE, A., 
HOSHAW, S., SAIAG, E. & SIMKIN, A. 1996. In vivo measurement of human tibial strains 
during vigorous activity. Bone, 18, 405-10. 

BUTLER, D. L., NOYES, F. R. & GROOD, E. S. 1980. Ligamentous restraints to anterior-
posterior drawer in the human knee. A biomechanical study. J Bone Joint Surg Am, 62, 259-
70. 

CAMERON, H. U. & JUNG, Y. B. 1988. A comparison of unicompartmental knee 
replacement with total knee replacement. Orthop Rev, 17, 983-8. 

CAMERON, H. U., PILLIAR, R. M. & MACNAB, I. 1973. The effect of movement on the 
bonding of porous metal to bone. J Biomed Mater Res, 7, 301-11. 

CARLSSON, L., RÖSTLUND, T., ALBREKTSSON, B. & ALBREKTSSON, T. 1988. Implant 
fixation improved by close fit Cylindrical implant – bone interface studied in rabbits. Acta 
Orthopaedica, 59, 272-275. 

CARTER, D. H., ORR, T. E., FYHRIE, D. & SCHURMAN, D. J. 1987a. Influences of 
Mechanical Stress on Prenatal and Postnatal Skeletal Development. Clinical Orthopaedics 
and Related Research, 219, 237-250. 

CARTER, D. R., CALER, W. E., SPENGLER, D. M. & FRANKEL, V. H. 1981. Fatigue 
behavior of adult cortical bone: the influence of mean strain and strain range. Acta 
orthopaedica Scandinavica, 52, 481-90. 

CARTER, D. R., FYHRIE, D. P. & WHALEN, R. T. 1987b. Trabecular bone density and 
loading history: regulation of connective tissue biology by mechanical energy. J Biomech, 
20, 785-94. 

CARTER, D. R. & HAYES, W. C. 1977. The compressive behavior of bone as a two-phase 
porous structure. J Bone Joint Surg Am, 59, 954-62. 

CARTIER, P., SANOUILLER, J. L. & GRELSAMER, R. P. 1996. Unicompartmental knee 
arthroplasty surgery. 10-year minimum follow-up period. J Arthroplasty, 11, 782-8. 

CHAKRABARTY, G., NEWMAN, J. H. & ACKROYD, C. E. 1998. Revision of 
unicompartmental arthroplasty of the knee. Clinical and technical considerations. J 
Arthroplasty, 13, 191-6. 

CHANG, T.-W., YANG, C.-T., LIU, Y.-L., CHEN, W.-C., LIN, K.-J., LAI, Y.-S., HUANG, C.-H., 
LU, Y.-C. & CHENG, C.-K. 2011. Biomechanical evaluation of proximal tibial behavior 
following unicondylar knee arthroplasty: Modified resected surface with corresponding 
surgical technique. Medical Engineering &amp; Physics, 33, 1175-1182. 

CHAU, R., GULATI, A., PANDIT, H., BEARD, D. J., PRICE, A. J., DODD, C. A., GILL, H. S. 
& MURRAY, D. W. 2009. Tibial component overhang following unicompartmental knee 
replacement--does it matter? Knee, 16, 310-3. 

CHONG, D. Y., HANSEN, U. N. & AMIS, A. A. 2010. Analysis of bone-prosthesis interface 
micromotion for cementless tibial prosthesis fixation and the influence of loading conditions. 
J Biomech, 43, 1074-80. 

CHONG, D. Y. R. 2009. Biomechanical Analysis of Fixation and Bone Remodelling of Total 
Knee Replacement. PhD, Imperial College London. 



References 346 

CHONG, D. Y. R., HANSEN, U. N., VAN DER VENNE, R., VERDONSCHOT, N. & AMIS, A. 
A. 2011. The influence of tibial component fixation techniques on resorption of supporting 
bone stock after total knee replacement. Journal of Biomechanics, 44, 948-954. 

CIARELLI, M. J., GOLDSTEIN, S. A., KUHN, J. L., CODY, D. D. & BROWN, M. B. 1991. 
Evaluation of orthogonal mechanical properties and density of human trabecular bone from 
the major metaphyseal regions with materials testing and computed tomography. J Orthop 
Res, 9, 674-82. 

CLAES, L. E. & HEIGELE, C. A. 1999. Magnitudes of local stress and strain along bony 
surfaces predict the course and type of fracture healing. Journal of Biomechanics, 32, 255-
266. 

CLARIUS, M., ALDINGER, P. R., BRUCKNER, T. & SEEGER, J. B. 2009a. Saw cuts in 
unicompartmental knee arthroplasty: an analysis of Sawbone preparations. Knee, 16, 314-6. 

CLARIUS, M., HAAS, D., ALDINGER, P. R., JAEGER, S., JAKUBOWITZ, E. & SEEGER, J. 
B. 2009b. Periprosthetic tibial fractures in unicompartmental knee arthroplasty as a function 
of extended sagittal saw cuts: An experimental study. Knee. 

CLARIUS, M., MOHR, G., JAEGER, S., SEEGER, J. B. & BITSCH, R. G. 2010. Femoral 
fixation pattern in cemented Oxford unicompartmental knee arthroplasty — An experimental 
cadaver study. The Knee, 17, 398-402. 

COBB, J. P., DIXON, H., DANDACHLI, W. & IRANPOUR, F. 2008. The anatomical tibial 
axis: reliable rotational orientation in knee replacement. J Bone Joint Surg Br, 90, 1032-8. 

CODY, D. D., GROSS, G. J., HOU, F. J., SPENCER, H. J., GOLDSTEIN, S. A. & FYHRIE, 
D. P. 1999. Femoral strength is better predicted by finite element models than QCT and 
DXA. Journal of Biomechanics, 32, 1013-20. 

COHEN, B. & RUSHTON, N. 1995. Accuracy of DEXA measurement of bone mineral 
density after total hip arthroplasty. The Journal of bone and joint surgery. British volume, 77, 
479-83. 

COHEN, Z. A., ROGLIC, H., GRELSAMER, R. P., HENRY, J. H., LEVINE, W. N., MOW, V. 
C. & ATESHIAN, G. A. 2001. Patellofemoral stresses during open and closed kinetic chain 
exercises. An analysis using computer simulation. Am J Sports Med, 29, 480-7. 

COSTIGAN, P. A., DELUZIO, K. J. & WYSS, U. P. 2002. Knee and hip kinetics during 
normal stair climbing. Gait Posture, 16, 31-7. 

COURTNEY, A. C., HAYES, W. C. & GIBSON, L. J. 1996. Age-related differences in post-
yield damage in human cortical bone. Experiment and model. Journal of Biomechanics, 29, 
1463-71. 

COWIN, S. 1984. Mechanical modeling of the stress adaptation process in bone. Calcified 
Tissue International, 36, S98-S103. 

COWIN, S. C. 1993. Bone stress adaptation models. J Biomech Eng, 115, 528-33. 

COWIN, S. C. & FIROOZBAKHSH, K. 1981. Bone remodeling of diaphysial surfaces under 
constant load: Theoretical predictions. Journal of Biomechanics, 14, 471-484. 

COWIN, S. C. & HEGEDUS, D. H. 1976. Bone remodeling I: theory of adaptive elasticity. 
Journal of Elasticity, 6, 313-326. 

COWIN, S. C. & NACHLINGER, R. R. 1978. Bone remodeling III: uniqueness and stability in 
adaptive elasticity theory. Journal of Elasticity, 8, 285-295. 

COWIN, S. C. & VAN BUSKIRK, W. C. 1978. Internal bone remodeling induced by a 
medullary pin. Journal of Biomechanics, 11, 269-275. 



References 347 

COWIN, S. C., WEINBAUM, S. & ZENG, Y. 1995. A case for bone canaliculi as the 
anatomical site of strain generated potentials. Journal of Biomechanics, 28, 1281-1297. 

CRISTOFOLINI, L., AFFATATO, S., ERANI, P., LEARDINI, W., TIGANI, D. & VICECONTI, 
M. 2008. Long-term implant-bone fixation of the femoral component in total knee 
replacement. Proc Inst Mech Eng H, 222, 319-31. 

CRISTOFOLINI, L., MCNAMARA, B. P., FREDDI, A. & VICECONTI, M. 1997. In vitro 
measured strains in the loaded femur: quantification of experimental error. The Journal of 
Strain Analysis for Engineering Design, 32, 193-200. 

CRISTOFOLINI, L., VARINI, E. & VICECONTI, M. 2007. In-vitro method for assessing 
femoral implant-bone micromotions in resurfacing hip implants under different loading 
conditions. Proc Inst Mech Eng H, 221, 943-50. 

CRISTOFOLINI, L., VICECONTI, M., CAPPELLO, A. & TONI, A. 1996. Mechanical 
validation of whole bone composite femur models. Journal of Biomechanics, 29, 525-35. 

CURREY, J. D. 1975. The effects of strain rate, reconstruction and mineral content on some 
mechanical properties of bovine bone. Journal of Biomechanics, 8, 81-6. 

CURREY, J. D. 1988. Strain rate and mineral content in fracture models of bone. J Orthop 
Res, 6, 32-8. 

D'LIMA, D. D., PATIL, S., STEKLOV, N., CHIEN, S. & COLWELL, C. W., JR. 2007. In vivo 
knee moments and shear after total knee arthroplasty. J Biomech, 40 Suppl 1, S11-7. 

D'LIMA, D. D., PATIL, S., STEKLOV, N., SLAMIN, J. E. & COLWELL, C. W., JR. 2005. The 
Chitranjan Ranawat Award: in vivo knee forces after total knee arthroplasty. Clin Orthop 
Relat Res, 440, 45-9. 

D'LIMA, D. D., PATIL, S., STEKLOV, N., SLAMIN, J. E. & COLWELL, C. W., JR. 2006. 
Tibial forces measured in vivo after total knee arthroplasty. J Arthroplasty, 21, 255-62. 

DABIRRAHMANI, D., SAMUELS, L., HOGG, M., ROONEY, J., APPLEYARD, R. & GILLIES, 
R. M. 2008. RE: Adaptive Bone Remodelling Following Unicompartmental Knee Arthroplasty. 

DALSTRA, M. & HUISKES, R. 1995. Load transfer across the pelvic bone. J Biomech, 28, 
715-24. 

DALSTRA, M., HUISKES, R. & VAN ERNING, L. 1995. Development and validation of a 
three-dimensional finite element model of the pelvic bone. Journal of Biomechanical 
Engineering, 117, 272-8. 

DAVIES, J. P., BURKE, D. W., O'CONNOR, D. O. & HARRIS, W. H. 1987. Comparison of 
the fatigue characteristics of centrifuged and uncentrifuged Simplex P bone cement. J 
Orthop Res, 5, 366-71. 

DESHMUKH, R. V. & SCOTT, R. D. 2002. Unicompartmental Knee Arthroplasty for Younger 
Patients: An Alternative View. Clinical Orthopaedics and Related Research, 404, 108-112. 

DOBLARÉ, M. & GARCÍA, J. M. 2001. Application of an anisotropic bone-remodelling model 
based on a damage-repair theory to the analysis of the proximal femur before and after total 
hip replacement. Journal of Biomechanics, 34, 1157-1170. 

DONAHUE, S. W., SHARKEY, N. A., MODANLOU, K. A., SEQUEIRA, L. N. & MARTIN, R. 
B. 2000. Bone strain and microcracks at stress fracture sites in human metatarsals. Bone, 
27, 827-833. 

DUNCAN, R. & MISLER, S. 1989. Voltage-activated and stretch-activated Ba2+ conducting 
channels in an osteoblast-like cell line (UMR 106). FEBS Letters, 251, 17-21. 



References 348 

EDWARDS, A., BULL, A. M. & AMIS, A. A. 2007a. The attachments of the anteromedial and 
posterolateral fibre bundles of the anterior cruciate ligament: Part 1: tibial attachment. Knee 
Surg Sports Traumatol Arthrosc, 15, 1414-21. 

EDWARDS, A., BULL, A. M. & AMIS, A. A. 2007b. The attachments of the fiber bundles of 
the posterior cruciate ligament: an anatomic study. Arthroscopy, 23, 284-90. 

EDWARDS, A., BULL, A. M. & AMIS, A. A. 2008. The attachments of the anteromedial and 
posterolateral fibre bundles of the anterior cruciate ligament. Part 2: femoral attachment. 
Knee Surg Sports Traumatol Arthrosc, 16, 29-36. 

ELIAS, S. G., FREEMAN, M. A. & GOKCAY, E. I. 1990. A correlative study of the geometry 
and anatomy of the distal femur. Clinical orthopaedics and related research, 98-103. 

EMERSON, R. H., JR. 2007. Preoperative and postoperative limb alignment after Oxford 
unicompartmental knee arthroplasty. Orthopedics, 30, 32-4. 

EMERSON, R. H., JR., HANSBOROUGH, T., REITMAN, R. D., ROSENFELDT, W. & 
HIGGINS, L. L. 2002. Comparison of a mobile with a fixed-bearing unicompartmental knee 
implant. Clin Orthop Relat Res, 62-70. 

EMERSON, R. H., JR. & HIGGINS, L. L. 2008. Unicompartmental knee arthroplasty with the 
oxford prosthesis in patients with medial compartment arthritis. J Bone Joint Surg Am, 90, 
118-22. 

ENGH, C. A., BOBYN, J. D. & GLASSMAN, A. H. 1987. Porous-coated hip replacement. 
The factors governing bone ingrowth, stress shielding, and clinical results. J Bone Joint Surg 
Br, 69, 45-55. 

ENGH, C. A., MCGOVERN, T. F., BOBYN, J. D. & HARRIS, W. H. 1992a. A quantitative 
evaluation of periprosthetic bone-remodeling after cementless total hip arthroplasty. The 
Journal of bone and joint surgery. American volume, 74, 1009-20. 

ENGH, C. A., O'CONNOR, D., JASTY, M., MCGOVERN, T., BOBYN, J. D. & HARRIS, W. 
H. Year. Quantification of implant micromotion, strain shielding, and bone resorption with 
porous-coated anatomic medullary locking femoral prostheses. In:  Clinical Orthopaedics 
and Related Research, 1992b. 13-29. 

ENGH, G. A., DWYER, K. A. & HANES, C. K. 1992c. Polyethylene wear of metal-backed 
tibial components in total and unicompartmental knee prostheses. J Bone Joint Surg Br, 74, 
9-17. 

EPINETTE, J. A. & MANLEY, M. T. 2008. Is hydroxyapatite a reliable fixation option in 
unicompartmental knee arthroplasty? A 5- to 13-year experience with the hydroxyapatite-
coated unix prosthesis. J Knee Surg, 21, 299-306. 

ERHART, J. C., MUNDERMANN, A., ELSPAS, B., GIORI, N. J. & ANDRIACCHI, T. P. 2010. 
Changes in knee adduction moment, pain, and functionality with a variable-stiffness walking 
shoe after 6 months. J Orthop Res, 28, 873-9. 

ERIKSSON, R. A. & ALBREKTSSON, T. 1984. The effect of heat on bone regeneration: an 
experimental study in the rabbit using the bone growth chamber. J Oral Maxillofac Surg, 42, 
705-11. 

FAULKNER, K. G. & MCCLUNG, M. R. 1995. Quality control of DXA instruments in 
multicenter trials. Osteoporosis International, 5, 218-227. 

FAZZALARI, N. L., FORWOOD, M. R., MANTHEY, B. A., SMITH, K. & KOLESIK, P. 1998. 
Three-dimensional confocal images of microdamage in cancellous bone. Bone, 23, 373-378. 

FISHER, D. A., WATTS, M. & DAVIS, K. E. 2003. Implant position in knee surgery: a 
comparison of minimally invasive, open unicompartmental, and total knee arthroplasty. J 
Arthroplasty, 18, 2-8. 



References 349 

FITZ, W. 2009. Unicompartmental knee arthroplasty with use of novel patient-specific 
resurfacing implants and personalized jigs. J Bone Joint Surg Am, 91 Suppl 1, 69-76. 

FITZPATRICK, C., FITZPATRICK, D., LEE, J. & AUGER, D. 2007. Statistical design of 
unicompartmental tibial implants and comparison with current devices. Knee, 14, 138-44. 

FLEMING, D., ELLIOT, A. J., MILES, J., BARLEY, M. A. & GRANT, S. G. 2006. Annual 
Prevalence Report. Royal College of General Practioners - Birmingham Research Unit. 

FRANCHI, M., FINI, M., MARTINI, D., ORSINI, E., LEONARDI, L., RUGGERI, A., 
GIAVARESI, G. & OTTANI, V. 2005. Biological fixation of endosseous implants. Micron, 36, 
665-71. 

FREEMAN, M. A. & PINSKEROVA, V. 2003. The movement of the knee studied by 
magnetic resonance imaging. Clinical orthopaedics and related research, 35-43. 

FREGLY, B. J., BANKS, S. A., D'LIMA, D. D. & COLWELL, C. W., JR. 2008. Sensitivity of 
knee replacement contact calculations to kinematic measurement errors. J Orthop Res, 26, 
1173-9. 

FROIMSON, M. I., BLOOMFIELD, M. R. & SHERMAN, R. A. 2009. Revision of the Failed 
Unicompartmental Knee Arthroplasty. Seminars in Arthroplasty, 20, 23-28. 

FROLKE, J. P. & REELING BROUWER, G. C. 2004. Friction burns within the tibia during 
reaming. J Bone Joint Surg Br, 86, 149; author reply 149-50. 

FROST, H. 1988. Vital biomechanics: Proposed general concepts for skeletal adaptations to 
mechanical usage. Calcified Tissue International, 42, 145-156. 

FROST, H. M. 2001. From Wolff's law to the Utah paradigm: Insights about bone physiology 
and its clinical applications. The Anatomical Record, 262, 398-419. 

FUKUBAYASHI, T. & KUROSAWA, H. 1980. The contact area and pressure distribution 
pattern of the knee. A study of normal and osteoarthrotic knee joints. Acta Orthop Scand, 51, 
871-9. 

FURNES, O., ESPEHAUG, B., LIE, S. A., VOLLSET, S. E., ENGESAETER, L. B. & 
HAVELIN, L. I. 2007. Failure mechanisms after unicompartmental and tricompartmental 
primary knee replacement with cement. J Bone Joint Surg Am, 89, 519-25. 

FYHRIE, D. P. & CARTER, D. R. 1986. A unifying principle relating stress to trabecular bone 
morphology. J Orthop Res, 4, 304-17. 

GIANNOUDIS, P. V., SNOWDEN, S., MATTHEWS, S. J., SMYE, S. W. & SMITH, R. M. 
2002. Friction burns within the tibia during reaming. Are they affected by the use of a 
tourniquet? J Bone Joint Surg Br, 84, 492-6. 

GIBSON, L. J. 1985. The mechanical behaviour of cancellous bone. Journal of 
Biomechanics, 18, 317-28. 

GIBSON, L. J. & ASHBY, M. F. 1982. The Mechanics of Three-Dimensional Cellular 
Materials. Proceedings of the Royal Society of London. Series A, Mathematical and Physical 
Sciences, 382, 43-59. 

GILL, H. S. & O'CONNOR, J. J. 1996. Biarticulating two-dimensional computer model of the 
human patellofemoral joint. Clin Biomech (Bristol, Avon), 11, 81-89. 

GILLIES, R. M., HOGG, M. C., KOHAN, L. & CORDINGLEY, R. L. 2007. Adaptive bone 
remodelling of all polyethylene unicompartmental tibial bearings. ANZ J Surg, 77, 69-72. 

GIOE, T. J., KILLEEN, K. K., HOEFFEL, D. P., BERT, J. M., COMFORT, T. K., 
SCHELTEMA, K., MEHLE, S. & GRIMM, K. 2003. Analysis of unicompartmental knee 
arthroplasty in a community-based implant registry. Clin Orthop Relat Res, 111-9. 



References 350 

GLEESON, R. E., EVANS, R., ACKROYD, C. E., WEBB, J. & NEWMAN, J. H. 2004. Fixed 
or mobile bearing unicompartmental knee replacement? A comparative cohort study. Knee, 
11, 379-84. 

GOLDSTEIN, S. A., WILSON, D. L., SONSTEGARD, D. A. & MATTHEWS, L. S. 1983. The 
mechanical properties of human tibial trabecular bone as a function of metaphyseal location. 
J Biomech, 16, 965-9. 

GOODFELLOW, J. 2006. Unicompartmental Arthroplasty with the Oxford Knee, Oxford 
University Press. 

GOODFELLOW, J., HUNGERFORD, D. S. & WOODS, C. 1976a. Patello-femoral joint 
mechanics and pathology. 2. Chondromalacia patellae. J Bone Joint Surg Br, 58, 291-9. 

GOODFELLOW, J., HUNGERFORD, D. S. & ZINDEL, M. 1976b. Patello-femoral joint 
mechanics and pathology. 1. Functional anatomy of the patello-femoral joint. J Bone Joint 
Surg Br, 58, 287-90. 

GOODFELLOW, J. & O'CONNOR, J. 1978. The mechanics of the knee and prosthesis 
design. J Bone Joint Surg Br, 60-B, 358-69. 

GOODFELLOW, J. W., O'CONNOR, J. J. & MURRAY, D. W. 2010. A critique of revision 
rate as an outcome measure: RE-INTERPRETATION OF KNEE JOINT REGISTRY DATA. J 
Bone Joint Surg Br, 92-B, 1628-1631. 

GOODFELLOW, J. W., TIBREWAL, S. B., SHERMAN, K. P. & O'CONNOR, J. J. 1987. 
Unicompartmental Oxford Meniscal knee arthroplasty. J Arthroplasty, 2, 1-9. 

GOTZE, C., STEENS, W., VIETH, V., POREMBA, C., CLAES, L. & STEINBECK, J. 2002. 
Primary stability in cementless femoral stems: custom-made versus conventional femoral 
prosthesis. Clin Biomech (Bristol, Avon), 17, 267-73. 

GOUDAKOS, I. G., KONIG, C., SCHOTTLE, P. B., TAYLOR, W. R., SINGH, N. B., 
ROBERTS, I., STREITPARTH, F., DUDA, G. N. & HELLER, M. O. 2009. Stair climbing 
results in more challenging patellofemoral contact mechanics and kinematics than walking at 
early knee flexion under physiological-like quadriceps loading. J Biomech, 42, 2590-6. 

GRAY, H. A., TADDEI, F., ZAVATSKY, A. B., CRISTOFOLINI, L. & GILL, H. S. 2008. 
Experimental validation of a finite element model of a human cadaveric tibia. J Biomech Eng, 
130, 031016. 

GRAY, H. A., ZAVATSKY, A. B. & GILL, H. S. 2010. The sclerotic line: Why it appears under 
knee replacements (a study based on the Oxford Knee). Clinical biomechanics (Bristol, 
Avon), 25, 242-247. 

GRIFFIN, T., ROWDEN, N., MORGAN, D., ATKINSON, R., WOODRUFF, P. & MADDERN, 
G. 2007. Unicompartmental knee arthroplasty for the treatment of unicompartmental 
osteoarthritis: a systematic study. ANZ J Surg, 77, 214-21. 

GULATI, A., CHAU, R., PANDIT, H. G., GRAY, H., PRICE, A. J., DODD, C. A. & MURRAY, 
D. W. 2009a. The incidence of physiological radiolucency following Oxford unicompartmental 
knee replacement and its relationship to outcome. J Bone Joint Surg Br, 91, 896-902. 

GULATI, A., PANDIT, H., JENKINS, C., CHAU, R., DODD, C. A. & MURRAY, D. W. 2009b. 
The effect of leg alignment on the outcome of unicompartmental knee replacement. J Bone 
Joint Surg Br, 91, 469-74. 

GUPTA, S., VAN DER HELM, F. C., STERK, J. C., VAN KEULEN, F. & KAPTEIN, B. L. 
2004. Development and experimental validation of a three-dimensional finite element model 
of the human scapula. Proc Inst Mech Eng H, 218, 127-42. 



References 351 

HANSEN, U., ZIOUPOS, P., SIMPSON, R., CURREY, J. D. & HYND, D. 2008. The effect of 
strain rate on the mechanical properties of human cortical bone. Journal of Biomechanical 
Engineering, 130, 011011. 

HARRIGAN, T. P. & HAMILTON, J. J. 1992. An analytical and numerical study of the 
stability of bone remodelling theories: Dependence on microstructural stimulus. Journal of 
Biomechanics, 25, 477-488. 

HARRIGAN, T. P. & HAMILTON, J. J. 1993. Bone strain sensation via transmembrane 
potential changes in surface osteoblasts: Loading rate and microstructural implications. 
Journal of Biomechanics, 26, 183-200. 

HARRIGAN, T. P. & HARRIS, W. H. 1991. A three-dimensional non-linear finite element 
study of the effect of cement-prosthesis debonding in cemented femoral total hip 
components. J Biomech, 24, 1047-58. 

HARRINGTON, I. J. 1976. A bioengineering analysis of force actions at the knee in normal 
and pathological gait. Biomed Eng, 11, 167-72. 

HARRINGTON, I. J. 1983. Static and dynamic loading patterns in knee joints with 
deformities. J Bone Joint Surg Am, 65, 247-59. 

HART, R. T., DAVY, D. T. & HEIPLE, K. G. 1984. Mathematical modeling and numerical 
solutions for functionally dependent bone remodeling. Calcified tissue international, 36 Suppl 
1, S104-9. 

HASEGAWA, Y., OOISHI, Y., SHIMIZU, T., SUGIURA, H., TAKAHASHI, S., ITO, H. & 
IWATA, H. 1998. Unicompartmental knee arthroplasty for medial gonarthrosis: 5 to 9 years 
follow-up evaluation of 77 knees. Arch Orthop Trauma Surg, 117, 183-7. 

HASHEMI, J., CHANDRASHEKAR, N., GILL, B., BEYNNON, B. D., SLAUTERBECK, J. R., 
SCHUTT, R. C., JR., MANSOURI, H. & DABEZIES, E. 2008. The geometry of the tibial 
plateau and its influence on the biomechanics of the tibiofemoral joint. J Bone Joint Surg 
Am, 90, 2724-34. 

HECK, D. A., MARMOR, L., GIBSON, A. & ROUGRAFF, B. T. 1993. Unicompartmental 
knee arthroplasty. A multicenter investigation with long-term follow-up evaluation. Clin 
Orthop Relat Res, 154-9. 

HEGEDUS, D. H. & COWIN, S. C. 1976. Bone remodeling II: small strain adaptive elasticity. 
Journal of Elasticity, 6, 337-352. 

HELGASON, B., PERILLI, E., SCHILEO, E., TADDEI, F., BRYNJOLFSSON, S. & 
VICECONTI, M. 2008. Mathematical relationships between bone density and mechanical 
properties: a literature review. Clin Biomech (Bristol, Avon), 23, 135-46. 

HELMICK, C. G., FELSON, D. T., LAWRENCE, R. C., GABRIEL, S., HIRSCH, R., KWOH, 
C. K., LIANG, M. H., KREMERS, H. M., MAYES, M. D., MERKEL, P. A., PILLEMER, S. R., 
REVEILLE, J. D., STONE, J. H. & NATIONAL ARTHRITIS DATA, W. 2008. Estimates of the 
prevalence of arthritis and other rheumatic conditions in the United States: Part I. Arthritis & 
Rheumatism, 58, 15-25. 

HERNIGOU, P. & DESCHAMPS, G. 2004. Posterior slope of the tibial implant and the 
outcome of unicompartmental knee arthroplasty. J Bone Joint Surg Am, 86-A, 506-11. 

HERNIGOU, P., POIGNARD, A., FILIPPINI, P. & ZILBER, S. 2008. Retrieved 
Unicompartmental Implants with Full PE Tibial Components: The Effects of Knee Alignment 
and Polyethylene Thickness on Creep and Wear. The open orthopaedics journal, 2, 51-6. 

HERRERA, A., PANISELLO, J. J., IBARZ, E., CEGOÑINO, J., PUÉRTOLAS, J. A. & 
GRACIA, L. 2007. Long-term study of bone remodelling after femoral stem: A comparison 
between dexa and finite element simulation. Journal of Biomechanics, 40, 3615-3625. 



References 352 

HEYSE, T. & TIBESKU, C. 2010. Lateral unicompartmental knee arthroplasty: a review. 
Archives of Orthopaedic and Trauma Surgery, 130, 1539-1548. 

HILL, P. F., VEDI, V., WILLIAMS, A., IWAKI, H., PINSKEROVA, V. & FREEMAN, M. A. 
2000. Tibiofemoral movement 2: the loaded and unloaded living knee studied by MRI. The 
Journal of bone and joint surgery. British volume, 82, 1196-8. 

HOPKINS, A. R., NEW, A. M., RODRIGUEZ, Y. B. F. & TAYLOR, M. 2009. Finite element 
analysis of unicompartmental knee arthroplasty. Med Eng Phys. 

HUANG, C. H., HO, F. Y., MA, H. M., YANG, C. T., LIAU, J. J., KAO, H. C., YOUNG, T. H. & 
CHENG, C. K. 2002. Particle size and morphology of UHMWPE wear debris in failed total 
knee arthroplasties--a comparison between mobile bearing and fixed bearing knees. J 
Orthop Res, 20, 1038-41. 

HUBERTI, H. H. & HAYES, W. C. 1984. Patellofemoral contact pressures. The influence of 
q-angle and tendofemoral contact. J Bone Joint Surg Am, 66, 715-24. 

HUISKES, A. H. & STOLK, J. 2005. Biomechanics and Preclinical testing of Artificial Joints: 
The Hip. In: MOW, C. S. & HUISKES, A. H. (eds.) Basic Orthopaedic Biomechanics And 
Mechano-Biology. 3 ed.: Lippincott Williams and Wilkins. 

HUISKES, R. & RIETBERGEN, B. V. 1995. Preclinical Testing of Total Hip Stems: The 
Effects of Coating Placement. Clinical Orthopaedics and Related Research, 319, 64-76. 

HUISKES, R., WEINANS, H., GROOTENBOER, H. J., DALSTRA, M., FUDALA, B. & 
SLOOFF, T. J. 1987. Adaptive bone-remodeling theory applied to prosthetic-design analysis. 
J Biomech, 20, 1135-50. 

HUNGERFORD, D. S. & KENNA, R. V. 1983. Preliminary experience with a total knee 
prosthesis with porous coating used without cement. Clin Orthop Relat Res, 95-107. 

HURWITZ, D. E., SUMNER, D. R., ANDRIACCHI, T. P. & SUGAR, D. A. 1998. Dynamic 
knee loads during gait predict proximal tibial bone distribution. J Biomech, 31, 423-30. 

HVID, I., BENTZEN, S. M. & JORGENSEN, J. 1986. Remodeling of trabecular bone at the 
proximal tibia after total knee replacement. A CT-scan study. Eng Med, 15, 89-93. 

HVID, I., BENTZEN, S. M. & JORGENSEN, J. 1988. Remodeling of the tibial plateau after 
knee replacement. CT bone densitometry. Acta orthopaedica Scandinavica, 59, 567-73. 

HVID, I., BENTZEN, S. M., LINDE, F., MOSEKILDE, L. & PONGSOIPETCH, B. 1989. X-ray 
quantitative computed tomography: the relations to physical properties of proximal tibial 
trabecular bone specimens. J Biomech, 22, 837-44. 

HVID, I. & NIELSEN, S. 1984. Total condylar knee arthroplasty. Prosthetic component 
positioning and radiolucent lines. Acta Orthop Scand, 55, 160-5. 

HYLDAHL, H., REGNER, L., CARLSSON, L., KARRHOLM, J. & WEIDENHIELM, L. 2005. 
All-polyethylene vs. metal-backed tibial component in total knee arthroplasty-a randomized 
RSA study comparing early fixation of horizontally and completely cemented tibial 
components: part 2. Completely cemented components: MB not superior to AP components. 
Acta Orthop, 76, 778-84. 

HYLDAHL, H. C., REGNER, L., CARLSSON, L., KARRHOLM, J. & WEIDENHIELM, L. 
2001. Does metal backing improve fixation of tibial component in unicondylar knee 
arthroplasty? A randomized radiostereometric analysis. J Arthroplasty, 16, 174-9. 

IMAI, K., OHNISHI, I., BESSHO, M. & NAKAMURA, K. 2006. Nonlinear finite element model 
predicts vertebral bone strength and fracture site. Spine (Phila Pa 1976), 31, 1789-94. 

INMAN, V. T., ROLSTON, H.J., TODD, F. 1981. Human Walking, Baltimore, Williams & 
Wilkins Co. 



References 353 

INSALL, J. & AGLIETTI, P. 1980. A five to seven-year follow-up of unicondylar arthroplasty. 
J Bone Joint Surg Am, 62, 1329-37. 

JASTY, M., BRAGDON, C., BURKE, D., O'CONNOR, D., LOWENSTEIN, J. & HARRIS, W. 
H. 1997a. In vivo skeletal responses to porous-surfaced implants subjected to small induced 
motions. J Bone Joint Surg Am, 79, 707-14. 

JASTY, M., BRAGDON, C. R., ZALENSKI, E., O'CONNOR, D., PAGE, A. & HARRIS, W. H. 
1997b. Enhanced stability of uncemented canine femoral components by bone ingrowth into 
the porous coatings. J Arthroplasty, 12, 106-13. 

JASTY, M., MALONEY, W. J., BRAGDON, C. R., O'CONNOR, D. O., HAIRE, T. & HARRIS, 
W. H. 1991. The initiation of failure in cemented femoral components of hip arthroplasties. J 
Bone Joint Surg Br, 73, 551-8. 

JAWORSKI, Z., LISKOVA-KIAR, M. & UHTHOFF, H. 1980. Effect of long-term 
immobilisation on the pattern of bone loss in older dogs. J Bone Joint Surg Br, 62-B, 104-
110. 

JOHAL, P., WILLIAMS, A., WRAGG, P., HUNT, D. & GEDROYC, W. 2005. Tibio-femoral 
movement in the living knee. A study of weight bearing and non-weight bearing knee 
kinematics using 'interventional' MRI. Journal of Biomechanics, 38, 269-76. 

JOHNSON, F., LEITL, S. & WAUGH, W. 1980. The distribution of load across the knee. A 
comparison of static and dynamic measurements. J Bone Joint Surg Br, 62, 346-9. 

KAISER, A. D. & WHITESIDE, L. A. 1990. The effect of screws and pegs on the initial 
fixation stability of an uncemented unicondylar knee replacement. Clin Orthop Relat Res, 
169-78. 

KALRA, S., SMITH, T. O., BERKO, B. & WALTON, N. P. 2011. Assessment of radiolucent 
lines around the Oxford unicompartmental knee replacement: sensitivity and specificity for 
loosening. J Bone Joint Surg Br, 93, 777-81. 

KANEKO, T. S., BELL, J. S., PEJCIC, M. R., TEHRANZADEH, J. & KEYAK, J. H. 2004. 
Mechanical properties, density and quantitative CT scan data of trabecular bone with and 
without metastases. Journal of Biomechanics, 37, 523-530. 

KASODEKAR, V. B., YEO, S. J. & OTHMAN, S. 2006. Clinical outcome of unicompartmental 
knee arthroplasty and influence of alignment on prosthesis survival rate. Singapore Med J, 
47, 796-802. 

KEAVENY, T. M. & BARTEL, D. L. 1993. Effects of porous coating, with and without collar 
support, on early relative motion for a cementless hip prosthesis. J Biomech, 26, 1355-68. 

KEAVENY, T. M. & HAYES, W. C. 1993. A 20-year perspective on the mechanical 
properties of trabecular bone. J Biomech Eng, 115, 534-42. 

KEAVENY, T. M., MORGAN, E. F. & YEH, O. C. 2003. Bone Mechanics. In: KUTZ, M. (ed.) 
Standard handbook of biomedical engineering and design 

1ed. New York: McGraw-Hill. 

KEAVENY, T. M., PINILLA, T. P., CRAWFORD, R. P., KOPPERDAHL, D. L. & LOU, A. 
1997. Systematic and random errors in compression testing of trabecular bone. J Orthop 
Res, 15, 101-10. 

KEAVENY, T. M. & YEH, O. C. 2002. Architecture and trabecular bone - toward an improved 
understanding of the biomechanical effects of age, sex and osteoporosis. J Musculoskelet 
Neuronal Interact, 2, 205-8. 

KEENE, G., SIMPSON, D. & KALAIRAJAH, Y. 2006. Limb alignment in computer-assisted 
minimally-invasive unicompartmental knee replacement. J Bone Joint Surg Br, 88, 44-8. 



References 354 

KENNEDY, W. R. & WHITE, R. P. 1987. Unicompartmental arthroplasty of the knee. 
Postoperative alignment and its influence on overall results. Clin Orthop Relat Res, 278-85. 

KERNER, J., HUISKES, R., VAN LENTHE, G. H., WEINANS, H., VAN RIETBERGEN, B., 
ENGH, C. A. & AMIS, A. A. 1999. Correlation between pre-operative periprosthetic bone 
density and post-operative bone loss in THA can be explained by strain-adaptive 
remodelling. J Biomech, 32, 695-703. 

KEYAK, J. H., FOURKAS, M. G., MEAGHER, J. M. & SKINNER, H. B. 1993. Validation of 
an automated method of three-dimensional finite element modelling of bone. J Biomed Eng, 
15, 505-9. 

KEYAK, J. H., KANEKO, T. S., TEHRANZADEH, J. & SKINNER, H. B. 2005. Predicting 
proximal femoral strength using structural engineering models. Clinical orthopaedics and 
related research, 219-28. 

KEYAK, J. H., LEE, I. Y. & SKINNER, H. B. 1994. Correlations between orthogonal 
mechanical properties and density of trabecular bone: use of different densitometric 
measures. J Biomed Mater Res, 28, 1329-36. 

KEYAK, J. H., ROSSI, S. A., JONES, K. A. & SKINNER, H. B. 1998. Prediction of femoral 
fracture load using automated finite element modeling. Journal of Biomechanics, 31, 125-33. 

KEYS, G. W., UL-ABIDDIN, Z. & TOH, E. M. 2004. Analysis of first forty Oxford medial 
unicompartmental knee replacement from a small district hospital in UK. Knee, 11, 375-7. 

KHODADADYAN-KLOSTERMANN, C., VON SEEBACH, M., TAYLOR, W. R., DUDA, G. N. 
& HAAS, N. P. 2004. Distribution of bone mineral density with age and gender in the 
proximal tibia. Clin Biomech (Bristol, Avon), 19, 370-6. 

KIRATLI, B. J., HEINER, J. P., MCBEATH, A. A. & WILSON, M. A. 1992. Determination of 
bone mineral density by dual x-ray absorptiometry in patients with uncemented total hip 
arthroplasty. Journal of orthopaedic research : official publication of the Orthopaedic 
Research Society, 10, 836-44. 

KNUTSON, K., LINDSTRAND, A. & LIDGREN, L. 1986. Survival of knee arthroplasties. A 
nation-wide multicentre investigation of 8000 cases. J Bone Joint Surg Br, 68, 795-803. 

KOSKINEN, E., ESKELINEN, A., PAAVOLAINEN, P., PULKKINEN, P. & REMES, V. 2008. 
Comparison of survival and cost-effectiveness between unicondylar arthroplasty and total 
knee arthroplasty in patients with primary osteoarthritis: a follow-up study of 50,493 knee 
replacements from the Finnish Arthroplasty Register. Acta Orthop, 79, 499-507. 

KOSKINEN, E., PAAVOLAINEN, P., ESKELINEN, A., PULKKINEN, P. & REMES, V. 2007. 
Unicondylar knee replacement for primary osteoarthritis: a prospective follow-up study of 
1,819 patients from the Finnish Arthroplasty Register. Acta Orthop, 78, 128-35. 

KOWALK, D. L., DUNCAN, J. A. & VAUGHAN, C. L. 1996. Abduction-adduction moments at 
the knee during stair ascent and descent. J Biomech, 29, 383-8. 

KOZINN, S. C. & SCOTT, R. 1989. Unicondylar knee arthroplasty. J Bone Joint Surg Am, 
71, 145-50. 

KUIPER, J. H. & HUISKES, R. 1996. Friction and stem stiffness affect dynamic interface 
motion in total hip replacement. J Orthop Res, 14, 36-43. 

KUMAR, A., CHAMBERS, I. & WONG, P. 2008. Periprosthetic fracture of the proximal tibia 
after lateral unicompartmental knee arthroplasty. J Arthroplasty, 23, 615-8. 

KURTZ, S., ONG, K., LAU, E., WIDMER, M., MARAVIC, M., GÓMEZ-BARRENA, E., DE 
FÁTIMA DE PINA, M., MANNO, V., TORRE, M., WALTER, W., DE STEIGER, R., 
GEESINK, R., PELTOLA, M. & RÖDER, C. 2011. International survey of primary and 
revision total knee replacement. International Orthopaedics, 35, 1783-1789. 



References 355 

KURTZ, S. M., DUMBLETON, J., SISKEY, R. S., WANG, A. & MANLEY, M. 2009a. Trace 
concentrations of vitamin E protect radiation crosslinked UHMWPE from oxidative 
degradation. Journal of Biomedical Materials Research Part A, 90A, 549-563. 

KURTZ, S. M., LAU, E., ONG, K., ZHAO, K., KELLY, M. & BOZIC, K. J. 2009b. Future 
young patient demand for primary and revision joint replacement: national projections from 
2010 to 2030. Clin Orthop Relat Res, 467, 2606-12. 

KURTZ, S. M., MURATOGLU, O. K., EVANS, M. & EDIDIN, A. A. 1999. Advances in the 
processing, sterilization, and crosslinking of ultra-high molecular weight polyethylene for total 
joint arthroplasty. Biomaterials, 20, 1659-1688. 

KURTZ, S. M., ONG, K. L., SCHMIER, J., MOWAT, F., SALEH, K., DYBVIK, E., 
KARRHOLM, J., GARELLICK, G., HAVELIN, L. I., FURNES, O., MALCHAU, H. & LAU, E. 
2007. Future clinical and economic impact of revision total hip and knee arthroplasty. J Bone 
Joint Surg Am, 89 Suppl 3, 144-51. 

KURTZ, S. M., PRUITT, L., JEWETT, C. W., PAUL CRAWFORD, R., CRANE, D. J. & 
EDIDIN, A. A. 1998. The yielding, plastic flow, and fracture behavior of ultra-high molecular 
weight polyethylene used in total joint replacements. Biomaterials, 19, 1989-2003. 

KUZYK, P. R. & SCHEMITSCH, E. H. 2011. The basic science of peri-implant bone healing. 
Indian journal of orthopaedics, 45, 108-15. 

KWONG, L. M., JASTY, M., MULROY, R. D., MALONEY, W. J., BRAGDON, C. & HARRIS, 
W. H. 1992. The histology of the radiolucent line. J Bone Joint Surg Br, 74, 67-73. 

LANDON, G. C., GALANTE, J. O. & MALEY, M. M. 1986. Noncemented total knee 
arthroplasty. Clin Orthop Relat Res, 49-57. 

LANYON, L. E. 1987. Functional strain in bone tissue as an objective, and controlling 
stimulus for adaptive bone remodelling. Journal of Biomechanics, 20, 1083-1093. 

LANYON, L. E., HAMPSON, W. G., GOODSHIP, A. E. & SHAH, J. S. 1975. Bone 
deformation recorded in vivo from strain gauges attached to the human tibial shaft. Acta 
Orthop Scand, 46, 256-68. 

LANYON, L. E. & RUBIN, C. T. 1984. Static vs dynamic loads as an influence on bone 
remodelling. Journal of Biomechanics, 17, 897-905. 

LARSEN, S. T. & RYD, L. 1989. Temperature elevation during knee arthroplasty. Acta 
Orthop Scand, 60, 439-42. 

LASKIN, R. S. 1978. Unicompartmental tibiofemoral resurfacing arthroplasty. J Bone Joint 
Surg Am, 60, 182-5. 

LASKIN, R. S. 2001. Unicompartmental knee replacement: some unanswered questions. 
Clin Orthop Relat Res, 267-71. 

LAURENCIN, C. T., ZELICOF, S. B., SCOTT, R. D. & EWALD, F. C. 1991. 
Unicompartmental Versus Total Knee Arthroplasty in the Same Patient. Clinical 
Orthopaedics and Related Research, 273, 151-156. 

LAZ, P. J., STOWE, J. Q., BALDWIN, M. A., PETRELLA, A. J. & RULLKOETTER, P. J. 
2007. Incorporating uncertainty in mechanical properties for finite element-based evaluation 
of bone mechanics. J Biomech, 40, 2831-6. 

LEE, R. W., VOLZ, R. G. & SHERIDAN, D. C. 1991. The role of fixation and bone quality on 
the mechanical stability of tibial knee components. Clin Orthop Relat Res, 177-83. 

LENGSFELD, M., GÜNTHER, D., PRESSEL, T., LEPPEK, R., SCHMITT, J. & GRISS, P. 
2002. Validation data for periprosthetic bone remodelling theories. Journal of Biomechanics, 
35, 1553-1564. 



References 356 

LENNON, A. B. & PRENDERGAST, P. J. 2002. Residual stress due to curing can initiate 
damage in porous bone cement: experimental and theoretical evidence. J Biomech, 35, 311-
21. 

LESLIE, B. W., GARDNER, D. L., MCGEOUGH, J. A. & MORAN, R. S. 2000. Anisotropic 
response of the human knee joint meniscus to unconfined compression. Proc Inst Mech Eng 
H, 214, 631-5. 

LEVENSTON, M. E., BEAUPRÉ, G. S., JACOBS, C. R. & CARTER, D. R. 1994. The role of 
loading memory in bone adaptation simulations. Bone, 15, 177-186. 

LEVITZ, C. L., LOTKE, P. A. & KARP, J. S. 1995. Long-term changes in bone mineral 
density following total knee replacement. Clinical orthopaedics and related research, 68-72. 

LEWIS, G. 1997. Properties of acrylic bone cement: state of the art review. J Biomed Mater 
Res, 38, 155-82. 

LEWIS, G., NYMAN, J. S. & TRIEU, H. H. 1997. Effect of mixing method on selected 
properties of acrylic bone cement. J Biomed Mater Res, 38, 221-8. 

LEWOLD, S., ROBERTSSON, O., KNUTSON, K. & LIDGREN, L. 1998. Revision of 
unicompartmental knee arthroplasty: outcome in 1,135 cases from the Swedish Knee 
Arthroplasty study. Acta Orthop Scand, 69, 469-74. 

LI, G., PAPANNAGARI, R., NHA, K. W., DEFRATE, L. E., GILL, T. J. & RUBASH, H. E. 
2007. The coupled motion of the femur and patella during in vivo weightbearing knee flexion. 
J Biomech Eng, 129, 937-43. 

LI, M. G. & NILSSON, K. G. 2000. Changes in bone mineral density at the proximal tibia 
after total knee arthroplasty: a 2-year follow-up of 28 knees using dual energy X-ray 
absorptiometry. Journal of orthopaedic research : official publication of the Orthopaedic 
Research Society, 18, 40-7. 

LI, M. G., YAO, F., JOSS, B., IOPPOLO, J., NIVBRANT, B. & WOOD, D. 2006. Mobile vs. 
fixed bearing unicondylar knee arthroplasty: A randomized study on short term clinical 
outcomes and knee kinematics. Knee, 13, 365-70. 

LINDE, F., HVID, I. & MADSEN, F. 1992. The effect of specimen geometry on the 
mechanical behaviour of trabecular bone specimens. J Biomech, 25, 359-68. 

LINDSTRAND, A. & STENSTROM, A. 1992. Polyethylene wear of the PCA 
unicompartmental knee. Prospective 5 (4-8) year study of 120 arthrosis knees. Acta Orthop 
Scand, 63, 260-2. 

LINDSTRAND, A., STENSTROM, A. & EGUND, N. 1988. The PCA unicompartmental knee. 
A 1-4-year comparison of fixation with or without cement. Acta Orthop Scand, 59, 695-700. 

LINGARAJ, K., MORRIS, H. & BARTLETT, J. 2010. Polyethylene thickness in 
unicompartmental knee arthroplasty. Knee. 

LIVINGSTON, L. A. & MANDIGO, J. L. 1999. Bilateral Q angle asymmetry and anterior knee 
pain syndrome. Clinical Biomechanics, 14, 7-13. 

LONNER, J. H., KLOTZ, M., LEVITZ, C. & LOTKE, P. A. 2001. Changes in bone density 
after cemented total knee arthroplasty: influence of stem design. The Journal of arthroplasty, 
16, 107-11. 

LOTZ, J. C., CHEAL, E. J. & HAYES, W. C. 1991. Fracture Prediction for the Proximal 
Femur Using Finite Element Models: Part I---Linear Analysis. Journal of Biomechanical 
Engineering, 113, 353-360. 

LUND, B. 2011. Swedish Knee Arthroplasty Annual Report. Dept. of Orthopedics, Skåne 
University Hospital [Online]. 



References 357 

LUSTIG, S., PAILLOT, J. L., SERVIEN, E., HENRY, J., AIT SI SELMI, T. & NEYRET, P. 
2009. Cemented all polyethylene tibial insert unicompartimental knee arthroplasty: A long 
term follow-up study. Orthopaedics &amp; Traumatology: Surgery &amp; Research, 95, 12-
21. 

MACKINNON, J., YOUNG, S. & BAILY, R. A. 1988. The St Georg sledge for 
unicompartmental replacement of the knee. A prospective study of 115 cases. J Bone Joint 
Surg Br, 70, 217-23. 

MALONEY, W. J., JASTY, M., BURKE, D. W., O'CONNOR, D. O., ZALENSKI, E. B., 
BRAGDON, C. & HARRIS, W. H. 1989. Biomechanical and histologic investigation of 
cemented total hip arthroplasties. A study of autopsy-retrieved femurs after in vivo cycling. 
Clin Orthop Relat Res, 129-40. 

MANIATOPOULOS, C., PILLIAR, R. M. & SMITH, D. C. 1986. Threaded versus porous-
surfaced designs for implant stabilization in bone-endodontic implant model. J Biomed Mater 
Res, 20, 1309-33. 

MANN, K. A., MILLER, M. A., CLEARY, R. J., JANSSEN, D. & VERDONSCHOT, N. 2008. 
Experimental micromechanics of the cement–bone interface. Journal of Orthopaedic 
Research, 26, 872-879. 

MANN, K. A., MILLER, M. A., VERDONSCHOT, N., IZANT, T. H. & RACE, A. 2010. 
Functional interface micromechanics of 11 en-bloc retrieved cemented femoral hip 
replacements. Acta orthopaedica, 81, 308-17. 

MANN, K. A., MOCARSKI, R., DAMRON, L. A., ALLEN, M. J. & AYERS, D. C. 2001. Mixed-
mode failure response of the cement-bone interface. J Orthop Res, 19, 1153-61. 

MARKOLF, K. L., MENSCH, J. S. & AMSTUTZ, H. C. 1976. Stiffness and laxity of the knee--
the contributions of the supporting structures. A quantitative in vitro study. The Journal of 
bone and joint surgery. American volume, 58, 583-94. 

MARMOR, L. 1976. The Modular (Marmor) knee: case report with a minimum follow-up of 2 
years. Clin Orthop Relat Res, 86-94. 

MARMOR, L. 1988. Unicompartmental knee arthroplasty. Ten- to 13-year follow-up study. 
Clin Orthop Relat Res, 14-20. 

MAROTTI, G., FERRETTI, M., MUGLIA, M. A., PALUMBO, C. & PALAZZINI, S. 1992. A 
quantitative evaluation of osteoblast-osteocyte relationships on growing endosteal surface of 
rabbit tibiae. Bone, 13, 363-368. 

MARTELLI, S., ZAFFAGNINI, S., FALCIONI, B. & MOTTA, M. 2002. Comparison of three 
kinematic analyses of the knee: determination of intrinsic features and applicability to 
intraoperative procedures. Computer methods in biomechanics and biomedical engineering, 
5, 175-85. 

MARTIN, B. R. 1972. The effects of geometric feedback in the development of osteoporosis. 
Journal of Biomechanics, 5, 447-455. 

MARTIN, R. B. 2000. Toward a unifying theory of bone remodeling. Bone, 26, 1-6. 

MATSUDA, S., MIURA, H., NAGAMINE, R., URABE, K., IKENOUE, T., OKAZAKI, K. & 
IWAMOTO, Y. 1999. Posterior tibial slope in the normal and varus knee. Am J Knee Surg, 
12, 165-8. 

MATTHEWS, L. S., SONSTEGARD, D. A. & HENKE, J. A. 1977. Load bearing 
characteristics of the patello-femoral joint. Acta Orthop Scand, 48, 511-6. 

MCBROOM, R. J., HAYES, W. C., EDWARDS, W. T., GOLDBERG, R. P. & WHITE, A. A., 
3RD 1985. Prediction of vertebral body compressive fracture using quantitative computed 
tomography. J Bone Joint Surg Am, 67, 1206-14. 



References 358 

MCCALDEN, R. W., MCGEOUGH, J. A., BARKER, M. B. & COURT-BROWN, C. M. 1993. 
Age-related changes in the tensile properties of cortical bone. The relative importance of 
changes in porosity, mineralization, and microstructure. J Bone Joint Surg Am, 75, 1193-
205. 

MCCARTHY, C. K., STEINBERG, G. G., AGREN, M., LEAHEY, D., WYMAN, E. & BARAN, 
D. T. 1991. Quantifying bone loss from the proximal femur after total hip arthroplasty. The 
Journal of bone and joint surgery. British volume, 73, 774-8. 

MCNAMARA, L. M. & PRENDERGAST, P. J. 2007. Bone remodelling algorithms 
incorporating both strain and microdamage stimuli. Journal of Biomechanics, 40, 1381-1391. 

MESSIER, S. P., LOESER, R. F., HOOVER, J. L., SEMBLE, E. L. & WISE, C. M. 1992. 
Osteoarthritis of the knee: effects on gait, strength, and flexibility. Arch Phys Med Rehabil, 
73, 29-36. 

MILGROM, C., FINESTONE, A., HAMEL, A., MANDES, V., BURR, D. & SHARKEY, N. 
2004. A comparison of bone strain measurements at anatomically relevant sites using 
surface gauges versus strain gauged bone staples. J Biomech, 37, 947-52. 

MILLER, M. A., EBERHARDT, A. W., CLEARY, R. J., VERDONSCHOT, N. & MANN, K. A. 
2010. Micromechanics of postmortem-retrieved cement-bone interfaces. J Orthop Res, 28, 
170-7. 

MINODA, Y., IKEBUCHI, M., KOBAYASHI, A., IWAKI, H., INORI, F. & NAKAMURA, H. 
2010. A cemented mobile-bearing total knee replacement prevents periprosthetic loss of 
bone mineral density around the femoral component: a matched cohort study. J Bone Joint 
Surg Br, 92, 794-8. 

MISKOVSKY, C., WHITESIDE, L. A. & WHITE, S. E. 1992. The cemented unicondylar knee 
arthroplasty. An in vitro comparison of three cement techniques. Clin Orthop Relat Res, 215-
20. 

MONK, A. P., KEYS, G. W. & MURRAY, D. W. 2009. Loosening of the femoral component 
after unicompartmental knee replacement. J Bone Joint Surg Br, 91, 405-7. 

MOORE, D. J., FREEMAN, M. A., REVELL, P. A., BRADLEY, G. W. & TUKE, M. 1998. Can 
a total knee replacement prosthesis be made entirely of polymers? J Arthroplasty, 13, 388-
95. 

MORGAN, E. F., BAYRAKTAR, H. H. & KEAVENY, T. M. 2003. Trabecular bone modulus-
density relationships depend on anatomic site. J Biomech, 36, 897-904. 

MORGAN, E. F., BAYRAKTAR, H. H., YEH, O. C., MAJUMDAR, S., BURGHARDT, A. & 
KEAVENY, T. M. 2004. Contribution of inter-site variations in architecture to trabecular bone 
apparent yield strains. J Biomech, 37, 1413-20. 

MORGAN, E. F. & KEAVENY, T. M. 2001. Dependence of yield strain of human trabecular 
bone on anatomic site. J Biomech, 34, 569-77. 

MORRISON, J. B. 1968. Bioengineering analysis of force actions transmitted by the knee 
joint. Biomed Eng. 

MORRISON, J. B. 1969. Function of the knee joint in various activities. Biomed Eng, 4, 573-
80. 

MORRISON, J. B. 1970a. The mechanics of muscle function in locomotion. J Biomech, 3, 
431-51. 

MORRISON, J. B. 1970b. The mechanics of the knee joint in relation to normal walking. J 
Biomech, 3, 51-61. 

MOSLEY, J. R. & LANYON, L. E. 1998. Strain rate as a controlling influence on adaptive 
modeling in response to dynamic loading of the ulna in growing male rats. Bone, 23, 313-8. 



References 359 

MOSLEY, J. R., MARCH, B. M., LYNCH, J. & LANYON, L. E. 1997. Strain magnitude 
related changes in whole bone architecture in growing rats. Bone, 20, 191-8. 

MUKHERJEE, K., PANDIT, H., DODD, C. A., OSTLERE, S. & MURRAY, D. W. 2008. The 
Oxford unicompartmental knee arthroplasty: a radiological perspective. Clin Radiol, 63, 
1169-76. 

MUNRO, J. T., PANDIT, S., WALKER, C. G., CLATWORTHY, M. & PITTO, R. P. 2010. Loss 
of tibial bone density in patients with rotating- or fixed-platform TKA. Clin Orthop Relat Res, 
468, 775-81. 

MURPHY, B. P. & PRENDERGAST, P. J. 2002. The relationship between stress, porosity, 
and nonlinear damage accumulation in acrylic bone cement. J Biomed Mater Res, 59, 646-
54. 

MURRAY, D. W., GOODFELLOW, J. W. & O'CONNOR, J. J. 1998. The Oxford medial 
unicompartmental arthroplasty: a ten-year survival study. J Bone Joint Surg Br, 80, 983-9. 

NAGAMINE, R., MIURA, H., INOUE, Y., URABE, K., MATSUDA, S., OKAMOTO, Y., 
NISHIZAWA, M. & IWAMOTO, Y. 1998. Reliability of the anteroposterior axis and the 
posterior condylar axis for determining rotational alignment of the femoral component in total 
knee arthroplasty. J Orthop Sci, 3, 194-8. 

NICOLELLA, D. P. & LANKFORD, J. 2002. Microstructural strain near osteocyte lacuna in 
cortical bone in vitro. J Musculoskelet Neuronal Interact, 2, 261-3. 

NIEBUR, G. L., FELDSTEIN, M. J., YUEN, J. C., CHEN, T. J. & KEAVENY, T. M. 2000. 
High-resolution finite element models with tissue strength asymmetry accurately predict 
failure of trabecular bone. Journal of Biomechanics, 33, 1575-83. 

O'CONNOR, J., GOODFELLOW, J. & PERRY, N. 1982. Fixation of the tibial components of 
the Oxford knee. Orthop Clin North Am, 13, 65-87. 

O'CONNOR, J. & IMRAN, A. 2007. Bearing movement after Oxford unicompartmental knee 
arthroplasty: a mathematical model. Orthopedics, 30, 42-5. 

O'ROURKE, M. R., GARDNER, J. J., CALLAGHAN, J. J., LIU, S. S., GOETZ, D. D., 
VITTETOE, D. A., SULLIVAN, P. M. & JOHNSTON, R. C. 2005. The John Insall Award: 
unicompartmental knee replacement: a minimum twenty-one-year followup, end-result study. 
Clin Orthop Relat Res, 440, 27-37. 

ODDING, E., VALKENBURG, H. A., ALGRA, D., VANDENOUWELAND, F. A., GROBBEE, 
D. E. & HOFMAN, A. 1998. Associations of radiological osteoarthritis of the hip and knee 
with locomotor disability in the Rotterdam Study. Ann Rheum Dis, 57, 203-8. 

ODGAARD, A. & LINDE, F. 1991. The underestimation of Young's modulus in compressive 
testing of cancellous bone specimens. J Biomech, 24, 691-8. 

OTA, T., YAMAMOTO, I. & MORITA, R. 1999. Fracture simulation of the femoral bone using 
the finite-element method: how a fracture initiates and proceeds. J Bone Miner Metab, 17, 
108-12. 

OZCIVICI, E., LUU, Y. K., ADLER, B., QIN, Y.-X., RUBIN, J., JUDEX, S. & RUBIN, C. T. 
2010. Mechanical signals as anabolic agents in bone. Nat Rev Rheumatol, 6, 50-59. 

PANDIT, H., JENKINS, C., BARKER, K., DODD, C. A. & MURRAY, D. W. 2006. The Oxford 
medial unicompartmental knee replacement using a minimally-invasive approach. J Bone 
Joint Surg Br, 88, 54-60. 

PANDIT, H., JENKINS, C., BEARD, D. J., GALLAGHER, J., PRICE, A. J., DODD, C. A., 
GOODFELLOW, J. W. & MURRAY, D. W. 2009. Cementless Oxford unicompartmental knee 
replacement shows reduced radiolucency at one year. J Bone Joint Surg Br, 91, 185-9. 



References 360 

PANDIT, H., MURRAY, D. W., DODD, C. A., DEO, S., WAITE, J., GOODFELLOW, J. & 
GIBBONS, C. L. 2007. Medial tibial plateau fracture and the Oxford unicompartmental knee. 
Orthopedics, 30, 28-31. 

PANDIT, H., VAN DUREN, B. H., GALLAGHER, J. A., BEARD, D. J., DODD, C. A., GILL, H. 
S. & MURRAY, D. W. 2008. Combined anterior cruciate reconstruction and Oxford 
unicompartmental knee arthroplasty: in vivo kinematics. Knee, 15, 101-6. 

PANDIT, H., WARD, T., HOLLINGHURST, D., BEARD, D. J., GILL, H. S., THOMAS, N. P. & 
MURRAY, D. W. 2005. Influence of surface geometry and the cam-post mechanism on the 
kinematics of total knee replacement. The Journal of bone and joint surgery. British volume, 
87, 940-5. 

PATTIN, C. A., CALER, W. E. & CARTER, D. R. 1996. Cyclic mechanical property 
degradation during fatigue loading of cortical bone. Journal of Biomechanics, 29, 69-79. 

PEARSON, O. M. & LIEBERMAN, D. E. 2004. The aging of Wolff's “law”: Ontogeny and 
responses to mechanical loading in cortical bone. American Journal of Physical 
Anthropology, 125, 63-99. 

PENG, L., BAI, J., ZENG, X. & ZHOU, Y. 2006. Comparison of isotropic and orthotropic 
material property assignments on femoral finite element models under two loading 
conditions. Med Eng Phys, 28, 227-33. 

PERILLO-MARCONE, A., ALONSO-VAZQUEZ, A. & TAYLOR, M. 2003. Assessment of the 
effect of mesh density on the material property discretisation within QCT based FE models: 
a practical example using the implanted proximal tibia. Comput Methods Biomech Biomed 
Engin, 6, 17-26. 

PETERSEN, M. M., JENSEN, N. C., GEHRCHEN, P. M., NIELSEN, P. K. & NIELSEN, P. T. 
1996. The relation between trabecular bone strength and bone mineral density assessed by 
dual photon and dual energy X-ray absorptiometry in the proximal tibia. Calcified tissue 
international, 59, 311-4. 

PETERSEN, M. M., NIELSEN, P. T., LAURITZEN, J. B. & LUND, B. 1995a. Changes in 
bone mineral density of the proximal tibia after uncemented total knee arthroplasty. A 3-year 
follow-up of 25 knees. Acta Orthop Scand, 66, 513-6. 

PETERSEN, M. M., OLSEN, C., LAURITZEN, J. B. & LUND, B. 1995b. Changes in bone 
mineral density of the distal femur following uncemented total knee arthroplasty. J 
Arthroplasty, 10, 7-11. 

PILLIAR, R. M., LEE, J. M. & MANIATOPOULOS, C. 1986. Observations on the effect of 
movement on bone ingrowth into porous-surfaced implants. Clin Orthop Relat Res, 108-13. 

POLGAR, K., VICECONTI, M. & O'CONNOR, J. J. 2001. A comparison between 
automatically generated linear and parabolic tetrahedra when used to mesh a human femur. 
Proc Inst Mech Eng H, 215, 85-94. 

POPE, M. H. & OUTWATER, J. O. 1974. Mechanical properties of bone as a function of 
position and orientation. J Biomech, 7, 61-6. 

PRENDERGAST, P. J., HUISKES, R. & SØBALLE, K. 1997. Biophysical stimuli on cells 
during tissue differentiation at implant interfaces. Journal of Biomechanics, 30, 539-548. 

PRENDERGAST, P. J. & TAYLOR, D. 1994. Prediction of bone adaptation using damage 
accumulation. Journal of Biomechanics, 27, 1067-1076. 

PRICE, A. & SVARD, U. 2011. A Second Decade Lifetable Survival Analysis of the Oxford 
Unicompartmental Knee Arthroplasty. Clinical Orthopaedics and Related Research®, 469, 
174-179. 



References 361 

PRICE, A. J., DODD, C. A., SVARD, U. G. & MURRAY, D. W. 2005a. Oxford medial 
unicompartmental knee arthroplasty in patients younger and older than 60 years of age. J 
Bone Joint Surg Br, 87, 1488-92. 

PRICE, A. J., REES, J. L., BEARD, D. J., GILL, R. H., DODD, C. A. & MURRAY, D. M. 
2004. Sagittal plane kinematics of a mobile-bearing unicompartmental knee arthroplasty at 
10 years: a comparative in vivo fluoroscopic analysis. The Journal of arthroplasty, 19, 590-7. 

PRICE, A. J., WAITE, J. C. & SVARD, U. 2005b. Long-term clinical results of the medial 
Oxford unicompartmental knee arthroplasty. Clin Orthop Relat Res, 171-80. 

PRICE, C. P. 2000. Evidence-based laboratory medicine: supporting decision-making. Clin 
Chem, 46, 1041-50. 

PSYCHOYIOS, V., CRAWFORD, R. W., O'CONNOR, J. J. & MURRAY, D. W. 1998. Wear 
of congruent meniscal bearings in unicompartmental knee arthroplasty: a retrieval study of 
16 specimens. J Bone Joint Surg Br, 80, 976-82. 

RAJASEKHAR, C., DAS, S. & SMITH, A. 2004. Unicompartmental knee arthroplasty. 2- to 
12-year results in a community hospital. J Bone Joint Surg Br, 86, 983-5. 

RANCOURT, D., SHIRAZIADL, A., DROUIN, G. & PAIEMENT, G. 1990. Friction Properties 
of the Interface between Porous-Surfaced Metals and Tibial Cancellous Bone. Journal of 
Biomedical Materials Research, 24, 1503-1519. 

RAND, J. A. 1993. Comparison of metal-backed and all-polyethylene tibial components in 
cruciate condylar total knee arthroplasty. J Arthroplasty, 8, 307-13. 

REA, P., SHORT, A., PANDIT, H., PRICE, A. J., KYBERD, P., BEARD, D. J., GILL, H. S. & 
MURRAY, D. W. 2007. Radiolucency and migration after Oxford unicompartmental knee 
arthroplasty. Orthopedics, 30, 24-7. 

REEVES, N. D., MAGANARIS, C. N. & NARICI, M. V. 2003. Effect of strength training on 
human patella tendon mechanical properties of older individuals. J Physiol, 548, 971-81. 

REGISTRY, A. N. J. R. 2011. Demographics of Knee Arthroplasty Australian Orthopaedic 
Association. 

REN, W., YANG, S. Y. & WOOLEY, P. H. 2004. A novel murine model of orthopaedic wear-
debris associated osteolysis. Scand J Rheumatol, 33, 349-57. 

RHO, J. Y., ASHMAN, R. B. & TURNER, C. H. 1993. Young's modulus of trabecular and 
cortical bone material: ultrasonic and microtensile measurements. J Biomech, 26, 111-9. 

RHO, J. Y., HOBATHO, M. C. & ASHMAN, R. B. 1995. Relations of mechanical properties to 
density and CT numbers in human bone. Med Eng Phys, 17, 347-55. 

RHO, J. Y., TSUI, T. Y. & PHARR, G. M. 1997. Elastic properties of human cortical and 
trabecular lamellar bone measured by nanoindentation. Biomaterials, 18, 1325-30. 

RICE, J. C., COWIN, S. C. & BOWMAN, J. A. 1988. On the dependence of the elasticity and 
strength of cancellous bone on apparent density. J Biomech, 21, 155-68. 

RIDGEWAY, S. R., MCAULEY, J. P., AMMEEN, D. J. & ENGH, G. A. 2002. The effect of 
alignment of the knee on the outcome of unicompartmental knee replacement. J Bone Joint 
Surg Br, 84, 351-5. 

RITTER, M. A., ZHOU, H., KEATING, C. M., KEATING, E. M., FARIS, P. M., MEDING, J. B. 
& BEREND, M. E. 1999. Radiological factors influencing femoral and acetabular failure in 
cemented Charnley total hip arthroplasties. J Bone Joint Surg Br, 81-B, 982-986. 

ROBERTSON, D. D., MINTZER, C. M., WEISSMAN, B. N., EWALD, F. C., LEBOFF, M. & 
SPECTOR, M. 1994. Distal loss of femoral bone following total knee arthroplasty. 



References 362 

Measurement with visual and computer-processing of roentgenograms and dual-energy x-
ray absorptiometry. The Journal of bone and joint surgery. American volume, 76, 66-76. 

ROBERTSSON, O., KNUTSON, K., LEWOLD, S. & LIDGREN, L. 2001a. The routine of 
surgical management reduces failure after unicompartmental knee arthroplasty. J Bone Joint 
Surg Br, 83, 45-9. 

ROBERTSSON, O., KNUTSON, K., LEWOLD, S. & LIDGREN, L. 2001b. The Swedish Knee 
Arthroplasty Register 1975-1997: An update with special emphasis on 41,223 knees 
operated on in 1988-1997. Acta Orthopaedica, 72, 503-513. 

ROBINSON, E. J., MULLIKEN, B. D., BOURNE, R. B., RORABECK, C. H. & ALVAREZ, C. 
1995. Catastrophic osteolysis in total knee replacement. A report of 17 cases. Clinical 
Orthopaedics and Related Research, 98-105. 

ROBLING, A. G., BURR, D. B. & TURNER, C. H. 2000. Partitioning a daily mechanical 
stimulus into discrete loading bouts improves the osteogenic response to loading. Journal of 
bone and mineral research : the official journal of the American Society for Bone and Mineral 
Research, 15, 1596-602. 

RODAN, G. & MARTIN, T. 1981. Role of osteoblasts in hormonal control of bone 
resorption—A hypothesis. Calcified Tissue International, 33, 349-351. 

RODRIGUEZ, J. A., BAEZ, N., RASQUINHA, V. & RANAWAT, C. S. 2001. Metal-backed 
and all-polyethylene tibial components in total knee replacement. Clin Orthop Relat Res, 
174-83. 

ROSA, R. A., BERT, J. M., BRUCE, W., GROSS, M., CARROLL, M. & HARTDEGEN, V. 
2002. An evaluation of all-ultra-high molecular weight polyethylene unicompartmental tibial 
component cement-fixation mechanisms. J Bone Joint Surg Am, 84-A Suppl 2, 102-4. 

RUIMERMAN, R., VAN RIETBERGEN, B., HILBERS, P. & HUISKES, R. 2005. The effects 
of trabecular-bone loading variables on the surface signaling potential for bone remodeling 
and adaptation. Ann Biomed Eng, 33, 71-8. 

RYD, L., ALBREKTSSON, B. E., CARLSSON, L., DANSGARD, F., HERBERTS, P., 
LINDSTRAND, A., REGNER, L. & TOKSVIG-LARSEN, S. 1995. Roentgen 
stereophotogrammetric analysis as a predictor of mechanical loosening of knee prostheses. 
J Bone Joint Surg Br, 77, 377-83. 

RYD, L., BOEGARD, T., EGUND, N., LINDSTRAND, A., SELVIK, G. & THORNGREN, K. G. 
1983. Migration of the tibial component in successful unicompartmental knee arthroplasty. A 
clinical, radiographic and roentgen stereophotogrammetric study. Acta Orthop Scand, 54, 
408-16. 

SAARI, T., UVEHAMMER, J., CARLSSON, L., REGNÉR, L. & KÄRRHOLM, J. 2007. Joint 
area constraint had no influence on bone loss in proximal tibia 5 years after total knee 
replacement. Journal of Orthopaedic Research, 25, 798-803. 

SAENZ, C. L., MCGRATH, M. S., MARKER, D. R., SEYLER, T. M., MONT, M. A. & 
BONUTTI, P. M. 2010. Early failure of a unicompartmental knee arthroplasty design with an 
all-polyethylene tibial component. Knee, 17, 53-6. 

SAHA, S. & PAL, S. 1984. Mechanical properties of bone cement: a review. Journal of 
Biomedical Materials Research, 18, 435-62. 

SALDANHA, K. A., KEYS, G. W., SVARD, U. C., WHITE, S. H. & RAO, C. 2007. Revision of 
Oxford medial unicompartmental knee arthroplasty to total knee arthroplasty - results of a 
multicentre study. Knee, 14, 275-9. 

SAN ANTONIO, T., CIACCIA, M., MÜLLER-KARGER, C. & CASANOVA, E. 2011. 
Orientation of orthotropic material properties in a femur FE model: A method based on the 
principal stresses directions. Medical Engineering &amp; Physics. 



References 363 

SCHAFFLER, M. B. & BURR, D. B. 1988. Stiffness of compact bone: effects of porosity and 
density. J Biomech, 21, 13-6. 

SCHILEO, E., DALL'ARA, E., TADDEI, F., MALANDRINO, A., SCHOTKAMP, T., BALEANI, 
M. & VICECONTI, M. 2008a. An accurate estimation of bone density improves the accuracy 
of subject-specific finite element models. Journal of Biomechanics, 41, 2483-91. 

SCHILEO, E., TADDEI, F., CRISTOFOLINI, L. & VICECONTI, M. 2008b. Subject-specific 
finite element models implementing a maximum principal strain criterion are able to estimate 
failure risk and fracture location on human femurs tested in vitro. J Biomech, 41, 356-67. 

SCHILEO, E., TADDEI, F., MALANDRINO, A., CRISTOFOLINI, L. & VICECONTI, M. 2007. 
Subject-specific finite element models can accurately predict strain levels in long bones. J 
Biomech, 40, 2982-9. 

SCHINDLER, O. S., SCOTT, W. N. & SCUDERI, G. R. 2010. The practice of 
unicompartmental knee arthroplasty in the United Kingdom. J Orthop Surg (Hong Kong), 18, 
312-9. 

SCHIPPLEIN, O. D. & ANDRIACCHI, T. P. 1991. Interaction between active and passive 
knee stabilizers during level walking. J Orthop Res, 9, 113-9. 

SCOTT, C. E., HOWIE, C. R., MACDONALD, D. & BIANT, L. C. 2010. Predicting 
dissatisfaction following total knee replacement: a prospective study of 1217 patients. J 
Bone Joint Surg Br, 92, 1253-8. 

SCOTT, R. D., COBB, A. G., MCQUEARY, F. G. & THORNHILL, T. S. 1991. 
Unicompartmental knee arthroplasty. Eight- to 12-year follow-up evaluation with survivorship 
analysis. Clin Orthop Relat Res, 96-100. 

SCUDERI, R. G., TRIA, J. A. & BERGER, A. R. 2005. MIS Techniques in Orthopedics, 
Springer. 

SEEGER, J., HAAS, D., JÄGER, S., RÖHNER, E., TOHTZ, S. & CLARIUS, M. 2011. 
Extended sagittal saw cut significantly reduces fracture load in cementless 
unicompartmental knee arthroplasty compared to cemented tibia plateaus: an experimental 
cadaver study. Knee Surgery, Sports Traumatology, Arthroscopy, 1-5. 

SEITZ, P., RUEGSEGGER, P., GSCHWEND, N. & DUBS, L. 1987. Changes in local bone 
density after knee arthroplasty. The use of quantitative computed tomography. The Journal 
of bone and joint surgery. British volume, 69, 407-11. 

SEON, J. K., SONG, E. K., YOON, T. R., SEO, H. Y. & CHO, S. G. 2007. Tibial plateau 
stress fracture after unicondylar knee arthroplasty using a navigation system: two case 
reports. Knee Surg Sports Traumatol Arthrosc, 15, 67-70. 

SHAKESPEARE, D. & JEFFCOTE, B. 2003. Unicondylar arthroplasty of the knee--cheap at 
half the price? Knee, 10, 357-61. 

SHEFELBINE, S. J., AUGAT, P., CLAES, L. & SIMON, U. 2005. Trabecular bone fracture 
healing simulation with finite element analysis and fuzzy logic. Journal of Biomechanics, 38, 
2440-2450. 

SHELBURNE, K. B., PANDY, M. G., ANDERSON, F. C. & TORRY, M. R. 2004. Pattern of 
anterior cruciate ligament force in normal walking. J Biomech, 37, 797-805. 

SHELBURNE, K. B., TORRY, M. R. & PANDY, M. G. 2006. Contributions of muscles, 
ligaments, and the ground-reaction force to tibiofemoral joint loading during normal gait. J 
Orthop Res, 24, 1983-90. 

SHIRAZI-ADL, A., DAMMAK, M. & PAIEMENT, G. 1993. Experimental determination of 
friction characteristics at the trabecular bone/porous-coated metal interface in cementless 
implants. J Biomed Mater Res, 27, 167-75. 



References 364 

SHULTZ, T. R., BLAHA, J. D., GRUEN, T. A. & NORMAN, T. L. 2006. Cortical bone 
viscoelasticity and fixation strength of press-fit femoral stems: finite element model. J 
Biomech Eng, 128, 7-12. 

SIMPSON, D. J., GRAY, H., D'LIMA, D., MURRAY, D. W. & GILL, H. S. 2008. The effect of 
bearing congruency, thickness and alignment on the stresses in unicompartmental knee 
replacements. Clin Biomech (Bristol, Avon), 23, 1148-57. 

SIMPSON, D. J., KENDRICK, B. J., DODD, C. A., PRICE, A. J., GILL, H. S. & MURRAY, D. 
W. 2011. Load transfer in the proximal tibia following implantation with a unicompartmental 
knee replacement: a static snapshot. Proc Inst Mech Eng H, 225, 521-9. 

SIMPSON, D. J., PRICE, A. J., GULATI, A., MURRAY, D. W. & GILL, H. S. 2009. Elevated 
proximal tibial strains following unicompartmental knee replacement-A possible cause of 
pain. Med Eng Phys. 

SKOWRONSKI, J., JATSKEWYCH, J., DLUGOSZ, J., SKOWRONSKI, R. & BIELECKI, M. 
2005. The Oxford II medial unicompartmental knee replacement. A minimum 10-year follow-
up study. Ortop Traumatol Rehabil, 7, 620-5. 

SKYRME, A. D., MENCIA, M. M. & SKINNER, P. W. 2002. Early failure of the porous-coated 
anatomic cemented unicompartmental knee arthroplasty: A 5- to 9-year follow-up study. J 
Arthroplasty, 17, 201-5. 

SMALL, S. R., BEREND, M. E., RITTER, M. A., BUCKLEY, C. A. & ROGGE, R. D. 2010. 
Metal Backing Significantly Decreases Tibial Strains in a Medial Unicompartmental Knee 
Arthroplasty Model. J Arthroplasty. 

SNYDER, S. M. & SCHNEIDER, E. 1991. Estimation of mechanical properties of cortical 
bone by computed tomography. J Orthop Res, 9, 422-31. 

SOBALLE, K., HANSEN, E. S., BROCKSTEDT-RASMUSSEN, H., PEDERSEN, C. M. & 
BUNGER, C. 1990. Hydroxyapatite coating enhances fixation of porous coated implants. A 
comparison in dogs between press fit and noninterference fit. Acta Orthop Scand, 61, 299-
306. 

SOBALLE, K., HANSEN, E. S., H, B. R., JORGENSEN, P. H. & BUNGER, C. 1992. Tissue 
ingrowth into titanium and hydroxyapatite-coated implants during stable and unstable 
mechanical conditions. J Orthop Res, 10, 285-99. 

SONTAG, W. 1992. Age-dependent morphometric alterations in the distal femora of male 
and female rats. Bone, 13, 297-310. 

SQUIRE, M. W., CALLAGHAN, J. J., GOETZ, D. D., SULLIVAN, P. M. & JOHNSTON, R. C. 
1999. Unicompartmental knee replacement. A minimum 15 year followup study. Clin Orthop 
Relat Res, 61-72. 

STAUFFER, R. N., CHAO, E. Y. & GYORY, A. N. 1977. Biomechanical gait analysis of the 
diseased knee joint. Clin Orthop Relat Res, 246-55. 

STEELE, R. G., HUTABARAT, S., EVANS, R. L., ACKROYD, C. E. & NEWMAN, J. H. 2006. 
Survivorship of the St Georg Sled medial unicompartmental knee replacement beyond ten 
years. J Bone Joint Surg Br, 88-B, 1164-1168. 

STELZER, M. & VON STRYK, O. 2006. Efficient forward dynamics simulation and 
optimization of human body dynamics. ZAMM - Journal of Applied Mathematics and 
Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, 86, 828-840. 

SVARD, U. C. & PRICE, A. J. 2001. Oxford medial unicompartmental knee arthroplasty. A 
survival analysis of an independent series. J Bone Joint Surg Br, 83, 191-4. 



References 365 

SZMUKLER-MONCLER, S., SALAMA, H., REINGEWIRTZ, Y. & DUBRUILLE, J. H. 1998. 
Timing of loading and effect of micromotion on bone-dental implant interface: review of 
experimental literature. J Biomed Mater Res, 43, 192-203. 

TABOR JR, O. B. & TABOR, O. B. 1998. Unicompartmental arthroplasty: A long-term follow-
up study. The Journal of Arthroplasty, 13, 373-379. 

TADDEI, F., CRISTOFOLINI, L., MARTELLI, S., GILL, H. S. & VICECONTI, M. 2006. 
Subject-specific finite element models of long bones: An in vitro evaluation of the overall 
accuracy. Journal of Biomechanics, 39, 2457-67. 

TADDEI, F., PANCANTI, A. & VICECONTI, M. 2004. An improved method for the automatic 
mapping of computed tomography numbers onto finite element models. Medical engineering 
& physics, 26, 61-9. 

TADDEI, F., SCHILEO, E., HELGASON, B., CRISTOFOLINI, L. & VICECONTI, M. 2007. 
The material mapping strategy influences the accuracy of CT-based finite element models of 
bones: an evaluation against experimental measurements. Med Eng Phys, 29, 973-9. 

TAKEDA, H., NAKAGAWA, T., NAKAMURA, K. & ENGEBRETSEN, L. 2011. Prevention and 
management of knee osteoarthritis and knee cartilage injury in sports. British Journal of 
Sports Medicine, 45, 304-309. 

TAYLOR, M., TANNER, K. E. & FREEMAN, M. A. 1998. Finite element analysis of the 
implanted proximal tibia: a relationship between the initial cancellous bone stresses and 
implant migration. J Biomech, 31, 303-10. 

TAYLOR, S. J. & WALKER, P. S. 2001. Forces and moments telemetered from two distal 
femoral replacements during various activities. J Biomech, 34, 839-48. 

TAYLOR, W. R., HELLER, M. O., BERGMANN, G. & DUDA, G. N. 2004. Tibio-femoral 
loading during human gait and stair climbing. J Orthop Res, 22, 625-32. 

TIBREWAL, S. B., GRANT, K. A. & GOODFELLOW, J. W. 1984. The radiolucent line 
beneath the tibial components of the Oxford meniscal knee. J Bone Joint Surg Br, 66, 523-8. 

TREVISAN, C., BIGONI, M., DENTI, M., MARINONI, E. C. & ORTOLANI, S. 1998. Bone 
assessment after total knee arthroplasty by dual-energy X-ray absorptiometry: analysis 
protocol and reproducibility. Calcified tissue international, 62, 359-61. 

TREVISAN, C., BIGONI, M., RANDELLI, G., MARINONI, E. C., PERETTI, G. & ORTOLANI, 
S. 1997. Periprosthetic bone density around fully hydroxyapatite coated femoral stem. 
Clinical orthopaedics and related research, 109-17. 

TURNER, A. W., GILLIES, R. M., SEKEL, R., MORRIS, P., BRUCE, W. & WALSH, W. R. 
2005. Computational bone remodelling simulations and comparisons with DEXA results. J 
Orthop Res, 23, 705-12. 

TURNER, C. H. & COWIN, S. C. 1988. Errors induced by off-axis measurement of the 
elastic properties of bone. J Biomech Eng, 110, 213-5. 

TURNER, C. H., FORWOOD, M. R., RHO, J. Y. & YOSHIKAWA, T. 1994. Mechanical 
loading thresholds for lamellar and woven bone formation. Journal of bone and mineral 
research : the official journal of the American Society for Bone and Mineral Research, 9, 87-
97. 

TURNER, C. H., RHO, J., TAKANO, Y., TSUI, T. Y. & PHARR, G. M. 1999. The elastic 
properties of trabecular and cortical bone tissues are similar: results from two microscopic 
measurement techniques. J Biomech, 32, 437-41. 

ULRICH, D., VAN RIETBERGEN, B., LAIB, A. & RUEGSEGGER, P. 1999. The ability of 
three-dimensional structural indices to reflect mechanical aspects of trabecular bone. Bone, 
25, 55-60. 



References 366 

VAN LENTHE, G. H., DE WAAL MALEFIJT, M. C. & HUISKES, R. 1997. Stress shielding 
after total knee replacement may cause bone resorption in the distal femur. J Bone Joint 
Surg Br, 79, 117-22. 

VAN LENTHE, G. H., WILLEMS, M. M., VERDONSCHOT, N., DE WAAL MALEFIJT, M. C. 
& HUISKES, R. 2002. Stemmed femoral knee prostheses: effects of prosthetic design and 
fixation on bone loss. Acta Orthop Scand, 73, 630-7. 

VAN RIETBERGEN, B., WEINANS, H., HUISKES, R. & POLMAN, B. J. W. 1996. 
Computational strategies for iterative solutions of large FEM applications employing voxel 
data. International Journal for Numerical Methods in Engineering, 39, 2743-2767. 

VARDI, G. & STROVER, A. E. 2004. Early complications of unicompartmental knee 
replacement: the Droitwich experience. Knee, 11, 389-94. 

VARGHESE, B., SHORT, D., PENMETSA, R., GOSWAMI, T. & HANGARTNER, T. 2011. 
Computed-tomography-based finite-element models of long bones can accurately capture 
strain response to bending and torsion. Journal of Biomechanics, 44, 1374-1379. 

VERHAVEN, E., HANDELBERG, F., CASTELEYN, P. P. & OPDECAM, P. 1991. Meniscal 
bearing dislocation in the Oxford knee. Acta Orthop Belg, 57, 430-2. 

VICECONTI, M., MONTI, L., MUCCINI, R., BERNAKIEWICZ, M. & TONI, A. 2001. Even a 
thin layer of soft tissue may compromise the primary stability of cementless hip stems. Clin 
Biomech (Bristol, Avon), 16, 765-75. 

VICECONTI, M., MUCCINI, R., BERNAKIEWICZ, M., BALEANI, M. & CRISTOFOLINI, L. 
2000. Large-sliding contact elements accurately predict levels of bone-implant micromotion 
relevant to osseointegration. J Biomech, 33, 1611-8. 

VICECONTI, M., ZANNONI, C., TESTI, D. & CAPPELLO, A. 1999. CT data sets surface 
extraction for biomechanical modeling of long bones. Computer methods and programs in 
biomedicine, 59, 159-66. 

VORLAT, P., PUTZEYS, G., COTTENIE, D., VAN ISACKER, T., POULIART, N., 
HANDELBERG, F., CASTELEYN, P. P., GHEYSEN, F. & VERDONK, R. 2006. The Oxford 
unicompartmental knee prosthesis: an independent 10-year survival analysis. Knee Surg 
Sports Traumatol Arthrosc, 14, 40-5. 

VORLAT, P., VERDONK, R. & SCHAUVLIEGHE, H. 2000. The Oxford unicompartmental 
knee prosthesis: a 5-year follow-up. Knee Surg Sports Traumatol Arthrosc, 8, 154-8. 

WAANDERS, D., JANSSEN, D., MANN, K. A. & VERDONSCHOT, N. 2010. The mechanical 
effects of different levels of cement penetration at the cement–bone interface. Journal of 
Biomechanics, 43, 1167-1175. 

WAANDERS, D., JANSSEN, D., MANN, K. A. & VERDONSCHOT, N. 2011. The behavior of 
the micro-mechanical cement–bone interface affects the cement failure in total hip 
replacement. Journal of Biomechanics, 44, 228-234. 

WAANDERS, D., JANSSEN, D., MILLER, M. A., MANN, K. A. & VERDONSCHOT, N. 2009. 
Fatigue creep damage at the cement-bone interface: an experimental and a micro-
mechanical finite element study. J Biomech, 42, 2513-9. 

WADA, M., MAEZAWA, Y., BABA, H., SHIMADA, S., SASAKI, S. & NOSE, Y. 2001. 
Relationships among bone mineral densities, static alignment and dynamic load in patients 
with medial compartment knee osteoarthritis. Rheumatology (Oxford), 40, 499-505. 

WALKER, P. S. & HAJEK, J. V. 1972. The load-bearing area in the knee joint. J Biomech, 5, 
581-9. 



References 367 

WANG, J. W., KUO, K. N., ANDRIACCHI, T. P. & GALANTE, J. O. 1990. The influence of 
walking mechanics and time on the results of proximal tibial osteotomy. J Bone Joint Surg 
Am, 72, 905-9. 

WAUGH, T. R. 1985. Total knee arthroplasty in 1984. Clin Orthop Relat Res, 40-5. 

WEALE, A. E., HALABI, O. A., JONES, P. W. & WHITE, S. H. 2001. Perceptions of 
Outcomes After Unicompartmental and Total Knee Replacements. Clinical Orthopaedics and 
Related Research, 382, 143-153. 

WEALE, A. E., MURRAY, D. W., NEWMAN, J. H. & ACKROYD, C. E. 1999. The length of 
the patellar tendon after unicompartmental and total knee replacement. The Journal of bone 
and joint surgery. British volume, 81, 790-5. 

WEINANS, H., HUISKES, R. & GROOTENBOER, H. J. 1992a. The behavior of adaptive 
bone-remodeling simulation models. Journal of Biomechanics, 25, 1425-41. 

WEINANS, H., HUISKES, R. & GROOTENBOER, H. J. 1992b. Effects of material properties 
of femoral hip components on bone remodeling. J Orthop Res, 10, 845-53. 

WEINANS, H., HUISKES, R., VAN RIETBERGEN, B., SUMNER, D. R., TURNER, T. M. & 
GALANTE, J. O. 1993. Adaptive bone remodeling around bonded noncemented total hip 
arthroplasty: a comparison between animal experiments and computer simulation. J Orthop 
Res, 11, 500-13. 

WHITESIDE, L. A. 1994. Four screws for fixation of the tibial component in cementless total 
knee arthroplasty. Clin Orthop Relat Res, 72-6. 

WILLIS-OWEN, C. A., BRUST, K., ALSOP, H., MIRALDO, M. & COBB, J. P. 2009. 
Unicondylar knee arthroplasty in the UK National Health Service: An analysis of candidacy, 
outcome and cost efficacy. The Knee, 16, 473-478. 

WRETENBERG, P., RAMSEY, D. K. & NEMETH, G. 2002. Tibiofemoral contact points 
relative to flexion angle measured with MRI. Clin Biomech (Bristol, Avon), 17, 477-85. 

ZANT, N. P., WONG, C. K. & TONG, J. 2007. Fatigue failure in the cement mantle of a 
simplified acetabular replacement model. Int J Fatigue, 29, 1245-1252. 

ZHAO, D., BANKS, S. A., MITCHELL, K. H., D'LIMA, D. D., COLWELL, C. W., JR. & 
FREGLY, B. J. 2007. Correlation between the knee adduction torque and medial contact 
force for a variety of gait patterns. J Orthop Res, 25, 789-97. 

 

 


	1 Introduction and Background
	1.1 Unicompartmental Knee Replacement in Treatment of Osteoarthritis
	1.2 Current Demand for UKR
	1.3 The State of UKR Research
	1.4 History of the UKR Design
	1.5 Competition between UKR Designs
	1.6 TKR Research and Understanding
	1.7 Clinical Observations of UKR Fixation Performance
	Radiolucencies
	Bone Resorption
	Migration
	Perioperative Fractures
	Misalignment
	Femoral Implant Loosening
	Implant Materials
	Bearing Dislocations
	Wear

	1.8 Initial Fixation
	1.9 Long-term Fixation
	1.10 Component Durability
	1.11 Finite Element Analysis Studies
	1.12 Objectives and Scope
	1.13 Structure of Thesis

	2 Modelling Bone for Computer Simulations
	2.1 Introduction
	2.2 Background
	2.3 Bone Density from CT
	2.4 Elastic Modulus from Bone Density
	2.5 Bone Strength
	2.6 Material Sensitivity Study
	2.6.1 Introduction
	2.6.2 Method
	2.6.3 Results
	2.6.4 Discussion and Conclusions


	3 Simulating Knee Forces, Kinematics & Contact
	3.1 Introduction
	3.2 Literature Review
	3.2.1 Overview
	3.2.1 Assessing Daily Activities
	3.2.2 Tibiofemoral Medial-Lateral Load-split
	3.2.3 Tibiofemoral Kinematics and Contact
	3.2.4 Patellar kinematics; Tendon Force and Patellofemoral Contact Force

	3.3 Method: Walking, Stair Ascent & Descent Database of Knee Forces
	3.4 Discussion and Limitations

	4 Development of FE Models for UKR Fixation Analysis
	4.1 Introduction
	4.2 Simplification of Knee Forces
	4.2.1 Inclusion of ACL and Patellar Tendon Force
	4.2.2 Load Application

	4.3 Geometry Generation
	4.3.1 Computed Tomography Scans
	4.3.2 Segmentation
	4.3.3 Geometry and Axes
	4.3.4 Implant Geometry
	4.3.5 Virtual Implantation Tool

	4.4 Implant & Cement Mantle
	4.5 Mesh Convergence Study
	4.5.1 Method
	4.5.2 Results – Effect of Element Geometry
	4.5.3 Results – Effect of Material Allocation
	4.5.4 Discussion

	4.6 Optimising the Model
	4.6.1 Modelling Cancellous Bone
	4.6.2 Modelling Cortex
	4.6.3 Osseointegration
	4.6.4 Bone-implant Friction
	4.6.5 Press-fit
	4.6.6 Materials Allocation Program
	4.6.7 Micromotion Subroutine
	4.6.8 Remodelling Subroutine
	4.6.9 Bone Failure Subroutine
	4.6.10 Simulated DXA Program

	4.7 Conclusion

	5 In-vitro Mechanical Tests
	5.1 Introduction
	5.2 Materials & Method – Mechanical Tests
	5.3 Method – Data Processing
	5.4 Method - Statistical Analysis
	5.5 Results
	5.5.1 Comparison to Literature
	5.5.2 Viscoelasticity and Implant Migration
	5.5.3 Bone Failure
	5.5.4 Clinical Considerations
	5.5.5 Cemented Versus Cementless Fixation
	5.5.6 Suction-Cementation

	5.6 Conclusion

	6 Validation of FEA Predictions of Bone Strain and Bone-Implant Motion
	6.1 Introduction
	6.2 Method
	6.2.1 Geometry Generation
	6.2.2 Mesh Parameters
	6.2.3 Material Parameters
	6.2.4 Boundary Conditions
	6.2.5 Post-processing

	6.3 Results
	6.3.1 Bone Strain
	6.3.2 Bone-Implant Displacement

	6.4 Discussion
	6.4.1 Bone Elastic Modulus
	6.4.2 Strains: Comparison with Literature and Limitations
	6.4.3 Bone-implant Micromotion: Comparison with Literature and Limitations
	6.4.1 Multi-specimen Validation

	6.5 Conclusions

	7 BMD Changes Post-UKR - Results of a Clinical DXA Study
	7.1 Introduction
	7.2 Materials & Methods
	7.2.1 Patient Recruitment
	7.2.2 Set-up & Equipment
	7.2.3 Quality Assurance
	7.2.4 Analysis

	7.3 Results
	7.3.1 Tibia
	7.3.1 Femur
	7.3.2 Overall Observations

	7.4 Discussion
	7.4.1 Comparison with Literature
	7.4.2 Limitations

	7.5 Conclusions

	8 FEA Bone Remodelling Validation
	8.1 Introduction
	8.2 Background
	8.3 Method
	8.3.1 Patient Selection
	8.3.2 Geometry and Materials
	8.3.3 Remodelling Algorithm and Parameters
	8.3.4 Knee Loading
	8.3.5 Modelling Osseointegration of Cementless Implants
	8.3.6 Post-processing

	8.4 Results
	8.4.1 Parametric Study Results
	8.4.2 Predicted BMD Changes in the Knee

	8.5 Discussion
	8.5.1 Summary
	8.5.2 Sensitivity to Activity and Load Configurations
	8.5.3 Sensitivity to Stress Raisers
	8.5.4 Sensitivity to Osseointegration Parameters
	8.5.1 Reduced ACL Function
	8.5.2 Comparison to Literature
	8.5.3 Limitations of the Bone Remodelling Algorithm
	8.5.4 Limitations of Study

	8.6 Conclusions

	9 Studies Investigating UKR Design
	9.1 Introduction
	9.2 Cementless or Cemented Fixation?
	9.2.1 Introduction
	9.2.2 Method
	9.2.1 Results: Initial Fixation
	9.2.2 Results: Long-term Fixation
	9.2.3 Discussion
	9.2.4 Recommendations

	9.3 Cementless Fixation: Is it good enough?
	9.3.1 Introduction
	9.3.2 Method
	9.3.3 Results
	9.3.4 Discussion and Recommendations

	9.4 Cemented Fixation: Are radiolucencies a problem?
	9.4.1 Introduction
	9.4.2 Method
	9.4.3 Results
	9.4.4 Conclusions and Recommendations

	9.5 Tibial Resection Depth: Does it affect fixation?
	9.5.1 Introduction
	9.5.2 Method
	9.5.3 Results
	9.5.4 Discussion
	9.5.5 Recommendations

	9.6 PE Tibial Trays: How do they compare?
	9.6.1 Introduction
	9.6.2 Method
	9.6.3 Results
	9.6.4 Recommendations: What tibial tray PE thickness is required to have successful fixation?
	9.6.5 Recommendations: Are metal-backed tibial trays better than all-PE trays?

	9.7 Tibial Tray Keel: Does it provide better fixation?
	9.7.1 Introduction
	9.7.2 Method
	9.7.3 Results
	9.7.4 Discussion and Recommendations

	9.8 Tibial Sagittal Overcutting: Is it a problem?
	9.8.1 Introduction
	9.8.2 Method
	9.8.3 Results
	9.8.4 Conclusions and Recommendations

	9.9 Femoral Implant Conformity: Is tri-radius better than single-radius?
	9.9.1 Introduction
	9.9.2 Method
	9.9.3 Results
	9.9.4 Discussion and Recommendations

	9.10 PE Femoral Implant: Is it an option?
	9.10.1 Introduction
	9.10.2 Method
	9.10.3 Results
	9.10.4 Discussion

	9.11 Femoral Implant Peg: Does it improve fixation?
	9.11.1 Introduction
	9.11.2 Method
	9.11.3 Results
	9.11.4 Discussion and Recommendations

	9.12 Femoral Implant Posterior Overcutting: Is it a problem?
	9.12.1 Introduction
	9.12.2 Method
	9.12.3 Results
	9.12.4 Discussion


	10 Conclusions and Proposed Future Work
	10.1 Introduction
	10.2 Conclusions and Contributions to Biomechanics Research
	Developments in computer simulations of the UKR knee
	Bone strain validation
	Bone-implant interface micromotion validation
	Bone remodelling validation
	Stress-raisers in UKR resected tibia and femur
	Bone loss in Oxford UKR patients is manageable
	Cementation reduces bone strain in the UKR implant tibia
	Cementless fixation of UKRs is good in dense bone
	Incomplete tibial UKR radiolucencies are not a problem
	Shallower resections of keeled tibial UKRs do not improve fixation
	All-PE tibial implants should not be less than 9 mm thick
	Metal-backed or All-Polyethylene UKR decision is patient dependent
	Shorter tibial UKR keels provide improved fixation for dense tibia
	Tibial sagittal overcutting must be avoided
	The fixation of the tri-radius and the single-radius femoral UKR are similar
	The All-Polyethylene femoral UKR could provide better fixation
	The benefit of a shorter femoral UKR peg is small
	Femoral implant posterior overcutting may cause pain and stress-shielding
	Overall Conclusions

	10.3 Future Work
	Understanding the UKR patient group
	Material properties of bone
	Database of knee forces
	Computational techniques


	11 References

