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Abstract

Next generation neural interfaces aspire to achieve real-time multi-channel systems by integrating spike sorting on chip to overcome
limitations in communication channel capacity. The feasibility of this approach relies on developing highly-efficient algorithms for
feature extraction and clustering with the potential of low-power hardware implementation. We are proposing a feature extraction
method, not requiring any calibration, based on first and second derivative features of the spike waveform. The accuracy and
computational complexity of the proposed method are quantified and compared against commonly used feature extraction methods,
through simulation across four datasets (with different single units) at multiple noise levels (ranging from 5 to 20% of the signal
amplitude). The average classification error is shown to be below 7% with a computational complexity of 2N − 3, where N is
the number of sample points of each spike. Overall, this method presents a good trade-off between accuracy and computational
complexity and is thus particularly well-suited for hardware-efficient implementation.
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1. Introduction

Neural prostheses (or neuroprosthetics) have already
demonstrated a significant impact to individuals with
damage/dysfunction to sensory and ‘cognitive’ path-
ways (Humayun et al., 2003; Georgiou and Touma-
zou, 2005; Perlmutter and Mink, 2006; Constandinou
et al., 2008, 2009). For example, cochlear implants,
deep brain stimulation devices and more recently, va-
gus nerve stimulation therapy are now in use in over
350,000 individuals.1 On the other hand, neural pros-
theses that interface to the motor pathway (i.e. moni-
toring devices) have not yet delivered such success with
therapeutic devices in clinical applications (i.e. in hu-
man populations). However, instruments that facili-
tate electrophysiological recording in the brain are now
commonplace in neuroscience laboratories. Here, brain
machine interfaces (BMIs) provide a unique opportu-
nity to deliver next generation research tools by pro-
viding more channels (Stevenson and Kording, 2011)

1NICDC/NIH Publication No. 11-4798 specifies 219,000 cochlear
implants, Medtronic and Cyberonics state 80,000 DBS and 60,000
VNS devices respectively (on their corporate website).

with the capability of local/real-time processing at lower
power consumption and within a miniature form factor.

Realising such devices is now possible thanks to re-
cent advances in microtechnology (i.e. silicon probes
and CMOS integrated circuits). This has allowed both
electronics and electrodes to be scalable and manu-
facturable with sub-micron resolution features. Sys-
tems including multi-electrode arrays (MEAs) (May-
nard et al., 1997) and multi-channel neural interface
chips (Harrison et al., 2007; Rodriguez-Perez et al.,
2012; Paraskevopoulou and Constandinou, 2012; Gao
et al., 2012) can now be engineered for recording single
unit activity with excellent precision, repeatability and
reliability.

However, the requirement for such devices to be im-
plantable sets critical restrictions particularly on the
electronics design. Although no extensive study has
been performed on the effect of long term device im-
plantation, the currently cited limit on thermal dissi-
pation sets a maximum of 1oC temperature increase
and 40 mW/cm2 heat flux (Wolf, 2008). This in it-
self sets a very stringent power budget. Other con-
straints include the limited implant size, battery capac-
ity/lifetime and communication bandwidth. Thus, in or-
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Figure 1: A typical single channel architecture for recording extracellular action potentials and determining single unit activity.

der to achieve a scalable high channel count while main-
taining a high resolution of recording, the information
transmitted must be of high quality (i.e. equivalent to
extracting the raw data), and the information extraction
methods must be hardware implementable in ultra-low
power electronics (Eftekhar et al., 2010).

Each electrode can observe activity from up to 5-
10 units (Pedreira et al., 2012; Buzsáki and Draguhn,
2004). Thus by being able to identify the neuron firing,
a high information quality can be maintained, with re-
duced data rate. The information extraction chain that
achieves this is illustrated in Fig. 1. In a conventional
system, the analogue front-end provides the signal am-
plification and (depending on implementation method-
ology) conditioning (filtering), and digitisation (data
conversion). The rationale to implementing more func-
tions within the analogue front-end, is that resource (i.e.
power, size and data) requirements can be significantly
reduced. This is however at the expense of reduced ver-
satility, i.e. software can be completely reprogrammed,
whereas power-optimised custom hardware tends to be
function specific. The subsequent spike sorting involves
spike detection followed by feature extraction and clas-
sification.

Feature extraction simplifies the classification pro-
cess of spikes by selecting the features that best describe
them. This leads to dimensionality reduction; instead of
comparing n variables, where n is the number of sample
points, we have m variables (m < n) , where m is the
number of selected features. For example, some basic
features include the amplitude, width, power, or phase
of the spike (Balasubramanian and Obeid, 2011). Typ-
ical analytical methods to obtain features are: principal
components analysis (PCA) (Abeles and Goldstein Jr,
1977), discrete wavelet transform (DWT) (Letelier and

Weber, 2000), discrete derivatives (DD) (Gibson et al.,
2008), template matching (TM) (Yuan et al., 2012;
Zhang et al., 2004), zero-crossing features (ZCF) (Kam-
boh and Mason, 2012) and integral transform (IT) (Zvi-
agintsev et al., 2005).

Once the features have been extracted they can be
projected into their m-dimensional space, usually re-
ferred to as classification (or clustering). There exist
several clustering algorithms (based on different parti-
tioning methods) including k-means clustering (Chan
et al., 2008), Bayesian clustering (Dai et al., 2008),
valley detection (Kim and McNames, 2007; Mahmud
et al., 2012), superparamagnetic clustering (Quiroga
et al., 2004), expectation maximization (Harris et al.,
2000; Pouzat et al., 2002) and artificial neural networks
(ANN). A comprehensive review of clustering methods
is provided in (Xu and Wunsch, 2010).

The overall effective complexity of spike sorting de-
pends on two factors: the computational complexity of
the specific feature extraction and clustering algorithms
and the number of dimensions in feature space.

This paper proposes a new feature extraction method,
based on the first and second derivatives of the spike
waveform. This method is shown to achieve a relatively
high accuracy, however with a low computational com-
plexity, and thus is suitable for low power hardware im-
plementation. Another advantage is that it runs in real-
time, not requiring any off-line training. This is par-
ticularly useful for when monitoring a large number of
channel as no calibration is necessary.

1.1. Spike modelling

Our initial motivation for the use of derivative fea-
tures is based on the dipole model of an action poten-
tial(Mechler and Victor, 2012). Eq. 1 describes the po-
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tential generated by a dipole of charge −→p at location −→r
from the centre of the dipole.

V(−→r ) =
−→p−→r

4πε0r3 =
pr · cosθ
4πε0r3 (1)

Where p is the dipole operator, r is the electrode-to-
neuron-distance, cosθ the cosine of the angle between
the two vectors −→p and −→r , and ε0 the dielectric con-
stant. This dipole is formed by the extracellular current
balancing the influx of Na+ cations from the neuronal
extracellular to the intracellular space (Buzsáki et al.,
2012), thus maintaining equilibrium at the membrane.

The extracellular potentials generated by a spiking
pyramidal cell and measured at different locations in it’s
vicinity are illustrated in Fig. 2. An initial observation is
that the orientation of the electrode relative to the spik-
ing neuron changes the spike shape and its distance re-
duces the amplitude of the spikes.

Based on this observation, we examine the paradigm
that a recording electrode and two identical spiking neu-
rons (i.e. with identical morphology) are aligned in the
x-direction, but the distance between the electrode and
the first neuron is smaller than the distance between
the electrode and the second neuron. In that case, the
recorded spikes from the distinct neurons will exhibit
‘identical’ spike shapes but differ in amplitude. In fact,
the spike amplitude will be decreasing inversely propor-
tionally to r2, according to Eq. 1. As the two recorded
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100μm
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Figure 2: Variation in the observed extracellular action potential pro-
file with spatial position. Shown is an example in the vicinity of a
spiking pyramidal cell. Adapted from (Buzsáki et al., 2012). Dotted
lines illustrate the regions of relative spike amplitudes larger than 0.5
(black), 0.2 (red), 0.1 (green) and 0.05 (blue).

spikes have the same expansion in time and different
amplitude, the spike amplitude can be used as a fea-
ture to separate the two spikes. However, this difference
will also be evident in their first derivatives, addition-
ally providing some indication to the spike morphology.
Therefore, intuitively the first derivative appears to be
an eligible feature for spike sorting.

2. Materials and Methods

The previous section provided an intuitive rationale
behind using derivatives to extract spike features for
subsequent classification. The use of such features has
been shown analytically (Yang et al., 2009), and through
simulations (Yang et al., 2009; Karkare et al., 2011).
Derivatives have also been proven an efficient filter for
noise shaping (highlighting the recorded spiking activ-
ity against background spiking activity) (Yang et al.,
2009). In this paper, however, we will explore the ef-
ficiency of a new feature extraction method based on
using both the first and second derivatives. All the meth-
ods reported herein are tested using Mathworks Matlab
v7.12.

2.1. Proposed method for featured extraction

The derivatives are computed as the difference be-
tween the current and previous sample points of the
spike waveform (s), according to Eq. 2 for the first
derivative (FD) and Eq. 3 for the second derivative (SD).

FD(n) = s(n) − s(n − 1) (2)

S D(n) = FD(n) − FD(n − 1) (3)

The effect of taking the first and second derivatives
of typical action potential signals is illustrated in Fig. 3.
Here, onto the spike waveform are annotated the occur-
rences of the following features: (a) negative, and (b)
positive peaks of the first derivative (FDmin and FDmax),
and (c) negative, and (d) positive peaks of the second
derivative (SDmin and SDmax). In this example, it can be
clearly observed that these features together can be used
to distinguish between these three spike profiles.

The first derivative of any function (or geometric ob-
ject) can be described by its rate of change (or slope).
Therefore, the second derivative is essentially the rate
of change of the slope, representing the curvature of the
signal. Spikes are characterised by several morpholog-
ical changes including slopes, curvature and amplitude,
all of which are dependent on the observation point rel-
ative to the neuron. The first and second derivative can
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Figure 3: Typical action potential waveforms with their first and second derivatives (FD and SD). Annotated onto the original spike waveforms are
the points corresponding to the extrema (i.e. minimum and maximum) of the first and second derivatives.

therefore provide, directly and indirectly, information
on all three of these expected morphological variations.

2.2. Other feature extraction methods (for comparison)

In order to validate the viability of the proposed
method (for hardware spike sorting), we compare (Sec-
tion 3) its accuracy and computational complexity to
other low complexity and derivative-based feature ex-
traction methods, in addition to to Principal Component
Analysis (PCA), which is widely regarded as a ‘gold
standard’ for spike sorting.

2.2.1. PCA
PCA is a technique that extracts linearly uncorrelated

components from the input signal. These principal com-
ponents are the eigenvectors of the autocorrelation ma-
trix of the original signal, and their number is equal to
the number of samples. However, the most significant
information is contained in the first few.

2.2.2. Discrete derivatives (DD)
DD is based on computing the derivatives at each

sample point of the spike waveform according to Eq. 4
(Gibson et al., 2008).

ddδ(n) = s(n) − s(n − δ) (4)

Where s is the spike signal, n the sample point, and δ the
time delay. Previous work used three different values
for the delay: δ = 1, 3, 7 (Karkare et al., 2011). There-
fore, the dimensionality of the feature space increases
by a factor of three compared to the original number of
samples of the spikes. To decrease the dimensionality,
the most significant DD coefficients are selected. This

method has already been shown to be hardware imple-
mentable, demonstrated on a 64-channel DSP (Karkare
et al., 2011).

2.2.3. First derivative (FD)
A method based on the derivation of the spike wave-

form in the discrete domain is proposed in (Yang et al.,
2008). The selected features are the positive and neg-
ative peak of the spike first derivative, and the peak of
the spike itself. In this paper, we will refer to this work
as the FD method.

2.2.4. Autoregressive model (AR)
It has been shown that the spike signal can be mod-

elled using an autoregressive (AR) model (described by
Eq. 5) of p-th order (the coefficients are computed using
the Burg algorithm), to separate the signal from back-
ground activity (Chan et al., 2006). In this paper, we
investigate the efficiency of spike sorting when the fea-
tures used are the coefficients of the AR model for each
spike.

xt = c +

p∑
(i=1)

φixt−1 + εt (5)

Where φ1, ..., phip are the parameters of the model, c is
a constant and εt is white noise.

2.2.5. Point-to-point (PP) comparison
A brute force approach to spike sorting is to use the

sampled directly instead of extracting features (i.e. with
no dimensionality reduction). This method is herein re-
ferred to as point-to-point comparison (PP).
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Figure 4: Test dataset 2 showing: (a) a 1 s segment at noise levels of 0.05 to 0.2 (from top to bottom), and (b) a two dimensional representation of
the clustering space when using three principle components (z-axis is 3rd principle component - not shown).

2.3. Classification (using k-means clustering)

Once the features have been extracted, k-means clus-
tering is utilised to separate the features and differen-
tiate the spikes seen at an electrode. k-means cluster-
ing is a method that aims to partition the spikes (using
the selected feature space) into k clusters, in which each
spike belongs to the cluster with the nearest mean, as
described by Eq. 6.

J =

K∑
j=1

∑
n∈S j

‖xn − µ j‖
2 (6)

Where J is the objective function (i.e. the squared er-
ror function), n is the number of spikes, (x1, x2.. xn)
is the set of spike features (each of m-dimension), K is
the number of clusters (K ≤ n) and S j are the different
sets (i.e. spike classes). k-means aims to determine the
clusters such as to minimise the objective function J.

This is generally implemented as an iterative algo-
rithm that converges towards the solution. Depend-
ing on the feature types (and their dimensionality) the
number of iterations required for convergence will vary.
For all the classification presented herein, the Matlab
(‘kmeans’) function was used with the number of iter-
ations set to 10. This has been used to ensure that all
methods converge to a near-optimum classification ac-
curacy.

2.4. Test datasets

To evaluate the spike sorting accuracy for various fea-
ture extraction methods we are use simulated neural sig-
nals. The datasets (Quiroga, 2006) were originally used
in (Quiroga et al., 2004) to evaluate spike sorting with
wavelets and superparamagnetic clustering. The spike
signals have been randomly selected from a database of
over 594 waveforms recorded from the neocortex and
basal ganglia in humans. Noise has been added onto
the generated dataset by superimposing random spike
signals to emulate the background activity. These have
been randomly distributed at a ratio of 2:1 (spikes to
‘noise’). The advantage of using simulated data is that
the ground truth is established and is therefore partic-
ularly useful for testing different detection and sorting
approaches.

For our simulations we are using four of these
datasets, each containing 3 different types of spike
shapes and at 4 different noise levels. The input sig-
nals have been normalised and the standard deviation of
the added noise (i.e. inverse of the signal-to-noise ra-
tio) is 0.05, 0.01, 0.15 and 0.2. An example portion of
Dataset 2 is shown in Fig 4, at the different noise levels
(from top to bottom). For each noise level is shown the
raw dataset (on left) and cluster plots (on right) using
the first three principal features. Also annotated (in red,
blue and black) are the different spike classes (as known
a priori). It should be noted that the although only a 1 s
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Figure 5: Single unit waveforms used within each dataset. Shown
are the mean (peak-aligned) templates with the degree of separability,
measured using the Bray-Curtis similarity index (shown at bottom).

portion of the inputs is shown, the cluster plots include
all the spikes from the respective datasets. It can be ob-
served that increasing the noise level (i.e. decreasing the
SNR) adversely affects the cluster separation.

The spike waveforms for each of the 3 classes in the 4
test dataset are shown in Fig. 5. These have been gener-
ated by taking a mean across all spikes in each cluster.
The spikes waveforms have been extracted using a 64
sample window aligned to the spike peak (set at sample
20). It can be observed the these datasets have varying
levels of spike sorting difficulty (i.e. spikes with sim-
ilar waveforms are harder to spike sort). Within this
context, the Bray-Curtis similarity (Eq. 7) index (Lian
et al., 2010) is used to quantify the separability of the
spikes in each dataset.

S x,y = 1 −
∑N

i=1|x(i) − y(i)|∑N
i=1|x(i)|+|y(i)|

(7)

Where x and y are the two spike waveforms being com-
pared and N is the number of sample points. S x,y is in
the range (0 – 1), with 1 corresponding to identical sig-
nals. For each data set, the similarity measure between
all three spike templates in a dataset are calculated and
presented along with mean spike waveforms in Fig. 5.

3. Results and Discussion

In this section we apply the proposed method to spike
sorting and compare its performance (accuracy) and
computational complexity to the other hardware imple-
mentable methods described in the previous section.

3.1. Classification accuracy for different derivative fea-
ture combinations

In order to establish the optimum efficiency of us-
ing first and second derivative features (derived as de-

scribed in Section 2.1), the classification accuracies be-
tween different feature combinations are compared. The
six permutations tested are as follows:

• Method 1: Both the negative and positive peaks
of the first derivative (FDmin and FDmax), together
with the negative peak of the second derivative
(SDmin).

• Method 2: Both the negative and positive peaks
of the first derivative (FDmin and FDmax), together
with the positive peak of the second derivative
(SDmax).

• Method 3: Negative peak of the first derivative
(FDmin), together with both the negative and pos-
itive peaks of the second derivative (SDmin and
SDmax).

• Method 4: Positive peak of the first derivative
(FDmax), together with both the negative and pos-
itive peaks of the second derivative (SDmin and
SDmax).

• Method 5: Range of the first derivative (i.e.
(FDmax-FDmin), together with range of the second
derivative (i.e. SDmax-SDmin).

• Method 6: Average of the first derivative (i.e.
(FDmin+FDmax)/2) together with average of the
second derivative (i.e. (SDmin+SDmax)/2).

• Method 7: All FSDE features, i.e. both the neg-
ative and positive peaks of the first and second
derivatives (FDmin, FDmax, SDmin and SDmax).

The main performance criteria that is quantified is the
classification error, given by the number of misclassi-
fied spikes over the total number of detected spikes in
each input signal. This must be balanced however, with
the relative complexity of each method, i.e. the number
of features taken. The results are presented in Table 1.
The total error stated has been quantified as the average
classification error across all datasets and noise levels.

The results show that Methods 6, 4, and 7 achieve
the lowest classification errors for 2, 3 and 4 features
respectively. As can be expected, the more features
that are used, the lower the classification error. As-
suming however, that the relative complexity between
these methods is proportional to the number of features,
and then comparing the relative classification errors,
a much greater improvement in accuracy is observed
when moving from 2 to 3 features than from 3 to 4.
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Table 1: Comparison of the classification error for different combinations of derivative features. Results given across all the tested datasets and for
all noise levels.

Dataset Noise† Classification Error

Method 1 Method 2 Method 3 Method 4 Method 5 Method 6 Method 7
(m=3)* (m=3)* (m=3)* (m=3)* (m=2)* (m=2)* (m=4)*

Dataset 1

0.05 0.0544 0.0561 0.0546 0.0538 0.0544 0.0572 0.0544
0.10 0.0443 0.0468 0.0451 0.0446 0.0457 0.0477 0.0446
0.15 0.0552 0.0581 0.0546 0.0555 0.0555 0.0601 0.0552
0.20 0.0489 0.0535 0.0498 0.0492 0.0507 0.0596 0.0492

Dataset 2

0.05 0.0531 0.3457 0.0531 0.0519 0.0522 0.0575 0.0528
0.10 0.0528 0.1247 0.0585 0.0517 0.0699 0.0622 0.0526
0.15 0.0630 0.1850 0.0718 0.0504 0.2987 0.0988 0.0627
0.20 0.0757 0.2283 0.0993 0.0729 0.3369 0.1469 0.0822

Dataset 3

0.05 0.0562 0.0437 0.0553 0.0550 0.3491 0.1339 0.0559
0.10 0.0525 0.0415 0.0519 0.0522 0.3457 0.1180 0.0522
0.15 0.0628 0.0441 0.0576 0.0619 0.3491 0.1489 0.0565
0.20 0.0682 0.0539 0.0665 0.0940 0.3453 0.2293 0.0636

Dataset 4

0.05 0.3517 0.0386 0.3496 0.0562 0.3505 0.0612 0.0552
0.10 0.0477 0.0576 0.0511 0.0552 0.3463 0.0661 0.0474
0.15 0.0974 0.1180 0.3488 0.1282 0.3535 0.1308 0.0968
0.20 0.1970 0.3458 0.2906 0.1829 0.3561 0.2030 0.1575

Total 0.0863 0.1151 0.1099 0.0697 0.2350 0.1045 0.0649

†Noise level relative to a normalised signal (i.e. noise=1/SNR), *m=number of features/dimensions
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Figure 6: Comparison of the classification error between commonly used feature extraction methods (across all datasets and noise levels). Shown
are comparison to methods with: (a) the same feature space dimensionality, and (b) different (higher) feature space dimensionality.
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Method 4 is therefore chosen as it strikes a good
trade-off between classification error and number of fea-
tures, and additionally exhibits good noise immunity.
The combination of features used in Method 4 are se-
lected and will from hereon be referred to as the First
and Second Derivative Extrema (FDSE) method.

3.2. Classification accuracy using FSDE features com-
pared to other feature extraction methods

As mentioned in Section 1, the size of the feature
space (m) directly impacts the computational complex-
ity of spike sorting. Therefore, the classification accu-
racy of FSDE feature extraction with k-means has been
considered separately for methods with the same and
different m, shown in Figs. 6(a) and 6(b) respectively.
The results have been averaged across all noise levels.

• Methods with the same feature space as FSDE (i.e.
m ≤ 3): The selected methods are FD, PCA3, and
AR3 (i.e. subscript denoting the number of coeffi-
cients).

• Methods with a higher feature space than FSDE
(i.e. m > 3): The selected methods are PCA10,
DD21, and PP64. For PCA, we have limited the
number of coefficients to 10, as we have deter-
mined a negligible improvement (in classification
error) for more coefficients. For DD, we are using
21 coefficients, which has been reported to be opti-
mum (Karkare et al., 2011). The selection of coef-
ficients is achieved through a blind training of 300
spikes per dataset (approximately 10% of the sig-
nal) by identifying the coefficients with the largest
variance. Finally, for PP we are using all the sam-
ple points (i.e. m=64).

The results in Fig. 6 show that for methods of the
same feature space as FSDE, it generally achieves
higher classification accuracy than the other methods.
However, for methods with a higher feature space, they
generally achieve a higher classification accuracy. An-
other observation is that the FSDE and DD methods
(across all feature space) exhibits the best noise immu-
nity amongst all methods.

Furthermore, by defining the dimensionality factor
as the number of features over the number of samples
in the spike waveform (i.e. m/n), the relationship be-
tween dimensionality and classification error can be di-
rectly established. This is illustrated in Fig. 7, showing
the classification error averaged across all datasets and
noise levels. It can be observed that the classification
error of FSDE is comparable to DD (i.e. 21 coefficients

with maximum variance) and PCA (despite a signifi-
cantly lower complexity), and is only larger than that
of DD, when using all coefficients (m=181).
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Figure 7: Observing the effect of dimensionality on classification error
for the different feature extraction methods used in this work.

3.3. Clustering FSDE features using k-means

To demonstrate the effectiveness of spike sorting us-
ing FSDE features (with 10-iteration k-means), the ac-
tual clusters are compared to those determined. This is
shown in Fig. 8, also illustrating the windowed spike
waveforms (and corresponding mean templates) of the
actual and determined classes.

3.4. Computational complexity

Within the context of implantable spike sorting hard-
ware, computational complexity is as important as the
classification accuracy of the spike sorting method. This
is due to previously mentioned resource constraints (i.e.
power, bandwidth and volume). We define the compu-
tational complexity in terms of the number arithmetic
operations (i.e. additions, multiplications, etc) required
to compute each feature. Table 2 estimates the rela-
tive complexity of each feature extraction method, along
with any additional computation required for selecting
a subset of features (i.e. in dimensionality reduction).

As mentioned previously, k-means has been cho-
sen as the clustering algorithm used in our simula-
tions. Since the k-means algorithm is mainly dominated
by calculating point to cluster mean distances (using
Squared Euclidean metric), its computational complex-
ity is estimated to be k(2m − 1) additions and km multi-
plications per spike, where m is the number of features
per spike and k is the number of clusters.
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Figure 8: Spike classification utilising FSDE features. Shown are: (a) the actual classes (as specified in each dataset at a noise level of 0.2
), and (b) classes as generated using FSDE features with k-means clustering. Shown for both sets are the spike

waveforms (with mean templates overlaid) and clusters in FSDE feature space (z-axis is SDmax - not shown). In each
case, the 3 different clusters are coloured in red, blue and black.

Table 2: Computational complexity of each feature extraction method (in terms of the number of arithmetic operations).

Method Additions Multiplications Dimensionality Reduction

FD N-1 - -
SD 2N-3 - -

DD† 3N - 11 - (3N-11)(1-5T) additions, T(6N-22) multiplications‡
PP - - -
AR [N − 1] +

∑p
i=1 5(N − i) + i + 1 [N + 1] +

∑p
i=1 5(N − i) + i + 3 -

PCA N2 + 2N + 1 N2 + N -
N is the number of samples in each spike, T is the number of spikes for training, and p is the model order for the Autoregressive model.
†Additional complexity associated for dimensionality reduction, ‡variance calculation
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In order to assess the accuracy and computational
complexity of different feature extraction methods, the
aforementioned factors contributing to computational
demands has been combined to produce a single com-
plexity figure-of-merit (CFOM) as in (Gibson et al.,
2008; Zviagintsev et al., 2005):

C = Nadd + 10 × Nmult (8)

where Nadd is the number of additions, and Nmult is the
number of multiplications required. It should be noted
that, only the complexities associated with feature ex-
traction and clustering are considered in CFOM. Any
Computation associated with choosing a subset of fea-
tures extracted (such as variance calculations as in DD)
are only calculated once, and therefore not included.
CFOM is given (per spike) assuming 64-sample spikes
(n=64) of three different clusters (k=3), and a fourth or-
der autoregressive model (p=4).

Fig. 9 illustrates the trade-off between classification
error and computational complexity. Here, it can be
clearly observed that the FSDE method achieves both
a good classification accuracy and low computational
complexity. In fact, the only method (from those com-
pared) that outperforms FSDE is Dall, which has a 35×
higher computational complexity. On the other hand,
when compared to DDvar (considered to be both accu-
rate and computationally efficient), the FSDE method
has a 10% lower classification error with 4× lower com-
plexity. In other words, amongst all the feature extrac-
tion methods considered, FSDE provides the best trade-
off between accuracy and complexity.

Additionally, the number of features (i.e. dimen-
sions) selected to describe the dataset indirectly impact
the complexity through the added resource required for
the increased clustering computation. Therefore meth-
ods with fewer features are preferable to those with
more. As FDSE uses only 3 features, this further re-
duces its computational complexity compared to meth-
ods with higher dimensionality.

4. Conclusion

In this paper, we have proposed a new feature extrac-
tion method for spike sorting, based on first and second
derivative extrema (FSDE) features. Specifically, the
selected method utilises the (positive) peak of the first
derivative together with the positive and negative peaks
of the second derivatives. This method has been shown
to achieve a classification error of only 6.97% (averaged
across 4 datasets with varying degrees of sorting diffi-
culty and noise levels), for a computational complexity
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Figure 9: Comparing classification error (averaged over all datasets
and noise-levels) with computational complexity for the different fea-
ture extraction methods considered herein.

of 2N − 3.
We have tested the classification accuracy of k-means

for different feature extraction methods. To ensure suffi-
cient convergence for all feature extraction methods, the
number of k-means iterations is set at 10. The proposed
method outperforms PCA3 (which achieves an average
classification error of 10.17%), with a 100× lower com-
putational complexity. Furthermore, when compared
to another hardware-efficient derivative-based method
(i.e. DD with dimensionality reduction), the proposed
method performs marginally better (DDvar average clas-
sification error is 7.74%), with a 3× lower computa-
tional complexity. This unique balance between good
accuracy and low complexity makes the FSDE method
a particularly good candidate for hardware (i.e. on-chip)
spike sorting.
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Appendix A. Abbreviations in the paper

Here is an alphabetical list of abbreviations used in
this paper.
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ANN Artificial Neural Networks
AR Auto-Regressive
BMI Brain Machine Interface
CFOM Complexity Figure-of-Merit
DD Discrete Derivative
DSP Digital Signal Processor
DWT Discrete Wavelet Transform
FD First Derivative
FSDE First and Second Derivative Extrema
IT Integral Transform
MEA Multi-Electrode Array
PCA Principle Component Analysis
PP Point-to-Point
SD Second Derivative
SNR Signal-to-Noise Ratio
ZCF Zero Crossing Features
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