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Abstract  

Interferon lambdas (IFNλs), termed IFN-λ1, IFN-λ2 and IFN-λ3, or IL-29, IL-28A 

and IL-28B are a recently identified family of cytokines with antiviral activity. IL-

28A/B and IL-29 bind to a novel heterodimeric receptor complex formed 

between IL-28 receptor (IL-28R) and IL-10 receptor (IL-10R2). Type I IFNs are 

used therapeutically in the treatment of chronic hepatitis B and C; however only 

~30% of patients with hepatitis B virus will be successfully treated and only 

~60% of patients with chronic HCV. New interventions are therefore required to 

address this unmet medical need and this thesis aimed to evaluate the potential 

use of IFNλs in treating viral infection.  

A range of in vitro antiviral assays were developed to determine which viruses 

were inhibited by IFNλs. Results showed IL-28A and IL-29 have antiviral effects 

with HCV 1a and 1b replicons and HBV. No antiviral effect was demonstrated 

against dengue, RSV or HIV. Gene expression stimulated by IFNλ was 

compared with IFNα; and the effects of IFNλ against HCV were investigated. 

The types of genes induced, and the kinetics of gene induction were similar 

between the type I and type III IFNs in the HCV replicon cell line. With the 

parental cell line, the interferon signalling pathway was the most greatly affected 

by IFNα, IL-28A and IL-29, but IL-29 strongly regulated the antigen presenting 

pathway compared with IFNα. IL-28R distribution was determined to investigate 

the tissue and cellular distribution of IFNλ responsive cells. IL-28R was 

expressed in epithelial tissues, lymphoid tissue, spleen, liver, kidney and 

thymus, with majority of IL-28R expression on macrophages and dendritic cells. 

The differences between type I and type III IFNs need to be further investigated 

but these differences identified provide a rationale for exploring the use of type 

III IFNs as an alternative to IFNα in the treatment of viral diseases.  

 

Statement of Originality 

All work is my own unless acknowledged and all else is appropriately 

referenced.  
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Chapter 1 

1. General Introduction 

1.1 Introduction to interferons and the discovery of type III 

interferons 

Type I interferons (IFNs) have been considered the gold standard for antiviral 

protection since their discovery over 50 years ago1. Interferons (IFNs) are 

defined by their ability to induce resistance to viral infection. However the recent 

discovery of type III interferons may add a new dimension to conventional 

treatment regimes. 

Interferon lambdas (IFNλs) are newly identified cytokines jointly discovered in 

2002/32,3 termed IFN-λ1, IFN-λ2 and IFN-λ32 or interleukin (IL) IL-29, IL-28A, IL-

28B respectively3. These cytokines are the first novel IFN family (IFN type III) 

defined in more than 20 years4. Initial studies showed that interferon lambdas 

had antiviral properties in vitro with encephalomyocarditis virus (EMCV)3, 

stimulated interferon sensitive genes (ISGs)2,3 and both groups described that 

the activity of the interferon lambdas is achieved through a novel receptor 

interferon-lambda receptor 1 (IFN-λR1)2 also known as interleukin-28 receptor 

(IL-28R)3.  

Interferon lambdas share similar expression patterns with type I IFNs and 

trigger common signal transduction cascades and sets of stimulated genes. 

Both type I and type III IFNs share many biological activities, including the 

ability to induce an antiviral state in cells. IFNs protect cells from virus infection, 

directly by inducing ISGs such as 2’, 5’-oligoadenylate synthetase 1 (2’, 5’-OAS) 

and myxovirus resistance-A (MxA) and intracellular proteins5 and, indirectly, by 

inducing major histocompatibility complex (MHC) class I antigen expression on 

and activation of antigen-presenting cells, stimulating dendritic cell maturation 

and activating macrophages and natural killer cells6.  

There are three families of interferons: type I interferons, like interferon alpha 

family (IFNαs) and interferon beta (IFNβ), which show potent antiviral activity; 

type II interferon like interferon gamma (IFNγ), which shows weak antiviral 

activity but is a strong activator of cellular immune responses; and now type III 
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interferons with novel IFNλs. In humans, the type I IFN family comprises at least 

13 nonallelic IFNα genes, IFNβ, IFNω, IFNκ and the limitin gene7; type II is IFNγ 

and the novel type III interferons IL-28A, IL-28B and IL-29. IL-28A, IL-28B and 

IL-29 are weakly related to type I IFNs at the amino acid level but have a 

genetic structure more similar to IL-10. IL-28A and IL-28B share 96% amino 

acid identity and IL-29 shows 81% homology to IL-283. Genes for all three 

members of the IFNλ family are found on chromosome 19 (q13.13 region)3, 

whereas the genes for all type I IFNs are clustered on human chromosome 98,9. 

The gene for IFNγ is located on chromosome 1210. Type I IFN genes lack 

introns, but the coding regions of the IFNλ genes are interrupted by 4 introns, 

and the positions of the introns with respect to the protein reading frames are 

conserved for the IFNλ genes and for genes encoding IL-10-related cytokines11. 

Even though the amino acid identity of type III IFNs is lower than even the most 

distant members of the type I IFN family, and the fact that they are clustered on 

different chromosomes, the conserved cysteine pattern and amphipathic profile3 

of the IFNλs suggest they belong to the helical cytokine family and appear to be 

an evolutionary link between IL-10 and type I IFNs.  

 

Figure 1.1:  A phylogenetic alignment of the class II cytokine family genes 

Figure taken from Donnelly et al12 Alignment of the human interferon-λ (IFN-λ) genes 

with either (A) the human type I IFN genes or (B) the human interleukin-10 (IL-10)-

related cytokines was used to generate a phylogenetic tree for the class II cytokine 

genes.   

IFN-λ genes are clustered together on human chromosome 19 (19q13.13 

region) or murine chromosome 7 (7A3 region). There are three functional IFN-λ 

genes in the human genome IFN-λ1 (IL-29), IFN-λ2 (IL-28A) and IFN-λ3 (IL-

28B) and 1 pseudogene IFN-λ4ψ, whereas there are only 2 functional IFN-λ 
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coding genes in the murine genome: IFN-λ2 (IL-28A) and IFN-λ3 (IL-29), mIFN-

λ1Ψ and mIFN-λ4Ψ genes are pseudogenes. Studies have shown that the 

mutated mIFN-λ1 gene does not encode a functional IFN-λ1 protein13. The high 

degree of homology between the IFN-λ genes suggesting that the genes 

evolved from a common predecessor, IFN-λ3 (IL-28B) gene is almost identical 

to the IFN-λ2 (IL28A) gene not only in the coding region but also in the 

upstream and downstream flanking sequences. The promoters of the IFN-λ2 

and IFN-λ3 genes are very similar and share several common elements with the 

IFN-λ1 promoter, suggesting that all 3 genes are likely to be regulated in a 

similar manner14,15.  

Type I and type III IFN genes have similar expression patterns, this is likely to 

be due to common regulatory elements in the promoters of the type I and type 

III IFN genes. Promoters of IFN-λ genes have predicted binding sites for 

transcription factors: AP1 (dimeric factor containing members of the JUN, FOS, 

ATF and MAF protein families), nuclear factor κB (NF-κB) and interferon 

regulatory factors (IRFs), crucial for the induction of type I and type III IFN 

expression14,15. IFN-λ1 is controlled by either IRF3 or IRF7, but importantly IFN-

λ2/3 like IFNα genes are more dependent on IRF715. IRF3 is ubiquitously 

expressed in cells and upon direct viral activation upregulates IFN-λ1 and IFNβ 

representing early response genes. IFN-λ2/3 gene expression is mainly 

controlled by IRF7, thus resembling those of IFNα genes with delayed kinetics 

conforming to a positive feed-back mechanism. The regulation of type III IFNs 

may differ in mice, however, since there is no functional IFN-λ1 gene in the 

murine genome13. Co-expression of type I and type III IFNs in response to 

diverse viruses and various TLR agonists has been shown by multiple cell types 

but plasmacytoid dendritic cells (pDCs) constitutively express IRF7, enabling 

these cells to rapidly produce high levels of type I and type III IFNs upon 

stimulation16. Differences in type I and type III IFN expression have been 

reported, including IFN-λs were shown to be the main IFN type produced by 

both murine and human airway epithelial cells in response to various respiratory 

viruses17,18, a model is proposed for IFN-λ1 gene regulation, in which IRF and 

NF-κB activate gene expression independently via spatially separated promoter 

elements19 showing type III IFNs can be induced through IRFs or  NF-κB unlike 

IFNα which needs multiple transcription factors. Though IFN-λ is typically 
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activated by viral infections, showing that it is an important part of the innate 

immune response, activation of TLR-4 by bacterial LPS has been shown to 

induce IFN-λ in DCs16,19 highlighting a role of IFN-λ in the modulation of the 

immune response. Interferon lambdas also have a role in antiviral immunity 

through modulation of both the maturation and differentiation of immune cells. 

Differentiation of monocytes into dendritic cells leads to upregulation of IL- 

28R and an increased ability to express IFN-λ20,21,22,23. When DCs are then 

exposed to IFN-λ, increased maturation and migration capacity are induced22. 

Interferon lambda influences the effects of DCs on interactions with T cells. DCs 

treated with IFN-λ preferentially expand regulatory T cells, which negatively 

regulate the immune response, and promote self-tolerance20,22. IFN-λ appears 

to be primarily focused on biasing T cell differentiation against Th2 development 

and Th2 cytokine secretion but also modulating Th1 cells 24,25,26,27,28although 

this role is not fully clear. Interferon lambdas are an important part of the innate 

immune response and have a role in the modulation of the adaptive immune 

response. 

 

1.2 Antiviral properties of interferon lambdas 

Like IFNα, IL-28A and IL-29 have antiviral properties and potentially could be 

used as or incorporated into another therapeutic approach to treating viral 

disease. Initial studies by Sheppard et al in 2003 showed that IL-28A and IL-29 

induced antiviral effects in response to encephalomyocarditis virus (EMCV) and 

stimulated interferon sensitive genes in vitro (Figure 1.2)3. 

As IFNλs had been shown to have antiviral properties it was an aim of this 

thesis to investigate the antiviral properties of IFNλs in vitro against a panel of 

viruses including hepatitis C (HCV), hepatitis B (HBV), human 

immunodeficiency virus (HIV), dengue fever and respiratory syncytial virus 

(RSV), with a primary focus on HCV.  
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Figure 1.2:  Graphical representations of IFNα, IL-28A and IL-29  

EMCV assay A and interferon sensitive gene induction with ISG B  

A Antiviral activity of IL-28A and IL-29. IL-28A, IL-29 and IFNα2a (IFNα) were added at varying concentrations to HepG2 cells before EMCV 

infection and dye-uptake was measured. Mean s.d. A570 values, which were directly proportional to antiviral activity, are shown (n = 3). 

B IL-28A and IL-29 signal through the IFN-stimulated response element (ISRE). HepG2 cells were transfected with an ISRE reporter plasmid and 

luciferase activity was analysed after treatment with varying concentrations of IL-28A, IL-29 or IFNα2a. Fold activation was determined by dividing 

the relative light units (RLU) of each experimental sample by the RLU of media alone. Mean s.d. data are shown (n = 2). Figure taken from 

Sheppard3. 

 

A B 
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Hepatitis C (HCV) has a positive-sense single stranded RNA genome and is 

classified as a flavivirus. The hepatitis C virus particle consists of a core of 

genetic material (RNA), surrounded by an icosahedral protective shell of 

protein, and further encased in a lipid (fatty) envelope of cellular origin. Two 

viral envelope glycoproteins, E1 and E2, are embedded in the lipid envelope29. 

The HCV genome is 9600 nucleotides and comprises of two non-coding regions 

in 5' and 3' flanking a large reading frame which codes for a polyprotein of 3000 

amino acids; this polyprotein is further cleaved into structural (C, El, E2) and 

non- structural (NS1, NS2, NS3, NS4, NS5) proteins. The positive RNA acts as 

a cap-independent messenger; the transcription is mediated by the NS5 RNA 

polymerase. After the maturation step, the virion is liberated by budding through 

the cytoplasmic membrane.  

 

Figure 1.3:  Organization of Flaviviridae genome HCV 

Figure adapted30to show organization of Flaviviridae genome, HCV showing structural 

proteins made by the hepatitis C virus include Core protein, E1 and E2; nonstructural 

proteins include NS2, NS3, NS4, NS4A, NS4B, NS5, NS5A, and NS5B.  

 

The structurural proteins made by HCV are further described below. Core 

protein is a highly basic, RNA-binding protein, proteins of various sizes (17 to 

23 kDa) are described but the 21-kDa core protein (P21) appeared to be the 

predominant form31. The core protein contains three distinct predicted domains: 

an N-terminal hydrophilic domain of 120 aa (domain D1), principally involved in 

RNA binding and nuclear localization, a C-terminal hydrophobic domain of 

about 50 aa (domain D2), responsible for core protein association with 

endoplasmic reticulum (ER) membranes, and the last 20 or so aa that serve as 

a signal peptide for the downstream envelope protein E132. Envelope proteins 

E1 and E2 are highly glycosylated and have a key role in cell entry, the p7 

protein, a 63 amino acid membrane spanning protein which locates itself in the 

endoplasmic reticulum, is dispensable for viral genome replication but plays a 

critical role in virus morphogenesis33. NS2 protein is a 21-23 kDa 
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transmembrane protein with protease activity, NS2 is a short-lived protein that 

loses its protease activity after self-cleavage from NS3 and is degraded by the 

proteasome34. NS3 is 67 kDa protein whose N-terminal has serine protease 

activity and whose C-terminal has NTPase/helicase activity. NS4A is a cofactor 

of NS3 protease activity. NS3-4A also bears additional properties through its 

interaction with host cell pathways and proteins that may be important in the 

lifecycle and pathogenesis of infection, NS3-NS4A protease is a popular viral 

targets for anti-HCV therapeutics35. NS4B is a small (27 kDa) hydrophobic 

integral membrane protein with 4 transmembrane domains. It is located within 

the endoplasmic reticulum and plays an important role for recruitment of other 

viral proteins36. NS5A is a hydrophilic phosphoprotein which plays an important 

role in viral replication, modulation of cell signaling pathways and the interferon 

response. The NS5B protein (65 kDa) is the viral RNA dependent RNA 

polymerase. Until recently when the complete replication of hepatitis C virus in 

cell culture was demonstrated37, the lack of a robust tissue culture system for 

HCV meant that HCV was studied using a replicon system38, where the effects 

of IFNs on HCV replication in vitro can be studied39. Replication of HCV 

involves several steps. The virus replicates mainly in the hepatocytes of the 

liver, where each infected cell produces approximately 10 virions per day40 and 

NS5B produces mutations at rate 10-4 per nucleotide41, this key in using current 

direct acting antivirals (DAA) in the treatment of HCV, the risk of rapid 

development of resistance, without the use of cotreatment of IFN. Entry into 

host cells occur through interactions between virions and cell-surface molecules 

CD81, LDL receptor, SR-BI, DC-SIGN, Claudin-1, and Occludin42. HCV uses 

portions of the intracellular machinery to replicate43. The HCV genome is 

translated to produce a 3000aa protein, which is processed by viral and cellular 

proteases to produce three structural and seven nonstructural (NS) proteins. 

The NS proteins then recruit the viral genome into an RNA replication complex. 

RNA replication takes places via the viral RNA-dependent RNA polymerase 

NS5B, which produces a negative strand RNA intermediate. The negative 

strand RNA then serves as a template for the production of new positive strand 

viral genomes. Nascent genomes can then be translated, further replicated or 

packaged within new virus particles. New virus particles are thought to bud into 

the secretory pathway and are released at the cell surface. 
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Figure 1.4:  Hypothetical HCV replication cycle 

This figure is taken from Bartenschlager et al., 200430. HCV particles bind to the host 

cells via a specific interaction between the HCV envelope glycoproteins and a yet 

unknown cellular receptor. After the viral genome is liberated from the nucleocapsid 

and translated at the rough ER, NS4B induces the formation of membranous vesicles 

(referred to as the membranous web; EM in the lower right). These membranes are 

supposed to serve as scaffolds for the viral replication complex. After genome 

amplification and HCV protein expression, progeny virions are assembled. Newly 

produced virus particles may leave the host cell by the constitutive secretory pathway. 

The upper right panel of the figure shows a schematic representation of an HCV 

particle. The middle panel shows a model for the synthesis of negative-stranded (−) 

and positive stranded (+) progeny RNA via a double-stranded replicative form (RF) and 

a replicative intermediate (RI).  

HCV is sensitive to IFNα, IFNβ and IFNγ44 but at the time this project was 

initiated (August  2004) there was not any published data on the role of type III 

interferons in HCV. Pegylated IFNα in combination with ribavirin is the current 

standard of care for the treatment of patients chronically infected with HCV; it 

results in a sustained virological response (defined as clearance of circulating 
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HCV RNA at 6 months post-treatment) in ~50% of HCV patients45. However, 

combination therapy remains less effective against infections caused by HCV 

genotype 1 which constitute ~75% of all HCV infections in the developed world. 

IFNα therapy is administered intravenously and has side effects such as flu-like 

symptoms, anorexia, depression, haemolytic anaemia and myelosuppression 

that can be severe and sometimes dose limiting. Approximately 500 million 

people worldwide are living with either hepatitis B or hepatitis C46. This 

represents 1 in 12 people, and was the basis for the 2008 ‘World Hepatitis Day 

Am I Number 12?’ campaign. HCV affects ~ 170 million people worldwide, with 

a seroprevalence in the United States and Japan of ~2%, and in Western 

Europe of 1-1.9%47 (Figure 1.5). HCV infection can lead to liver fibrosis, 

cirrhosis and liver cancer14. 

 
 

 

Figure 1.5: Geographical representation of HCV prevalence  

Percentage of the population infected with HCV globally. Figure from Shepard 200548 

 

The HCV genome exhibits a high degree of variability, especially in the E2/NS1, 

El, NS3 and NS5b regions, resulting in at least 6 genotypes of HCV numbered 

from 1 to 6 in Simmonds' classification49 and over 100 subtypes. Genotype 1, 

1a and 1b accounts for 60% of all HCV cases in USA and Europe and in Japan 

73% is 1b. Geneotype 2 is 8% in Europe; Genotype 3 is 60% in India and 58% 
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in Iran. Genotype 4 has been associated with 20% of chronic infections 

worldwide and is the genotype in 7% of Northern Europe HCV cases and 24% 

of Southern Europe, Genotype 4a makes up 90% of HCV cases in Egypt, Egypt 

has 13% of its population diagnosed with HCV. Genotype 5 is in 40% of the 

HCV cases in South Africa and genotype 6 is a diverse genotype now including 

genotypes originally classes as 7,8, and 11, it is the genotype in 30% of HCV 

cases in Asia and 20% in China. Genotype is clinically important in determining 

potential response to therapy, for example genotypes 1 and 4 are less 

responsive to interferon-based treatment than are the other genotypes (2, 3, 5 

and 6)49. 

Hepatitis B, which is caused by the hepatitis B virus (HBV), affects 350 million 

people worldwide and is responsible for one million deaths each year. HBV 

infection, like HCV, can lead to liver fibrosis, cirrhosis and liver cancer. Hepatitis 

B is the primary cause of liver cancer (60-80%), (WHO 2006). HBV is part of the 

hepadnaviridae (hepatitis DNA viruses) family. Hepatitis B is typically treated 

with interferon alpha (IFNα) which results in ~30% seroconversion, or 

nucleoside reverse transcriptase inhibitors (NRTIs) such as adefovir, entecavir, 

lamivudine, telbivudine, and tenofovir. Lamivudine, a nucleoside analogue, 

results in ~40% seroconversion, compared with 5% seroconversion with no 

treatment. As with HCV, there is a need for new treatments with increased 

efficacy. The effect of HBV and IFNα has been studied in vivo50. IFNλs have 

been shown to reduce levels of HCV mRNA in the HCV replicon system and 

reduce expression of HBV DNA in murine cells51. 

Human immunodeficiency virus (HIV) is an RNA reverse transcribing virus, part 

of the retroviridae family of viruses. Approximately 40 million people worldwide 

are living with HIV (WHO statistics 2005). HIV infection leads to the loss of CD4 

cells, which can result in immunosuppression (Acquired immune deficiency 

syndrome (AIDS)). There are currently a variety of treatments for HIV: IFNα, cell 

fusion inhibitors, reverse transcriptase inhibitors and protease inhibitors. 

Treatment options are often limited due to cross resistance. Overall prevalence 

of HIV drug resistance is on the increase52, so alternative therapies are still 

being developed for the treatment of HIV.  
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Dengue fever is a major threat to public health in many tropical and subtropical 

countries. There are an estimated 50 million infections per year (WHO 2006). 

Dengue is a flavivirus which circulates as four major serotypes and is passed on 

from an infected mosquito bite. Dengue haemorrhagic fever and dengue shock 

syndrome are the more severe manifestations of dengue infection and primarily 

occur on re-infection with a virus of differing serotype to the initial infection. 

IFNα in the dengue replicon system has been shown to have no antiviral effect 

and that dengue virus specifically inhibits IFNα signalling by the down-regulation 

of signal transducers and activators of transcription protein (STAT) STAT2 

expression53, however the effects on dengue with IFNλs remain to be 

determined. 

Respiratory syncytial virus (RSV) is a single stranded RNA paramyxovirus, 

which is the same family as para-influenza, measles and rubella. RSV infection 

is recognised as the leading cause, of bronchiolitis and pneumonia in infants 

and young children54. RSV is highly contagious and in immunocompromised 

patients can lead to persistent infection. Treatment options are currently limited 

to monoclonal antibody based therapy and supportive care; ribavirin has been 

used historically.  

Type III interferons have also been implicated as having antiviral properties in a 

range of viruses: DNA viruses; poxvirus55
, murine cytomegalovirus (CMV)56,56, 

hepatitis B virus57,51,58 and herpes simplex virus 1 and 259, the single stranded 

(ss) (+) RNA viruses EMCV60,3, West Nile virus57 and hepatitis C virus57,61,62,51, 

as well as the ss (−) RNA viruses influenza-A virus63 and vesicular stomatitis 

virus,62. IL-28A and IL-29 has also been shown to modulate anti-viral proteins 

like 2′5′-oligoadenylate synthetase2,3, MxA protein, and IFN-inducible double 

stranded (ds) RNA-activated protein kinase, and multiple interferon sensitive 

genes (ISGs)56,57,2,64,62,65. 

1.3 IL-28 receptor and signalling 

IFNα and IFNβ (type I IFNs) bind to a specific and distinct heterodimeric 

receptor composed of IFNARα and IFNARβ. Binding of IFNα or IFNβ to their 

receptor leads to the activation of two receptor-associated tyrosine kinases, 

Janus kinase (Jak)1 and tyrosine kinase (Tyk)2; this is followed by tyrosine 
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phosphorylation of the Signal Transducers and Activators of Transcription 

(STAT)1 and STAT2 proteins. Phosphorylated STAT1 and STAT2 combine with 

IFN-regulatory factor 9 (IRF-9) to form the trimeric IFN-stimulated gene factor-3 

(ISGF-3) complex, which, upon translocation to the nucleus, binds to the cis 

element IFN-stimulated response element (ISRE), upstream of IFN-inducible 

genes, and modulates their transcription66,67. 

Type I, II and III IFNs are class II cytokine receptor ligands (CRF2) which also 

include interleukin 10 (IL-10) and IL-10 related proteins11.The activity of the type 

III IFNs is achieved through a heterodimeric receptor complex which, is formed 

between IL-28A receptor (IL-28R) and IL-10 receptor (IL-10R2). The 

promiscuous IL-10R2 is also part of the IL-10 and IL-22 receptor complex and is 

involved in signal transduction for IL-10 and IL-22 (Figure 1.6). Other key 

ligands have now been shown to include IL-28A, IL-28B and IL-292,3. 

IFNλs were initially shown to activate both STAT1 and STAT2 and the 

downstream signalling pathways including interferon sensitive gene complex 

ISGF3 and ISRE, similar to those activated by IFNα and IFNβ2. IFNλs like IFNα 

and IFNβ have been shown to activate STAT3, 4 and 568. Some of IFNα and 

IFNβ immunomodulatory functions are mediated via STAT469.    
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Figure 1.6: IL-10Rβ is a promiscuous cytokine receptor  

Figure 1.6 adapted from Dumoutier, Sheppard, Kotenko and Xie
2,3,70,71

 shows that part of this heterodimeric receptor is the promiscuous interleukin 10 

receptor beta (IL-10Rβ) which has a role in cytokine binding with not only the IFNλs but IL-10 and IL-22.  However the downstream signalling cascade 

shows that IFNλs cause STAT1 and 2 activation. This signalling pathway shares similarities with the IFNAR receptor. 
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Despite signalling through distinct receptor complexes, type I and type III IFNs 

trigger similar signalling pathways (Figure 1.7), leading to the activation of a 

transcriptional complex designated ISGF3 which is a unique and crucial 

mediator of type I and type III IFN-induced biological activities. ISGF3 binds to 

the ISRE in the promoters of ISGs leading to gene transcription.  

 

 

 

Figure 1.7: Type III IFN receptor signalling compared to type I and II 

Type I, II and III IFN receptor binding leads to activation of STAT, the translocation of 

STAT into the nucleus activates either interferon-stimulated genes (ISG) with a 

promoter interferon-stimulated response element (ISRE) or γ-activated sequence 

(GAS). Adapted Vilcek, J. Nat Immunol4.  

 

As well as the Jak-STAT pathway type I and type III IFNs can also induce 

signalling through mitogen-activated protein kinase (MAPK) cascades: stress-

activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK); extracellular 

signal-regulated kinase (ERK)-1/2; and mitogen-activated protein kinase p38 

56,65.  

The heterodimeric receptor IFNAR1/2 for IFN-α and IFN-β is present on all 

nucleated cells72. IL-10R2 is ubiquitously expressed73, whereas initial RNA 

expression data showed IL-28R is limited to specific tissues and cell types2. IL-
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28R has been shown to be present in intestinal epithelial cells, MCA205, a 

fibrosarcoma cell line56 and type III IFN expression has been shown in 

monocyte–derived dendritic cells (MDDC)74,75,76, plasmacytoid dendritic cells 

(pDC)74,76 and human primary macrophages where induction of type III IFNs 

required pre-treatment with IFNα74,75,76. Other studies showed in vivo 

experiments highlighting primary targets of type III IFNs are epithelial cells of 

the respiratory, gastro-intestinal and reproductive tracts59,77,78. IL-28R is 

predominantly expressed in epithelial cells and specific subsets of immune 

cells77,79,78,80.  

1.4 Transcriptomic analysis gene activation profiles and 

signalling pathways of IL-28A and IL-29 

Transcriptional (mRNA) expression patterns have been shown for IFNα, β and 

γ81, and for IL-29 in a HCV replicon cell line61 and Raji cells65. Zhou65 

investigated gene expression at an early time point, 4 hours, with 200 IU of 

IFNα and 10ng/mL of IL-29 in triplicate on Affymetrix gene chips. 27 unique 

genes with greater than a two fold change were seen with IL-29 compared with 

313 IFNα induced genes. Significance Analysis of Microarrays analysis (SAM) 

(Stanford University) showed that only 10 genes were unique to IFNα, the 

majority of genes were also present in the IFNλ dataset but due to IFNλ signal 

being weaker they did not reach the 2 fold cut off. IFNλ was shown to induce 

ISGs, none of which were determined to be unique to IFNλ. Marcello61 also 

used Affymetrix microarray analysis, but used 5ng/mL IFNα and 10ng/mL of IL-

29 in an HCV replicon system at looked at 3, 12 and 24 hour time points. 

Marcello showed in a dataset of 66 genes (being induced at least 2 fold in either 

IFNα or IL-29 at one or more time points); that IFNα and IL-29 induce most of 

the same genes (with no unique genes being expressed with IFNλ) but that over 

time the majority of IFNλ genes continue to increase by 24 hours whereas 

expression of IFNα genes are mainly decreased by 24 hours. Doyle57 also 

reported that IL-29 stimulates nearly identical patterns of gene expression as 

IFNα as analysed by microarray. Microarray analysis as documented in this 

thesis was initiated prior to the publication of microarray studies described 

above57,61,65. There is still a need to fully identify the antiviral effects and modes 
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of action of type III interferons by pathway expression analysis. Microarray 

analysis described in this thesis additionally investigated IL-28A versus IFNα 

and work was carried out in a HCV HuH7 parent cell line.  

Induction of similar sets of ISGs enables Interferon lambdas and IFNα to induce 

similar biological activities and functions primarily inducing an antiviral state in 

cells. 

1.5 Alternative therapies for HCV and IFN lambda as a therapy 

Chronic infection with hepatitis C virus affects 1:12 or approximately 3% of the 

world’s population and causes approximately 350,000 deaths annually46. 

Pegylated interferonα (IFNα) in combination with the nucleoside analogue 

ribavirin is the current standard of care for the treatment of patients chronically 

infected with hepatitis C (HCV). Combination therapy results in a sustained 

virological response (defined as clearance of circulating HCV RNA at six 

months post-treatment) of only ~50% of patients with HCV genotype 1 

infection82. IFNα therapy is administered parenterally and has side effects such 

as flu-like symptoms, anorexia, depression83 and myelosuppression84 that can 

be severe and often dose limiting85. In recent years, a number of new drugs 

against HCV have emerged. Direct-acting antivirals (DAAs) are specifically 

designed to inhibit viral targets, and host-targeted antivirals block host factors 

that are important for the viral lifecyle. Alternative interferons could be effective 

antiviral agents, without the side effects of IFNα. 

Direct-acting antivirals, NS3/4A protease inhibitors inhibit viral protease NS3/4A 

is required for the cleavage of downstream, nonstructural proteins, including the 

NS5A protein and the NS5B RNA-dependent RNA polymerase (RdRp). In May 

2011, NS3/4A protease inhibitors, telaprevir and boceprevir, were approved by 

the US Food and Drug Administration for the treatment of patients with chronic 

genotype 1 HCV infection. With the current DAAs there is rapid resistance due 

to rapid mutations of HCV40,41,86,87. The current DAAs are administered with 

peginterferon-alfa-2a and ribavirin to prevent resistance to the DAAs. Both 

telaprevir and boceprevir highly improve rates of SVR of HCV infected patients 

but there are limitations, designed to target genotype 1 HCV they have 

differential efficiency across the genotypes88,89,90, they are also limited by side 
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effects, rash (Telaprevir) and anaemia and pharmcokinetic properties meaning 

that they have to be taken with fatty meals every 8 hours.  

RdRp inhibitors inhibit the active site of polymerase activity, Preliminary results 

from Phase II trials reported rates of EVR >80% among patients with HCV 

genotype 1 or 4 infection who received mericitabine in combination with SOC 

PEG-IFN and RBV47; no viral rebound or resistance mutations were observed 

by week 1291. These inhibitors could be used without IFN. miR-122 inhibitors 

inhibit miR-122 which is a host liver-specific microRNA required for HCV 

replication. Miravirsen is in Phase IIa trials; and significantly reduces viral load 

after 8 weeks of therapy without significant adverse effects92 but there are 

concerns with microRNAs with off target effects. Host factor cyclophilins are 

important for viral replication, Alisporivir is in advanced clinical trials, it inhibits 

viral replication by disrupting the interaction between cyclophilin A and 

NS5A93,94. Alisporivir combined with PEG-IFN and RBV, led to an SVR in 76% 

of HCV genotype 1 infection patients compared to 55% with SOC94. 

Zymogenetics licensed lambda interferons to Novo-Nordisk and now Bristol-

Myers Squibb for viral infections including HCV. A pegylated form of IFN-λ1 (IL-

29) is currently in clinical trials for the treatment of chronic HCV infection and 

initial reports shows less severe side effects than pegylated IFNα, phase 1b 

dose-escalation study, PEG−IFN-λ1 inhibited HCV without significant systemic 

toxicity and phase 2b data showed that the highest doses of PEG−IFN-λ1, 

when combined with RBV, produced a complete EVR in 30% of patients with 

HCV genotype 1 infection, compared with 28% of the patients who received the 

SOC95,96. Clinical development: A recent press release from Bristol-Myers 

Squibb (19 April 2012) showed that peginterferon lambda-1a (Lambda) plus 

ribavirin achieved sustained virologic response rates 24 weeks post-treatment 

(SVR24) that were comparable to peginterferon alpha-2a plus ribavirin in phase 

IIb EMERGE clinical trial in 118 treatment-naïve patients chronically infected 

with genotype 2 or (HCV). There may be a role for IL-28B treatment in the 

future, four Genome Wide Association studies have highlighted the significance 

of IL-28B within the innate immune response to HCV97,98,99,100. Two protective 

SNPs were shown to be associated with a SVR to IFNα/Ribavirin in patients 

with HCV genotype 1. These were the T allele of rs8099917 and the C allele 
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of rs12979860 located 8 kilo bases (kb) and 3 kb respectively upstream of the 

IL-28B gene. In a study of rapid viral response (RVR) (undetectable HCV 

RNA at 4 weeks) rates in patients with HCV Genotype 1 and 4, of the RVRs 

100% of carriers of the protective rs12979860 C allele, and 64% of non-RVR  

individuals expressed the non-protective genotype T allele of rs8099917101.  

The potential broad roles of IFN-λs in immune function may also mean they play 

a future role in autoimmunity and cancer therapy. Type III IFNs like type I IFNs, 

may potentially be used for the treatment of other inflammatory or autoimmune 

diseases such as rheumatoid arthritis (RA), systemic lupus erythematosus 

(SLE)102, or multiple sclerosis (MS)103. IFN-λs have been shown to have potent 

antitumor activities in murine models of cancer104,105,106, highlighting potential as 

anti-cancer therapy. 

1.6 Introduction summary  

The biological significance of IFNλs remains to be fully determined. This thesis 

shows the investigation of antiviral activity of IFNλs, the similarities and 

differences between the type I and type III IFNs determined by microarray 

analysis, and the distribution of IL-28R and the significance of limited 

distribution in bone marrow assays.   
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1.7 Hypothesis 

“Current treatment of antiviral diseases with type I IFNs can be inadequate. As 

IFNλs have antiviral activity and use a different receptor and signalling 

transduction pathways to IFNα, IFNλ therapy could be useful in the 

management of viral infections.” 

1.8 Thesis Aims 

1. Investigation of the antiviral activity of IL-28A and IL-29 on a panel of 

viruses in vitro and their effects on IFN sensitive gene models. 

2. Transcriptomic analysis to determine gene activation profiles and 

signalling pathways of IL-28A and IL-29. 

3.  Investigation of IL-28R tissue expression in a panel of mouse and human 

tissues. 

4. Further investigations to support hypothesis that IFNλ therapy could be an 

alternative to IFNα. 
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Chapter 2 

2. Materials and methods 

2.1 Investigation of the antiviral activity of IL-28A and IL-29 

using antiviral and interferon sensitive gene model assays 

2.1.1 Hepatitis C comparison of antiviral activity of IFNα, IFNβ, IFNγ, IL-

28A and IL-29  

The antiviral effects of interferon lambdas were investigated in a HCV replicon 

model which comprises of a HuH7 hepatoma derived cell line stably transfected 

with an autonomously replicating subgenomic HCV RNA38. Established stable 

replicon assays for HCV genotypes 1a and 1b were used; constructs are shown 

(Figure 2.1). Later work used clones of HCV genotype 1b with an integral 

luciferase; the structure is shown (Figure 2.2) and method is described (Section 

2.1.2). 

 

 

Figure 2.1: HCV replicon structure  

HCV replicon RNA in HuH7 hepatoma cells, replicons of HCV genotypes 1a (top) and 

1b (bottom). Non structural viral (NS) proteins are expressed 5 prime (‘) and 3’ 

nontranslated regions (NTR), neo is the neomycin phosphotransferase gene used with 

G418 to select cells containing the replicon, NS2- envelope protein not present in the 

1a replicon, NS3 serine protease, NS4A and 4B cofactors of NS3, NS5A interaction 

with cellular proteins and NS5B RNA dependant RNA polymerase. 

 

HuH7 cells containing either genotype 1a107 or 1b38 replicons were cultured in: 

Dulbecco's Modified Eagle Medium (DMEM) without sodium pyruvate, 
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4500mg/L Glucose and Pyridoxine hydrochloride (HCl), supplemented with 10% 

foetal bovine serum, 1% penicillin, 100μg/mL streptomycin, 2mM L-glutamine 

(left), 1% non-essential amino acids and 500μg/mL G418 (Geneticin) (addition 

of G418 selects cells with replicon) (all reagents from Invitrogen). 96-well flat 

bottomed microtitre plate (Nunc) containing 3 x 104 cells per well were 

incubated with compounds as detailed below in a humidified incubator at 37°C 

and 5% CO2 for 72 hours. 

Serial dilutions of IFNα, IFNβ, IFNγ (PBL biomedical laboratories) IL-28A and 

IL-29 (R&Dsystems) were made up in culture medium as described above 

without the addition of G418. IFNα2a was used in all experiments and called 

IFNα. IFNα, IFNβ dilutions were optimised to 1000, 500, 250, 125, 63, 32, 16, 8, 

4, 2 international units (IU)/mL, IFNγ 2000 to 4 IU/mL, IL-28A 200ng/mL to 

4ng/mL and IL-29 1000ng/mL to 2ng/mL.  Controls were included on each plate, 

these were: no primary antibody controls, cell control wells without the addition 

of compound and in house proprietary assay controls were included as a 

negative control and positive controls respectively. IFNα, IFNβ, IFNγ, IL-28A 

and IL-29 were run in duplicate at each dilution on the plate and each plate was 

run in triplicate over 3 separate occasions to allow for variability of cell passage.  

An Enzyme-linked immunosorbent assay (ELISA) was performed on the plates 

to detect NS5A protein using murine anti-HCV NS5A primary antibody. Medium 

was aspirated followed by a PBS wash and aspirate; the cells were then fixed 

for 5 minutes in methanol (MeOH): acetone (1:1). The fixative was removed and 

further washed in PBS. This was followed by a blocking step with 2% skimmed 

milk in PBS plus 0.05% tween 20 at 37oC for 1 hour. Blocking buffer was 

removed and primary antibody, 50µL of murine anti-HCV NS5A (Virostat) was 

diluted to 0.5µg/mL in blocking buffer and added to the plate, with the exception 

of no primary antibody wells (blocking buffer only) then incubated at 37oC for 2 

hours. Primary antibody was removed and plates were washed three times with 

wash buffer, PBS plus 0.05% tween 20. 50µL of horseradish peroxidase-

conjugated secondary antibody, rabbit anti-mouse immunoglobulin G (IgG) 

(Dako) was diluted 1:1000 in blocking buffer and incubated for 1 hour at 37oC.  

Secondary antibody was then removed and plates were washed five times with 

wash buffer. The next step was to allow a colour to develop by incubating the 
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plates for 30 minutes with 50µL OPD/peroxidase substrate in urea buffer. The 

colour reaction was stopped with the addition of 25µL of 2 molar (M) sulphuric 

acid. Absorbance was then measured at 490 nanometers (nm). Cells were also 

stained with 5% carbol fuchsin to visually assess cytotoxicity. 

2.1.2 Determination of IC50 values for four luciferase HCV replicon clones 

Values for 10 x IC50 concentrations in the replicon cell lines were determined to 

normalise for the antiviral activities of proteins IFNα, IL-28A and IL-29. Four 

luciferase replicon cell lines were compared for sensitivity with IFNα, IL-28A and 

IL-29 these were: 1a1_19, 1a3II, 1b 2.2, 1b2.5, and the most sensitive selected 

to carry through into transcriptomics analysis (Section 2.2.1).  

HuH7 HCV luciferase replicon cells were routinely maintained in DMEM, 

4500mg/L Glucose and Pyridoxine HCl supplemented with 10% foetal bovine 

serum, 100IU/mL penicillin, 100µg/mL streptomycin, 2mM L-glutamine, 1% non-

essential amino acids and 500µg/mL Geneticin. (All reagents from Invitrogen). 

The assay media conditions were as above minus Geneticin. 1 x 106 cells per 

well of each of the HuH7 HCV luciferase replicon cells were cultured in 96-well 

plates at 37°C. Dilutions of IFNα, IL-28A and IL-29 were made up in triplicate. 

For each luciferase cell line, 5 x 104 confluent cells in a 50µL volume per well 

were added to compound made up to 50µL with medium. The plates were 

incubated for 18 hours at 37oC. Supernatent was removed and 25µL of Steady-

Glo (Promega) was added per well and the plate was left in the dark for 15 

minutes before reading chemiluminescence at 450nm. The half maximal 

inhibitory concentration (IC50) was defined as the concentration of each 

treatment which reduced luciferase signal by 50% compared with untreated 

cells. 
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Figure 2.2: HCV luciferase replicon clones structure  

Clones 1a1_19, 1a3II and 1b 2.2, 1b2.5 were provided by Thomas Zurcher GSK, all 

clones had a 5’ lucifease unit (luc-ubiq). Neo is the neomycin phosphotransferase gene 

used with G418 to select cells containing the replicon, NS2- envelope protein not 

present in the 1a replicon, NS3 serine protease, NS4A and 4B cofactors of NS3, NS5A 

interaction with cellular proteins and NS5B RNA dependant RNA polymerase. 

2.1.3 IL-28A, IL-29 and IFNα synergy  

1b replicon cell line assay as described (Section 2.1.1) was used as results 

showed (Section 3.1.1) that the 1b cell line was most sensitive to interferons 

tested. Serial dilutions of IL-28A 200ng/mL to 4ng/mL and IL-29 1000ng/mL to 2 

ng/mL were made up in culture medium alone and then in addition with 

0.09ng/mL of IFNα (IC50 concentration as determined in experiments performed 

(Section 2.1.1)). To determine antiviral activity in the HCV 1b replicon cell line of 

IFNα at 0.09ng/mL this was also run separately on its own as a control. Controls 

were included on each plate, these were: no primary antibody controls, cell 

control wells without the addition of compound and in house proprietary assay 

controls were included as a negative control and positive controls respectively. 

IL-28A and IL-29 were run in duplicate at each dilution on the plate and each 

plate was run in triplicate over at 2, 4, 6, 8, 16 and 24 hours. 

2.1.4 IFN sensitive gene models 6-16 and ISG56 

To investigate type III interferon modulation of interferon sensitive genes (ISGs), 

two ISG assays were used: interferon sensitive gene 56 (ISG56) and interferon 

inducible gene 6-16 (G1P3). 
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ISG56 alternatively named interferon-induced protein with tetratricopeptide 

repeats 1 (IFIT1), a 293 cell line (a continuous line of transformed human 

embryonic kidney cells) with ISG56 promoter construct was used. ISG56 is the 

most highly induced IFN sensitive gene (30-100 fold induction), the assay is 

robust over several logs of IFN concentration and response is dependent on 

intact receptor and signal transduction pathways. 293 cells were cultured in 

DMEM + 4500mg/mL glucose, 20mM L-Glutamine, Pyruvate (Sigma-Aldrich), 

10% foetal calf serum, 100 IU/mL penicillin, 100μg/mL streptomycin and 

500μg/mL G418. 5 x 104 cells were cultured for 18 hours with serial dilutions of 

IFNα, IFNβ and IFNγ, 1000, 500, 250, 125, 63, 32, 16, 8, 4, 2 IU/mL and serial 

dilutions for IL-28A ranging from 200ng/mL to 4ng/mL and IL-29 from 

1000ng/mL to 2ng/mL. Untreated cell and virus controls were also included. 

IFNs were run in duplicate and the experiment was performed in duplicate. 

Supernatants were removed and 25μL of Steady-Glo, (Promega) was added 

per well and the plate was left in the dark for 15 minutes at room temperature 

before optical density (OD) measurement at 405nm.  
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Figure 2.3: ISG56-luciferase reporter  

The ISG56-luciferase reporter assay is used to show binding to Toll-like receptor 3 

(TLR3), inducing antiviral response resulting in ISG56 induction and involving TANK-

binding kinase 1(TBK-1), interferon regulatory factor 3 (IRF3) leading to modulation of 

ISG56.   

 

Interferon, alpha-inducible protein 6 (6-16) alias IFI6; 6-16; FAM14C; G1P3; IFI-

6-16; IFI616  an interferon sensitive gene model was also used to investigate 

type III interferon activity, this cell line was maintained at GSK. Human 

glioblastoma T98G cells were transfected with a plasmid containing a gene 

coding for soluble alkaline phosphatase under control of an interferon-inducible 

promoter. The assay was set up as described above for ISG56.  

2.1.5 Hepatitis B (HBV) 

Antiviral effects of IL-28A and IL-29 compared with IFNα were investigated in 

human hepatocellular carcinoma HepG2 (2.2.15) cell line stably transfected with 
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HBV subtype ayr maintained at the Department of Medicine, Imperial College. 

HepG2 cells were cultured at 37°C in a humidified 5% CO2 atmosphere in 

Minimum Essential Medium Eagle media (MEME) supplemented with 10% 

foetal calf serum, and 50µg/mL kanamycin. Cells were subcultured once a week 

by detaching the cells with pancreatin (0.5mg/mL) followed by change of 

medium on the following day. 8 well plates containing 5 x 104 cells per well were 

incubated with IFNs in a humidified incubator at 37°C and 5% CO2 for 1 week. 

Concentrations of IFNs used were: 100, 1000 IU/mL for IFNα, 200, 2000ng/mL 

for IL-28A, 100, 1000ng/mL for IL-29 and untreated. Total DNA was extracted 

from each well using a Wizard® Genomic DNA Purification kit according to 

manufacturer’s instructions.  

(http://www.promega.com/~/media/Files/Resources/Protocols/Technical%20Ma

nuals/0/Wizard%20Genomic%20DNA%20Purification%20Kit%20Protocol.pdf.) 

Antiviral activity was detected using quantitative real-time polymerase chain 

reaction (PCR) (TaqMan®) primers (Proligo) and probes (Applied Biosystems). 

This was performed in the presence of the house-keeping gene glyceraldehyde 

3-phosphate dehydrogenase (GAPDH) and all amplifications were performed in 

quadruplicate. 

Table 2.1: Hepatitis B virus probe and primer sequences  

HBV1 Sequence 

Forward primer 5’GGACGGAAACTGCACTTGTATTC-3’ 

Reverse primer 5’GACTGAGGCCCACTCCCATAG-3’ 

Probe FAM/ TAMRA 5’ CCATCATCCTGGGCTTTCGCAAGATT-3’ 

TaqMan® probes consist of a fluorophore (e.g. 6-carboxyfluorescein, (FAM)) covalently 

attached to the 5’-end of the oligonucleotide probe and a quencher (e.g. 

tetramethylrhodamine, (TAMRA)) at the 3’-end.  

2.1.6 Real-Time PCR assay overview 

TaqMan® (Applied Biosystems) is the trademark name of the PCR-based, 

fluorogenic 5'-nuclease assay, which allows for the real-time quantitation of 

DNA/RNA, allelic discrimination and pathogen detection. This can include 
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SybrGreen and fluorogenic probes (TaqMan®). Most PCR included in the thesis 

is covered by these two assays and run on Applied Biosystems 7900 PCR 

machines, the other PCR assay described in this thesis also uses SybrGreen 

dye but run on a different proprietary PCR machine Corbett Life Science Rotor-

Gene real-time PCR machine (Corbett Life Science). 

2.1.6.1 Sybr Green 1 dye 

Sybr Green 1 dye: binds to the minor groove of DNA and is fluorescent when 

bound.  As the PCR progresses through the cycles and more PCR product is 

accumulated so more dye binds resulting in an increase in fluorescence. By 

plotting fluorescence against cycle number an amplification plot is produced 

which provides a more accurate picture of the PCR rather than measuring end 

product. To ensure the specificity of the primers, dissociation curve analysis is 

carried out on the PCR’d samples. This collects the fluorescence levels 

associated with the melting point of the PCR product already produced and it 

allows detection of non-specific priming and primers dimers in the template free 

sample.    

2.1.6.2 Fluorogenic 5’ nuclease assay (TaqMan®) 

The fluorogenic 5' nuclease assay uses a fluorogenic probe to enable the 

detection of a specific PCR product as it accumulates during PCR. The reporter 

dye is incorporated on the 5' end and the quencher on the 3' end of the probe. 

When the probe is intact, the proximity of the reporter dye to the quencher dye 

results in suppression of the reporter fluorescence. During PCR, if the target of 

interest is present, the probe specifically anneals between the forward and 

reverse primer sites. The 5´–3´ nucleolytic activity of the AmpliTaq Gold DNA 

Polymerase cleaves the probe between the reporter and the quencher only if 

the probe hybridises to the target. The probe fragments are then displaced from 

the target, and polymerisation of the strand continues. The increase in 

fluorescence signal is detected only if the target sequence is complementary to 

the probe and is amplified during PCR. Because of these requirements, any 

non-specific amplification is not detected.  
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Figure 2.4: TaqMan® Real-time PCR process  

Real time PCR process probe containing R-reporter and Q- quencher, anneals to 

target sequence, during the extension phase the reporter is detached and can be 

measure at every cycle of the PCR. Taken from http://ukgwrdweb1.ggr.co.uk/TaqMan 

2.1.6.3 Primer and probe design 

Primer sequence and where applicable probe sequences were designed using 

NCBI entrez nucleotide website:  

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide 

Primers and probe are designed to the gene of interest using Applied 

Biosystems Primer Express software.  This software has some of the necessary 

requirements for acceptable probes and primers built in. The exception to this 

was IL-28R assay was on demand assay predesigned (Applied Biosystems). 

2.1.6.4 PCR reagents 

DNA or Total RNA was prepared from the tissue or cells being investigated and 

normally added at 50ng concentration. Copy number relative changes or a 

genomic standard curve was prepared for the species being investigated. This 

allowed quantification of gene copy number. Primers were diluted to a working 

concentration of 10M, and probe to 5M. Universal PCR Master Mix (Applied 

Biosystems) was added at 2 x concentration, it contains the AmpliTaq Gold 

DNA polymerase, AmpErase® Uracil N-glycosylase (UNG), deoxynucleotide 
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triphosphates (dNTPs), Passive reference ROX, and optimised buffer 

components. AmpErase UNG is present in the mix as it can prevent the 

reamplification of carryover PCR products by removing any uracil incorporated 

into single or double stranded DNA. ROX is a passive reference dye present in 

the master mix and allows for the normalisation of amplification across wells 

due to master mix variability. 

Multiplexing allowed normalisation of the gene of interest to an endogenous 

control whose levels are assumed not to change with treatment, reducing the 

well to well template variability within the data, e.g. GAPDH, b-actin, 18S 

ribosomal RNA.   

2.1.6.5 PCR cycling parameters 

PCR cycling parameters unless stated were 40 cycles of: 

50oC for 2 minutes 

95oC for 10 minutes 

95oC for 15 seconds 

60oC for 1 minute 

 

For Sybr Green Dissociation Curve analysis one cycle is added at the end of 

run. 

95oC for 15 seconds 

60oC for 20 seconds 

95oC for 15 seconds 

2.1.6.6 Data Analysis 

Key parameter for data analysis is the Threshold cycle (Ct): this is the cycle at 

which the amplification of the gene is in the exponential phase. The baseline 

was set to ensure that signal is not discarded as noise. The standard curve was 

checked to ensure reproducibility and satisfactory linear regression. No 

Template Control (NTC) wells were viewed to assess cross contamination. The 

starting copy number of the gene in each sample was calculated from the 

standard curve by the software, and then exported into Excel (Microsoft), for 

further data analysis including normalisation to endogenous control if 

applicable. 
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Figure 2.5: TaqMan® Real-time PCR amplification plot  

Adapted from TaqMan® data plot 7900 Applied Biosystems. 

 

2.1.7 Human immunodeficiency virus (HIV)  

An established method was adapted at GSK to look at antiviral effects of IFNα, 

IFNβ, IFNγ, IL-28A and IL-29. The assay used MT4 T lymphocyte derived cells 

infected with HIV virus HXB2. MT4 cells were split 1:4 two days before required 

using phenol red indicator media (RPMI) plus 10% Hyclone foetal bovine serum 

and Penicillin/streptomycin/L-Glutamine (100units/mL,100µg/mL and 2mM 

respectively). Cells were used at a concentration of 8 x 105 per mL and 2.4 x 

106 cells were used per infection. Cells were harvested by spinning at 400g for 

5 minutes at room temperature and re-suspended in RPMI medium without 

phenol red indicator containing the supplements as above. 

MT4 cells were infected with HIV virus HXB2 at a concentration of 100 x 50% 

Tissue Culture Infectious Dose (TCID50) per million cells for one hour. IFNs 

were then added to the cells. Serial dilutions of IFNα were optimised to 400, 

200,100, 50, 25, 12, 6, 3, 1.5 IU/mL, IFNβ were optimised to 3200, 1600, 800, 

400, 200, 100, 50, 25, 12 IU/mL and serial dilutions were made for IFNγ ranging 

from 25600 to 2 IU/mL, for IL-28A from 7.68mg/mL to 4ng/mL and for IL-29 from 
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1mg/mL to 2ng/mL. IFNs were run in quadruplicate on the plate and each plate 

was run in triplicate over different days. Non infected cells were used as a cell 

control and virally infected cells with media in place of drug were run as a virus 

control. The cells were incubated for 120 hours and then treated with Dimethyl 

thiazolyl diphenyl tetrazolium salt (MTT). Plates were read between 540-590nm 

and the IC50 for IFNs calculated. 

Category 3 lab training was required in order to work with HIV virus in the GSK 

Stevenage labs; and was completed before work using HIV was initiated. 
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Figure 2.6: MT-4 cells uninfected and infected with HXB2  

An example of MT-4 cells uninfected and infected with HXB2;  

A shows normal MT-4 cells in suspension, single cells and common clumping,  

B shows HXB2 infected cells, the cells circled show one cell full of HXB2 virus and the outline of a burst cell. 
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2.1.8 Dengue fever virus  

A cell line stably expressing dengue virus replicon established in Professor 

Graham Foster’s laboratory at Queen Mary's School of Medicine and Dentistry 

was used to test the antiviral properties of type III interferons. K562 (human 

chronic myeloid leukaemia) cell line stably expressing the dengue virus replicon 

ΔCprME-PAC2A was used. 

 

Figure 2.7: Schematic showing plasmid pDENΔCprME-PAC2A  

Dengue virus type 2 infectious clone cDNA (in plasmid pDVWS601)108 containing a 

single open reading frame carrying three structural genes (C, core; prM, premembrane; 

E, envelope), seven nonstructural (NS) genes, and flanking 5' and 3' untranslated 

regions (UTR). 

2.1.8.1 Cell Culture 

Cells stably expressing dengue virus replicon RNA were generated by 

transfection with ΔCprME-PAC2A RNA and then propagation in RPMI 

containing 10% foetal bovine serum (FBS) and 3μg of puromycin (Sigma-

Aldrich) per mL. Cells were removed from puromycin selection and checked for 

replicon expression before use by indirect immunofluorescence of the dengue 

virus NS1 protein with a specific monoclonal antibody (5H5.4)109. K562 cells 

without replicon were continuously maintained in the same medium without 

puromycin53. K562.ΔCprME-PAC2A cells were grown in the presence of 0, 100, 

1,000 IU/mL for IFNα, IFNβ and IFNγ, 0, 200, 2000ng/mL, 0, 100, 1000ng/mL 

for IL-28A and IL-29 respectively for 24 hours.  

2.1.8.2 Total RNA extraction 

Total RNA extraction from suspension cell cultures was carried out using the SV 

Total RNA Isolation System (Promega). Samples were centrifuged for 5 minutes 

and culture media was removed. Cell pellets were washed with 1mL of sterile 

PBS and centrifuged for a further 5 minutes. The PBS was removed and 150µL 
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SV Lysis Buffer added to each tube. The lysates were transferred into 

RNase/DNase free 1.5mL Eppendorf tubes. Genomic DNA was sheared by 

passing the lysates through a 19-gauge blunt-ended needle four times and 

placed on ice. Lysates were stored at -80ºC until required for total RNA 

extraction. 

2.1.8.3 Total RNA extraction using the SV Columns 

Lysates were thawed and 350µL transferred to a fresh RNase/DNase free 

1.5mL Eppendorf. 700 µL of SV Dilution Buffer was added, mixed by inversion, 

and the mixture incubated at 70oC for 3 minutes. Following centrifugation at 

12,000 x g for 10 minutes, the supernatant was transferred to a sterile 1.5mL 

Eppendorf containing 400µL of 95% v/v ethanol (Sigma-Aldrich). This mixture 

was loaded onto two SV RNA Isolation Tube Assemblies which were 

centrifuged at 14,000 x g for 1 minute. Liquid in the collection tubes was 

discarded, 600µL of SV RNA Wash Solution applied to each column and the SV 

RNA Isolation Tube Assemblies centrifuged at 14,000 x g for 1 minute. The 

collection tubes were emptied and 50µL of SV DNase Incubation Mix (prepared 

from 50µL of SV Yellow Core Buffer, 5µL of SV 0.09M MgCl2 and 5µL of SV 

DNase I enzyme) applied to the surface of each column membrane. SV RNA 

Isolation Tube Assemblies were incubated at room temperature for 15 minutes 

to allow DNA digestion to proceed, after which 200µL of SV DNase Stop 

Solution was added to each column. SV RNA Isolation Tube Assemblies were 

centrifuged at 14,000 x g for 1 minute, 600µL of SV RNA Wash Solution applied 

to each column and then centrifuged again at 14,000 x g for 1 minute. Liquid in 

the collection tubes was discarded and a final wash carried out by applying 

300µL of SV RNA Wash Solution to each column and centrifuging the SV RNA 

Isolation Tube Assemblies at 14,000 x g for 2 minutes (to eliminate ethanol 

carry-over). 

The column within each SV RNA Isolation Tube Assembly was transferred to a 

fresh 1.5mL RNase/DNase free Eppendorf tube and 100µL of SV Nuclease 

Free Water applied to the membrane. Columns were incubated at room 

temperature for 1 minute and the total RNA eluted by centrifuging the 

column/tube assemblies at 14,000 x g for 1 minute. The columns were 
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discarded and eluted total RNA from replicate columns pooled prior to storage 

at -80oC until required. 

2.1.8.4 Total RNA Quantification and Quality Control 

The concentration, yield and purity of each total RNA sample was determined 

using ultraviolet (UV) spectrophotometry. The integrity of each total RNA 

sample was determined by agarose gel electrophoresis. 

2.1.8.5 Quantification Using UV Spectrophotometry 

Spectramax 190 UV Microtitre Plate Reader (Molecular Devices) was used for 

measuring UV absorbance of total RNA samples. The absorbance of each total 

RNA sample (at an appropriate dilution in Molecular Grade Water) at 260nm 

(peak nucleic acid absorbance) and 280nm (peak protein absorbance) was 

measured and the A260/A280 ratio determined to indicate the level of protein 

contamination. Total RNA samples with an A260/A280 ratio of 1.8 to 2.1 were 

considered of acceptable quality. The total RNA concentration was derived 

using the following formula: 

RNA concentration in µg/µL = ((A260 x 40*) x dilution factor)/1000 

*Where 40 = the RNA extinction coefficient 

2.1.8.6 Quality determination using agarose gel electrophoresis 

A 1% weight/volume agarose gel was prepared by melting 1g of Molecular 

Biology Grade Agarose (Sigma-Aldrich) in 100mL of 1 x Tris-borate 

Ethylenediaminetetraacetic acid (EDTA) (TBE) buffer (45mM tris-borate, 2mM 

EDTA) (Sigma-Aldrich). The melted gel was allowed to cool to approximately 

60ºC before adding 5µL of 10mg/mL ethidium bromide solution (Sigma-Aldrich) 

(final concentration of 0.5µg/mL). The gel was mixed gently by swirling, poured 

onto a gel tray (containing two gel combs) and allowed to set for 30 minutes at 

room temperature. The set gel was transferred to an electrophoresis tank (Life 

Technologies) and submerged in 1 x TBE buffer. 

Total RNA samples were prepared by mixing 5µL of each total RNA sample 

with 1µL of 6 x Gel Loading Buffer (Sigma-Aldrich) and placed on wet ice until 

required. Samples were loaded into wells within the gel and electrophoresis 
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carried out for 30-45 minutes at 100 volts. To visualise total RNA staining, the 

gel was visualised using the GeneGenius Bioimager gel documentation system 

(Syngene) and the presence of intact discrete 18S and 28S ribosomal RNA 

(rRNA) bands indicated that the total RNA was of acceptable quality. If the 

rRNA bands were not present, or appeared degraded, the total RNA was 

discarded and a fresh isolation carried out. 

2.1.8.7 QPCR 

Extracted RNAs were treated with RQ1 RNase-free DNase (Promega) to 

degrade both double stranded and single-stranded DNA, and reverse 

transcribed with Moloney murine leukemia virus (M-MLV) reverse transcriptase 

(RT) (Promega) using random decamer primers. PCR reactions were performed 

and analysed on a Rotorgene instrument (Corbett Life Science) by the use of 

custom primers and a fluorescent probe specific for dengue virus NS1 and 

housekeeping gene GAPDH was analysed in the same samples by the use of 

specific primers and QuantiTect SYBR green (QIAGEN).  

Table 2.2: Dengue virus probe and primer sequences 

 Sequences 

Gene 
Forward primer  

(5’-3’) 

Reverse primer  

(5’-3’) 

Probe /equivalent 

(5’-3’) 

Dengue virus NS1 
CTGAAGTGTGGCAGT

GGGATT 

CTTCAAAGCTAGCTTCA

GCTATCCA 

CACAGACAACGTGCAC

ACATGGACAGA 

GAPDH 
ACAGTCCATGCCATCA

CTGCC 

GCCTGCTTCACCACCTT

CTTG 
QuantiTect SYBR green 

 

Table 2.2 shows probe and primer sequences used for RT-PCR analysis to detect 

dengue virus NS1 and housekeeping gene GAPDH.  

2.1.9 Respiratory Syncytial Virus (RSV) 

A tissue culture model of chronic viral infection using an RSV virus infected 

transformed human B cell line established in Professor Graham Foster’s 

laboratory at Queen Mary's School of Medicine and Dentistry, was used to test 

the antiviral properties of type III interferons.  
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2.1.9.1 RSV cell culture 

Transformed B cells (106 in 10 mL RPMI medium) were incubated with 2 x 108 

viral particles for a total of 14 days leaving the cells undisturbed. Chronic 

infection was assessed by direct cell staining and by quantitative PCR. After 

incubation for 14 days, greater than 90% of the cells expressed RSV antigens. 

Viral RNA was detected in the supernatant. The cells were maintained in culture 

for 16 weeks and passaged every two weeks (cells split 1:3 and the media 

exchanged). Cells in six well plates at 0.5 x 106 cells per well were treated with 

IFNα, IFNβ and IFNγ at 1000 IU/mL, IL-28A at 2µg/mL, IL-29 at 1µg/mL and 

untreated to assess the effects of antiviral treatment. Plates were incubated at 

two time points: 48 hours and 96 hours.  

Total RNA was extracted and quantified as described (Section 2.1.8.2 – 6) and 

reversed transcribed using M-MLV RT (Promega). A quantitative PCR reaction 

was performed and analysed by Rotorgene (Corbett Life Science) using primers 

designed to the WSX1 RSV virus. The values obtained for RSV concentration 

were normalised against GAPDH. 

Table 2.3 Probe and primer sequences for RSV  

 Sequences 

Gene Forward primer 

(5’-3’) 

Reverse primer 

(5’-3’) 

RSV GATATGCCTATAACAAATGATCAG GATACTGATCCTGCATTGTCAC 

GAPDH ACAGTCCATGCCATCACTGCC GCCTGCTTCACCACCTTCTTG 

Table 2.3 shows probe and primer sequences used for RT-PCR analysis to detect RSV 

and housekeeping gene GAPDH.  
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2.2 Transcriptome analysis in HCV replicon cells treated with 

type I and type III IFNs 

2.2.1 Determination of IC50 values for 4 replicon clones 

Values for 10 x IC50 concentrations in the replicon cell lines were determined to 

normalise for the antiviral activities of proteins IFNα, IL-28A and IL-29. Four 

luciferase replicon cell lines were compared for sensitivity with IFNα, IL-28A and 

IL-29 these were: 1a1_19, 1a3II, 1b 2.2, 1b2.5, and the most sensitive selected 

to carry through into transcriptomics analysis. Dilutions of IFNα, IL-28A and IL-

29 were made up in triplicate. For each luciferase cell line, 5 x 104 confluent 

cells in a 50µL volume per well were added to compound made up to 50µL with 

medium. The plates were incubated for 18 hours at 37oC. Supernatent was 

removed and 25µL of Steady-Glo (Promega) was added per well and the plate 

was left in the dark for 15 minutes before reading chemiluminescence at 

450nm. The IC50 was defined as the concentration of each treatment which 

reduced luciferase signal by 50% compared with untreated cells.  

2.2.2 Cell culture and treatment 

Parental HuH7 and HuH7 HCV 1a3II luciferase replicon cells were routinely 

maintained in DMEM, 4500mg/L Glucose and Pyridoxine HCl supplemented 

with 10% foetal bovine serum, 100IU/mL penicillin, 100µg/mL streptomycin, 

2mM L-glutamine, 1% non-essential amino acids and 500µg/mL Geneticin. (All 

reagents from Invitrogen). The assay media conditions were as above minus 

Geneticin. 1 x 106 cells per well of parental HuH7 and HuH7 HCV 1a3II 

luciferase replicon cells were cultured in 6-well plates at 37°C. Four treatments 

were used: untreated, 10 x IC50 for IFNα, IL-28A and IL-29 at time points of 4, 8, 

16 and 24 hours. Each condition was performed in triplicate. Values for 10 x 

IC50 concentrations in the replicon cell lines were determined to normalise for 

the antiviral activities of proteins IFNα, IL-28A and IL-29.  

2.2.3 Isolation of RNA 

Culture media was removed and monolayers were washed with 1mL of sterile 

PBS. The PBS was removed and 1mL TRIzol® Reagent (Invitrogen) 4°C added 

to each well. Cells were scraped with a sterile tissue culture scraper, the lysates 
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were collected in RNAse/DNAse free 1.5mL Eppendorf tubes. Genomic DNA 

was sheared by passing the lysates through a 19-gauge blunt-ended needle 

four times and placed on ice. Lysates were stored at -80ºC until required for 

total RNA extraction. Total RNA was isolated the SV Total RNA Isolation 

System (Promega) and stored at -80°C until required (description of method 

section 2.1.8.2). 

All RNA samples were analysed by the Agilent Bioanalyzer 2100 Lab-On-A-

Chip Nano 6000 chip (Section 2.2.6.6) to determine the integrity and by UV 

spectrometer; OD A260 and A280 for accurate RNA concentration determination. 

2.2.4 Quantitative QPCR pre-screen 

Real-time PCR was performed on the RNAs isolated above and data analysed 

to assess the suitability of the time points and concentrations of the IFNs in the 

assay before running the samples of full genome Affymetrix chips. Applied 

Biosystems assay on demand were used for interferon sensitive genes: 

Interferon-induced GTP-binding protein (IFIT1), myxovirus (influenza virus) 

resistance 1 (MX1), 2'-5'-oligoadenylate synthetase 1 (OAS1) and an interferon 

inducible gene 6-16 (G1P3). Five micrograms of each RNA sample was reverse 

transcribed to cDNA using SuperScript II first strand cDNA synthesis (Life 

Technologies). The relative levels of target transcripts were measured using an 

ABI PRISM 7900 Sequence Detector System (Applied Biosystems). Serial 

dilutions of human genomic DNA (Novagen) were used to generate a standard 

curve for quantitation. GAPDH and b-actin were used as housekeeping genes 

to normalise the data. Real-time data was collected and analysed using 

Sequence Detection System (SDS) software Version 2.0 (Applied Biosystems).  

2.2.5 Affymetrix GeneChips® Expression analysis 

Affymetrix analysis was carried out using RNA from PBS, IL-28A, IL-29 and 

IFNα treated samples in both replicon and parental HuH7 cells at time points of 

8,16 and 24 hours with each in triplicate (72 chips in total). Analysis of 12 

additional chips was performed at the 4 hour time point in parental cells only 

due to lack of RNA in the 4 hour time point in the replicon cells, making a total 

of 84 chips in the experiment. 
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The samples were hybridised to the Human Genome HG-U133plus2 GeneChip 

(Affymetrix). This array enables the analysis of the expression levels of over 

47,000 transcripts and variants including 38,500 well characterised genes. 

Further information on the Human Genome HG-U133plus2 GeneChip is 

available at: (http://www.affymetrix.com/products/arrays/specific/hgu133.affx). 

Briefly the standard expression GeneChips® possess 22 different 25mer oligo 

probes (termed a ‘probe set’) for each gene represented, which are distributed 

at locations remote to each other. The probe sets are 3’-biased and designed to 

give the optimal balance between sensitivity and specificity for the target gene. 

To evaluate any potential for non-specific hybridisation, each ‘perfect match’ 

(PM) probe feature has an adjacent paired ‘mismatch’ (MM) probe feature. The 

MM probe differs in sequence from the PM probe by a single nucleotide, located 

in the centre of the 25mer. The MM features serve as controls that allow the 

subtraction of non-specific hybridisation signals (non-specific hybridisation for 

the PM and MM features should be roughly equivalent) from the PM signal to 

derive the true signal for a particular gene. 
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Figure 2.8: Standard eukaryotic gene expression assay  

Labelled cRNA targets derived from mRNA of an experimental sample are hybridised 

to nucleic acid probes attached to the quartz wafer chip. By monitoring the amount of 

label associated with each DNA location, it is possible to infer the relative abundance of 

each RNA species represented (Affymetrix image library - http://affymetrix.com). 

 

Reverse transcription, second-strand synthesis, and probe generation were 

accomplished by standard Affymetrix protocols full details can be found at: 

(http://www.affymetrix.com/support/technical/manual/expression_manual.affx) 

and are described briefly below. 
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2.2.6 Preparation and Quality Control of cRNA Targets for Hybridisation to 

GeneChips® 

2.2.6.1 Preparation Double-Stranded cDNA 

Double-stranded cDNA (ds cDNA) was prepared from total RNA using the One-

Cycle cDNA Synthesis Kit (900431, Affymetrix).  

The following was added to a 0.75mL RNase/DNase free Eppendorf tube:  

 2µL of T7-(dT)24 primer (100pmol/µL), 5µg of total RNA in 9µL of 

Nuclease Free Water.  

The tubes were then centrifuged briefly and incubated at 70C for 10 minutes to 

allow total RNA denaturation and primer hybridisation. The tubes were cooled to 

4C and the following added to each reaction: 

 4µL of 5 x First Strand cDNA Buffer, 2µL 0.1M DTT, 1µL 10mM dNTP 

mix and 2µL Superscript II RT (200U/µL)  

The tubes were centrifuged briefly and incubated at 42C for 1 hour (to allow 

first strand synthesis to proceed). The tubes were cooled to 4C and the 

following added to each reaction: 

 91µL of nuclease free water, 30µL of 5 x Second Strand cDNA Buffer, 

3µL 10mM dNTP mix, 1µL of E. coli DNA ligase (10U/µL), 4µL of E. coli 

DNA polymerase (10U/µL) and 1µL of E. coli RNase H (2U/µL)  

The tubes were centrifuged briefly and incubated at 16C for 2 hours (to allow 

second strand synthesis to proceed). Two microlitres of T4 DNA polymerase 

was added to each reaction, the tubes centrifuged briefly and incubated at 16C 

for 15 minutes. To stop the reaction, 10µL 0.5M EDTA (Fluka) was added to 

each tube and the contents mixed well.  

2.2.6.2 ds cDNA cleanup 

ds cDNA was cleaned-up using the ds cDNA Cleanup Kit (Affymetrix). 600μl of 

Binding Buffer was added to each ds cDNA sample, mixed thoroughly and 

applied to a ds cDNA Spin Column Assembly. The Assemblies were centrifuged 

at 14,000 x g for 1 minute and the flow through discarded. The columns were 
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transferred to a fresh 2mL collection tube, 750µL of cDNA Wash Buffer added 

and the tube assemblies centrifuged at 14,000 x g for 1 minute. The flow 

through was discarded and the tube assemblies centrifuged at 14,000 x g for 5 

minutes with the caps open (to completely dry the columns). The columns were 

transferred to a 1.5mL Collection Tube and 25µL of cDNA Elution Buffer applied 

to the membrane. The columns were centrifuged at 14,000 x g for 1 minute and 

the purified ds cDNA stored at -20C until required for the in vitro transcription 

(IVT) reaction. 

2.2.6.3 IVT reaction 

Biotinylated complementary RNA (cRNA) targets were generated from ds cDNA 

using the IVT Labelling Kit (Affymetrix). The following were added to a 0.75mL 

RNase/DNase free Eppendorf tube: 

 20µL of ds cDNA sample, 4µL of 10 x IVT Labelling Buffer, 12µL of IVT 

Labelling NTP Mix and 4µL of IVT Labelling Enzyme Mix.  

The tubes were centrifuged briefly and incubated at 37C for 16 hours to allow 

IVT to proceed. The cRNA was either stored at -20ºC until required, or 

subjected to cRNA Cleanup. 

2.2.6.4 cRNA Cleanup 

Biotinylated-cRNA was cleaned-up using the cRNA Cleanup Kit (Affymetrix). To 

each cRNA sample, 55µL of Nuclease Free Water and 5µL of 3M Sodium 

Acetate (Fluka) were added. 350L of cRNA Binding Buffer and 250µL 100% 

ethanol were added to each cRNA sample, mixed thoroughly and applied to a 

cRNA Spin Column Assembly. The assemblies were centrifuged at 14,000 x g 

for 15 seconds. The flow through was reapplied to the columns and assemblies 

centrifuged again at 14,000 x g for 15 seconds. The columns were transferred 

to a fresh 2mL collection tube, 500µL of cRNA Wash Buffer added and the tube 

assemblies centrifuged at 14,000 x g for 15 seconds and the flow through 

discarded. This step was repeated, followed by a final centrifugation at 14,000 x 

g for 1 minute. The columns were transferred to a 1.5mL Collection Tube and 

50µL of Nuclease Free Water applied to the membrane. The columns were 

incubated at room temperature for 1 minute and centrifuged at 14,000 x g for 1 
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minute to elute the cRNA. The purified cRNA was stored at -20C until required 

for the quantification and fragmentation. 

2.2.6.5 Quantification of IVT Products and Fragmentation 

UV spectrophotometry was used to determine the cRNA concentration and 

yield. For cRNA samples where sufficient yield and concentration had been 

achieved, fragmentation was carried out using the Fragmentation Buffer as 

supplied with the cRNA Cleanup Kit. An appropriate dilution of each cRNA 

sample in Nuclease Free Water was prepared. The absorbance at A260 and A280 

was measured and the adjusted cRNA yield calculated using the following 

formula: 

Adjusted cRNA yield (µg) = A – (B x C) 

Where: 

A = Total yield of cRNA according to A260 result (µg). 

B = Starting amount of total RNA used in cDNA reaction (µg). 

C = Fraction of cDNA used in IVT reaction. 

For example: Start with 5µg of total RNA, use 80% (or 4µg) in the IVT, 

and the cRNA yield is 45µg. The calculation would therefore be: 

45 - (5 x 0.8) = 41µg 

To determine the adjusted concentration, the adjusted yield (in µg) is divided by 

the total volume (µL). A volume of each cRNA sample containing 15µg (based 

on the adjusted concentration) was transferred to a 0.75mL RNase/DNase free 

Eppendorf tube. 0.25µL of Fragmentation Buffer was added for each 1µL of 

cRNA and the tube incubated at 94C for 35 minutes and then cooled to 4C for 

5 minutes using a DNA Engine Tetrad PCR machine (Bio-Rad). Fragmented 

cRNA samples were stored at -20C until required. To determine whether cRNA 

fragmentation was successful, the size of cRNA and fragmented cRNA samples 

were assessed using the RNA 6000 Nano Labchip Kit (Agilent).  

2.2.6.6 Gel preparation and RNA 6000 Nano Labchip Priming 

RNA 6000 Nano Gel Matrix was prepared by placing 550µL into a Spin Filter 

and centrifuging at 1,500 x g for 10 minutes at room temperature. On the day of 

use, a 65µL aliquot of filtered RNA 6000 Nano Gel Matrix was transferred to a 

RNase free Eppendorf tube and 1µL of RNA Nano 6000 Dye Concentrate 
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added (Gel-Dye Matrix). The Gel-Dye Matrix was mixed by vortexing and 

centrifuged at 13,000 x g for 10 minutes at room temperature. A RNA 6000 

Nano Labchip was placed on the Priming Station (Agilent) and 9µL of Gel-Dye 

Matrix carefully pipetted into the ‘priming well’. The plunger of the Priming 

Station was positioned at the 1mL graduation and the manifold closed firmly 

over the Labchip. The plunger was firmly depressed until it was held by the clip 

and priming allowed to proceed for 30 seconds, after which the clip was 

released. The plunger allowed to recoil for 5 seconds and then pulled back to 

the 1mL graduation. The Priming Station was opened, the Labchip removed 

and 9µL of Gel-Dye Matrix carefully pipetted into each of the three ‘gel’ wells. 

Labchip priming was completed by adding 5µL of RNA 6000 Nano Marker 

Buffer to wells 1-12 and the ‘ladder’ well. 

2.2.6.7 Sample Preparation, Loading and Running the Labchip 

Frozen cRNA and fragmented cRNA samples were thawed and diluted 1/10 

with Molecular Biology Grade Water. Two microlitres of RNA Nano 6000 Ladder 

and each diluted cRNA/fragmented cRNA sample was transferred to a 0.75mL 

RNase free Eppendorf tube and heat denatured at 70ºC for 2 minutes. The 

tubes were immediately chilled on ice and the contents centrifuged to the 

bottom at 14,000 x g. One microlitre of heat denatured sample was added to 

each sample well; the same volume of heat denatured RNA Nano 6000 Ladder 

was added to the ‘ladder’ well. The RNA Nano 6000 Labchip was placed on the 

Labchip Vortexer (IKA) and vortexed for 1 minute at 2,400 rpm. The loaded 

Labchip was placed into the 2100 Bioanalyzer (Agilent). The ‘Nano 6000 Assay’ 

protocol was selected within 2100 Expert Software version B.02.02 (Agilent) 

and electrophoresis commenced. Once the electrophoresis was complete the 

results file was saved and the size profiles of each cRNA and respective 

fragmented cRNA sample inspected visually. 
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Figure 2.9: Representative RNA 6000 Nano Labchip cRNA Quality 

Assessment Images 

A Gel View and B Electropherogram View L = RNA 6000 Nano Marker Ladder. 1-6 = 

cRNA samples. 7-12 = fragmented cRNA samples. 

 

2.2.6.8  Hybridisation of cRNA Targets to Affymetrix GeneChips® and 

Scanning 

Fragmented cRNA targets were hybridised to GeneChips® using the GeneChip® 

Hybridisation, Wash and Stain Kit (Affymetrix). All reagents were used as 

supplied. The required number of GeneChips® were allowed to equilibrate to 

room temperature for a minimum of 1 hour. The GeneChip® was filled with 

250µl Pre-Hybridisation Buffer. GeneChips® were placed in a rotisserie rack and 

incubated at 45C for a minimum of 10 minutes with rotation (~60rpm) in a 

GeneChip® Incubator (Affymetrix). 

While pre-hybridisation proceeded, hybridisation cocktails were prepared. 

Reagents (Table 2.4) were added to a 1.5mL RNase/DNase free Eppendorf 

tube. The hybridisation cocktails were incubated at 99ºC for 5 minutes followed 
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by 45ºC for 5 minutes using a DNA Engine Tetrad PCR machine (Bio-Rad). 

Tubes were centrifuged at 14,000 x g for 10 minutes to remove particulates and 

stored at room temperature just prior to hybridisation. 

Table 2.4: Reagents and Volumes for Hybridisation Cocktail Preparation 

Reagent Human Genome HG-

U133plus2 GeneChip
®
 

Final Concentration 

Fragmented cRNA 15µg 0.05µg/µL 

Control Oligo B2 5µL 50pM 

20 x Hyb Controls 15µL 1.5, 5, 25 and 100pM spikes 

DMSO 30µL  

2 x Hyb Mix 150µL 1 x 

Nuclease Free 

Water 
Up to 300µL  

 

GeneChips® were removed from the incubator and the Pre-Hybridisation Buffer 

removed. 200µL hybridisation cocktail was applied to the GeneChip®. 

GeneChips® were placed in a rotisserie rack and incubated at 45C for 16 hours 

with rotation (~60rpm) in a GeneChip® Incubator (Affymetrix). 

2.2.6.9 Washing and Staining of Affymetrix GeneChips® 

GeneChips® were removed from the incubator and the hybridisation cocktail 

removed. The GeneChip® was filled with 250µL Wash Buffer A.  For each 

GeneChip® to be stained, 600µL of Staining Cocktail 1, 600µL of Staining 

Cocktail 2 and 800µL of Array Holder Buffer were dispensed into 1.5mL 

Eppendorf tubes on the fluidic station. The Experimental details and barcode for 

each GeneChip® were entered in Experiment Manager within Affymetrix 

Microarray Suite (MAS). To commence staining and washing, GeneChips® were 

loaded into cassette holders on the appropriate Fluidics Station 450. When the 

wash protocol was completed, the GeneChip® was removed for scanning.  
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2.2.6.10  Scanning of Affymetrix GeneChips®, Primary Analysis and 

Quality Assessment 

To scan the GeneChips®, Scanner Control within MAS was opened and the 

‘autoloader’ function selected. Stained GeneChips were loaded onto the 

autoloader of a GeneChip® Scanner 3000 (Affymetrix) and scanning 

commenced by clicking ‘start scan’ within Scanner Control. The GeneChips® 

were automatically scanned, producing a .dat file. GeneChip® .dat files that 

were of acceptable visual quality were analysed using the ‘batch analysis 

function’ within GeneChipA® operating software (GCOS) to generate .chp, .cel 

and .rpt files. Hybridisation quality was assessed by reviewing the metrics 

generated within the .rpt file and the quality assessed according to the 

thresholds (Table 2.5). 

Table 2.5: GeneChip® hybridisation quality control metrics  

Quality Indicator Metric Description 

Background values Average Background Values range  20-100 intensity units 

Background values Raw Q value Overall indication electrical noise  

Hybridisation controls 

BioB (1.5pM final) 

BioC (5pM final) 

BioD (25pM final) 

Cre (100pM final) 

Prokaryotic gene spikes. BioB equates to 

1:100,000 copies and is at the limit of 

assay sensitivity. BioB should be called 

‘present’ in 50% of arrays. BioC, D and 

Cre should always be called present. 

Internal control genes 
Beta-actin 

GAPDH 

Used to assess input RNA quality. Ratio 

3’:5’ ratio should be <3 for at least one 

gene.  

Percent present %P 

The number of probe sets called ‘present’ 

expressed as a percentage of the total 

probe sets on the GeneChip
®
.  

Scaling and 

normalisation factors 
SF 

Indicates the factor used to normalise the 

array to the Target Intensity Signal.  
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2.2.6.11 Downstream Analysis of Transcriptomic Data 

To undertake comparison analyses of different treatment conditions, the 

normalised .chp file for GeneChips® of acceptable quality (as defined in Table 

2.5) were imported into Rosetta Resolver® Version 6.0 (Merck Sharpe Dohme). 

Rosetta Resolver® is an integrated microarray data repository system that 

enables the storage, annotation and statistical analysis of GeneChip® 

experiments110. Upon import of .chp files Rosetta Resolver® associates 

individual probe set intensities with gene annotations. To analyse the data, 

Rosetta Resolver® uses a proprietary error model that is specific to the 

GeneChip® type being analysed111. The concept of the error model is to account 

for experimental error without the need to perform large numbers of replicate 

experiments. The error model is an empirical intensity-based method for 

obtaining a conservative estimate of the signal variability within a small replicate 

data set. To determine the average signal, and whether a particular probe set is 

significantly expressed above background (absolute analysis), Rosetta 

Resolver® computes the average PM minus MM value for the each probe pair. 

As part of this analysis the error model is used to define the variability of each 

probe set intensity. Significance of expression is determined by comparing the 

average signal of each probe set to the average signal of negative controls 

within the GeneChip®. Probe sets where the error-normalised difference in 

signal is significantly different are called as present (or significantly expressed). 

To undertake comparative analysis between control (‘baseline’) and treatment 

(‘test’), replicate arrays are defined for any number of groups and the 

‘RatioBuild’ function used. The RatioBuild function automatically performs 

comparisons between all pairs of baseline and test groups and produces a 

consensus result for ratio of change (relative to baseline) and significance of 

change. During the course of this analysis, a global normalisation is applied to 

all replicate GeneChips® and ratio of change computed from the group mean 

intensity for each probe set. To determine the significance of change, the error 

of the ratio of change is computed by combining the modelled error of individual 

probe sets and the variability of the actual replicates signals. With increasing 

numbers of experimental replicates, the relative contribution that the modelled 

error makes to the analysis decreases. The analysed data can then be exported 

by using the ‘TrendSet’ function within Rosetta Resolver®. The user defines all 
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comparisons within the data set and selects thresholds for ratio of change and 

significance (P-value). An arbitrary threshold can also be set for the number of 

comparisons in which the ratio of change and significance thresholds must be 

met. This data can then be exported to Excel or as tab-delimited files for 

downstream data analysis. 

The complexity of the data generated by microarray experiments necessitates 

the use of bioinformatics tools to aid interpretation and help confer biological 

meaning. To this end, transcriptional data exported from Rosetta Resolver® was 

analysed using biological theme analysis tools. This provides a high level 

overview of the functional classes of genes and pathways significantly 

overrepresented within a data set.  

Two alternative methods, GeneGo MetaCore™ pathways analysis software 

(http://www.genego.com/metacore.php) and Ingenuity Pathway Analysis (IPA) 

(Ingenuity Inc.) (Version 2.1), were used.  

IPA segregates groups of genes within the query set into networks defined by 

known interactions amassed from the literature112. In addition, biological themes 

are conferred to the networks by again utilising a modified version of the Fisher 

exact. IPA uses proprietary ‘function terms’ to assign overrepresented gene 

categories within the gene list. IPA (and GeneGo) are able to identify canonical 

pathways that are significantly regulated within the data113. Ingenuity Pathway 

Analysis Base (IPKB) has a knowledge base of ~1.4 million findings. 

Expression data sets containing gene identifiers (Entrez Gene ID) and their 

corresponding expression values with a cut off p-value of 95% or higher and 

fold changes were uploaded into IPKB or GeneGo. The genes identified as 

differentially expressed were included in the analysis and utilised to search for 

biological networks.  
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2.3 Distribution of type III interferon receptor in a panel of 

mouse and human tissues –genomic analysis 

2.3.1 TaqMan® quantative PCR for IL-28R RNA detection in mouse 

Total cellular RNA was extracted using the SV RNA Isolation kit (Promega), 

(Section 2.1.8.2-6). Using the Bioanalyser RNA 6000 Nano Chip (Agilent), the 

integrity of the RNA samples was assessed. 1µg of total RNA was reverse 

transcribed (RT) using the Superscript™ First-Strand Synthesis System for 

Reverse Transcription RT-PCR (Invitrogen). Three tissue replicates of 10ng/µL 

cDNA per tissue were pooled and then used in triplicate for TaqMan® analysis.  

IL-28R specific RNA levels were quantified using an ABI Prism 7900 sequence 

detector (Applied Biosystems). RT-PCR was performed using mastermix (1x) 

and IL-28R assay on demand, Mm00558035_m1 (Applied Biosystems): 18S 

ribosomal RNA used as the endogenous control in a multiplex reaction, RT 

reactions were incubated for 30 minutes at 50oC followed by the activation of 

Taq polymerase at 95oC for five minutes. After cooling for two minutes, 40 

cycles of PCR were performed with cycling conditions of 15 seconds at 95oC, 

40 seconds at 50oC and 30 seconds at 72oC. A relative standard curve using 

known standards of genomic human DNA was run in parallel and real-time 

amplification signals were analysed using SDS software (version 1.71 Applied 

Biosystems).  

2.3.2 Gene Logic human tissue microarray screen 

The BioExpress Human Atlas Suite (Gene Logic Inc), comprising of 2695 

normal human samples belonging to 101 tissue types profiled114 using human 

U133A & B chips (Affymetrix)115,114,116 was used to look at gene expression of 

IL-28R, IL-10R and IFNAR1. 

2.3.3 Human inflammatory cell microarray screen 

A GSK proprietary panel of mRNA from human primary cells was used to 

investigate IL-28R expression using microarray technology, developed by GSK. 

The panel included peripheral blood mononuclear cells (PBMCs), plasmacytoid 

dendritic cells (pDC), myeloid dendritic cells (mDC), alveolar macrophages, 

macrophages, mast cells, B cells, CD4+ T cells and CD8+ T cells, (unstimulated 
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and stimulated). The Affymetrix human HG-U133-Plus 2 chips were used to 

profile expression data on mRNA extracted from these cells, IL-28R (TIG45563) 

data is shown from this screen.  

2.3.4 Isolation & treatment of cells for human inflammatory cell microarray 

screen 

pDC and mDCs (>95%), CD4+ T cells, CD8+ T cells and CD4+ CD25+ 

regulatory T cells were isolated from PBMCs (three donors); separated using 

Accuspin Histopaque-1077 columns (Sigma-Aldrich) and purified using 

magnetically labelled beads (Miltenyi Biotec). pDCs and mDCs were 

magnetically labelled with BDCA-4 and BDCA-1 microbeads respectively. 

Untouched CD4+ T cells were prepared by magnetic depletion of other cells 

within PBMC using antibodies to CD8, CD11b, CD16, CD19, CD36, CD56. In a 

second step naїve CD4+ T cells were isolated from CD4+ T cells by depletion of 

CD45RO+ T cells (>90% CD4+ CD45RA+ T cells). Isolated CD8+ T cells are 

depleted of CD8+CD56+cells. Non-CD8+ T cells are indirectly magnetically 

labelled by using a cocktail of biotin-conjugated antibodies (CD4, CD15, CD16, 

CD19, CD34, CD36, CD56, CD123, TCR γ/δ, and CD235a), and the CD8+ T 

Cell MicroBead cocktail. Isolation of highly pure CD8+ T cells was achieved by 

depletion of magnetically labelled cells. CD4+CD25+ regulatory T cells were 

isolated by indirectly magnetically labelling non-CD4+ cells (by using a cocktail 

of biotin-conjugated antibodies against CD8, CD14, CD16, CD19, CD36, CD56, 

CD123, TCR γ/δ, and CD235a (glycophorin A)). In a second step CD4+CD25+ 

regulatory T cells are directly labelled with CD25 MicroBeads and isolated by 

positive selection from CD4+ T cells. Primary tonsillar B cells from three donors 

(>98%) were isolated by negative selection, non-B cells were labelled (CD2, 

CD14, CD16, CD36, CD43, CD235a). Macrophages derived from monocytes 

were prepared from PBMCs (three donors), separated using Accuspin 

Histopaque-1077 columns and purified using positive selection CD14 beads. 

Cells were resuspended in RPMI, 10% foetal calf serum, penicillin/streptomycin 

+L-glutamine and 100ng/mL Macrophage colony-stimulating factor (M-CSF) and 

incubated for four days to differentiate into macrophages. Mast cells were 

derived from cord blood mononuclear cells (AllCells), cells were cultured in 

Iscove’s modified Dulbecco’s medium (Invitrogen), supplemented with 5% foetal 
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bovine serum, 1% penicillin/streptomycin, human stem cell factor (100ng/mL), 

human IL-6 (50ng/mL) and IL-10 (10ng/mL) for 14 weeks.  

Cells were treated with a wide range of inflammatory stimuli. pDCs and mDCs 

were untreated. B cells were unstimulated or stimulated with CD40 ligand or 

anti B cell receptor (anti-IgM) co-stimulation assay at four time points; 0, 24, 48 

and 72 hours. Macrophages were cultured with vehicle alone, TNF (10ng/mL), 

LPS (10ng/mL), immune complex (IgG coated beads) and cytomix (TNF 

(10ng/mL), LPS (10ng/mL) and IFNγ (10ng/mL)) for 2, 6 and 24 hours. T cells 

treatments were CD4+ and CD8+ cells resting; 1, 6 and 24 hours post anti-

CD3/CD28. Mast cells were primed for 6 days with human IL-4 (10ng/mL) and 

human myeloma IgE, lambda (1µg/mL) / human myeloma IgE, kappa (1µg/mL), 

cells were triggered for 1 hour with anti-IgE (1.5µg/mL), control with no 

triggering.  

2.3.5 Human tissues and whole blood 

Human tissue and whole blood samples were collected from anonymised 

donors. Ethics committee approval was provided and all patients gave informed 

consent.  

2.4 Distribution of type III interferon receptor in a panel of 

mouse and human tissues, protein expression analysis 

2.4.1 Immunohistochemistry overview 

Immunohistochemistry (IHC) is a powerful investigative tool used to detect 

presence and location of antigens (e.g. proteins) in cells of a tissue (histo) 

section using antibodies specific for the antigen of choice. Antigen : antibody 

interaction is visualised using chromogenic detection; where enzyme 

conjugated antibody cleaves substrate resulting in coloured product at location 

of target protein, or fluorescent detection using fluorophore conjugation to 

specific antibody. In optimising IHC protocols, several stages need 

consideration and optimisation; these include antigen retrieval, blocking, 

primary antibody choice and incubation temperature and time, direct labelling or 

indirect labelling, choice of secondary antibody and detection method enzyme, 

substrate. Dual staining where multiple primary antibodies are used needs 
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further consideration, care needs to be taken to ensure compatibility of methods 

so both primary antibodies can be visualised. 

 

 

 

Figure 2.10: Avidin-Biotin Complex (ABC) method  

Diagram representation of immunohistochemistry using ABC method - adapted from 

Dako IHC Staining methods Fifth Edition. 

2.4.2 Immunohistochemical staining - IL-28R single stain in mouse and 

human 

IL-28R protein expression in a selected panel of mouse and human tissues was 

determined by immunohistochemistry. Optimal staining parameters for IL-28R 

were initially worked up in mouse spleen using two IL-28R antibodies 

(Capralogics and Abcam). Frozen tissues were evaluated first and then adapted 

for use in paraffin fixed tissues (formalin fixed for human). Experiments were 

designed to determine the optimal dilutions that yielded specific positive 

immunohistochemical staining with minimal non-specific background staining.  

The following conditions were optimised: dilution range of 4µg/mL to 0.4µg/mL, 

+/- antigen retrieval, +/- additional avidin/biotin blocking steps, +/- copper 

sulphate to enhance staining. Preliminary experiments to optimise rat IL-28R 

antibody (Capralogics) in mouse spleen showed non-specific staining so only 

IL-28R antibody (Abcam) was evaluated further. Immunohistochemistry method 
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was developed using IL-28R goat anti-mouse polyclonal antibody (Abcam) 

(amino acid residues corresponding to 44-72 of N-terminus of mouse CRF-2-12 

(IL-28R) protein: LPGLGSPPNVT YFVTYQSYIK TGWRPVEH. Tissue sections 

were de-waxed in xylene (Sigma-Aldrich) for 5 minutes and rehydrated in 

industrial methylated sprit (IMS) (Sigma-Aldrich) to distilled water, 2 x 5 

minutes. Antigen retrieval was carried out using a low pH buffer; slides were 

microwaved (Antigen retrieval programme, Milestone Mega TT microwave 

(Analytix)) in 1500mL of diluted antigen unmasking solution (Vector 

Laboratories). Slides were washed in water and mounted into sequenza 

cassettes and slide racks (Thermo Shandon), then rinsed in TBS* buffer for 5 

minutes. Peroxidases were blocked with peroxidase blocking solution (Dako) to 

block endogenous peroxidises for 10 minutes. Non-specific binding of protein 

was blocked using normal rabbit serum (Dako) (diluted 1:5 TBS) for 10 minutes, 

followed by a rinse in TBS for 5 minutes and then avidin and biotin blocks 

(Vector) (4 drops per mL of TBS) for 15 minutes with a TBS wash in between. 

Slides were incubated with IL-28R antibody at 0.8µg/mL diluted in TBS for 1 

hour at room temperature followed by a 5 minute TBS wash. Slides were 

incubated for 30 minutes with biotinylated rabbit anti-goat secondary antibody 

(Dako) at 13µg/mL TBS and then washed with TBS for 5 minutes. Slides were 

developed using streptavidin horseradish peroxidise (HRP) and 3, 3‐

diaminobenzidine tetrahydrochloride (DAB) (Dako). Staining was enhanced 

using 4% Copper Sulphate (Sigma-Aldrich) (diluted in distilled water) for 5 

minutes, washed in TBS for 5 minutes and then counterstained in Mayers 

haematoxylin (Sigma-Aldrich) for 5 minutes. Slides were ‘blued’ in running tap 

water and taken through IMS and xylene washed before being cover slipped 

using Entellen® mounting medium (Merck Sharpe and Dohme). A negative 

control goat IgG and a negative control (no antibody) for assessing the 

biological system were performed for every tissue. 

* TBS Tris Buffered Solution 50mM Tris, 0.15M NaCl, pH 7.4. (Dako). 

2.4.3 Immunohistochemical staining- IL-28R dual stain in mouse 

IL-28R dual staining in mouse tissues was additionally performed with mouse 

and rat monoclonal antibodies for macrophage identification; 1) Mac387 

(ab22506 Abcam) which recognises the L1 or Calprotectin molecule expressed 
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by granulocytes, monocytes and by tissue macrophages and 2) F4/80 (ab6640 

Abcam) which is expressed on a wide range of mature tissue macrophages 

including Kupffer cells, Langerhans and macrophages located in cords and 

marginal zone of the spleen. Macrophages are white blood cells derived from 

monocytes. Macrophages have a phagocytic role, secrete cytokines and are 

involved in antigen processing and presentation to other cells. OX-62a dendritic 

cell antibody (ab36444 Abcam) and CD79a b cell marker antibody (Dako 7050) 

were also used during the optimisation of dual staining protocol but not carried 

through as the methods for antigen retrieval for OX-62 and IL-28R antibodies 

were not compatible. All antibodies above were optimised as a single assay and 

then evaluated for compatibility as a dual assay with IL-28R. 

IL-28R dual staining in mouse tissues was performed with 5µg/mL Mac387 

(Abcam) and 10μg/mL F4/80 (Abcam), mouse and rat monoclonal antibodies for 

macrophage identification.  

Tissue sections were de-waxed in xylene for 5 minutes and rehydrated in 

industrial methylated spirit (IMS) to distilled water, 2 x 5 minutes. Antigen 

retrieval was carried out using a low pH buffer; slides were microwaved 

(Antigen retrieval programme, Milestone Mega TT microwave (Analytix,)) in 

1500mL of diluted (1:10 TBS) antigen unmasking solution (Vector). Slides were 

washed in water and mounted into sequenza cassettes and slide racks (Thermo 

Shandon), then rinsed in TBS buffer for 5 minutes. Peroxidases were blocked 

with peroxidase blocking solution (Dako) to block endogenous peroxidises for 

10 minutes. Non-specific binding of protein was blocked using normal rabbit 

serum (Dako) (diluted 1:5 TBS) for 10 minutes, followed by a rinse in TBS for 5 

minutes and then avidin and biotin blocks (Vector) (4 drops per mL of TBS) for 

15 minutes with a TBS wash in between.  Slides were incubated with IL-28R 

antibody at 0.8µg/mL diluted in TBS for 1 hour at room temperature followed by 

a 5 minute TBS wash. Slides were incubated for 30 minutes with biotinylated 

rabbit anti-goat secondary antibody (Dako) at 13µg/mL TBS and then washed 

with TBS for 5 minutes. Slides were developed using streptavidin horseradish 

peroxidase (HRP) and 3, 3‐diaminobenzidine tetrahydrochloride (DAB) (Dako). 

Staining was enhanced using 4% Copper Sulphate (Sigma-Aldrich) (diluted in 

distilled water) for 5 minutes.  
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Sections were incubated for 1 hour with the primary antibody MAC387 (5µg/µL 

Mouse tissue 1µg/µL Human tissue) or F4/80 10µg/mL at room temperature. 

Slides were incubated for 30 minutes with biotinylated rabbit anti-rat secondary 

antibody (Dako) at 13µg/mL. The sections were then developed using either 

VECTASTAIN® ABC-Alkaline Phosphatase (AP) reagent and Vector Red 

(Vector Laboratories) for MAC387 or HRP followed by VECTASTAIN® ABC-

Very Intense Purple® (VIP) (Vector Laboratories) F4/80, and counter-stained 

with either haematoxylin (Sigma-Aldrich) or methyl green (Vector Laboratories). 

Slides were taken through IMS and xylene washed before being cover slipped 

using mount with glycergel mounting medium (Dako).  A matched isotype 

control goat IgG for IL-28R comparison and rat IgG2b for MAC387/F4/80 

comparison and a negative control (no antibody) for assessing the biological 

system were performed for every tissue. 

2.4.4 Toluidine blue histochemical stain in mouse 

To identify mast cells toluidine blue was used on a section of mouse uterus and 

compared to serial sections stained with IL-28R antibody and a goat IgG isotype 

matched control. Mast cells are connective tissue cells with cytoplasm filled with 

granules comprising predominantly of histamine and heparin. Tissues 

containing glycosaminoglycans (GAGs) e.g. heparin GAGs, can be stained with 

basic (cationic) dye, toludine blue. This results in mast cells displaying a 

purple/violet ‘metachromatic’ colour and blue background staining. Toluidine 

blue dye structure is shown below. 

 

Figure 2.11: Structure of toluidine blue 

5µm paraffin sections were dewaxed using xylene and rehydrated in IMS and 

then distilled water. A toluidine blue working solution was made fresh (1g 

toluidine blue and 100ml 70% alcohol, mixed 1:10 with a 1% sodium chloride 

solution (0.5g sodium chloride and 50mL distilled water pH adjusted to 2-2.5 

using glacial acetic acid) (all reagents Sigma-Aldrich). Sections were stained in 

toluidine blue working solution for 3 minutes. Washed 3 times in distilled water 
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and then dehydrated quickly in 95% ethanol and then 100% ethanol. The 

sections were then cleared in xylene and cover slipped using Entellen® 

mounting medium (Merck, Sharp and Dohme). 

2.4.5 Flow Cytometric Analysis for tissue IL-28R determination 

Mouse tissues: spleen, liver, heart, brain, kidney were homogenised using 

Covaris focused acoustic system (Kbioscience). IL-28R antibody (Abcam) was 

biotinylated with an ImmunoProbe Biotinylation kit (Sigma-Aldrich) according to 

manufacturer’s instructions: 

http://www.sigmaaldrich.com/etc/medialib/docs/Sigma/Bulletin/bk101bul.Par.00

01.File.tmp/bk101bul.pdf 

Biotinylated IL-28R was then added to streptavadin phycoerythrin conjugate 

(R&D systems) and then incubated with tissue homogenate (~5 x 106/mL) for 15 

minutes at room temperature. Goat IgG antibody was used as a negative 

control. Cell pellets were suspended in CellWash (Becton Dickinson), 

centrifuged at 2100rpm for 3 minutes, supernatant decanted and this process 

was repeated until visibly clear of red blood cells. Labelled cells were analysed 

on a FACSCalibur flow cytometer (Becton Dickinson). A homogeneous 

population of cells was gated and analysed using FlowJo Version 4.5.4 software 

(Tree Star). 

2.5 Bone marrow assays 

2.5.1 Murine bone marrow in vitro assay 

This work was carried out in collaboration with David Brott, AstraZeneca, US all 

cell work was completed at AstraZeneca, US. Methods were adapted from 

those described by Brott & Pognan (2009)117, briefly: 

Cell lines & Cultures: M1 cell line (ATCC TIB-192) derived from Mus muscululs 

spontaneous myeloid leukemia with the cell type being myeloblast was used to 

evaluate myelotoxicity potential.  M1 cells were maintained by splitting cultures 

twice a week to 1-2 x 105 cells/mL in RPMI-1640 (Sigma Aldrich) and 10% 

foetal bovine serum (Sigma Aldrich).  

The HCD57 epo-dependent erythroleukemia cell line was kindly provided by Dr. 

Spiveck at Johns Hopkins University.  HCD57 cells were maintained by splitting 
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cultures twice a week to 2-5 x 105 cells/mL in Iscove’s Modified Dulbecco’s 

Medium containing 30% foetal bovine serum, L-glutamine (Sigma Aldrich), 

10pg/mL mouse recombinant erythropoietin (R&D Systems) and 20µM beta-

mercaptoethanol (Qiagen). 

Assay: M1 and HCD57 cells were seeded at 5,000 cell per well in 50µL 

media.  Compounds were dissolved and diluted in appropriate media with 50µL 

added to the appropriate wells.  Mouse IFNα (R&D systems (PBL)) and mouse 

IL-28A and IL-28B (R&D systems). IFNα, IL-28A and IL-28B were run in 

triplicate and over duplicate plates, serial dilutions were prepared 0.002, 0.004, 

0.008, 0.16, 0.031, 0.063, 0.125, 0.25, 0.5, 1 and 2µM. Assays were cultured at 

37oC and 5% CO2 for approximately 72 hours.  After adding 100µL of CellTiter 

Glo (Promega) to each well, relative luminescence was determined and IC50 

calculated. 

2.5.2 Human bone marrow  

2.5.2.1 Gene expression  

CD34+ hematopoietic cell samples were obtained from five human umbilical 

cords (purity >60%) and three bone marrow donors (Lonza, purity >95%) - 

CD3+ T-cells, CD19+ B-cells, CD11c+ DCs and CD14+ 

monocytes/macrophage cells were purified from peripheral blood from four 

normal donors using magnetic beads protocols for separation (Miltenyi Biotec, 

purity >80%). Cells were analysed for IFNAR1 (Hs01066118_m1 FAM labelled 

assay on demand (Applied biosystems)) and IL-28R (Hs00417120_m1 FAM 

labelled assay on demand (Applied biosystems)), IL-10RB (Hs00175123_m1 

FAM labelled assay on demand (Applied biosystems)) gene expression using 

TaqMan® using b-actin house keeper gene (Hs00417120_m1 VIC labelled 

assay on demand (Applied biosystems)). 

2.5.2.2 Human bone marrow CD34+ cell assays 

A colony forming cell (CFC) assay was used to determine the ability of 

hematopoietic progenitor bone marrow CD34+ cells to proliferate and 

differentiate into erythroid or myeloid colonies after two weeks in a 

methylcellulose-based semi-solid media (StemCell Technologies) in response 
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to cytokine stimulation. 0, 0.03125, 0.0625, 0.125µM of IFNα (Sigma-Aldrich), 

IL-28A (R&D), IL-28B (R&D) and IL-29 (R&D) were added in duplicate. Colony 

forming unit burst forming unit-erythroid (CFU-BFU), CFU-granulocyte, 

macrophage (CFU-GM) and CFU-granulocyte, erythrocyte, macrophage, 

megakaryocyte (GEMM) colonies formed were enumerated and characterised 

according to their unique morphology. 

 

For proliferation assays, 50,000 CD34+ cells (Lonza) were plated in 200 µL/well 

of culture medium: DMEM, 10% Hyclone foetal bovine serum and 

Penicillin/streptomycin, L-Glutamine (100units/mL, 100µg/mL and 2mM 

respectively). Cells were stimulated with TPO (100ng/mL, Preprotech), IL-3 

(60ng/mL, Preprotech), SCF (100ng/mL, Preprotech), Flt3 ligand (300ng/mL, 

Preprotech) and incubated with serial dilutions of 0.03125, 0.0625, 0.125µM of 

IFNα (Sigma-Aldrich), IL-28A (R&D), IL-28B (R&D) and IL-29 (R&D) in triplicate 

for 72 hours. After three days of culture 40µL of Cell Titer 96 aqueous solution 

(Promega) was added to each well to measure the number of viable cells after 

proliferation. After 2 hours of incubation at 37oC- the absorbance was 

measured at 490nm on a 680 microplate reader (BioRad). Stimulated samples 

exposed to IFN-α or IFN-

untreated controls. 

2.5.2.3 Human tissues and whole blood 

Human tissue and whole blood samples were collected from anonymised 

donors. Ethics committee approval was provided and all patients gave informed 

consent. San Raffaele Telethon Institute for Gene Therapy Biologic, specimens 

from umbilical cord blood and peripheral blood of healthy donors were collected 

for research purpose and used on informed consent in agreement with the rules 

defined by approved protocols TIGET01 and TIGET PERIBLOOD. 
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Chapter 3  

3.  Investigation of the antiviral activity of IL-28A 
and IL-29 using antiviral and interferon 
sensitive gene model assays 

3.1 Introduction 

At the time of this work being undertaken IL-29 and IL-28A had been shown to 

have antiviral properties in an EMCV model3 and sensitivity was shown with 

interferon sensitive gene assays2,3, but other antiviral activity against a virus or 

using a model/replicon had not been published. 

 The aim of this chapter was to evaluate the in vitro antiviral activity of IL-28A 

and IL-29 across a range of viruses spanning a cross section of viruses from all 

seven classes classified using Baltimore classification118 compararing their 

antiviral properties with each other and with IFNα primarily. IL-28B was not 

tested in these assays as at the time it was not commercially available and was 

deemed to be similar to IL-28A (96% amino acid identity). 

This Chapter looked aty the antiviral activity of IL-28A and IL-29 in the viruses 

below, class II and III were not covered: 

I: dsDNA viruses: Papillomaviridae – Human Papillomarvirus HPV-16 and 

HPV31 

II: ssDNA viruses (+)sense DNA (e.g. Parvoviruses) 

III: dsRNA viruses (e.g. Reoviruses) 

IV: (+)ssRNA viruses (+)sense RNA: Flaviviridae - Dengue and Hepatitis C, 

Togaviridae –Semliki Forest virus) 

V: (−)ssRNA viruses (−)sense RNA: Paramyxoviridae - Respiratory Syncytical 

virus. 

VI: ssRNA-RT viruses (+)sense RNA: Retroviridae - Human Immunodeficiency 

virus 

VII: dsDNA-RT viruses: Hepadnaviridae - Hepatitis B 

 

Effects of IL-28A and IL-29 were also investigated in IFN sensitive gene models 

IFIT6-16 and ISG-56. 
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IFNλs were tested in a wide range of viral cell assays and models in order to 

elicit interferon lambdas antiviral properties. IFNα was used as a comparison in 

all assays with IFNα and IFNγ being additional comparisons in the; 1a and 1b 

HCV replicon assays, HIV, dengue fever replicon assay, RSV assay and ISG 

assays. Positive sense RNA virus HCV (flavivirus) using replicon models were 

tested as a priority: as type I interferons have antiviral properties it was likely 

that interferon lambdas may also have been shown to reduce levels of HCV 

mRNA in the HCV replicon system. Human liver cells HuH7 containing either 

genotype 1a or 1b HCV replicons were tested in an ELISA assay, and later 

experiments were performed using two genotype 1a and two genotype 1b 

replicon luciferase clones in a common parent HuH7 cell (developed by Thomas 

Zurcher, GSK). HCV is responsive to IFNα, IFNβ and IFNγ119  but at the time 

this project was initiated (August 2004) there was no published work to show 

the role of type III interferons in HCV. 

Pegylated IFNα, in combination with ribavirin, is the current standard of care for 

the treatment of patients chronically infected with HCV; it results in a sustained 

virological response (defined as clearance of circulating HCV RNA at 6 months 

post-treatment) in ~50% of patients10. However, combination therapy remains 

less effective against infections caused by HCV genotype 1 which constitute 

~75% of all HCV infections in the developed world10. New interventions are 

therefore required to address this unmet medical need and the discovery of 

interferon lambdas presents the opportunity to explore their roles in antiviral 

therapy.  

Dengue was tested as a virus in the same family as HCV, flavivirus, this assay, 

like the hepatitis C assay, used a replicon model. A further range of viruses 

were investigated: DNA virus HBV (Hepadnaviridae), negative sense RNA virus 

Respiratory Synctial Virus (RSV) and the RNA transcribing virus Human 

Immunodeficiency Virus (HIV) (Retroviridae) to give a broad spectrum of 

different families of viruses. Other viruses: Influenza and Human papillomavirus 

HPV-16, HPV-31, Semliki Forest virus were considered and even work 

instigated but are not reported here.  

Additional work in this chapter: IFNα and IL-28A, IL-29 were evaluated together 

in a HCV 1a replicon assay over a time course of 2, 4 ,6, 8, 16 and 24 hours, in 
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order to determine any synergistic effects of the type I interferons with type III 

interferons. 

Effects of IL-28A and IL-29 were also investigated in IFN sensitive gene models 

IFIT6-16 and ISG-56 to see if interferon lambdas had a role in regulation of 

interferon sensitive genes. ISG56 is the most highly induced IFN sensitive gene 

(30-100 fold induction), and is stimulated by both IFNα and IFNβ, but not IFNγ, 

IFIT6-16 is also induced by type I IFNs but the role of IFNλ modulation was 

unknown.  

3.1.1 Hepatitis C comparison of antiviral activity of IFNα, IFNβ, IFNγ and 

interferon lambdas IL-28A and IL-29 in two replicon assays 

HuH7 cells containing either genotype 1a or 1b HCV replicons were stained 

with 5% carbol fuchsin to visually assess cytotoxicity. Cytotoxicity based on cell 

shape was not seen with any of the interferons tested at any concentration.  

The half maximal inhibitory concentration (IC50) values for all interferons were 

determined as the concentration of each treatment which showed 50% inhibition 

of the NS5A ELISA signal in HCV 1a and 1b replicon cell lines compared with 

untreated cells. IC50 values were determined for positive control, IFNα, IFNβ, 

IFNγ, IL-28A and IL-29. % inhibition values were determined according to the 

following formula: 

% Inhibition = 100 - [100x (mean concentration – mean cell control) / 

(mean cell control – mean no primary antibody control)] 

IC50 values for replicon assays of genotype 1b were determined; IFNα 18 

IU/mL, IFNβ 50 IU/mL, IFNγ 54 IU/mL, IL-28A 160ng/mL and IL-29 11ng/mL. 

IC50 values for genotype 1a replicon assays were as follows; IFNα 86 IU/mL, 

IFNβ 89 IU/mL, IFNγ 148 IU/mL, IL-28A 201ng/mL and IL-29 19ng/mL. 

For comparison purposes IU/mL values for IFNα, IFNβ and IFNγ were 

converted to pg/mL using the following formula: 

[1 x 109 ÷ (Lot specific activity)] x (Lot Concentration (IU/mL) = pg/mL) 

IC50 values for IFNα, IFNβ, IFNγ, IL-28A and IL-29 all in ng/mL units are shown 

below (Table 3.1) and determined from IC50 plots (Figure 3.1). 
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Table 3.1 IC50 values for IL-29, IL-28A, IFNα, IFNβ and IFNγ 

 IL-29  

Mean (SD) 

IL-28A 

 Mean (SD) 

IFNα  

Mean (SD) 

IFNβ  

Mean (SD) 

IFNγ 

Mean (SD) 

1a 20 (1.6) 202 (20.1) 0.4 (0.03) 7.3 (0.8) 7.2 (0.6) 

1b 11 (2.0) 161 (9.4) 0.09 (0.01) 5 (0.4) 6 (0.7) 

Table 3.1 shows IC50 values in ng/mL determined in two HCV replicon cell lines 1a and 

1b for: IL-29, IL-28A, IFNα, IFNβ and IFNγ. 

 

The results show that all IFNs had some potency against the HCV 1a and 1b 

replicons in vitro. IL-29 was shown to be ~10 x more potent than IL-28A against 

both replicons, IL-29 was shown to be in the same level of magnitude with 

potency in both cell lines comparable to IFNβ and IFNγ. IFNα was shown to 

approximately 100 times more potent than IL-29 and ~1000 times more potent 

than IL-28A. 
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Figure 3.1: IC50 plots for IFNα, IFNβ, IFNγ, IL-28A and IL-29  

Figure 3.1 shows IC50 plots for IFNα, IFNβ, IFNγ, IL-28A and IL-29 in HCV replicon cell assays 1a and 1b, values in ng/mL (Graffit V5). 
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3.1.2 Determination of IC50 values for luciferase HCV replicon clones 

Four luciferase HCV replicon clones 1a1_19, 1a3II and 1b 2.2, 1b2.5 were 

tested for their antiviral sensitivity to IL-28A and IL-29 compared to IFNα. These 

cells were all developed in the same parental HuH7 cell line. Log dose plots are 

shown (Figure 3.2) for clones 1a3II and 1b2.5 showing good curve fits for IL-29 

and IFNα and due to solubility issues the best fit for IL-28A is shown (Figure 

3.2).   
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Figure 3.2: IC50 plots for HCV replicon assays 1a3II and 1b2.5 

Figure 3.2: IC50 plots are shown for luciferase assays: A 1a3II and B 1b2.5 for IL-28A, 

IL-29 ng/mL and IFNα IU/mL (PRISM). 

All four HCV replicon clone assays 1a1_19, 1a3II and 1b 2.2, 1b2.5 were 

assessed and the IC50 values in ng/mL with IL-28A, IL-29 and IFNα shown 

(Table 3.2). 
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Table 3.2: IC50 values for IL-28A, IL-29 and IFNα in HCV replicon clones 

Clone 
IL-28A IC50 (ng/mL) 

Mean (SD) 

IL-29 IC50 (ng/mL) 

Mean (SD) 

IFNα IC50 (ng/mL) 

Mean (SD) 

1a 1_19 46.6 (2.9) 0.7 (0.08) 0.005 (0.0002) 

1a3II 21.8 (5.6) 0.55 (0.03) 0.003 (0.0001) 

1b 2.2 118 (16.5) 2.7 (0.17) 0.004 (0.0002) 

1b2.5 227 (19.9) 4.6 (0.31) 0.01 (0.003) 

Mean IC50 values for IL-28A, IL-29 and IFNα are shown for HCV replicon clones 

1a1_19, 1a3II and 1b 2.2, 1b2.5 in ng/mL. 

Replicon clone 1a3II was most sensitive to all tested interferons having the 

lowest IC50 value for IL-28A, IL-29 and IFNα. IC50 values for replicon clone 1a3II 

were used for later gene expression work (Section 4.2). 

3.1.3 IL-29 and IFNα synergy 

IFNα and IL-28A, IL-29 were evaluated together in a HCV 1b replicon assay 

over a time course of 2, 4 ,6, 8 16 and 24 hours, in order to determine any 

synergistic effects of the type I interferons with type III interferons. Serial 

dilutions of IL-28A 200ng/mL to 4ng/mL and IL-29 1000ng/mL to 2 ng/mL were 

tested with and without 0.09ng/mL of IFNα (IC50 concentration as determined in 

experiments performed (Section 2.1.1). To confirm baseline expression of IFNα 

at 0.09ng/ml this was also run separately. Results showed an additive effect 

only, not a synergistic effect. This was seen across all doses with IL-28A and IL-

29 at all tested time points. 

3.1.4 IFN sensitive gene models 6-16 and ISG56 

To investigate type III interferon modulation of interferon sensitive genes (ISGs), 

two ISG assays were used; interferon sensitive gene 56 (ISG56) and interferon 

inducible gene 6-16 (G1P3). 
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Half maximal effective concentration (EC50), representing the concentration of a 

compound where 50% of its maximal effect is observed, were determined for 

both ISG models.  

Table 3.3: EC50 values for IFNs in ISG models 

IFN  ISG56 EC50  

Mean (SD) 

6-16 EC50  

Mean (SD) 

IL-28A  439ng/mL (34.7) >2.0µg/mL  

IL-29  115ng/mL (18.4) >1.0µg/mL  

IFNα  50 IU/mL (3.2) 

(0.16ng/mL)  

48 IU/mL (4.6) 

(0.15ng/mL)  

IFNβ  121 IU/mL (14.3) 120 IU/mL (0.89) 

IFNγ  350 IU/mL (22.0) 500 IU/mL (35.7) 

 

In the Interferon sensitive assays, sensitivity was shown in the ISG56 assay to 

IL-28A and IL-29 but not in the 6-16 interferon sensitive gene model. These 

experiments suggested different modes of action for IL-28A and IL-29 

compared with IFNα, however Affymetrix gene expression data suggested that 

there was expression of the IFIT6-16, alias G1P3 with IFNα, IL-28A and IL-29 

treatment at 8, 16 and 24 hour time points.  

Data below is taken from replicon data (Section 4.5.2, Table 4.8). 

Table 3.4: Subsection of Table 4.7 to highlight G1P3 expression 

Symbol IFNα IL-29 IL-28A 

 8h 16h 24h 8h 16h 24h 8h 16h 24h 

G1P3 3.2 82.1 42.1 6.7 100 96.5 4.5 100 43 

 

This suggests that whilst the 6-16 cell model is not sensitive to type III IFNs, 

there is gene expression of 6-16 shown with Affymetrix and TaqMan® 

technology.  
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3.1.5 Hepatitis B (HBV) 

Antiviral effects of IL-28A and IL-29 compared with IFNα were investigated in 

human hepatocellular carcinoma HepG2.2.15 cell line stably transfected with 

HBV subtype ayr.  Concentrations of IFNs tested were: IFNα: 100, 1,000 ng/mL, 

IL-28A: 200, 2000 ng/mL and IL-29: 100, 1000 ng/mL, compared to untreated. 

Preliminary results shown (Figure 3.3) indicated that both IL-29 and IL-28A 

have antiviral properties in the HepG2 (2.2.15) cells stably transfected with HBV 

subtype ayr. These results show that IFNα has a greater antiviral effect of IL-29 

on HBV compared to IL-28A. Initial data shows IL-29 having a greater antiviral 

effect on HBV than IL-28A.  A publication by Robek51 superseded further work 

on HBV. 

 

 

Figure 3.3: Antiviral effects of IL-28A and IL-29 with HBV  

Antiviral effects of IL-28A and IL-29 compared with IFNα were investigated in human 

hepatocellular carcinoma HepG2.2.15 cell line stably transfected with HBV subtype ayr. 

IL-28A and IL-29 tested at low and high doses (200, 2000 and 100, 1000 ng/ml 

respectively) and compared with IFNα low and high dose dose (100, 1000 IU/ml). Copy 

number was determined from the mean of the 4 replicate samples using the following 

equation: 10-1(Ct-40)/3.5 where 10-1 is the inverse log, Ct is cycle threshold, 40 is 

number of total cycles and 3.5 is PCR efficiency.  
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3.1.6 Human immunodeficiency virus (HIV) 

IFNα, IFNβ, IFNγ have been shown to have antiviral properties against HIV120, 

and are used as positive controls and as comparisons to investigate the antiviral 

effects of IL-28A and IL-29 with HIV.  

Data (Figure 3.4) shows: a strong antiviral effect of IFNα and IFNβ on HIV, IFNγ 

has a weak antiviral effect and IL-28A and IL-29 have no antiviral effects even 

at very high concentrations. IC50 values were determined as: IFNα 2.8 IU/mL, 

IFNβ 43.2 IU/mL and IFNγ 140 IU/mL. There were no effects even at a high 

dose of 7.68mg/mL for IL-28A and 1mg/mL for IL-29; interestingly no toxicity 

was observed at these doses. In this cell system, type III lambdas do not seem 

to have an antiviral effect even at very high doses.  
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Figure 3.4: Antiviral effects of IL-28A and IL-29 against HIV virus HXB2  

The antiviral effects of IFNα, IFNβ, IFNγ, IL-28A and IL-29 in and MT4 cell line infected with HIV virus HXB2. The graph shows % viability of MT4 

cells against log dose concentration of IFNα, IFNβ, IFNγ, IL-28A and IL-29. (PRISM).  
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3.1.7 Dengue Fever Virus assay 

K562 myeloid/erythroid (human chronic myeloid leukaemia) cell line stably 

expressing the dengue virus replicon ΔCprME-PAC2A was used to test the 

antiviral properties of type III interferons, compared to IFNα, IFNβ and IFNγ. 

100, 1,000 IU/mL of IFNα, IFNβ and IFNγ, 200, 2000ng/mL of IL-28A and 100, 

1000ng/mL of IL-29 were tested against dengue virus replicon with an 

incubation of 24 hours. Results show for all IFNs at all concentrations that 

dengue virus RNA levels do not significantly vary from that of untreated cells, 

results shown (Figure 3.5). 

 

Figure 3.5: Dengue virus replicon  

Dengue RNA levels were measured by quantitative PCR and normalised to GAPDH 

mRNA levels; the data demonstrated no significant difference between untreated 

sample (negative control) and IFNα, IFNβ, IFNγ, IL-28A and IL-29 treatment, indicating 

that Interferon lambdas IL-29 and IL-28A do not have antiviral effects in a dengue 

replicon system. 

3.1.8 Respiratory Syncytial Virus (RSV) 

Transformed B cells infected with RSV WSX1 viral particles were treated with 

IFNα, IFNβ and IFNγ at 1000 IU/mL, IL-28A at 2µg/mL, IL-29 at 1µg/mL and 

untreated to assess the effects of antiviral treatment. Cells were incubated at 

two time points: 48 hours and 96 hours.  

No test samples differed significantly from control, suggesting that IFNs have no 

effect on the RSV WSX1 model. The negative results above may also be 
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explained by RSV RNA being very sensitive to manipulation and the cell model 

being quite difficult to maintain stable RSV levels.  

3.1.9 Discussion 

It has been shown that type I IFNs (IFNα, IFNβ, IFNЄ, IFNκ and IFNω in 

humans) are modulators of antiviral defence by many groups121,122,123, Type II 

IFN, IFNγ is also an important mediator of antiviral defence but not as its 

primary function which is stimulation of the immune responses124,125. The role of 

type III interferons, IL-28A, IL-28B and IL-29 in antiviral disease is still not fully 

known. 

HCV- in vitro assays show that IL-28A and IL-29 have a direct antiviral effect 

against HCV in the HCV genotype 1a and 1b replicon systems (ELISA).  

Despite having similar molecular weights (IFNα 19.5kDa, IL-29 21.9kDa and IL-

28A 20.8kDa) IFNα was shown to be ~100 fold more potent against HCV 

replicons 1a and 1b than IL-29 and 1000 fold more potent than IL-28A, 

suggesting that IFNα is more potent against HCV than type III IFNs. IFNβ and 

IFNγ showed similar potency to IL-29 in both 1a and 1b replicon assays and IL-

29 was shown to be ~10 times more potent in both assays than IL-28A. 

Replicon 1b assay was more sensitive to all IFNs tested; IFNα, IFNβ, IFNγ, IL-

29 and IL-28A.  

With an alternative luciferase replicon assay model for HCV 1a replicon clones, 

1a 1_19, 1a3II and 1b replicon clones 1b 2.2 and 1b2.5, similar results were 

shown with comparison of IFNα to IL-28A and IL-29 as with the HCV genotype 

1a and 1b replicon systems (ELISA). IFNα was shown to be ~100 fold more 

potent than IL-29 (1000 fold in 1b 2.2) and over 1000 fold more potent than IL-

28A. IFNα showed similar IC50 values in all the four replicon assays but IL-28A 

and IL-29 were ~10 times more potent against the 1a replicons than the 1b 

replicons which may show a difference in mode of antiviral action against the 

HCV sequence. Replicon clone 1a3II was shown to be most sensitive to IFNα, 

IL-28A and IL-29 and chosen for further investigation of pathway analysis (gene 

chip experiments). Robek51 demonstrated that IL-29 and IL-28A inhibits 

replication of subgenomic and full-length HCV replicons in HuH7 cells and this 

was also shown later by Doyle57 and Marcello61.  
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Due to IL-28A and IL-29 using a different receptor (IL-28R rather than IFNR1), 

IL-28A and IL-29 were tested in the HCV 1b replicon assay to determine any 

synergistic effects of the type I and type III interferons together. Results 

described only showed an additive effect not a synergistic effect, this was 

observed at all time points 2, 4, 6, 8, 16 and 24 hours. An additive effect though 

could show that IL-29 when used with IFNα could be good as a dual therapy as 

opposed to IFNα alone as the results demonstrate greater potency against HCV 

with both IFNa and IL-29 together. These results were confirmed by Marcello et 

al in 2006, his group also saw an additive effect not a synergistic effect of IL-

2961.  

Two interferon sensitive gene assays ISG56 and 6-16 were tested with IL-29 

and IL-28A and compared to IFNα, IFNβ and IFNγ. In the ISG56 assay (Human 

Embryonic Kidney 293 cells (HEK cells)) IL-28A and IL-29 were shown to be 

~1000 times less potent for activation of the ISG promoter in this model than 

IFNα and interestingly significantly less sensitive at modulation of ISG56 than 

IFNβ and IFNγ. In the HCV replicon assays IL-29 showed similar antiviral 

protective effects as IFNβ and IFNγ. IL-28A has been shown to have ~10 times 

less antiviral effect in the replicon assays than IL-29 but in the ISG56 assay, IL-

29 and IL-28A showed EC50 values in the same magnitude. In the interferon 

sensitive assays, sensitivity was shown in the ISG56 assay with IL-28A and IL-

29 but not in the 6-16 assay. It was initially thought the ISG experiments 

described above suggest different modes of action for IL-28A and IL-29 

compared with IFNα, but results later (Chapters 5 and 6) showed IL-28R had 

limited receptor distribution, and difference seen in reporter activity might be 

due to restricted receptor expression. Interferon lambdas have also been shown 

to induce expression of 2’5-OAS2 and MxA126 by other groups Kotenko et al and 

Brand et al. 

All cells described in Chapter 3 were tested by TaqMan® for presence of IL-28R 

gene, Human T98G cells (glioblastoma multiforma tumor cells) (6-16 assay 

cells) did not show signal for IL-28R.  

Initial data in a human HepG2 cell line stably transfected with HBV subtype ayr 

showed that both IL-29 and IL-28A had antiviral effects against HBV but 

significantly lower in antiviral activity than IFNα. The antiviral effect of IL-28A 
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compared to IL-29 was significantly lower. HBV data was consistent with data 

from Robek51, where IL-29 was shown to inhibit HBV replication in a murine 

model (HBV-Met cells). However, a later study suggested that the antiviral 

activity of type III IFNs against HBV may be limited in human cells; Kotenko et 

al found limited antiviral properties with IL-29 in human hepatoma cells stably 

transfected with HBV subtype adwR9127. 

No antiviral effects were observed with IL-28A or IL-29 in HIV, RSV assays or 

against the dengue replicon system. The presence of IL-28 receptor gene 

expression was confirmed by TaqMan® real-time PCR in these systems, 

implying that the specific type III receptor could be present, so an obvious lack 

of receptor is unlikely to be the reason for the lack antiviral response in these 

systems. There was no cytotoxicity observed with the type III IFNs in the HIV 

assays at concentrations of IL-28A and IL-29 up to 7.68mg/mL and 1mg/mL 

respectively. This initially was of great interest as IL-28A and IL-29 not having 

any antiviral activity against HIV in vitro could have indicated that the lambdas 

were functionally different to IFNα. To date limited studies have described the 

effects of IFN-λ on HIV-1 replication and disparate results were reported, the 

effect of interferon lambdas remains controversial. Hou et al demonstrated 

inhibition of HIV-1 replication in macrophages by IL-29 and IL-28A128, with Liu et 

al showing that IL-29 inhibition of HIV in macrophages is via the JAK-STAT 

pathway129. Another study showed pretreatment of uninfected PBMCs or CD4+ 

T-cell lines with IFN-λ improved the expression of HIV-1 receptor and co-

receptors that increase viral binding and replication130 and in July 2012 Tian et 

al demonstrated IL-28A and IL-29 treatment induced an antiviral state in 

cultured primary T-cells, suppressing HIV-1 integration whereas in vivo IL-29 

showed limited in vivo repression of viral production in CD4+ T cells131. 

It is possible to speculate that the IFN signal transduction pathway with type I, II 

and III IFNs is blocked in the dengue virus replicon system. Jones et al showed 

that IFNα in the same dengue replicon system had no antiviral effect and that 

dengue virus specifically inhibits IFNα signalling by the down-regulation of 

STAT2 expression53
. Whilst HCV is very sensitive to the antiviral cascade 

induced by IFNα, in contrast, the related viruses West Nile virus (WNV) and 



  Chapter 3         

Page 92 of 183 

 

Japanese encephalitis virus are resistant to IFNα therapy. WNV has been 

shown to block the IFN signal transduction pathway132.  

Results from the RSV assay showed no differences between IFNα, IL-28A, IL-

29 compared with negative control, suggesting that IFNs have no effect on the 

RSV WSX1 model. The negative results above may also be explained by RSV 

RNA being very sensitive to manipulation and the cell model being quite difficult 

to maintain stable RSV levels. There are also reports to show that RSV inhibits 

IFNα signalling, IFNγ production and type III interferon expression133. 

The antiviral effects in other viral systems have been demonstrated for the 

IFNλs both in vitro and in vivo: IL-28A and IL-29 in an in vivo poxvirus infection 

model55, IL-29 reduced influenza A titre in vitro134, IL-28A and IL-29 in an in vitro 

murine CMV system56, IL-29 had antiviral effects against herpes simplex virus 

(HSV-1) in vitro comparable to that of IFNα135, IFNλs have antiviral effects in 

vivo and not in vitro with HSV-2136 highlighting the possibility that the majority of 

IFNλs antiviral effects against HSV may involve immune modulation. Taken 

together, these studies supported the value of studying IL-28A and IL-29 as a 

possible therapeutic approach to viral disease. Whilst there have been several 

studies looking at the antiviral properties of IFNλs in RNA viruses there is a gap 

in research on the effects of IFNλs with DNA viruses. 
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Chapter 4  

4. Transcriptome analysis in parent HuH7 cells 
and HCV replicon cells treated with type I and 
type III IFNs 

4.1 Introduction 

Type III interferons (IFNs) are a newly identified class of cytokines with antiviral 

activity(1,2). It is not yet clear how the function of these cytokines differs from the 

type I IFNs. This chapter therefore sets out to investigate how the pattern of 

gene induction by type III IFNs (IL-28A and IL-29) differs from that of type I and 

whether type III IFNs might have a superior therapeutic profile. IFNs protect 

cells from viral infection, directly by inducing interferon sensitive genes (ISGs) 

such as 2’, 5’-oligoadenylate synthetase 1 (2’, 5’-OAS) and myxovirus 

resistance-A (MxA) and intracellular genes and, indirectly, by inducing major 

histocompatibility complex (MHC) class I antigen expression on and activation 

of antigen-presenting cells, by stimulating dendritic cell maturation and 

activating macrophages and natural killer cells.  

IFNλs were initially shown to activate both STAT1 and STAT2 and the 

downstream signalling pathways including interferon sensitive gene complex 

ISGF3 and ISRE13 , similar to those activated by IFNα and IFNβ. However the 

mechanisms of IFNλs still need to be fully elucidated.  

The objectives of this chapter were to:  

1) identify which genes are regulated by type III IFNs  

2) to see how this profile differs from type I IFNs and  

3) to see the effect of IFNs on human hepatoma cell line HuH7 HCV replicon 

cells compared with parental HuH7 cells.  

By comparing the transcriptional levels of genes in tissues or cells from ‘control’ 

and ‘test’ states, it is possible to gain insight into the mechanisms and pathways 

underlying the comparative phenotypes observed. There are a multitude of 

techniques available to researchers to undertake these types of transcriptional 
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investigation, although they can be broadly defined as ‘open systems’ and 

‘closed systems’. Open transcriptional systems have the advantage of not 

requiring any prior sequence knowledge of the genes under investigation, 

examples are: ‘fragment display’ (FD)137, ‘tag sequencing’ and 

‘subtractive/competitive hybridisation’ techniques. In general, the main 

disadvantage associated with open transcriptional systems is their relatively low 

throughput, both in terms of numbers of gene modulations that can be positively 

identified and the number of transcriptional comparisons that can be made.  

Closed transcriptional systems include an equally diverse array of techniques, 

although the shared attribute is the requirement for prior sequence knowledge 

of the gene(s) under investigation. Closed systems include techniques that are 

only amenable to investigating the transcriptional levels of single (e.g. Northern 

blots and the ribonuclease protection assay) or small subsets of genes (e.g. 

real-time quantitative PCR (RT-QPCR)). At the other end of the spectrum, they 

include those capable of simultaneously measuring the expression levels of 

thousands of genes, i.e. Affymetrix GeneChips® microarrays, leading to the 

development of ‘transcriptomics’, broadly defined as the rapid and quantitative 

comparison of large-scale mRNA expression profiles in biological systems. 

Combined with the huge advances in genome sequencing and gene annotation 

made in recent years, they have led to the advantages of ‘open’ transcriptional 

systems becoming more or less obsolete. As genome sequencing of an 

increasing number of model species is completed, it is becoming practicable to 

use microarrays to measure transcription at a virtually genome-wide scale. This 

has enabled the generation of huge volumes of data, faster than ever before. 

Data (Section 3.1.2) showed that the HCV replicon system would be a suitable 

model for transcriptomic analysis of the IL-28A and IL-29 as the replicon cell 

line showed sensitivity to IL-28A and IL-29. To determine gene activation 

profiles and the signalling pathways of IL-28A and IL-29 transciptomic and 

pathway analysis were performed using Affymetrix GeneChips® analysis and 

pathway analysis.  
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4.2 Determination of 10 x IC50 for most IFN sensitive replicon 

cell line   

Results of the four replicon cell lines were compared and IC50 values 

determined (Section 3.1.2, Table 3.2),1a3II results highlighted below (Table 4.1) 

Table 4.1: IC50 values in ng/mL of IL-28A, IL-29 and IFNα in HCV replicons  

Clone IL-28A IC50 (ng/mL) IL-29 IC50 (ng/mL) IFNα IC50 (ng/mL) 

1a1_19 46.6 0.7 0.005 

1a3II 21.8 0.55 0.003 

1b2.2 118 2.7 0.004 

1b2.5 227 4.6 0.01 

HCV replicon clone 1a3II was most sensitive to interferons having the lowest 

IC50 value with IL-28A, IL-29 and IFNα. 10 x the IC50 level was calculated as: 

218ng/mL, 6ng/mL and 0.03ng/mL for IL-28A, IL-29 and IFNα respectively. 

These 10 x IC50 values were used to treat parent HuH7 cells and HuH7 HCV 

1a3II luciferase replicon cells for use in transcriptome analysis.  

4.3 TaqMan® analysis 

Real-time PCR was performed on the RNAs isolated from HuH7 cells and HuH7 

HCV 1a3II luciferase replicon cells treated with 10 x IC50 values of IL-29, IL-28A 

and IFNα at 4, 8, 16 and 24 hour time points The data was analysed to assess 

the suitability of the time points and concentrations of the IFNs in the assay 

before running the samples of full genome Affymetrix chips. 

TaqMan® analysis showed IFIT1 expression in all IL-29, IL-28A and IFNα 

samples showing that all RNAs were suitable for further Affymetrix genechip® 

analysis. 

TaqMan® analysis showed greatest gene expression change with IFIT1, MX1, 

OAS1 and G1P3 at the 8, 16 and 24 hour time points (Figure 4.1).  
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Figure 4.1: TaqMan® expression of IFITI, MX1, OAS1 and G1P3 

TaqMan® expression of IFITI, MX1, OAS1 and G1P3 compared with house keeping 

genes b-actin and GAPDH in parent HuH7 and HuH7 HCV replicon cells treated with 

10 x IC50 values of IFNα, IL-28A and IL-29 at 4, 8, 16 and 24 hour time points. 
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4.4 Parent HuH7  

Individual data and pathway analysis was undertaken for all treatments and 

time points. Data was analysed to a set criteria: in Rosetta Resolver (2.2.6.11), 

an ANOVA was generated for each compound versus PBS control, the genes 

were filtered to include genes with fold change >1.5 and >minus 1.5, and genes 

were included if their p-value was <0.05 (>95%). Lists were generated based on 

the above criteria of upregulated and downregulated genes for IL-28A, IL-29 

and IFNα at each time point. Lists were also generated of genes that were 

common and unique between IL-28A, IL-29 and IFNα in both HuH7 parent cells 

and HuH7 HCV replicon cells. Gene lists were then put into Ingenuity and 

GeneGo for pathway analysis.  

4.4.1 Parent HuH7 versus HCV replicon  

The Affymetrix dataset (P-value >95% Fold change -1.5< and >1.5) is 

represented numerically in a series of Venn diagrams (Figure 4.2), showing 

gene numbers common and unique to IFNα, IL-28A and IL-29 at all time points  

in both the parent HuH7 and HCV replicon datasets. 
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Figure 4.2: Venn diagrams 

The number of genes expressed by IL-28A, IL-29 and IFNα across the 8, 16 and 24 hour time points from both replicon and parental datasets 

are represented in Venn diagrams. (P-value >95%, fold change -1.5< and >1.5)   
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Results from the data presented as Venn diagrams (Figure 4.2) show at the 8 

hour time point show a 90, 92 and 56% reduction in gene expression for genes 

unique to IFNα IL-28A and IL-29 respectively in replicon compared to parent 

line. Similar reductions in gene expression are also seen at the 16 hour and 24 

hour time points. The Venn diagrams showed a trend between parent and 

replicon datasets of more genes being unique to an individual interferon than 

there were genes in common between the interferons.  

Principal component analysis (PCA) is a mathematical procedure that uses an 

orthogonal transformation to convert a set of observations of possibly correlated 

variables into a set of values of linearly uncorrelated variables called principal 

components. The first principal component (PCA1) shows the largest possible 

variance e.g. accounts for as much of the variability in the data as possible, this 

will be followed by PCA2 and so on. PCA1 is shown (Figure 4.3) and illustrates 

that time accounts for the biggest variable in the data, followed by cell type 

replicon versus parent in PCA2 plot (Figure 4.4). PCA1 plot shows 4 hour and 

16 hour clustering together and 8 hour data being separate for replicon and 

parent cell lines. PCA2 shows replicon cells separating from normal parent 

HuH7cells. 
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Figure 4.3: PCA plot –PC1 Vs 2 by time point 

The first principal component (PCA1) shows the largest possible variance time accounts for the biggest variable in the data, PCA1 

plot shows 4 hour and 16 hour clustering together and 8 hour data being separate for replicon and parent cell lines.  
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Figure 4.4: PCA plot –PC2 Vs 3 by cell type 

PCA2 shows replicon cells separating from normal parent HuH7cells. 
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4.4.2 Parent HuH7 signature genes 

The top 20 expressed genes in the parent cell line with IFNα, IL-28A and IL-29 

treatments at 4, 8, 16 and 24 hour time points in relation to IL-29 expression 8 

and 24 hour time points are shown below (Table 4.2). 

Table 4.2: Table to show top 20 expressed genes in parent HuH7 cells  

Symbol IFNα IL-29 IL-28A 

 4h 8h 16h 24h 4h 8h 16h 24h 4h 8h 16h 24h 

G1P3 100 79 74 74 100 100 100 100 84 52 69 48 

IFI6 - 79 - 74 - 100 - 100 - 52 - 48 

IFIT1 16 6.6 3.9 7.1 100 100 100 100 14 7.2 4.6 3.4 

MX1 8.8 2.9 2.9 2 66 51 53 46 7.7 5.2 2.7 1.9 

IFITM3 11 12 6.3 10 26 38 18 40 8.5 7.9 6 5.6 

IFIH1 - - - 5.2 34 - 30 30 3.9 5 - 3.4 

IFITM1 15 16 3.6 6.9 67 82 22 25 15 9.2 3.8 4.5 

ISG15 - 5 - 5.4 - 18 - 20 - 3.3 - 2.4 

OAS1 4.7 - 2.6 - 49 14 38 19 6.1 - 3.1 - 

ISGF3G 6.6 7.7 3.6 6.1 14 17 12 16 6.2 7.4 3.9 3.1 

SUPT16H - 49 - 
-

7.6 
- 29 12 - - 70 3.1 - 

STAT1 3.4 14 2 
-

2.2 
11 28 12 - 2.7 11 2.1 - 

IFI27 - - - - 12 - 14 9.7 - - - - 

IFITM2 4.5 2.8 2.6 3.9 9.3 8.1 7.2 9.4 3.5 2.3 2.9 2.6 

OAS3 2 1.7 - - 14 8.4 14 8.6 2.1 - - - 

PARP9 2.3 - 1.9 2.1 7.3 2.3 8.7 5.8 2.3 - 2 - 

PLSCR1 2.5 2.8 1.6 - 8.7 8.6 8.4 5.5 2.4 2.6 1.6 - 

DDX58 3.4 - - - 20 5.1 14 5 - - - - 

IFI35 2.6 - 2.8 2.1 5.7 2.7 9.3 5 2.4 - 2.8 1.8 

EPSTI1 2.4 - - - 11 5.6 7.2 4.7 2.5 - - - 

 

Table 4.2 shows the top 20 expressed genes in the parent cell line with IFNα, IL-28A 

and IL-29 treatments at 4, 8, 16 and 24 hour time points in relation to IL-29 expression 

at 8 and 24 hour time points. Genes are >1.5 fold up or down with one or more 
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treatments. Values represent fold activation compared with PBS treatment. Genes 

highlighted in yellow are also present in the replicon table (Table 4.8).  

(-) = <1.5 fold induction. 

 

There are highly expressed interferon stimulated genes (ISG) common to IFNα 

and IFNλs both in the replicon and the parent HuH7 cell lines, these include 

G1P3, IFI6, IFIT, IFITM1, MX1, IFITM3, STAT1, ISG15, ISGF3G and OAS1 as 

shown in Table 4.8. The only top 20 gene determined by IL-29 at the 24 hour 

time point to not be represented in the entire replicon dataset (genes expressed 

> or < 1.5 fold change) was SUPT16H which plays a role in general 

transcription, it has positive and negative effects on gene expression. Required 

for the appropriate synthesis during heat shock and continued expression of 

cyclin genes that determine the passage through start during cell cycle control it 

may act as an acidic activator.  

4.4.3 Parent HuH7 pathway analysis IPA 

To demonstrate the mechanisms of IFNλs, pathway analysis was performed 

using Ingenuity and GeneGo pathway analysis tools. The top 7 pathways 

determined by Ingenuity pathway analyses scoring for IFNα, IL-28A and IL-29 at 

the 4 hours and IFNα and IL-29 at 8 hours are shown in Figures 4.5 and 4.6 

respectively. For type I and type III IFNs at 4 hours, interferon signalling is the 

most strongly induced pathway determined by Ingenuity Pathway Analysis, 

complement coagulation pathway is the second most strongly induced pathway 

for IL-28A, and protein ubiquitination pathway is the second most strongly 

induced pathway for both IFNα and IL-29. After this, IL-29 induces immune 

modulation pathways such as antigen presentation pathway and complement 

and coagulation cascades predominantly, in contrast to IFNα that predominantly 

regulated cell signalling pathways. At 8 hours interferon signalling is the top 

pathway for IL-29 followed by antigen presentation and complement coagulation 

pathways, for IFNα there are gene expression changes in multiple signalling 

pathways: integrin, IGF-1, Jak/Stat, SAPK/JNK signalling pathways.
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Figure 4.5 A: Parent HuH7 cell line pathway analysis at 4 hours for IFNα  

Using IPA for the Parent HuH7 cell line at the 4 hour time point, showing the top seven pathways for: A  IFNα. Pathway analysis using IPA for the 

parent cell line at the 4 hour time point graphical representation of the top seven pathways for IFNα showing up and down regulated genes 

associated to the pathways IPA gives a score shown by the trend line and –log scale determined by expression level and number of genes 

expressed in pathway/total number of genes within pathway. Percentage is number of genes modulated in pathway; red represents up regulated 

genes and green represents down regulated genes. 

A 
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Figure 4.5 B: Parent HuH7 cell line pathway analysis at 4 hours for IL-28A  

Using IPA for the Parent HuH7 cell line at the 4 hour time point, showing the top seven pathways for: B IL-28A. Pathway analysis using IPA for 

the parent cell line at the 4 hour time point graphical representation of the top seven pathways for IL-28A showing up and down regulated genes 

associated to the pathways IPA gives a score shown by the trend line and –log scale determined by expression level and number of genes 

expressed in pathway/total number of genes within pathway. Percentage is number of genes modulated in pathway; red represents up regulated 

genes and green represents down regulated genes. 

B 
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Figure 4.5 C: Parent HuH7 cell line pathway analysis at 4 hours for IL-29 

Using IPA for the Parent HuH7 cell line at the 4 hour time point, showing the top seven pathways for: C IL-29. Pathway analysis using IPA for the 

parent cell line at the 4 hour time point graphical representation of the top seven pathways for IL-29 showing up and down regulated genes 

associated to the pathways IPA gives a score shown by the trend line and –log scale determined by expression level and number of genes 

expressed in pathway/total number of genes within pathway. Percentage is number of genes modulated in pathway; red represents up regulated 

genes and green represents down regulated genes. 

C 
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 A 

 
Figure 4.6 A: Parent HuH7 cell line pathway analysis at 8 hours for IFNα 

Using IPA for the Parent HuH7 cell line at the 8 hour time point, showing the top seven pathways for: A IFNα. Pathway analysis using IPA for the 

parent cell line at the 8 hour time point graphical representation of the top seven pathways for IFNα showing up and down regulated genes 

associated to the pathways IPA gives a score shown by the trend line and –log scale determined by expression level and number of genes 

expressed in pathway/total number of genes within pathway. Percentage is number of genes modulated in pathway; red represents up regulated 

genes and green represents down regulated genes. 

A 
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Figure 4.6 B: Parent HuH7 cell line pathway analysis at 8 hours for IL-29 

Using IPA for the Parent HuH7 cell line at the 8 hour time point, showing the top seven pathways for: B IL-29. Pathway analysis using IPA for the 

parent cell line at the 8 hour time point graphical representation of the top seven pathways for IL-29 showing up and down regulated genes 

associated to the pathways IPA gives a score shown by the trend line and –log scale determined by expression level and number of genes 

expressed in pathway/total number of genes within pathway. Percentage is number of genes modulated in pathway; red represents up regulated 

genes and green represents down regulated genes. 

B 



  Chapter 4         

Page 109 of 183 

 

4.4.4 Parent HuH7 unique IL-29 gene analysis  

Genes unique for IFNα belong to predominately signalling pathways; Jak/Stat, 

EGF, IGF-1, IL-2, GM-CSF, FGFF, IL-4 and IL-6. These unique genes for IFNα 

include: PIK3CB, PIK3R1, SOS2, SOCS2, MAP3K1. Genes unique to IL-28A 

belong to IGF-1, EGF, TGF, VEGF, IL-2, IL-6 and IL-4 signalling pathways. IL-

29 unique genes belong to interferon signalling as the top pathway but are 

followed by antigen presentation and complement and coagulation cascades; 

unique genes at the 8 hour time point include HLA-A, HLA-B, HLA-C, HLA-F, 

HLA-G, PLG, CFB and SERPINE1. Antigen presenting gene expression with 

IFNα and IL-29 treatments are shown (Table 4.3). Antigen presenting genes are 

shown to be expressed at earlier time points in cells treated with IL-29 

compared to cells treated with IFNα.(Table 4.3) 

Table 4.3: Antigen presenting genes IL-29 versus IFNα.  

 

 (-) = <1.5 fold induction

4.53.32.7-2.8---TAP1

--3.2-----PSMB8

-1.62.71.5----HLA-G
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3.2-------HLA-DRB4
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-1.61.51.5----HLA-A
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Figure 4.7: A top pathway - antigen presentation pathway determined by Ingenuity for genes unique to IL-29 at 8 hours 

Antigen processing is a biological process that prepares antigens for presentation to T lymphocytes. This process involves two distinct pathways for 
processing of antigens from an organism's own (self) proteins or intracellular pathogens (e.g. viruses), or from phagocytosed pathogens (e.g. bacteria); 
subsequent presentation of these antigens on class I or class II MHC molecules is dependent on which pathway is used. Both MHC class I and II are 
required to bind antigen before they are stably expressed on a cell surface. Red correspondes to up regulation of gene.
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An Ingenuity pathway map for a top pathway antigen presentation pathway is 

shown (Figure 4.7) determined by genes unique to IL-29 at 8 hours. Other 

pathway analysis tools were used including GeneGo, data shown below 

(Section 4.4.5). 

4.4.5 Parent HuH7 pathway analysis GeneGo 

The top 10 pathways with genes uniquely regulated by IL-29 at 24 hours are 

shown in Table 4.4. Genes unique to IL-29 treatment at 24 hours induce IFNα, 

IFNβ and IFNγ pathways, so any gene changes with IL-29 at 24 hours may be 

due to secondary mechanisms, e.g. feedback from genes expressed at early 

time points. These pathways are also shown in a GeneGo pathway map (Figure 

4.8). 

Table 4.4: Pathway analysis for HuH7 cell line GeneGo  

 

Pathway analysis for genes unique to IL-29 at the 24 hours shows the top 10 pathways 

for IL-29 determined by GeneGo. 

3030.04662IFN alpha/beta signaling pathway

7250.04535Ascorbate metabolism

2930.04279Putative SUMO-1 pathway

2930.04279Gs-a Specific GPCRs (in brain)

6350.02765IFN gamma signaling pathway

4240.02636HETE and HPETE diosynthesis and metabolism

920.02321Mitochondrial ketone bodies biosynthesis and metabolism

2130.01824Propionate metabolism p.2

3350.001799IL9 signaling pathway

3460.000267RhoA regulation pathway (extension, GEFs/GAPs)

Genes ↑Genes ↓p-ValueGenego Map - Unique genes to IL-29 at 24 hours

3030.04662IFN alpha/beta signaling pathway

7250.04535Ascorbate metabolism

2930.04279Putative SUMO-1 pathway

2930.04279Gs-a Specific GPCRs (in brain)

6350.02765IFN gamma signaling pathway

4240.02636HETE and HPETE diosynthesis and metabolism

920.02321Mitochondrial ketone bodies biosynthesis and metabolism

2130.01824Propionate metabolism p.2

3350.001799IL9 signaling pathway

3460.000267RhoA regulation pathway (extension, GEFs/GAPs)

Genes ↑Genes ↓p-ValueGenego Map - Unique genes to IL-29 at 24 hours
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Figure 4.8: Top pathway interferon signalling determined by GeneGo for genes unique to IL-29 at 24 hours. 

This figure is a schematic produced in GeneGo, bars with one represent IL-29 upregulation, the higher the red in the bar –the higher the gene 

expression e.g. 2-5A synthetase is highly upregulated by IL-29 and not up-regulated significantly (≥ 1.5 fold) at this time point by IFNα.
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4.4.6 Additional unique gene changes –cytokine induction, TLR and MAPK 

signalling 

There are differences in cytokine induction between the types of interferons: IL-

24 is down regulated by type III IFNs, IL-27 is up regulated by type I IFN. IL-27R 

is up regulated by type I IFN and down regulated by IL-29.  

TLR7 signalling genes unique to IL-28A in the parent cell line at the 8 hour time 

point are: TLR7, TRAF4, TRAF5 and IRAK1BP1 (-2.9, 1.9, -1.9 and 1.7 fold 

change respectively) and at the 24 hour time point IRF7 and TRAF31P3 were 

expressed (-3.2 and -2.9).  

There are notable differences between the IFNs with MAPK signalling 

regulation in the parent cell line IFNα induces a far greater number of the MAPK 

genes than IL-29. For IFNα, 9 genes are expressed at the 8 hour time point and 

16 genes are expressed at the 24 hour time point, for IL-29 this is 3 and 2 

genes respectively. IL-28A has more similarities with IFNα with the regard to 

expression of MAPK genes with expression of 15 MAPK genes at the 8 hour 

time point but only 4 genes at the 24 hour time point. 

4.4.7 Parent HuH7 kinetics 

Table 4.5 shows the kinetics of expression in a selection of genes in the parent 

cell line 8, 16 and 24 hours after treatment with IFNα, IL-28A and IL-29 

treatments. The IFNs shown similar trends to each other over the time points 

e.g. IFI6 was shown to be expressed with IFNα, IL-29 and IL-28A at 8 hours 

and 24 hours but not at 4 and 16 hour time points. 

Table 4.5 Data subset: to illustrate kinetics in parent HuH7 cells  

Symbol IFNα IL-29 IL-28A 

4h 8h 16h 24h 4h 8h 16h 24h 4h 8h 16h 24h 

G1P3 100 79.3 74.2 74 100 100 100 100 84.3 51.7 68.7 48.2 

IFI6 - 79.3 - 74 - 100 - 100 - 51.7 - 48.2 

IFITM3 11.4 11.8 6.3 10.1 26.4 37.9 17.6 40.4 8.5 7.9 6 5.6 

ISG15 - 5 - 5.4 - 18.4 - 19.7 - 3.3 - 2.4 

OAS1 4.7 - 2.6 - 48.8 13.6 38.2 18.8 6.1 - 3.1 - 

STAT1 3.4 13.5 2 -2.2 11 28.2 11.8 - 2.7 10.9 2.1 - 

(-) = <1.5 fold induction. 
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4.5 HCV replicon 

4.5.1 Comparison of parental data with replicon data to investigate the 

effects of HCV on IL-28A, IL-29 and IFNα gene modulation 

 

RNA from time point 4 hours with the replicon cells was not of sufficient quality 

to use in Affymetrix genechip® analysis. 

HCV replicon inhibited gene induction by both type I and type III IFNs; this is 

seen at 8, 16 and 24 hour time points in the Venn diagrams (Figure 4.2), where 

there is a substantial decrease in the numbers of genes expressed in the 

replicon system from those expressed in the parent system. Parent HuH7 cells 

are more sensitive to interferons IFNα, IL-28A and IL-29 compared to the 

replicon cells. Gene expression is generally higher in the parent cells than the 

replicon cells, as shown for IF16 in Table 4.7. This is also highlighted in the 

Venn diagrams (Figure 4.2). Gene expression detail is shown below (Tables 4.6 

and 4.7). 

Table 4.6: Comparison of replicon versus parent HuH7 cells  

 
Replicon Parent Replicon Parent 

Symbol  IFNα  IFNα  IL-29  IL-29  

G1P3  3.2  79.3  6.7  100  

IFIT1  20  6.6  29.8  100  

IFI6  -  79.3  9.8  100  

MX1  2.3  2.9  3.4  53.1  

ISGF3G  15  7.7  18.3  12.1  

IFIH1  6  -  6.6  30  

IFITM3  -  11.8  4  17.6  

ISG15  2.6  5  3.1  -  

IFITM1  -  16.1  -  22.2  

Comparison of replicon cells versus parent HuH7 cells at 8 hours with IFNα and IL-29 
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Table 4.7: Sensitivity of parent HuH7 cell line versus replicon 

IF16 fold change 8hr IFNα 8hr IL-29 24hr IFNα 24hr IL-29 

 

Parent   79  >100  73  >100 

 

Replicon  0  9.7  52  41.9 

4.5.2 HCV replicon signature genes 

The top 20 expressed genes in the replicon cell line with IFNα, IL-28A and IL-29 

treatments at 8, 16 and 24 hour time points in relation to IL-29 expression at 24 

hour time point are shown below (Table 4.8). 

Table 4.8: A selection of top 20 expressed genes in the replicon cells  

Symbol IFNα IL-29 IL-28A 

 8h 16h 24h 8h 16h 24h 8h 16h 24h 

IFIT1 21 21 100 30 100 100 13 78 64 

G1P3 3.2 82 42 6.7 100 97 4.5 100 43 

IFI6 - - 52 9.8 100 42 - 54 20 

MX1 2.3 2.3 30 3.4 18 35 - 12 17 

ISGF3G 15 15 22 18 14 21 15 12 16 

IFIH1 6 6 23 6.6 23 15 4.4 13 9.5 

IFITM3 - - 7.6 4 4.9 12 3 3.5 4 

ISG15 2.6 2.6 11 3.1 14 9.9 - 7.4 5.4 

IFITM1 - - 7.1 - 9.9 8.7 - 5.6 4.3 

ADAMTS13 - - - - - 7.7 - - 6.7 

OAS1 3.2 3.2 5.3 6.2 10 7.4 3.8 5.4 4.1 

DDX58 3.4 3.4 7.9 3.7 11 6.5 - 4.8 3.6 

PRIC285 2.2 - 6.8 3.1 5.1 6.4 3.1 3.4 3 

OAS3 3.4 3.4 8 5.1 6.4 5.3 - - 2.8 

PARP9 - - 4.9 2.9 - 4.9 - - 3 

STAT1 3.2 3.2 5.4 3.5 5.2 4.8 - 3.2 3.3 

PLSCR1 - - 4.2 - 4.6 4.2 - - 2.9 

PML - - - - - 4 - - - 

IFI27 - - - - - 3.5 - - - 

IFITM2 - - - - - 3.3 - - - 
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Table 4.8 shows a selection of top 20 expressed genes in the replicon cell line with 

IFNα, IL-28A and IL-29 treatments at 8, 16 and 24 hour time points in relation to IL-29 

expression at the 24 hour time point. Genes are >1.5 fold activation with one or more 

treatments compared with PBS treatment. 100 represents 100 fold change or greater, 

Genes highlighted in yellow are also present in the parent table. (-) = <1.5 fold 

induction. 

The only top 20 gene determined by IL-29 at the 24 hour time point to not be 

represented in the entire replicon dataset (genes expressed > or < 1.5 fold 

change) was ADAMTS13 which prevents thrombosis through abnormal clotting.  

There are highly expressed interferon stimulated genes (ISG) common to IFNα 

and IFNλs both in the replicon and the parent HuH7 cell lines, these include 

G1P3, IFI6, IFIT, IFITM1, MX1, IFITM3, STAT1, ISG15, ISGF3G and OAS1.  

4.5.3 HCV replicon kinetics 

To compare gene expression trends in the replicon cells treated with IFNα, IL-

28A and IL-29 at 8, 16 and 24 hours, several types of data analysis was 

performed on the replicon data set. Cluster analysis was generated using 

Rosetta Resolver of all replicon fold change data greater than 2 fold up or down 

regulated and > 99% confidence; a total of 881 genes. The data clustered by 

groups of genes which share similar properties is shown in Figure 4.9. 

The up regulated data from the entire replicon data set where a gene is above 2 

fold change in relation to PBS control in a minimum of one time point, based on 

their fold regulation in response to IFNα at 8 hours. Data is represented visually 

in more detail as a Heat Map (Figure 4.10) and in further detail for MX1, IFIT1 

and ISGF3G genes in trend plots (Figure 4.11).  
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Figure 4.9: Cluster analysis plot  

Cluster analysis of 640 genes regulated significantly (p<0.01) regulated ±1.5-fold with either IFNα, IL-29 or IL-28A at 8, 16 and 24 hours. 

8 hours

IL-28   IL-29   IFNα

8 hours

IL-28   IL-29   IFNα

16 hours
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 Figure 4.10: Heat map 

A visual summary of the replicon gene data. In the heat map, genes are sorted in decreasing order based on their fold regulation in response to 

IFNα at 8 hours. The heat map represents the entire up regulated data set for any one gene whose expression was above 2 fold compared with 

PBS treatment with one or more IFNs at one or more time points, p-value <0.5. To show low induction values, the maximum heat intensity (red) 

was set to a 20 fold induction value. 
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Figure 4.11: Trend plots 

Trend plots were used as an effective, efficient oversight screening tool to visualise 

control (PBS) versus treatments IL-28A, IL-29 and IFNα over 3 timepoints 8 hour (blue 

box), 16 hour (orange box) and 24 hour (green box). Trend plots for three genes Mx1, 

IFIT1 and ISGF3G are shown. 

Trend plots and trend analysis show that IFNα and IL-28A and IL-29 show the 

same trends, e.g. for Mx1 (MxA) there is low expression with IL-28A, IL-29 and 
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IFNα at 8 hours, this peaks at 16 hours and levels off at 24 hours for all IFNs 

tested (IL-28A, IL-29 and IFNα). 

4.6 Discussion 

There are many similarities in both gene modulation between type I and type III 

IFNs. When looking at the genes that are expressed most highly in both the 

parent HuH7 and the replicon systems IFNλs and IFNα show largely 

overlapping sets of interferon stimulated genes (ISGs). Although antiviral 

mechanisms of type I and III differ, they may actually involve similar ISG 

responses. The individual gene expression results from the replicon data set 

shown here showed good concordance with data published by Marcello et al 61, 

with 45/66 differentially regulated genes as a response to  IFNα and 49/66 as a 

response to  IL-29. Zhou et al, Doyle et al and Marcello et al have all shown 

similar sets of ISGs being expressed by type I and type III IFNs65,57,61
.  

Genes common to both the replicon and parent gene expression were 

highlighted (in Tables 4.2 and 4.8). The majority of interferon stimulated genes 

(ISG) stimulated in the replicon cell line by IFNα, IL-28A and IL-29 are also 

stimulated in the parental cell line; these ISGs include: G1P3, IFIT1-5, ISG15 

and ISGF3G.  

Despite this there are more differences in the pattern of expressed genes 

between the IFNλs and IFNα than genes expressed in common as shown in the 

Venn diagrams (Figure 4.2). The Venn diagrams showed a trend between 

parent and replicon datasets of there being more genes being unique to an 

individual interferon than genes in common between the interferons. This is 

different to the findings of other groups 61,65. The unique genes shown in the 

Venn diagrams are generally expressed at low levels. 

For the majority of genes in both the replicon and the parent datasets, the 

kinetics of gene expression was the same for type I and type III IFNs, which is 

highlighted in subset of data (Table 4.5) GIP3, IF16, IFITM3, ISG15, OAS1, 

STAT1. The table shows that gene modulation with IFNα, IL-28A and IL-29 

shows similar patterns over the time courses even being expressed at some 

time points and not at all in other time points as shown with IFI6, and ISG15.  
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The Marcello study61 showed in the replicon system that the majority of type III 

stimulated genes continue to increase at 24 hours and with IFNα the same 

genes tend to decrease by the 24 hour time point. In contrast the data shown 

here demonstrates that the kinetics of the type I and III IFNs show similar 

patterns of gene expression. HCV replicon inhibited gene induction by both type 

I and type III IFNs; this is seen at 8, 16 and 24 hour time points, where there is 

a substantial decrease in the numbers of genes expressed in the replicon 

system from those expressed in the parent system. There are also multiple 

genes for which the expression levels are lower in the replicon data than that of 

the parent. The NS3/4A protease encoded by HCV has been shown to cleave 

the adaptor in the RIG-I-like receptor (RIG-I) pathway IPS1 thus disrupting the 

signalling to type I IFN138; this data indicates that signalling to type III IFN is also 

disrupted. Downstream genes from RIG-I are affected in the replicon system 

including MAPK genes which show lower abundance in number in the replicon 

system than in the parent system.  

Pathway analysis was carried out for the replicon dataset but due to limited 

gene numbers in the replicon dataset more focus was placed on the larger 

parental cell line dataset. At the earliest time point 4 hours, for type I and type III 

IFNs interferon signalling is the most strongly induced pathway determined by 

Ingenuity Pathway Analysis, complement coagulation pathway is the second 

most strongly induced pathway for IL-28A, and protein ubiquitination pathway is 

the second most strongly induced pathway for both IFNα and IL-29. At 8 hours 

after interferon signalling pathway, IL-29 induces immune modulation pathways 

such as antigen presentation pathway and complement and coagulation 

cascades predominantly, compared with IFNα mostly regulating cell signalling 

pathways. Interferon signalling was not represented in the top 7 pathways by 

IFNα at 8 hours potentially showing that IFNα is less specific in its signalling 

pathways than IL-29. 

The antigen presenting pathway regulated in the parent cell line showed gene 

expression of MHC class I antigens to be up regulated with IFNa and IL-29, but 

IL-29 up regulated MHC class expression at much earlier time points (4,8,16 

hours and 24 hours) than IFNα (24 hours). MHC class I antigen expression was 

shown to be up-regulated following type I or type III IFN addition2. Up regulation 
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of MHC class I expression may lead to increased recognition of virus-infected 

cells by the immune system. 

Genes unique for IFNα belong to predominately signalling pathways; Jak/Stat, 

EGF, IGF-1, IL-2, GM-CSF, FGFF, IL-4 and IL-6. These unique genes for IFNα 

include: PIK3CB, PIK3R1, SOS2, SOCS2, MAP3K1. Genes unique to IL-28A 

also belong to IGF-1, EGF, TGF, VEGF, IL-2, IL-6 and IL-4 signalling pathways. 

IL-29 unique genes belong to interferon signalling as the top pathway but 

interestingly are followed by antigen presentation and complement and 

coagulation cascades; unique genes at the 8 hour time point include HLA-A, 

HLA-B, HLA-C, HLA-F, HLA-G, PLG, CFB and SERPINE1.  

Genes unique to IL-29 treatment at 24 hours induce IFNα, IFNβ and IFNγ 

pathways, so any gene changes with IL-29 at 24 hours may be due to 

secondary mechanisms, e.g. feedback from genes expressed at early time 

points. 2-5A synthetase is of note being significantly (≥ 1.5 fold) expressed by 

IL-29 but not IFNα at 24 hours, this gene encodes a member of the 2-5A 

synthetase family, essential proteins involved in the innate immune response to 

viral infection.  

Gene expression analysis here suggests that IFNλs and IFNα have primarily 

complementary functions, signalling through common pathways enabling IFNλs 

and IFNα to induce similar biological activities in particular antiviral resistance 

mediated by very similar sets of interferon sensitive genes, this has also been 

shown by other groups65,57,61
. The kinetics of IL-29 response has been shown to 

differ from IFNα by Marcello with gene expression data139 also demonstrating in 

Huh-7 hepatocellular carcinoma cells, that IFN-λ induces STAT-1 and STAT-2 

more rapidly than IFNα64,139 this is also seen in HaCaT keratinocytes63 these 

studies have also shown although the subsequent transcriptional response is 

slightly delayed, the increase in ISG expression induced by IFNλ is stronger and 

more prolonged than the response activated by IFNα64,139. There are several 

studies although Jak/STAT signaling mediates the primary functions of IFNλ, 

other pathways are also activated by the receptor including ERK-1/2, mitogen 

activated protein kinase (MAPK) and Akt in intestinal epithelial and colorectal 

cancer-derived cell lines126, activation of MAPKs was also observed in Raji cells 

following treatment with IFNλ65. These results indicate that IFNλ can induce 
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multiple signaling pathways that may contribute to its activity as an antiviral and 

immunomodulatory cytokine and complement the findings here. 

Where this research differs from that published is that IL-29 is more specific in 

its modulation and by modulating alternative pathways such as the antigen 

presentation and processing pathways at early time points may prove to be a 

useful therapeutic option for the management of chronic viral infection such as 

HCV. IL-28R is not as widely expressed as the type I IFN receptor which could 

mean a more specific target. IL-28R was shown to be found primarily on antigen 

presenting cells (Chapters 5 & 6). Coupled with IL-29 modulating the antigen 

presenting pathway at earlier time points than IFNα could prove to have a 

superior therapeutic profile to IFNα. 
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Chapters 5 & 6  

5. IL-28R distribution using genomic analysis  

5.1 Introduction 

The aim of this chapter was to study the expression of IL-28 receptor (IL-28R) in 

a panel of tissues and cells in order to identify type III IFN targeted tissues and 

cells. Tissues and cells containing IL-28R were identified using real-time PCR 

and gene expression data for IL-28R was analysed.  

IFNα and IFNβ (type I IFNs) bind to a heterodimeric receptor comprising an 

alpha component (IFNAR1) and a beta component (IFNAR2). Although the 

activities of type III IFNs are similar to type I IFNs, IFNλ signalling is achieved 

through a specific and distinct heterodimeric receptor complex which is formed 

between IL-28A receptor (IL-28R / IFN-λR1) and IL-10 receptor (IL-10R2)2,3. 

Similarly to type I IFNs, binding of type III IFNs to their receptor leads to the 

activation of the Jak:STAT pathway. This is upstream of IFN-inducible genes 

and modulates their transcription.  

The heterodimeric receptor IFNAR1/2 for IFNα and IFNβ is present on all 

nucleated cells72. IL-10R2 is ubiquitously expressed73, whereas initial RNA 

expression data showed that IL-28R is limited to specific tissues and cell types3. 

It is the aim of this chapter to conduct a comprehensive exploration of IL-28R 

distribution using gene expression techniques in both human and murine 

tissues and immunohistochemical techniques in both human and murine tissues 

are described in chapter 6. 

5.2 IL-28R gene expression in mouse tissue 

IL-28R gene expression was studied in a panel of mouse tissues using real-time 

PCR (Figure 5.1). IL-28R was shown to be expressed predominantly in 

epithelial tissue, lymph nodes and spleen, as was seen with the protein 

expression of IL-28R. High expression; greater than 1,000,000 copies per 50ng 

of cDNA was seen in mandibular and messenteric lymph nodes and gut tissues 
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(stomach, duodenum, jejunum, ileum and colon). Expression was also detected 

in epididymis, spleen, thyroids, kidney, lung, pancreas, prostate, oesophagus, 

ovaries, peripheral nerve and pituitary gland. Tissues with minimal expression 

were: liver, bone marrow, adrenals, heart, seminal vesicles and cerebellum. 

Tissues (not recorded in Figure 5.1) with no detectable expression were: aorta, 

bladder, eyes, harderian gland, skeletal muscle, skin and spinal cord. 
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Figure 5.1: TaqMan® IL-28R 

Quantative RT-PCR analysis of IL-28R expression in a range of mouse tissues, shown as magnitude of fluorescence signal ΔRn and measured 

in copy numbers, 3 samples for each tissue were pooled prior to PCR analysis. 
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5.3 Gene Logic human tissue microarray screen 

Using data from the Gene Logic human tissue microarray database, gene 

expression of IL-28R (TIG45563), IL-10RB (TIG1871) and IFNAR1 (TIG1823) 

were compared across a panel of human tissues (Figure 5.2 A-C). This data 

showed that while IL-10R and IFNAR mRNAs were ubiquitously expressed 

across tissues (with the exception of brain IL-10RB and skeletal muscle IFNAR1 

shown in red), several tissues were negative for IL-28R (left and right ventricles, 

blood, cervix, exo/endo cervix, brain, thymus, bone, ovary, testis, placenta, 

uterus, bladder, adipose, aorta and vein shown in red). Gene Logic data for IL-

28R in human tissues showed gene expression primarily in epithelial tissue, 

lymph nodes and spleen,). Tissues expressing IL-28R (shown in blue): small 

intestine, ileum, jejunum, pancreas, thyroid, lymph node, gallbladder, colon, 

rectum, liver, prostate, seminal vesicle, cecum, lung, skin, kidney, spleen, 

stomach, skeletal muscle, bronchus, breast, heart, oesophagus, adrenal gland, 

fallopian tube. 
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Figure 5.2 A: Gene Logic graph showing IFNAR1 expression in a range of human cell types and tissues 

Affymetrix data retrieved from a database of human gene expression data across a range of human cell types and tissues using the bioinformatics 

tool Gene Logic. Tissues highlighted in blue show significant expression and tissue highlighted in red insignificant expression.  

 

A – Gene Logic Normal Pathology: 225669_at(HG-U133_Plus_2): TIG1823(IFNAR1)   
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Figure 5.2 B: Gene Logic graph showing IL-28R expression in a range of human cell types and tissues 

Affymetrix data retrieved from a database of human gene expression data across a range of human cell types and tissues using the bioinformatics 

tool Gene Logic. Tissues highlighted in blue show significant expression and tissue highlighted in red insignificant expression.  

 

B – Gene Logic Normal Pathology: 244261_at(HG-U133_Plus_2): TIG45563(IL-28R)   
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Figure 5.2 C: Gene Logic graph showing IL-10RB expression in a range of human cell types and tissues 

Affymetrix data retrieved from a database of human gene expression data across a range of human cell types and tissues using the bioinformatics 

tool Gene Logic. Tissues highlighted in blue show significant expression and tissue highlighted in red insignificant expression.  

C – Gene Logic Normal Pathology: 209575_at(HG-U133_Plus_2): TIG1871(IL-10RB)   
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5.4 Inflammatory cell microarray screen 

In order to investigate the expression of IL-28R in immune and inflammatory 

cells in more detail we looked at mRNA extracted from a panel of human cells 

(Figure 5.3). The graph demonstrates the distribution of IL-28R on a panel of 

cells both with and without a variety of inflammatory stimuli. The data reveal that 

IL-28R is highly expressed on stimulated and untreated B cells and alveolar 

macrophages. In non-alveolar macrophages only those stimulated for 24 hours 

with immune complex (IgG coated beads) showed significant IL-28R 

expression. Unstimulated pDCs have a higher level of IL-28R expression than 

unstimulated mDCs. Stimulated and resting CD8+ T cells show low levels of IL-

28R expression. Similarly resting PBMCs express IL-28R at low levels while 

CD4+ T cells and mast cells do not significantly express IL-28R. 

 



Chapter 5 

Page 132 of 183 

 

 

Figure 5.3: GSK Inflammatory cell screen showing IL-28R gene expression 

Inflammatory cell screen: B cells were unstimulated or stimulated with CD40 ligand or anti B cell receptor (anti-IgM) co-stimulation assay at four 

time points; 0, 24, 48 and 72 hours. Macrophages were cultured with vehicle alone, TNF (10ng/mL), LPS (10ng/mL), immune complex (IgG coated 

beads) and cytomix (TNF (10ng/mL), LPS (10ng/mL) and IFNγ (10ng/mL) for 2, 6 and 24 hours. T cells treatments were CD4+ and CD8+ cells 

resting; 1, 6 and 24 hours post anti-CD3/CD28. Mast cells were cultured with human stem cell factor (100ng/mL), human IL-6 (50ng/mL) and IL-10 

(10ng/mL), then primed for 6 days with human IL-4 (10ng/mL), human myeloma IgE, lambda (1µg/mL) and human myeloma IgE, kappa (1µg/mL). 

Cells were triggered for 1 hour with anti-IgE (1.5µg/mL), control with no triggering. pDCs and mDCs; no treatment. Numbers in brackets indicate 

number of replicates. 
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5.5 Discussion 

IL-28R gene expression was shown in a panel of mouse tissues using real-time 

PCR (Figure 5.1). High levels of IL-28R gene expression were seen in 

mandibular and messenteric lymph nodes and gut tissues (stomach, 

duodenum, jejunum, ileum and colon). Expression was also detected in 

epididymis, spleen, thyroid, kidney, lung, pancreas, prostate, oesophagus, 

ovaries, peripheral nerve and pituitary gland. Tissues with minimal expression 

were: liver, bone marrow, adrenals, heart, seminal vesicles and cerebellum. 

Tissues with no detectable expression were: aorta, bladder, eyes, harderian 

gland, skeletal muscle, skin and spinal cord.  

The distribution of IL-28R, IFNAR1 and IL-10RB expression in human tissues 

was shown by mRNA expression profiles in the Affymetrix datasets.  

Whilst type I IFN receptor and IL-10RB are expressed on virtually all cell types, 

type III IFN receptor expression exhibits more restricted cellular distribution. 

Type III IFN receptor is expressed primarily in epithelial tissue, lymph nodes 

and spleen, tissues expressing IL-28R in detail were: small intestine, ileum, 

jejunum, pancreas, thyroid, lymph node, gallbladder, colon, rectum, liver, 

prostate, seminal vesicle, cecum, lung, skin, kidney, spleen, stomach, skeletal 

muscle, bronchus, breast, heart, oesophagus, adrenal gland, fallopian tube.  

Patterns of IL-28R gene expression in mouse tissues (summarised in Figure 

5.1) were compared with those found in human tissues (illustrated in Figure 5.2 

B). In both human and mouse high levels of IL-28R was expressed in lymph 

nodes, spleen and gut epithelial tissues, low levels of IL-28R were seen in brain 

and bone marrow, a notable difference in IL-28R expression between human 

and mouse was in liver where the levels in human were a lot higher than in 

mouse (mouse expression levels of IL-28R were low). This was also shown in 

Chapter 6 where compared with human liver, mouse liver was found to have 

very restricted IL-28R staining (mainly in Kupffer-like cells). The tissues above 

are complex in nature and contain a wide variety of cell types –some of these 

were investigated further in an inflammatory cell microarray screen (Figure 5.3) 

and immunohistochemistry was carried out on various tissues (Chapter 6) to try 

and identify specific cell types which express the IL-28R. 
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An inflammatory cell microarray screen was used to investigate the expression 

of IL-28R in human immune and inflammatory cells. Data from this screen 

showed that IL-28R is highly expressed on stimulated and untreated B cells and 

alveolar macrophages. In non-alveolar macrophages only those stimulated for 

24 hours with immune complex (IgG coated beads) showed significant IL-28R 

expression. Unstimulated pDCs have a higher level of IL-28R expression than 

unstimulated mDCs. Stimulated and resting CD8+ T cells show low levels of IL-

28R expression. Similarly resting PBMCs express IL-28R at low levels while 

CD4+ T cells and mast cells do not significantly express IL-28R140. While type I 

IFN receptors are expressed on virtually all cell types, results described above 

show that type III IFN receptor expression exhibits a more restricted cellular 

distribution.  

 

 

 

  



Chapter 6 

Page 135 of 183 

 

6. Distribution of IL-28R, protein expression  

6.1 Introduction 

The aim of this chapter was to study the expression of IL-28 receptor (IL-28R) in 

a panel of mouse/human tissues and cells in order to identify type III IFN 

targeted tissues and cells. Tissues and cells containing IL-28R were identified 

using immunohistochemistry (IHC), dual staining IHC methods and FLOW.  

The heterodimeric receptor IFNAR1/2 for IFNα and IFNβ is present on all 

nucleated cells72. IL-10R2 is ubiquitously expressed73, whereas initial RNA 

expression data showed IL-28R is limited to specific tissues and cell types3. IL-

28R has been shown to be present in intestinal epithelial cells56,6,141, MCA205, 

a fibrosarcoma cell line142 and type III IFN expression has been shown in 

monocyte–derived dendritic cells (MDDC)74,75,76, plasmacytoid dendritic cells 

(pDC)74,76 and human primary macrophages where induction of type III IFNs 

required pre-treatment with IFNα74,75,76.  

6.2 Immunohistochemistry for IL-28R protein expression in 

murine lymphoid and epithelial tissues 

Positive IL-28R expression in mouse tissues (summarised in Table 6.1 and 

illustrated in Figure 6.2 A-H). Tissue type was confirmed /scored by peer review 

from two pathologists Dr Rob Goldin and Dr Chris Clarke. IL-28R was found to 

be widely expressed in epithelial tissues such as stomach, small and large 

intestine where baso-lateral staining of the epithelial cells and strongly staining 

individual cells was found in the lamina propria. In lymphoid tissue and spleen 

approximately 30% of cells visibly expressed IL-28R. This was confirmed by 

flow cytometry analysis on mouse spleen showing that ~60% of spleen cells 

stained positively for the IL-28R (Figure 6.1).  
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Figure 6.1: Flow cytometry showing IL-28R expression in mouse spleen 

Analysis of a murine spleen sample using IL-28R antibody by flow cytometry. A shows 

normal scatter plot for treated cells, B shows normal scatter plot for control. SS = side 

scatter and FS = forward scatter. C shows positive cells beyond negative point as 

shown in D. D = negative. (F = negative cells, G = positive cells) FL2 log shows PE-IL-

28R. 

 

In the spleen IL-28R positive cells were distributed throughout the red and white 

pulp but predominately in the red pulp, where antigen-presenting and 

phagocytic cells such as dendritic cells and macrophages are concentrated. In 

lymph nodes IL-28R expression was shown throughout the cortex and medulla 

with notable presence in the sub-capsular sinus. The sub-capsular sinus area is 

the receiving area for afferent (incoming) lymph and is populated by 'activated' 

dendritic cells from stimulated regional tissues. In the mouse liver, scattered 
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non-parenchymal cells lining the hepatic sinusoids express IL-28R; these are 

likely to be Kupffer cells or stellate cells.  

The following mouse tissues showed no observable IL-28R protein expression: 

adrenal gland, bladder, brain, eyes, harderian gland, heart, lungs, peripheral 

nerve, pituitary, prostate, seminal vesicles, skeletal muscle, skin, salivary 

glands, pancreas, spinal cord, testis, tongue and trachea. 
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Table 6.1: Location of IL-28R protein expression in mouse tissues 

Tissue Positive staining* Likely Cell type Likely background stain** 

Stomach Occasional interstitial cell ‘endocrine’ granular cells in basal area macrophage Glandular epithelial cells 

Duodenum Occasional cell in lamina propria  macrophage - 

Thymus Scattered cells throughout cortex and medulla  dendritic cell/ macrophage  

Gall bladder Occasional cell in subepithelial lamina propria   - 

Liver Occasional small cells with oval nuclei, sinusoidal spaces  Kupffer cell  - 

Epididymis Occasional small interstitial cell macrophage epithelium 

Kidney Rare interstitial cell in cortex  macrophage - 

Uterus Occasional cell with positive cytoplasmic granules and small non-granlular 

cells – subepithelial and myometrium  

mast cells - 

Spleen Scattered cells throughout red pulp and white pulp/PALS  dendritic cell/ macrophage - 

Large & small intestine Occasional cell in lamina propria  - 

Peyer’s patches Occasional cell  dendritic cell/ macrophage  

Blood Occasional cell dendritic cell/ macrophage - 

* Typically represented by sharply-defined, intense cytoplasmic/membrane staining. ** Typically represented by pale ‘wash’ effect  
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Figure 6.2 A and B: IL-28R distribution in mouse spleen using Immunohistochemistry 

 IHC specific staining of IL-28R is represented by sharply-defined, intense cytoplasmic/membrane staining in a selection of mouse tissues.  

A Spleen goat IgG negative control. B Spleen showing scattered positive cells throughout the marginal zone. 
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Figure 6.2 C and D: IL-28R distribution in mouse thymus and mesenteric lymph node using Immunohistochemistry 

 IHC specific staining of IL-28R is represented by sharply-defined, intense cytoplasmic/membrane staining in a selection of mouse tissues.  

C Thymus: scattered cells throughout cortex D Mesenteric lymph node. 
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Figure 6.2 E and F: IL-28R distribution in mouse liver using Immunohistochemistry 

 IHC specific staining of IL-28R is represented by sharply-defined, intense cytoplasmic/membrane staining in a selection of mouse tissues.  

E Liver goat IgG negative control. F Liver: occasional small cells stained. 
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Figure 6.2 G and H: IL-28R distribution in mouse colon using Immunohistochemistry 

 IHC specific staining of IL-28R is represented by sharply-defined, intense cytoplasmic/membrane staining in a selection of mouse tissues.  

G Colon: goat IgG negative control. H Colon: cells stained at base of crypt and non-specific staining of the brush border. 
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6.3 Toluidine blue histochemical stain in mouse showed mast cells express IL-28R 

In the uterus, IL-28R staining was found in cells with granular cytoplasm which stained positively for the mast cell stain toluidine blue 

on serial sections.  

 

Figure 6.3: IL-28R distribution in mast cells 

Mouse uterus A IL-28R staining in granular cells these were confirmed to be mast cells with a serial section stained with toludine blue B. 
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6.4 Dual staining- IL-28R and macrophage markers 

The distribution of IL-28R staining in mouse tissues suggested expression of the IL-28R in macrophages and dendritic cells. Mouse 

monoclonal antibodies Mac 384 and F4/80 were used for macrophage identification. Dual staining (illustrated in Fig. 6.4) revealed that 

a sub-population of macrophages/DCs express IL-28R in normal mouse spleen but with a different pattern of staining in lymph node.  

 

Figure 6.4: Dual staining 

IL-28R and macrophage markers A mouse spleen stained with Mac 387 and IL-28R B mouse lymph node stained with F4/80 and IL-28R. Red 

stained, Mac 387+ macrophages are predominantly in the marginal zone and cords. Cells demonstrating IL-28R staining (brown cytoplasmic) were 

distributed throughout the red pulp. A subset of IL-28R positive cells stain with Mac 387 indicating IL-28R distribution on phagoctic cells; dendritic 

cells and macrophages. However, in lymph node B F4/80-positive macrophages, stained with Very Intense Purple appear to be a separate 

population of cells from those which stained (brown) for IL-28R. 
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6.5 IL-28R protein expression in normal and diseased human 

tissues 

Human IL-28R protein expression was determined in a selection of relevant 

normal tissues and diseased tissues (Figure 6.5 A-F). In normal liver 

parenchyma, cells expressing IL-28R are relatively sparse and presumed to be 

Kupffer cells and some macrophages. In contrast, the number of IL-28R 

expressing cells in hepatitis C infected liver are increased, particularly around 

inflammatory infiltrates and portal areas. In addition to the inflammatory cells 

there appears to be low level expression of IL-28R in some hepatocytes. In fatty 

liver IL-28R staining was seen mainly at the edge of the cell membranes and in 

sinusoidal cells presumed to be Kupffer cells and macrophages. In a section of 

well differentiated hepatocellular carcinoma, IL-28R expression was observed in 

large pleomorphic cells of uncertain origin which may be mega macrophages. In 

ileal sections most of the positive IL-28R staining was within the lamina propria, 

expressed by lymphocytes. There was some IL-28R expression in cells close to 

the bottom of the crypt near the paneth cells. Some staining also occurred in the 

enterocytes but goblet cells were not involved. In sections of synovial tissue 

taken from patients with rheumatoid arthritis there was increased cellularity due 

to an influx of inflammatory cells. IL-28R staining is taken up by some of the 

spindle shaped/fibroblast like synovial cells and some macrophages. 

Patterns of IL-28R expression in mouse tissues (summarised in Table 6.1 and 

illustrated in Figure 6.2 A-H) were compared with those found in human tissues 

(illustrated in Figure 6.5 A-F). Human tissues showed a similar pattern of 

staining for IL-28R in uterus, ileum and lymph nodes with predominantly 

macrophages/DCs staining. Compared with human liver, mouse liver was found 

to have very restricted IL-28R staining (mainly in Kupffer-like cells), while in 

human cells staining of the hepatocytes as well as macrophages/DCs was 

seen. This was further enhanced in diseased tissue where there was an 

increased expression of IL-28R in hepatitis, fatty liver and liver tumor tissues in 

comparison with normal liver. 
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Figure 6.5 A and B: Human diseased liver and IL-28R expression using Immunohistochemistry 

IHC specific staining of IL-28R in a selection of human tissues, A Normal liver showing IL-28R expression on mixed population of cells including 

hepatocytes. B Hepatitis C infected liver. 

 

A B 
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Figure 6.5 C and D: Human diseased liver and IL-28R expression using Immunohistochemistry 

IHC specific staining of IL-28R in a selection of human tissues. C Fatty liver (macrovesicular steatosis). D Hepatocellular carcinoma.  

 

C D 
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Figure 6.5 E and F: Human ileum and synovium and IL-28R expression using Immunohistochemistry 

IHC specific staining of IL-28R in a selection of human tissues, E Normal ileum. F Synovium - rheumatoid arthritis. 

E F 
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6.6 Discussion  

While type I IFN receptors are expressed on virtually all cell types, results 

(Chapter 5 and 6) show that type III IFN receptor expression exhibits a more 

restricted cellular distribution. Gene array data confirms that the IL-10RB 

component of the receptor is ubiquitously expressed but the IL-28R component 

is not. As both components are required for IFNλ signalling the distribution of 

the IL-28R is likely to determine which cells or tissues respond to this class of 

interferon.  

In the panel of murine tissues, immunohistochemical analysis shows that IL-

28R is expressed at highest levels by cells in lymph nodes and spleen. There is 

moderate cellular staining in the epithelial tissue of the gastrointestinal tract and 

low numbers of cells expressing IL-28R in the epididymis, uterus, thymus and 

kidney. Flow cytometric analysis revealed that ~60% of splenic and lymph node 

cells expressed IL-28R. The pattern of staining in these tissues, particularly the 

staining of cells in the sub-capsular regions of lymph nodes suggested that 

antigen presenting cells express IL-28R at high density. Dual staining with Mac 

387 and F4/80 illustrate that some but not all tissue macrophages express IL-

28R at high density. Interestingly, mast cells also appear to express IL-28R at 

high density. The immunohistochemical findings are effectively replicated in the 

IL-28R gene expression data (Figure 5.1). The distribution of IL-28R expression 

in mouse tissues was confirmed by TaqMan® PCR. 

In human tissues we first analysed the distribution of IL-28R using microarray 

screens which showed a broadly similar tissue expression pattern to the mouse. 

One major exception was a much greater expression in the human liver than in 

the mouse. Hepatocytes were seen to express IL-28R in human tissue but not 

in murine tissue. A low level of IL-28R expression in mouse liver has also been 

reported by other investigators78.  

Although IL-28R is highly expressed by macrophages, DC and lymphocytes, 

neither human nor murine bone marrow was found to express the IFNλ 

receptor. This may have important consequences if IFNλ is used 

therapeutically. Up to 20% of patients treated for chronic HCV infection with 

IFNα have to reduce the dose due to the consequences of bone marrow 
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suppression. From our data it appears unlikely that IFNλ would have any 

significant impact on bone marrow cells and therefore neutropenia and 

thrombocytopaenia are less likely to occur.  

Analysis of IL-28R mRNA in resting and activated inflammatory cells suggests 

that the IL-28R is responsive to inflammatory stimuli in some cell types. To 

some extent this is also seen in the comparison of IL-28R expression in normal 

and diseased liver tissue where there is a significant increase in the number of 

IL-28R expressing cells in non-alcoholic hepatitis and chronic HCV infection. 

However, in these tissues it is difficult to determine whether increased IL-28R 

expression is due to IL-28R induction or recruitment of IL-28R-expressing 

inflammatory cells into the diseased tissue.  

In summary we have demonstrated that the distribution of the IL-28R is 

restricted in comparison to the IFNα receptor. Differences in receptor 

expression may result in a different profile of therapeutic effects and a reduction 

of adverse events if patients are treated with IFNλ.  

IL-28R was found to be expressed in many mouse tissues including epithelial 

tissues such as stomach, and small and large intestine where there is baso-

lateral staining of the epithelial cells and in addition, strongly staining individual 

cells were found in the lamina propria. In the liver, scattered non-hepatocyte 

cells lining the hepatic sinusoids appear to express IL-28R. These may be 

Kupffer cells or stellate cells. In lymphoid tissue and spleen approximately 5% 

of cells expressed the IL-28R strongly. In the spleen these were distributed 

throughout the red and white pulp. In lymph nodes these were scattered 

throughout the cortex and medulla. There was a notable presence of cells in 

subcapsular sinus, this is an area of a lymph node that is the receiving area for 

afferent (incoming) lymph and hence tends to be populated by 'activated' 

dendritic cells from stimulated regional tissues. The distribution of staining 

suggested expression of the IL-28R in macrophages and dendritic cells could 

be confirmed by staining for these cells on serial sections and/or by flow 

cytometry analysis of these cell types. In the uterus, staining was found in cells 

with granular cytoplasm which stained positively for the mast cell stain toluidine 

blue on serial sections. The distribution of IL-28R expression in human tissues 

was shown by TaqMan® PCR and correlated directly with mRNA expression 
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profiles in the Affymetrix datasets. Gene expression analysis showed additional 

tissues likely to be expressing IL-28R including lung, heart and thyroid.  

Whilst type I IFN receptors are expressed on virtually all cell types (IFNαR1 

Gene Logic data), type III IFN receptor expression exhibits more restricted 

cellular distribution. Type III IFN receptor is expressed in epithelial tissue, lymph 

nodes and spleen. Macrophages and/or dendritic cells appear to express the 

receptor at high levels. Preliminary evidence shows IL-28R is predominately 

expressed on antigen presenting cells. If confirmed this suggests that 

therapeutic manipulation of these cells may be achieved by use of IFNλ without 

affecting a wide range of cell types as seen with IFNα. However none of the 

tissues in these experiments were stimulated or infected: IL-28R might be 

inducible in other cell types and tissues that are stimulated or infected.  
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Chapter 7  

7. Bone marrow 

7.1 Introduction 

Although IFN-α is a potent antiviral agent, the broad expression of the type I IFN 

receptor results in responses in many organs apart from the target tissue, 

leading to serious complications include the development of neutropenia and 

lymphopenia resulting from IFNAR1 expression in hematopoietic cells84, 

depression resulting from CNS effects83, and constitutional symptoms (fevers, 

chills, myalgias). Lymphopenia, is the condition of having an abnormally low 

level of lymphocytes in the blood and neutropenia is characterised by an 

abnormally low number of neutrophils, neutrophils account for 50-70% of 

circulating white blood cells and act as the primary defence against infection, 

destroying bacteria. Patients with neutropenia are more susceptible to bacterial 

infections which can lead to sepsis without treatment and often results in 

discontinuation of IFNα treatment. 

Although IL-28R is highly expressed by macrophages, DC and lymphocytes, 

neither human nor murine bone marrow was found to express the IFNλ receptor 

(Data from Chapter 5 and 6). The limitation of type III IFN receptor expression 

suggests that some side effects may be avoided by type III IFN administration. 

This may have important consequences if IFNλ is used therapeutically. Up to 

20% of patients treated for chronic HCV infection with IFNα have to reduce the 

dose due to the consequences of bone marrow suppression. From data in 

Chapters 5 & 6 it appears unlikely that IFNλ would have any significant impact 

on bone marrow cells, this chapter set out to investigate this further.  

Initially Professor Myrtle Y Gordon’s group and Dr Hayley Cordingley's groups 

at Imperial College, London were contacted for a collaboration to look at 

interferon lambdas in human bone marrow assays, the groups at Imperial were 

no longer doing these assays and could not reinstate. Commercial options were 

also considered but could not be funded by GSK. Through various contacts 

within GSK it was found that Astra Zeneca were doing bone marrow assays 
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using mouse cell lines, this was a good starting point to investigate the 

properties of IL-28A and IL-28B. 

Work in collaboration with David Brott, Astra Zeneca was done to look at IFNs 

in murine myeloid and erythroleukemia cell lines. IL-28A and IL-28B were tested 

in myeloid M1 and HCD57 erythroleukemia murine cell lines and compared to 

IFNα. M1 mouse cells were used to look at differentiation into M1 macrophage-

like cells (promoting a Th1 response –innate immune system) and HCD57, an 

erythroleukemia cell line derived from a mouse infected at birth with Friend 

murine leukemia virus, the cells proliferate in response to Epo to erythrocytes 

(red blood cells). 

IL-29 is not expressed in mice so only IL-28A and IL-28B were tested in the 

mouse cell lines.  

The mouse bone marrow data was very limited but data showed that it was 

worth pursuing collaboration with a group that did bone marrow research in 

humans. Human bone marrow work was performed in collaboration with 

Alessandro Aiutis lab, University of Rome using a gene therapy connection.  

Initially IL-28R gene expression in comparison with IFNAR was evaluated in 

hematopoietic stem cells and lymphoid lineages (Bone marrow derived CD34+ 

and CD3+ T-cells, CD19+ B-cells, CD11c+ DCs and CD14+ 

monocytes/macrophage cells were purified from peripheral blood) to determine 

IL-28R distribution. To determine if in vitro there was a myelosuppressive effect 

of IFNα or interferon lambdas IL-29, IL-28A and IL-28B, human CD34+ cells 

were tested in colony forming cell (CFC) assays and using a CD34+ 

proliferation assay showed the viability of CD34+ cells in the presence of 

interferon lambdas and IFNα.  

IL-28B was evaluated in the experiments above as it is commercially available 

(not the case when work was undertaken in Chapter 3 and 4) and of key 

interest as 3 independent genome-wide association studies have identified 

single nucleotide polymorphisms in the IL-28B gene region to be associated 

with response of patients with chronic hepatitis C to pegylated IFN-α 

treatment143,100,144, showing a role for IL-28B unique to that of IL-29 or IL-28A.  
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7.2 Mouse cells  

The myeloid M1 cell line did not respond appropriately so only data from the 

HCD57 epo-dependent erythroleukemia cell line assay is shown below.  

The concentration that decreased the cell number by 50% (IC50) was calculated 

for IFNα, IL-28A and IL-28B from the data shown in Figure 7.1 and used to 

determine whether a compound was a bone marrow toxicant.  A compound was 

deemed positive if it had an IC50 <1µM. 

 

 

 

 

Figure 7.1: Mouse bone marrow data 

The values in the graph are percent of control (100 means same relative luminescence 

[cell number] as in the control well; 50 means 50% less relative luminescence [cell 

number] compared to the control well). From these values (triplicate wells for each 

concentration) the IC50 was calculated, IFNα is 0.04µM and IL-28A and IL-28B >2µM. 

 

In the HCD57 epo-dependent erythroleukemia cell line assay the IC50 for IFNα 

is 0.04µM or 40nM. IL-28A and IL-28B have IC50 values of >2µM (highest 

concentration tested due to solubility). This data shows that IFNα has an IC50 

value of <1µM which shows that it is classed as a bone marrow toxicant in the 
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HCD57 erythroleukemia cell line assay. IL-28A and IL-28B was not associated 

with any toxicity at 2µM. IL-29 was not tested as it is not expressed in mouse. 

7.3 Human cells - IL-28R gene expression in comparison with 

IFNAR in hematopoietic stem cells and lymphoid lineages 

The expression of IFNAR1 and IL-28R were tested on purified CD34+, CD3+, 

CD19+, CD14+ and CD11c+ purified from healthy donors. The expression 

levels for the IFNAR1 were higher than the expression of IL-28R, with CD34+, 

CD3+, CD14+ and CD11c+ cells but not with CD19+ cells where receptor 

expression for IL-28R and IFNAR1 were shown to be similar. IL-28R expression 

was detected in very low levels in peripheral myeloid cells CD11c+ but not 

detected in CD14+ cells or bone marrow derived CD34+ cells, Figure 7.2. High 

levels of IL-10R2 expression were detected in all cell types (data not shown). 

 

 

Figure 7.2: Human IFNαR1 and IL-28R expression  

Quantitative RT-PCR analysis of IL-28R and IFNAR1 expression in human 

hematopoietic stem cells and peripheral lymphoid lineages. Umbilical cord (UCB) and 

bone marrow (BM) CD34+ cells, peripheral blood (PB) CD3+, CD19+, CD11c+  and 

CD14+ cells. Gene expression data calculated as ΔCt in comparison with b-actin 

housekeeping control, concentration in µM. 

7.4 Colony forming capacity and proliferation of human CD34+ 

cells in vitro 

To assess a possible myelosuppressive effect of IFNα or interferon lambdas, 

human CD34+ cells were tested in colony forming cell (CFC) assays. As shown 

in Figure 5B, IL-29, IL-28A and IL-28B did not inhibit the capacity of BM CD34+ 
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cells to form erythroid or myeloid colonies (BFU, GM and GEMM) with the 

concentrations tested. In comparison the capacity of the plated cells to 

proliferate and form colonies is significantly reduced by the presence of all three  

IFNα concentrations tested, Figure 7.3. 

 

Figure 7.3: Colony forming cell (CFC) assay  

1000 BM CD34+ cells/ well after 14 days in methylcellulose with 0.03125, 0.0625 and 

0.125µM IL-29, IL-28A, IL-28B and IFNα stimulation. (A) BFU colonies= burst-forming 

unit erythroid= erythroid progenitor cells. (B) GM colonies= granulocyte, monocyte = 
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precursor for monoblasts and myeloblasts. (C) GEMM colonies= granulocyte, 

erythrocyte, monocyte, megakaryocyte= multipotential progenitor cells. 

 

In addition the CD34+ proliferation assay showed the viability of CD34+ cells 

after cytokine stimulation is lower for IFNα compared to the interferon lambdas 

(Figure 7.4), this comparible to the results seen for the mouse bone marrow 

data, Figure 7.1. 

 

 

 

 

Figure 7.4: CD34+ cells’ viability after proliferation 

50,000 bone marrow CD34+ cells/ well after cytokine stimulation (with TPO, SCF, Flt3, 

IL-3) and proliferation for 3 days in the presence of 0.03125, 0.0625 and 0.125µM 

IFNα, IL-29, IL-28A and IL-28B.  

 

7.5 Bone marrow cell discussion 

In the murine HCD57 erythroleukemia cell line assay data showed that IFNα 

has an IC50 value of <1µM which shows that it is classed as a bone marrow 

toxicant in the HCD57 erythroleukemia cell line assay and IL-28A and IL-28B 

show no toxicity at 2µM. IL-29 is not expressed in the mouse so work to look at 

IL-29 was done in a human CD34+ assay.  

Results for the IFNαR1 and IL-28R gene expression on purified CD34+, CD3+, 

CD19+, CD14+ and CD11c+ cells show the expression levels for the IFNR1 is 

higher in most cell types than IL-28R, including CD34+. Most importantly, IL-

28R expression was not detected in peripheral myeloid cells.  
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In vivo exposure to IFNα acting through IFNαR1 is therefore likely to have a 

greater effect on immune cell development and function as compared to the 

three interferon lambdas IL-29, IL-28A and IL-28B. The IL-28R is not only 

expressed at lower levels as compared to IFNαR1, but its expression is 

completely absent in peripheral blood myeloid cells (CD14+, CD11c+). This 

differential expression could contribute to a greater myeloablative action of IFNα 

as compared to lambdas in vivo. 

Consistently, the capacity of BM CD34+ cells to proliferate and form colonies 

was severely not compromised by the presence of IFN lambdas IL-29, IL-28A 

and IL-28B. But in vitro exposure to IFNα lowered the viability of CD34+ cells 

after cytokine stimulation and completely abolished their colony forming 

capacity. These findings are consistent with the findings that both human and 

murine bone marrow only expressed IFNAR but not the IL-28 receptor, thereby 

indicating an increased sensitivity of bone marrow haematopoietic stem cells to 

IFNα. It can be hypothesised that IFN-α exerts an inflammatory effect also on 

hematopoietic stem cells, thereby altering their quiescence state. Changes in 

their cellular turnover and increased proliferation are likely to lead to an 

exhaustion of their differentiation capacity. This effect might well underlie their 

abolished colony formation capacity in vitro and cause a myeloablative effect 

after treatment with IFNα. The conserved viability and colony forming capacity 

in the presence of interferon lambdas on the other hand indicates that this 

unwanted side effect could be prevented by administration of the interferon 

lambdas. Although the IL-28R was found expressed by macrophages, DC and 

lymphocytes in the peripheral blood, its expression was lower than the IFNAR in 

all cell types and comparable in B cells. 
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Chapter 8  

General Discussion 

8.1 Antiviral properties of interferon lambdas 

Interferon lambdas show a clear role in antiviral response, with EMCV, vesicular 

stomatitis virus,  herpes simplex virus 1, influenza A virus, cytomegalovirus, 

HIV, HBV, and HCV are all sensitive to the antiviral effects of 

IFNλ136,145,57,127,2,58,51,3,146,65. Data here shows in vitro assays show that IL-28A 

and IL-29 have an antiviral effect against HCV in the HCV genotype 1a and 1b 

replicon systems. IFNα was shown to have ~100 times greater antiviral activity 

than IL-29, and IL-29 had ~10 times greater antiviral effect in the HCV 1a and 

1b replicon system than IL-28A. Robek demonstrated that IL-29 and IL-28A 

inhibit replication of subgenomic and full-length HCV replicons in HuH7 cells. 

IFNα and type III interferons were tested in the HCV 1b replicon assay to 

determine any synergistic effects of the type I and type III interferons together: 

results showed an additive effect not a synergistic effect, also seen with IL-29 

and IFNα by Marcello et al 61. An additive effect though could show that IL-29 

when used with IFNα could be good as a dual therapy as opposed to IFNα 

alone. In the interferon sensitive assay, sensitivity was shown in the ISG56 

assay with IL-28A and IL-29: interferon lambdas have also been shown to 

induce expression of 2’5-OAS2 and MxA126. Initial data in a human HepG2 cell 

line stably transfected with HBV subtype ayr showed that both IL-29 and IL-28A 

had antiviral effects against HBV but significantly lower in antiviral activity than 

IFNα. IL-29 was shown to inhibit HBV replication in a murine model Robek51. No 

antiviral effects were observed with IL-28A or IL-29 in the HIV, RSV assays or in 

the dengue replicon system, Therefore, the inability of IFNλ to inhibit these 

viruses may be due to the cell line having limited IL-28R distribution or their 

inherent insensitivity to the antiviral effects of IFNs in general, rather than a 

specific shortcoming of the IFNλ response. 
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8.2 Gene Expression 

There are many similarities in gene modulation by type I and type III IFNs. 

When looking at the genes that are expressed most highly in both the parent 

HuH7 and the replicon systems IFNλs and IFNα show largely overlapping sets 

of interferon stimulated genes (ISGs). Although antiviral mechanisms of type I 

and III differ, they may actually involve similar ISG responses. Other groups 

have shown similar sets of ISGs being expressed by type I and type III 

IFNs65,57,61
. Our data was different to these groups in that IL-28A was also 

tested in HuH7 and the replicon systems, and that parent HuH7 cells were used 

in gene expression analysis. Marcello and Zhou used HCV replicon cells and 

Doyle used HepG2 cells for microarray analysis and all groups compared IL-29 

with IFNα. 

The majority of interferon stimulated genes (ISG) stimulated in the replicon cell 

line by IFNα, IL-28A and IL-29 are also stimulated in the parental cell line. For 

the majority of genes in both the replicon and the parent datasets, the kinetics 

of gene expression was the same for type I and type III IFNs. Marcello61 

showed in the replicon system that the majority of type III stimulated genes 

continue to increase at 24 hours and with IFNα the same genes tend to 

decrease by the 24 hour time point. In contrast the data shown here 

demonstrates that the kinetics of the type I and III IFNs show similar patterns of 

gene expression. HCV appears to influence IFNλ induced gene expression 

similar to IFNα induced gene expression. HCV replicon inhibited gene induction 

by both type I and type III IFNs; this may be due to the NS3/4A protease 

encoded by HCV cleaving the adaptor in the RIG-I-like receptor (RIG-I) pathway 

IPS1 thus disrupting the signalling to type I IFN138; this data indicates that 

signalling to type III IFN is also disrupted. Downstream genes from RIG-I are 

affected in the replicon system including MAPK genes which show lower 

abundance in number in the replicon system than in the parent system.  

Pathway analysis showed in the parent HuH7 cells at the earliest time point 

tested, 4 hours, for type I and type III IFNs interferon signalling is the most 

strongly induced pathway. At 8 hours after interferon signalling pathway, IL-29 

induces immune modulation pathways such as antigen presentation pathway 
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and complement and coagulation cascades predominantly, compared with IFNα 

mostly regulating cell signalling pathways. Interferon signalling was not 

represented in the top 7 pathways by IFNα at 8 hours potentially showing that 

IFNα is less specific in its signalling pathways than IL-29. This gene expression 

analysis suggests that IFNλs and IFNα have primarily complementary functions 

but where IL-29, by modulating alternative pathways such as the antigen 

presentation and processing pathways at an early time point, may prove to be a 

useful therapeutic option for the management of chronic viral infection such as 

HCV.   

8.3 IL-28R distribution 

While type I IFN receptors are expressed on virtually all cell types, results show 

that type III IFN receptor expression exhibits a more restricted cellular 

distribution. This is also reported by other groups showing not all cell types 

respond to interferon lambdas including fibroblasts and endothelial cells13. 

In the panel of murine tissues, immunohistochemical analysis shows that IL-

28R is expressed at highest levels by cells in lymph nodes and spleen and 

epithelial tissue of the gastrointestinal tract. Type III interferons have been 

shown to be the main interferon giving antiviral protection of intestinal epithelial 

cells against GI viruses identifying a critical role of IFN-λ in the epithelial 

antiviral host defense147 and possibly maintenance of GI tract homeostasis, 

linking this role to high level of IL-28R expression in gut tissue. A high level of 

IL-28R on intestinal epithelial cells has been shown to be of importance. 

Antiviral protection of intestinal epithelial cells against gastrointestinal viruses 

mainly relies on the type III antiviral system147. This study showed mice lacking 

functional IL-28R had impaired control of oral rotavirus infection, which infects 

intestinal epithelial cells. Additionally it was demonstrated that systemic 

administration of IL-29 not IFNα, induced an antiviral state in these cells 

resulting in suppression of rotavirus replication. The immunohistochemical 

findings were confirmed in the IL-28R gene expression data. The unique 

functional tissue-specificity of IFN-λs is due to the cell type-restricted pattern of 

IFN-λR1 expression it was shown here the unique of staining in these tissues, 

particularly the staining of cells in the sub-capsular regions of lymph nodes 
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suggested that antigen presenting cells express IL-28R at high density. Dual 

staining with Mac 387 and F4/80 illustrated that some but not all tissue 

macrophages express IL-28R at high density. Literature also shows that unlike 

IFNα IFN-λR1 is primarily expressed in epithelial cells and specific subsets of 

immune cells59,57,13,148,77,79,78,80,23. In human tissues the distribution of IL-28R 

using microarray screens showed a broadly similar tissue expression pattern to 

the mouse. One major exception was a much greater expression in the human 

liver than in the mouse. Hepatocytes were seen to express IL-28R in human 

tissue but not in murine tissue, this may account for the IFN-λ antiviral system 

appearing to play minimal if any role in the protection of mice against 

hepatotropic viruses148.  

IHC data didn’t not show IL-28R in lung but stimulated alveolar macrophages 

showed high gene expression of IL-28R, type III IFN system is shown to have 

an important role in asthma and respiratory viral infections149,140. 

Neither human nor murine bone marrow was found to express the IFNλ 

receptor in significant levels. This may have important consequences if IFNλ is 

used therapeutically. Up to 20% of patients treated for chronic HCV infection 

with IFNα have to reduce the dose due to the consequences of bone marrow 

suppression. It appears unlikely that IFNλ would have any significant impact on 

bone marrow cells and therefore bone marrow suppression is less likely.  

In summary the distribution of the IL-28R is restricted in comparison to the IFNα 

receptor. IFN-λs have a specialized role in diseases of epithelial tissue, and in 

the treatment of viral infections of these and other responsive tissues. Limited 

IL-28R may explain the findings that IFN-λ independently of IFNα cannot 

provide full protection against systemic virus infections; these viruses infect 

cells that are not responsive to type III IFNs. Restriction of IL-28R receptor 

expression may result in a different profile of therapeutic effects and fewer or 

milder adverse events if patients are treated with IFNλ rather than IFNα. 
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8.4 Bone marrow experiments 

In a murine HCD57 erythroleukemia cell line assay, IFNα was classed as a 

bone marrow toxicant while IL-28A and IL-28B were shown to not cause 

toxicity. In a murine HCD57 erythroleukemia cell line assay, IFNα was classed 

as a bone marrow toxicant while IL-28A and IL-28B were shown to not cause 

toxicity. Consistently, the capacity of BM CD34+ cells to proliferate and form 

colonies was not compromised by the presence of IFN lambdas IL-29, IL-28A 

and IL-28B. But in vitro exposure to IFNα lowered the viability of CD34+ cells 

after cytokine stimulation and completely abolished their colony forming 

capacity. These findings are consistent with the finding that both human and 

murine bone marrow only expressed IFNAR but not the IFN-λ receptor, thereby 

indicating an increased sensitivity of bone marrow haematopoietic stem cells to 

IFNα. The conserved viability and colony forming capacity in the presence of 

interferon lambdas, indicates that this unwanted side effect could be prevented 

by administration of the latter. Although the IL-28R was found expressed by 

macrophages, DC and lymphocytes in the peripheral blood, its expression was 

lower than the IFNAR in all cell types and comparable in B cells. These findings 

might therefore have important consequences if IFNλ is used therapeutically. 

Up to 20% of patients treated with IFN-α for chronic HCV infection have to 

reduce the dose due to the consequences of bone marrow suppression. From 

data in Chapter 7 it appears unlikely that IFNλ would have any significant 

impact on bone marrow cells and therefore neutropaenia and 

thrombocytopaenia are less likely to occur. In support of this hypothesis phase 

1b data from Zymogenetics showed that repeated dosing with PEG-IFN-λ was 

well tolerated with minimal constitutional symptoms and in contrast to the 

effects of type I interferons, there were no significant decreases from baseline 

values in neutrophil or platelet counts96,150,116. 

8.5 IFNλs as a therapy 

Type III interferons have been implicated as having antiviral properties in a 

range of viruses: DNA viruses; poxvirus55
, murine cytomegalovirus (CMV)56,56, 
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hepatitis B virus57,51,58 and herpes simplex virus 1 and 259, the single stranded 

(ss) (+) RNA viruses EMCV60,3, west nile virus57 and hepatitis C virus57,61,62,51, 

as well as the ss (−) RNA viruses influenza-A virus63 and vesicular stomatitis 

virus,62. Chronic infection with hepatitis C virus causes approximately 350,000 

deaths annually46. Pegylated interferonα (IFNα) in combination with the 

nucleoside analogue ribavirin is the current standard of care for the treatment of 

patients chronically infected with hepatitis C (HCV). There is a role for Interferon 

lambdas in the treatment of HCV, data described here showed IL-29 and IL-28A 

have an antiviral effect against HCV in the HCV genotype 1a and 1b replicon 

systems. An additive effect of IFNα and IL-29 or IL-28A treatment could show 

that IFN lambdas when used with IFNα could be good as a dual therapy as 

opposed to IFNα alone.  

The data presented shows that by modulating alternative pathways such as the 

antigen presentation and processing pathways at an early time point and having 

a limited receptor distribution it may prove to be a superior therapeutic option for 

the management of HCV chronic viral infection, causing fewer and/or milder 

adverse events. Up to 20% of patients treated for chronic HCV infection with 

IFNα have to reduce the dose due to the consequences of bone marrow 

suppression, this data shows IFNλ does not have a significant impact on bone 

marrow cells and therefore neutropaenia and thrombocytopaenia are less likely 

to occur. In support of this hypothesis, phase 1b data from Zymogenetics 

showed repeated dosing with PEG-IFNλ was well tolerated with minimal 

constitutional symptoms and in contrast to effects of type I interferons, there 

were no significant decreases from baseline values in neutrophil or platelet 

counts96,116. Latest data from Bristol Myers Squibb Co. showed peginterferon 

lambda achieved SVR24 rates comparable to peginterferon alpha with fewer 

flu-like and musculoskeletal symptoms in phase IIb study in treatment-naïve 

genotype 2 or 3 hepatitis C patients. 

There is a potential role for IL-29 instead of IFNα in the treatment regime with 

direct-acting antivirals (DAAs), NS3/4A protease inhibitors, telaprevir and 

boceprevir. With the current DAAs there is rapid resistance due to rapid 

mutations of HCV40,41,86,87. The current DAAs are administered with 

peginterferon-alfa-2a and ribavirin to prevent resistance to the DAAs. Both 
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telaprevir and boceprevir highly improve rates of SVR of HCV infected patients 

but there are limitations, designed to target genotype 1 HCV they have 

differential efficancy across the genotypes88,89,90, they are also limited by side 

effects, rash (Telaprevir) and anaemia, replacement of IFNα with IL-29 could 

reduce side effects caused by IFNα and may reduce side effects attributed to 

the DAA as this may be exasperated by IFNα. Other HCV therapies are 

currently being evaluated using co treatment of IFNα , these include RdRp 

inhibitors which inhibit the active site of polymerase activity, preliminary results 

from Phase II trials reported rates of EVR >80% among patients with HCV 

genotype 1 or 4 infection who received mericitabine in combination with SOC 

PEG-IFN and RBV47; may not need the co-administration of IFNs and host 

factor cyclophilins, Alisporivir is in advanced clinical trials, it inhibits viral 

replication by disrupting the interaction between cyclophilin A and NS5A93,94. 

Alisporivir combined with PEG-IFN and RBV, led to an SVR in 76% of HCV 

genotype 1 infection patients compared to 55% with SOC94. There may be a 

role for Interferon lambdas to replace IFNα as a co treatment but the aim with 

these therapies is to have an interferon free regime. 

A pegylated form of IFN-λ1 (IL-29) is currently in clinical trials for the treatment 

of chronic HCV infection and initial reports shows less severe side effects than 

pegylated IFNα and similar antiviral activity95,96. Caution would be needed if 

administrating interferon lambda with HCV/HIV co infection as the role of IFNλs 

is still unclear, whilst IL-29 and IL-28A are reported to inhibit HIV-1 replication in 

macrophages151 pretreatment of uninfected PBMCs or CD4+ T-cell lines with 

IFN-λ improved the expression of HIV-1 receptor and co-receptors that increase 

viral binding and replication130. 

There may be a role for IL-28B treatment in the future, four Genome Wide 

Association studies have highlighted the significance of IL-28B within the innate 

immune response to HCV97,98,99,100. Two protective SNPs were shown to be 

associated with a SVR to IFNα/Ribavirin in patients with HCV genotype 1. In a 

study of rapid viral response (RVR) rates in patients with HCV Genotype 1 and 

4, of the RVRs 100% of carriers of the protective rs12979860 C allele, and 64% 

of non-RVR individuals expressed the non-protective genotype T allele of 

rs8099917101.  
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The potential broad roles of IFN-λs in immune function may also mean they play 

a future role in autoimmunity and cancer therapy. Type III IFNs like type I IFNs, 

may potentially be used for the treatment of other inflammatory or autoimmune 

diseases such as rheumatoid arthritis (RA), systemic lupus erythematosus 

(SLE)102, or multiple sclerosis (MS)103, IFN-λ therapy may represent a novel 

approach to prevention and/or treatment of respiratory virus-triggered asthma 

exacerbations149,140. IFN-λs have been shown to have potent antitumor activities 

in murine models of cancer104,105,106, highlighting potential as anti-cancer 

therapy. 

 

 

8.6 Future work 

Further experiments could be designed looking at the effects of interferon 

lambdas on antigen presenting cells, as experiments above have suggested 

that the interferon lambdas not only modulate alternative pathways such as the 

antigen presentation and processing pathways at an early time point compared 

with IFNα but their receptor IL-28R is also found primarily on antigen presenting 

cells. Maturation of dendritic cells (DCs) (generated from buffy coats) can be 

investigated by applying a fixed dose of antigen to DCs, treating the DCs with 

IFNλ, IFNα and no interferon and looking at T-cell responses. The current, 

immunomodulatory activities of IFNλs are still not defined and studies to date 

show opposing functions e.g. DC-mediated stimulation of either T-reg 

proliferation22 or towards Th1 differentiation140. There is value in continuing to 

look at the properties of IL-28A and IL-28B as well as IL-29 and look at their 

broader roles in immune function including autoimmunity and cancer therapy. 

8.7 Conclusions 

Interferon lambdas (IFNλs), termed IFN-λ1, IFN-λ2 and IFN-λ3, or IL-29, IL-28A 

and IL-28B are a recently identified family of cytokines with antiviral activity. 

Type I IFNs are used therapeutically in the treatment of chronic hepatitis B and 

C; however only ~30% of patients with hepatitis B virus will be successfully 

treated and only ~60% of patients with chronic HCV. New interventions are 
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therefore required to address this unmet medical need and this thesis aimed to 

evaluate the potential use of IFNλs in treating viral infection.  

A range of in vitro antiviral assays were developed to determine which viruses 

were inhibited by IFNλs. Results showed IL-28A and IL-29 have antiviral effects 

with HCV 1a and 1b replicons and HBV. No antiviral effect was demonstrated 

against dengue, RSV or HIV. Gene expression stimulated by IFNλ was 

compared with IFNα; and the effects of IFNλ against HCV were investigated. 

The types of genes induced, and the kinetics of gene induction were similar 

between the type I and type III IFNs in the HCV replicon cell line. With the 

parental cell line, the interferon signalling pathway was the most greatly affected 

by IFNα, IL-28A and IL-29, but IL-29 strongly regulated the antigen presenting 

pathway compared with IFNα. IL-28R distribution was determined to investigate 

the tissue and cellular distribution of IFNλ responsive cells. IL-28R was 

expressed in epithelial tissues, lymphoid tissue, spleen, liver, kidney and 

thymus, with majority of IL-28R expression on macrophages and dendritic cells. 

In mouse HCD57 erythroleukemia cell line assay, IFNα was classed as a bone 

marrow toxicant and IL-28A and IL-28B were shown to not cause toxicity. 

Human BM CD34+ cells ability to proliferate and form colonies was not 

compromised by the presence of IFN lambdas IL-29, IL-28A and IL-28B whilst 

IFNα completely abolished their colony forming capacity. Human and murine 

bone marrow only expressed IFNAR but not the IL-28 receptor, thereby 

indicating an increased sensitivity of bone marrow haematopoietic stem cells to 

IFNα. The conserved viability and colony forming capacity in the presence of 

interferon lambdas, indicates that this unwanted side effect could be prevented 

by administration of the latter.  

These findings might therefore have important consequences if IFNλ is used 

therapeutically. Up to 20% of patients treated with IFNα for chronic HCV 

infection have to reduce the dose due to the consequences of bone marrow 

suppression. From our data it appears unlikely that IFNλ would have any 

significant impact on bone marrow cells and therefore neutropenia and 

thrombocytopenia are less likely to occur. In support of this hypothesis phase 

1b data from Zymogenetics showed that repeated dosing with PEG-IFN-λ was 

well tolerated with minimal constitutional symptoms and in contrast to the 
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effects of type I interferons, there were no significant decreases from baseline 

values in neutrophil or platelet counts53, 63.  

 

In summary differences in receptor expression and gene expression compared 

to IFNα may result in a different profile of therapeutic effects and adverse 

events if patients are treated with IFN-λ.
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Appendix I 

A data CD containing  Affymetrix gene chip raw data is enclosed. 

 

Appendix II Suppliers 

Below are listed the names and contact details of most suppliers or materials 

and reagents used in this study. 

Abcam www.abcam.com 

Affymetrix www.affymetrix.com 

Agilent www.agilent.com 

AllCells www.allcells.com 

Analytix www.analytix.co.uk 

Applied Biosystems www.appliedbiosystems.com 

Becton Dickinson www.bdbiosciences.com 

Bio-Rad www.bio-rad.com 

Capralogics www.capralogics.net 

Corbett Life Science www.corbettlifescience.com 

Dako www.dako.com 

Eppendorf www.eppendorf.co.uk 

Fluka www.sigmaaldrich.com/Fluka 

Gene Logic Inc. www.genelogic.com 

Gibco www.invitrogen.com 

IKA www.ika.com 

Ingenuity Inc. www.ingenuity-inc.org 

Invitrogen www.invitrogen.com 

Kbioscience www.kbioscience.co.uk 

Life Technologies www.lifetechnologies.com 

Lonza www.lonza.com/research 

Merck, Sharpe and Dohme www.msd-uk.com 

Miltenyi Biotec www.miltenyibiotec.com 

Molecular devices www.moleculardevices.com 

Novagen www.merckmillipore.com/novagen 

Nunc www.nuncbrand.com 

PBL  www.interferonsource.com 

Proligo www.sigmaaldrich.com  

http://www.invitrogen.com/
http://www.invitrogen.com/
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Promega www.promega.com 

Qiagen www.qiagen.com 

R&D systems www.rndsystems.com 

Sigma-Aldrich www.Sigma-Aldrich.com 

Syngene www.syngene.com 

Thermo Shandon www.thermoscientific.com 

Tree Star www.treestar.com 

Vector Labratories www.vectorlabs.com 

Virostat www.virostat-inc.com 
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Appendix III Publications 

 

TALKS: 
 
Rhiannon Lowe Talk entitled ‘Use of IHC to show distribution of IL-28R’. 9th European 
Histopathology Forum (19-21st April 2010) - Stratford on Avon. Awarded best new 
speaker award. 
 
 
PUBLICATIONS: 
 
Jaimini Mistry, Rhiannon Lowe, Christian Weise, Mikala Skydsgaard  and Zuhal 
Dincer.Morphometric assessment of minipig skin thickness in relation to age, sex and 
anatomical location using a computerised system. 8th European Histopathology Forum 
(20th - 22nd April 2009) - Stratford on Avon 
 
Coelho A-M, Lowe R.M. (May 2008) Analysing the phenotype and function of 
regulatory T cells (EuroSciCon meeting) meeting report. Immunology News, 2008 15.2, 
pp. 33-36. 
 
Lowe R Toll-like receptors - Investigating innate immunity & infection meeting report. 
Nov 2007 Immunology News. 
 
Lowe R; Morley P; Simecek N; Scott L; Thursz M. (Aug 2007). Microarray comparison 
of type I and type III interferons: Superior therapeutic profile for IL-29? J INTERF 
CYTOK RES. 27:733-733.  
 
Lowe R; Morley P; Scott L; Simecek N; Thursz M. (Aug 2007). HCV replicon inhibits 
gene induction by type III interferons. J INTERF CYTOK RES. 27:732-733.  
 
Lowe RM; Fung SSL; Clarke CJ; Thursz MR. (Aug 2007). Distribution of the type III 
interferon receptor. J INTERF CYTOK RES. 27:732-732. 
 
Claire J. Weekes, Gino Brunori, Tracy M. Walker, Rhiannon M. Lowe, Angela T. 
White, Joel D. Parry. Mitochondrial toxcitiy of nucleoside analogoues and the 
application of real-time PCR. Int Cong Drug Therapy HIV 2004 Nov 14-18;7:Abstract 
No. P185 
 
W Wu*, S E Wildsmith, A J Winkley, R Yallop, F J Elcock, P J Bugelski. 
Chemometric strategies for normalisation of gene expression data. Analytica 
Chimica Acta Mar 2001.  
 
SE Wildsmith, R Yallop, P Bugelski, G Morgan. EP1101114B-Method of Protein 
Analysis. Patent filed July 1999, Granted in Europe July 2005. 
 
M Thursz, R Yallop, R Goldin, C Trepo, HC Thomas. Influence of MHC class II 

genotype on outcome of infection with hepatitis C virus. Lancet. 354(9196): 2119-24, 

1999 Dec 18-25.
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