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Abstract—Home networks are becoming increasingly complex
but existing management solutions are not simple to use since
they are not tailored to the needs of typical home-users. In this
paper we present a new approach to home network management
that allows users to formulate quite sophisticated “comic-strip”
policies using an attractive iPad application. The policies are
based on the management wishes of home users elicited in a
user study. Comic-strip policies are passed to a Policy engine
running on a new Home Network Router designed to facilitate a
variety of management tasks. We illustrate our approach via a
number end-to-end experiments in an actual home deployment,
using our prototype implementation.

I. INTRODUCTION

Home networks have become an important part in the
everyday life of millions of people. It is estimated that during
the 3rd quarter of 2011 there were about 581 million broad-
band subscribers worldwide, and this number is constantly
growing [1]. Despite this growth, little work has been done
for making these networks easy to manage for the home user.
Emerging applications, services and technologies continues to
make management difficult, particularly the bewildering array
of management interfaces and APIs.

Home networks differ from enterprise ones at many levels.
Perhaps, most importantly, typical users are not well trained
administrators. They do have the required technology but
in many cases don’t wish or know how to use it. Where
they have some fundamental understanding, it is often in
their own terms which is a total different viewpoint from
traditional networking ([2], [3], [4], [5], [6]). A second area
of difference is that home networks are rarely installed wisely,
resulting in chaotic deployments ([7]) which exhibit very poor
connectivity characteristics [8]. Bandwidth bottlenecks usually
reside at the edges of the Internet ([9]), which is also true for
home networks ([10], [11], [12]). Therefore, in a multi-user
environment of shared resources it is sometimes necessary to
regulate their usage when they are scarce.

Recent studies have proposed new ideas for configuring and
managing home networks ([13], [14], [15], [16]) while a few
have developed prototype implementations ([17], [18], [19]).
Nevertheless, most of the aforementioned works fail to provide
an intuitive management model for users, nor do they promote
the decoupling of configuration semantics from device and

network specific details. There is a clear need for new home
network management solutions that address such concerns.

To this end, in this paper, we present a novel policy based
approach for home network management that has been driven
from user-level requirements elicited from a small group
of real users (not researchers or students). In our approach
users compose “comic strip” policies on an iPad. Policies are
typically defined in terms of actual home users and devices
that model ownership of devices. Among the policy actions
requested by our users are traffic prioritisation, device blocking
and multiple methods for notifications. Actions can be one-
off or event-triggered. Event-triggers are typically based on
network events (visiting a particular website) or bandwidth
usage. Time-constrained policies are also popular.

One of the major contributions of the present work is the
fact that policies operate at a higher semantic level. They
do not deal with the details of the networking infrastructure
and at the same time they can reflect the user needs. This
makes easier both the design of a management system but
also facilitates advanced reasoning about network’s condition
and usage. In order to support such an intuitive management
model we designed a runtime environment which provides
the appropriate abstractions for certain aspects of network
monitoring and configuration. The details of the runtime have
been discussed in our previous works ([20], [21], [22]). This
paper builds upon our existing efforts and completes the design
of a closed loop management system for home networks.

The rest of this paper is organised as follows. Section II
describes the overall architecture of our system, introducing
the types of policies identified and supported, and describes in
depth the individual components of our design. Our prototype
implementation is presented in section III, which is then used
to experimentally evaluate our system in a real home network
deployment in section IV. Section V compares the work
with related work in the area of home network management.
Finally, section VI concludes the paper and outlines our future
work directions.

II. SYSTEM OVERVIEW

A. Overall Architecture

In this section we present the overall architecture of our
framework and explain the functionality of its components,



Policy Engine

Policy HandlerData 

Store

Internal

Model

Runtime Environment

Configuration ServiceMonitoring Manager

pe/hwpe  addPolicy: “Blocking Policy 1”

event:  #(“allowance” “0.65” “*”  “10.2.0.9”)  

action: #(“block” “10.2.0.21”).

Generated Policy

Events Reconfiguration Request

Monitoring Data Commands

Fig. 1. Overall system’s architecture and execution pipeline

illustrated in Fig. 1. Users interact with a “comic strip” iPad
application to compose stories that reflect their management
requirements. When they submit a new story the application
transforms it into a textual representation of the equivalent
policy and supplies it to policy engine running at the home
gateway/router. The engine checks and validates the submitted
policy against the running system. If it is not found to
contain errors or inconsistencies it gets activated. The specified
policy actions can alter the configuration of the network either
statically in an one-off manner, or in a dynamic fashion
responding to monitoring events. The policy engine maintains
the overall state of the network to facilitate validation and to
provide feedback to the user.

B. User Interface Design

Users interact with the management system via an iPad
which encourages touch-based interaction. iPad apps were
looked upon favourably by our group of users for their ease of
use and form factor. The policy application that was developed
for users prompts them to compose“comic strips” (see Fig. 2)
by selecting, combining and configuring pre-defined tiles that
correspond to policy elements. Each strip represents a policy.
The policies that we support were not based on our ideas
for what policies should be provided. Rather they are based
on what users asked for. In many cases this was frustrating
as it showed a lack of interest from users to many of the
policies that we thought they would want (e.g. explicit firewall
configuration, port-forwarding, bandwidth allocation etc.). On
the other hand, some of the features they wanted required
a lot of effort to implement, especially the dynamically
applied configuration changes. Currently, most policies take
the following form:

• Tile 1: when device Dx of user Ux

• Tile 2: meets certain usage criteria (event E)
• Tile 3: between times ta, tb of weekdays Wd

• Tile 4: perform Action A on [device Dy of] user Uy

Hosts are mapped 1-1 to users during the device registration
phase. Before a device is allowed to connect to the network,
the management interface requests a few details from the user
(e.g type of device and owner). New users can be registered
in a similar way through a separate menu screen. All user to
device mappings are static but can be changed at any point.

In Fig. 2 the policy is: “When Kevin’s mobile phone
accesses Ebay, or Facebook, or YouTube web pages, between
20:00 - 23:29 on any weekday then send Hazel a message
on Twitter”. This is just one type of policy that users can
formulate. Policies can use any of the devices / users /
usage events / day-time ranges / actions defined for their
home network. Usage events are detected by the underlying
monitoring infrastructure (see later) which can be any of the
following types: usage of a specific device, access to specific
Internet sites (or its negation), and usage of a given percentage
of home’s total upload and/or download allowance.

The actions which are currently supported fall within three
categories: prioritisation, access control and notification (via
Email, SMS, Growl, Twitter, Facebook). The first two types
of actions may be applied and stay active for a given amount
of time (minutes, hours, days) during the date-time ranges that
a policy is scheduled to be active. Users can also disable, re-
activate, store, remove and maintain sets of “comic strips”.

C. Home Network Policies
The “comic strip” stories described in the previous section

are visual representations of a rich set of policies which
our system supports. They are converted into text form and
then forwarded to the policy engine for enforcement. This
conversion is based on device ownership information of users
that is stored in a relational database running on the home
router. Whenever a change is detected in user-device mappings
at runtime, the relevant device-level policies are updated,
preserving the overall consistency. The syntax of device level
policies is:
policy:= [Schedule: periodExp]

[Event: eventExp, subjectExp]
Action: actionExp [, subjectExp]

[Duration: hours(h) [, mins(m)] ]
periodExp:= (hh:mm, hh:mm, {weekday})
weekday:= {Sun|Mon|Tue|Wed|Thu|Fri|Sat|*}
eventExp:= Visits ([!]{url}) |

Used |
Allowance (percentage,(up|down))

subjectExp:= {ipaddr} | any
actionExp:= {Notify (service, "details") |

Priority (low | def | high) |
Block }

Square brackets indicate optional elements. Curly brackets
indicate lists (collection of values). Not all possible combina-
tions of schedule/event/action/duration components result in
valid policies. For instance the policy shown in Fig.2 does not
present to the user a tile to set-up a duration because a “tweet”
is an one-off instantaneous action. On the other hand, applying
a prioritisation action for a given duration makes sense (Fig.1).

When enabled, a policy triggers actions and activates the
required monitoring processes. If a “schedule” expression is
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Fig. 2. The comic strip application running on an iPad

used, then, it defines time periods for certain weekdays, during
which a policy (if enabled) can have an effect on the network’s
state by applying the specified actions. Outside this time
period, actions cannot be applied but the associated monitoring
processes keep running.

Home network management policies are actually an ex-
tension of the traditional obligation policies [23] and thus,
they allow the specification of events which trigger a given
set of related actions. On top of that, they also support
schedule expressions and time-duration for actions, features
which require extra state information and more sophisticated
state management. We have implemented a small set of
event types based on user input. “Visits” are events that are
generated whenever a user accesses an Internet location (URL
or IP address) using any device that he owns. “Used” events
correspond to any use of a given device or set of devices, via
user-related network activity. “Allowance” events correspond
to the amount of uplink / downlink data that a user has
consumed during some period using one or more devices. The
volume of data is expressed as a percentage of the “home’s
overall allowance” with their Internet Service Provider.

The third component of a policy specifies one or more
actions. If no events are specified, the actions are applied the
time the policy is enabled, and get revoked when the policy is
disabled or removed. Alternatively, if an event expression is
used, actions are triggered dynamically at runtime. Currently
we have implemented three types of actions. A user may
be notified via a specific service (e.g. SMS, Email) when
particular network usage criteria are met (depending on the
event definition). Prioritisation actions are used to assign
priorities to network resource usage among users / devices.
There are three classes of priorities, normal, which is the
default for all traffic, high and low. Prioritisation has been used
by some users as a mean to penalise misbehaving individuals,
banning indirectly certain applications (e.g. no live video
streaming) and also to improve the quality of experience for
users who actually need it for important tasks. The third
type of action is to totally block someone from accessing the

TABLE I
POLICIES FOR USE CASE

Policy Description
P1 When device H3 of user US consumes more than 60%

of home download allowance, then block H3

P2 During weekdays between 20:00-23:00, when device Hg

is used, send an SMS to Dad’s (UD) mobile phone
P3 During 20:00-23:00 on any day, when any device of user

UD (H2 and Hsp) accesses webapp.workplace.com
then give this device high priority for 1 hour

P1 Specification
Event: Allowance(0.6, down), ipAdddr(H3)
Action: Block, ipAdddr(H3)

P2 Specification
Schedule: (20:00, 23:00, {Mon, Tue,Wed, Thu, Fri})

Event: Used, ipAdddr(Hg)
Action: Notify (sms, “UD , son plays online game”)

P3 Specification
Schedule: (19:00, 22:00, {*})

Event: Visits(webapp.workplace.com), ipAdddr(H2, Hsp)
Action: Priority(high), ipAdddr(?)

Duration: hours(1)

Internet. Our system supports even more types of actions (e.g.
bandwidth allocation, fine-grained service access control) but
we won’t make further reference to them in the present work.

In general the applied actions are automatically revoked
when the respective policies are disabled or removed by the
users or when they exit their scheduled date-times. The fourth
component of our policies indicates a duration over which an
action will have effect. For instance, one may wish to block
a device from accessing the Internet for a given amount of
minutes or hours. When this time duration expires the actions
are revoked (if revocable) and the policy is ready to fire again.
“Hidden” events also exist that are automatically generated by
our runtime environment and can trigger the revocation of an
action: there is a configurable monthly roll-over event which
resets all data-volume usage counters and forces the related
allowance-based policies to revoke their actions.

D. Use Case

Here we introduce a typical scenario of a home network that
will be used to elaborate our approach further. We assume that
the network consists of a gaming console (Hg), two laptop
computers (H1, H2), a desktop PC (H3) and one smartphone
(Hsp). There are three users, dad (UD), mom (UM ) and son
(US). Ownership of devices is as follows: H3 belongs to
US , H1 belongs to UM , H2 and Hsp belong to UD, and
the gaming console (Hg) belongs to all family members
(home). We also assume that the home network runs the
policies which are shown in TABLE I. Most of the policy
components are optional. Even short policies like P1 do not
have straightforward execution semantics: once P1 “fires” its
actions can be revoked either by disabling/removing it or by
receiving a monthly data volume counter reset event. Our



gateway runs a tweaked DHCP server and device to IP address
mappings do not change over time to avoid inconsistencies.

E. Policy Engine: Managing home network policies

The “policy engine” (see Fig. 1) accepts new requests from
the iPad user interface (UI), manages all running policies, and
maintains the system overall state. The interaction between the
UI and the engine is bidirectional. New requests arrive from
the UI but individual policies and the network’s overall state
are also communicated back to it, so that users can have an up-
to-date view of their home network. The engine uses persistent
storage to log changes and also to keep snapshots of the current
running configuration, which are used to recover the overall
system state after a reboot (e.g. after a power-cycle).

When handling a new policy, a sequence of steps are
executed by the policy engine. First, the supplied specification
is checked for syntax errors and invalid values (e.g. malformed
format of URLs and addresses, use of non local addresses
in subject expressions, wrong time format, duplicate or non-
existing policy IDs). The policy is then converted into a
managed object that provides an interface that supports the
following methods: enable / disable, schedule, obtain state
information, send events and destroy. The engine uses this
interface to manage the running policies. More details regard-
ing the event handling and the enforcement and revocation of
actions are provided in the following two subsections.

F. Policies and event processing

Here we explain the execution model of a policy object,
with respect to incoming messages from other components,
and also with respect to scheduling. In general, there are
a variety of messages that may be received: create, enable,
disable, destroy, date time period start-stop, and action timer
expiration. We differentiate these messages which are used
for the self-management of policies from the actual network
usage events which they subscribe and trigger the execution
of actions. Policies are only attached to the system’s event bus
(and thus can receive events) when they are both enabled and
being within the date-time period (if specified). However, not
every policy has the same behavior because they optionally
contain a day-time expression, an action duration and a
network usage event. If no usage event is specified, execution
is quite straightforward and thus omitted from the paper.
Policies P1, P2 and P3 all have an event definition, which
means that actions are triggered dynamically upon reception
of the subscribed events.

In Fig. 3 we illustrate an execution scenario for our use
case. The X-axis represents time, and during the shown time-
window a series of events occur. For sake of simplicity we
assume that Events A, B and C are all of the same type
(e.g. H2 or Hsp visit webapp.workplace.com) and all policies
(P1, P2, P3) subscribe for this event. On t1 all policies are
enabled and on t8 they are disabled. While P1 is being enabled
(indicated with a green colour), event A triggers the invocation
of its action, so host H3 stays blocked from t3 until t8. Events

Enable

Schedule

Start

Event A Event B Disable
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Fig. 3. An execution scenario for the case study policies

B and C have no effect because actions have been applied
already from event A. At t8 blocking of H3 is revoked.

Policy P2 contains a day-time schedule, which means that
despite being enabled between t1 and t8, it won’t accept
incoming events outside the t2 - t6 period as it is detached
from the event bus. This is why actions only fire from event
A and not also from event C. There is no need for revocation,
since “notifications” cannot be rolled back.

Policy P3 is the most complex example, because it does
have scheduling, event and action duration all together, and
its action is revocable (prioritisation). Similarly to P2 it won’t
trigger (fire) prioritisation outside the scheduling period (t2 -
t6), despite being enabled. What is different, however, is that
actions are only applied for 1 hour, thus, on t4 priorities are
set back to their default. Then, event B forces P3 to fire its
action again, until t6 when the time duration expires.

G. Runtime Environment

Here we provide insights about the lower level details of
network monitoring and configuration. Network usage events
arrive via an event bus using a publish-subscribe model, and
blocking, prioritisation and notifications are applied instantly
when a policy “fires” its action(s). The inherent complexities
of the aforementioned network management tasks are hidden
from the policy engine by the underlying runtime environment
which is shown in Fig. 1. This environment consists of two
main subcomponents which provide to the above layers the
necessary abstractions and allows policies to use a syntax
with high-level concepts, decoupling them from the low-level
details of network devices and protocols.

The configuration service (Fig. 1) allows the home network-
ing infrastructure to be viewed, verified and reconfigured at
a higher level of abstraction [22]. The overall configuration
of the network is represented as a collection of platform-
independent task descriptions, which specify the desired be-
haviour for certain network entities. Tasks define both the
default and entity-specific behaviours. The defaults have effect
when no other settings exist for an entity. Our prototype
currently supports three types of tasks: host blacklisting
(disconnect from the network), IP-layer access control and
bandwidth allocation. Each type of task description has its



own syntax and semantics, however, we support a set of com-
mon abstractions (subjects, targets, roles, groups, constraint
expressions) to facilitate cross-task and global configuration
reasoning. The reader is referred to [22] for more details.

The home network policies manifest themselves into an
extension of the traditional obligation policies. This is more
obvious when we consider instances like the policies of our
case scenario, which include an event definition in their
specification. Events trigger actions, and thus, event generation
plays a central role in our design. At the device and network
flow monitoring layer, we use the “Homework Information
Plane” (HwIP) ([20]) architecture. At the heart of the HwIP
resides the Homework Database (HWDB) which consists of
an ephemeral and a persistent component. The ephemeral
component is a high-speed custom in-memory database that
support continuous (SQL) queries. The persistent component
periodically saves the epheremal state in a relational database.

A wide array of network state and usage information (active
network flows, http requests, wireless signal properties, dhcp
leases etc.) is stored in the ephemeral database. Data is
organised into tables as a time series (timestamp is used as the
primary key) and memory management is done in a round-
robin manner i.e. the oldest data will be dropped to make
space for new data. Entities which wish to retrieve data or
even subscribe for certain events can use continuous queries
to describe simple or more advanced data patterns. Long
running queries can run in the background and generate events
whenever certain condition criteria are met. As new data arrive,
associated queries are evaluated on the fly and if an event is
generated it is communicated back to its subscribed entities.

H. An end-to-end example

In this section we consider how P3 (TABLE I) is enforced.
User UD (Dad) builds a comic strip story in the UI by
selecting, ordering and configuring tiles with appropriate
values. His goal is to make sure that whenever he accesses his
work network from home, he gets enough bandwidth resources
so that Internet based applications operate smoothly.

When Dad submits the policy, the UI generates a textual
representation of the policy and forwards it to the engine
running on the Home Router. The engine analyses the request,
checks for errors and inconsistencies and based on the indi-
vidual components, instantiates and enables a policy object
for it. Since policy P3 has a day-time schedule and also an
action duration, the appropriate time controls are embedded
in the new object, which is self-managed. Prioritisation for
device H2 or Hsp is triggered dynamically from events of type
“visits”. The engine installs a new subscription for this event
to Homework database (HWDB) via the monitoring manager.

Whenever the HWDB inserts a tuple in the urls table that
matches “webapp.workplace.com”, it generates a new event
and forwards it to the engine’s event bus. Policy P3 being
attached to it receives the event. Prioritisation actions are
then triggered based on the information that the event carries
about the device which accessed the work location. The policy
forwards a request to the configuration service which then

Fig. 4. User Policy State Machine

assigns the device of interest into the “high priority” class.
Revocation of actions is done via the configuration service
occurs based on the principles discussed in section II-F. Error
handling mechanisms are deployed across the pipeline of
execution and present meaningful error messages back to the
user via a chain of cascading callbacks.

III. IMPLEMENTATION

Our home router is a Linux-based netbook running Ubuntu
Server, OpenVswitch and Nox ([20], [24], [25] [26]). The
system architecture presented in the previous section (Fig.1)
mirrors also the organisation of our prototype. The details of
each software component is further described in the remainder
of this section.

The user interface (UI) is developed for the iPad (Fig.2).
Its appeal allowed us lure users to (playfully) experiment
with writting policies throughout a household over extended
periods of time. The interaction of the UI with the policy
engine was done by the UI inserting policy tuples into the
ephemeral database and the policy engine subscribing to
them. A custom NOX controller ([25], [26]) implemented
replacement protocols for DHCP and DNS forwarding, and
allows for an easier experimentation with policies related to
network access control. The custom DHCP implementation
also guarantees that devices with a given MAC address, always
obtain the same IP address.

The policy engine is implemented as a library extension
of the Ponder2 system [23]. Ponder2 is a distributed object
management system which includes class frameworks for
hierarchical domains (directories), policies over domains, a
distributed event service, and a scripting language based
on Smalltalk (PonderTalk). We have extended the existing
obligation policies of Ponder2 in order to implement the
home network policies, supporting the features discussed in
the previous section (schedule, action duration). This design
allows policies to be used in a distributed manner, making it
possible to enforce and manage them as local objects, even
when they reside on remote hosts. This feature would allow
the home network’s management to be further managed by the
ISP or remote third parties, for example cloud-based providers.



Our management objects handle their state autonomously.
They accept command strobes from the policy engine module
and receive events from the proximity event bus of Ponder2.
The implementation of policies was challenging due to the big
number and the diversity of possible instances resulting from
the combination of their partial components. For this reason,
we implemented them as finite state machines (FSMs), using
the open source Tungsten FSM framework. Whenever a new
policy is created, a new FSM is also instantiated automatically
and is integrated inside the policy object. Regardless of the
specification of the policy, the state machine has always
the same number of states, and it handles the differentiated
behaviors among the various policies by using predicates in
the transition rules. For example, a transition to the attached
state only occurs if the policy specification does actually have
an event component (has(Event) evaluates to true).

In Fig.4 we illustrate a policy’s state machine which em-
ulates the runtime behaviour discussed in section II-F. There
are six states in total but Scheduled, Fired and Attached, can
all be grouped under a global Enabled state. Transitions are
labelled with the events which trigger them, and some of them
have also conditions (e.g. has(DayTime), has(Event)). There
are some cases where the same event type is used from more
than one transitions outgoing from a given state. To resolve this
issue we used priorities (e.g. P(1), P(2)) between ambiguous
transitions. For example consider policy P3 and assume that
its FSM is in Fired state. When an action timeout event
occurs (action duration of 1 hour), there are actually three
candidate transitions. Policy P3 has both an event and a day-
time expression in its specification. Transition to state Attached
is selected because it has a higher priority (P (1) > P (2)).

The actions which are currently supported in our prototype
are blocking, prioritisation and notifications. Notifications are
handled by a separate service which provides an extensible
set of services like SMS, Email, Growl, Facebook etc. The
notification service requires a few configuration steps to install
user profiles for each service type. Blocking is handled via a
NOX module which can blacklist a device and prevent it from
accessing the home network. Priorities are implemented by the
home network configuration service [22].

We have extended the configuration service to support prior-
ities also, but not in strict networking terms. More specifically,
the Linux traffic shaping interpreter modules were reworked
to comply with the tc hierarchy shown in Fig.5. There are no
prio queues used because of the known bandwidth starvation
issues when a user with high priority fully utilises the available
network resources. Instead, we have emulated three priority
classes by assigning a bandwidth share (min) and a ceil limit
(cap) to each of the three classes. The assignment shown
in Fig.5 are our custom setup for a home with a speed
of 10Mbps for downlink. A similar tree is also used to
shape the uplink resources. When a class does not use its
assigned resources (min), other classes may borrow the unused
bandwidth, which can never exceed, however, the cap limit.
The allocations for each class are easy to change since the
configuration service setup is parameterised, and shares can
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Fig. 5. Linux TC architecture

be expressed as percentages of the total available bandwidth.
Filters classify traffic based on netfilter mark values which
are set via the iptables interface. The tc HTB tree structure
is formed once during initialisation, and during runtime, the
actions of prioritisation policies only modify the set of iptable
marking rules. Revoking a priority action is simply done by
uninstalling the filter expression.

IV. EVALUATION

In this section, we make a first effort to evaluate our work,
by deploying our prototype in a UK household and performing
a few experiments in order to confirm our system’s behavior
with respect to the running policies. We have actually installed
two policies from our case scenario (section II-D): P1 and P3.
We have also tested a number of other policies during this
setup, but due to lack of space, we will only focus on the
aforementioned two.

Our router box’s traffic shaping modules were configured
to 10 Mbps downlink and 1 Mbps uplink speeds, matching
home’s ADSL connection speed characteristics. For better
control and for simplifying our measurement practices we
used iperf to generate artificial traffic. However, all flows in
our experiments connect to / from remote iperf hosts, so that
we can give a more realistic flavour in our study. We had
to enable port forwarding at the gateway in order to make it
possible to accept remote iperf connections. All hosts involved
in the measurement process were synchronized with NTP. In
addition, we used switched Ethernet instead of WLAN, in
order to avoid the performance fluctuations due to the varying
quality of the links. Nevertheless, we have also conducted
experiments over wifi, and obtained more “spiky” plots.

It is quite common that certain Internet service providers
have plans where the total amount of downloads / uploads
is limited over the month, and they also may throttle the
connection of the home if excessive data are downloaded over
the peak hours. Policy P1 is well-suited for such cases, as
it triggers the blocking of son’s host (H3) when it consumes
more than 60% of home’s monthly allowance which we have
set to 22 GBytes. In Fig.6 there are illustrated two plots. The
upper plot indicates the current data usage of host H3 over
time. The limit of ∼ 13.2 Gbytes (22 ∗ 0.6) is indicated with
the blue line, and it is reached roughly around second 120. The
underlying plot shows the used datarate during the experiment
of two tcp iperf download flows1. Until second 120 that
no blocking is performed yet, they share almost equally the
available bandwidth of 10 Mbps. Then, when the allowance
limit is reached, host H3 is blocked which explains the sharp
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Fig. 6. Evaluation of policy P1 blocking effects

drop of the flow to son’s host (red colour). The black flow (to
mom’s host, black colour) now monopolizes network resource
usage until the point that policy P1 is manually disabled and
its actions are revoked (∼second 158).

The case of policy P2 is quite different from the previous
scenario. Whenever one of the hosts of user UD (H2, Hsp)
visits “webapp.workplace.com”, this device gains high priority
so that “dad” can effectively work from home using potentially
demanding applications (e.g. remote desktop etc). In order to
verify the effects of policy P2, we have set up a monitoring
module which counts all bytes (upload / download) from to
location “webapp.workplace.com”. These measurements are
shown on the upper plot in Fig.7. Host H2 exchanged roughly
70 Kbytes with the host of interest on second 57 for first
time. This event should normally trigger a prioritisation action
for H2. The second sub-plot presents the download rates
of two tcp flows, one towards son’s host (default, black)
, and the second one is towards dad’s host H2. Initially,
both flows shared the available bandwidth on a fair basis,
however, when H2 accessed “webapp.workplace.com” (second
∼ 57), dad’s host was assigned high priority and the respective
flow, jumped to 6 Mbps (60% of the 10 Mpbs). Referring
to the Linux tc model shown in Fig.5, this behavior is the
result of redirecting the red flow into class 1:13. It worths
mentioning here, that during deployment, users are informed
that if many people/hosts are assigned with high priority, they
may experience poorer performance than users in the default
class, if they are considerably less.

V. RELATED WORK

In the context of home networks, there hasn’t been much
work on developing new management paradigms. An excep-
tion is presented in [13] where authors make a first effort to
change the way people handle and perform management tasks
by pushing them to the cloud in the form of services. Their
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Fig. 7. Evaluation of policy P2 traffic shaping effects

work outlines the requisite challenges, but is theoretical and
is mainly focused on latency issues. HomeMaestro ([18]) is
another example where bandwidth resources are shared among
the users, introducing the notion of “application fairness”
based on user’s feedback and application-specific weights.
This work too, however, is tightly coupled only to a specific
aspect of management as it mainly deals with the allocation of
resources given application-specific constraints. Management
of faults in the configurations of home networks has also been
recently studied ([27], [28]).

In enterprise networks, policy-based management has
gained acceptance as a flexible approach for addressing
many requirements for configuration, security, performance
and fault-tolerance [29]. Use in home networks has been
limited to simple policies for router configuration, wireless
channel selection [15], bandwidth management [30], and
traffic prioritisation [14]. A policy-based management system
that supports a wider range of policies, better models and
abstractions for home networks and their users is needed.

In ([31]), the authors propose a policy based architecture
which supports multiple abstraction levels. In ([14]), the same
authors demonstrate their policy based design to facilitate
quality of service extensions and security management. De-
spite being promising, their work is mainly limited to high
level description of architectures and potential implementation
issues. Finally, in [32], the authors propose a dynamic re-
source allocation scheme, trying to optimise allocations across
wireless and wired devices in a weighted fair manner. Similar
to HomeMaestro applications may have different weights and
based on their values the system performs host coordinated
rate control to optimise network’s overall performance.

We believe that our design complements the efforts of
[13] in the sense that we provide the runtime tools to aid
the transparent management of home network infrastructures.
However, our main focus is to adopt a rather user-centric



approach and towards this direction, this paper extends our
previous work that abstract the low-level details and provide
a transparent network configuration service ([21], [22]).

VI. SUMMARY

This paper is motivated by the fact that typical home
users do not possess the skills to manage effectively their
networks as they keep becoming increasingly complex. Home
networking infrastructures need to evolve and become easier
to use and manage. To this end, we have presented a man-
agement framework for home networks which builds upon the
abstraction of user-centric policies. Users create “comic strip”
stories that relate to actual management tasks via an engaging
and “fun to use” interface. Comic strips are then translated
into an internal policy model which still uses a higher level
notions for network entities, events, timing and actions. The
described system has been implemented on a custom home
network router, which is currently being deployed at several
UK households. Our future work includes the extension of
policies to support a richer set of management tasks, with
focus on adaptive network resource management. We also plan
to conduct user studies and evaluate the actual effectiveness
of our approach, especially in terms of usability.
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