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ABSTRACT 

Measurements consistency based Receiver Autonomous Integrity Monitoring (RAIM) is the main technique for 

monitoring the integrity of Global Satellite Navigation Systems (GNSS) at the user level. Existing RAIM algorithms 

utilize two tests, in the position domain a test for RAIM availability and in the measurement domain a test for failure 

detection. These tests involve the computation of three parameters: test statistic, decision threshold and protection level. 

The test statistic is based on the actual measurements in the form of the Sum of the Squared Errors (SSE). The decision 

threshold is chosen on the basis of the statistical characteristics of the SSE including the assumption that the errors are 

normally distributed. However, in practice residual error distributions exhibit heavier tails than predicted by the 

Gaussian model. Therefore, this paper challenges the normality assumption of the residual navigation errors in three 

ways. First, real data are used to assess its impact on the traditional RAIM algorithm. Second, Extreme Value Theory 

(EVT) is applied to the tails and the Generalized Extreme Value (GEV) distribution is derived to capture residual 

navigation errors. Third, the performance of the traditional RAIM approach is compared with that employing the GEV 

distribution. The results demonstrate that the GEV model is a more accurate representation of the distribution of 

residual navigation errors than the conventional Gaussian model and should be used in the development of integrity 

monitoring algorithms. 

 

1. INTRODUCTION 

 Mission critical applications such as aviation require that the highest level of safety and other performance 

standards are satisfied. In the case of navigation, these standards are known as the Required Navigation Performance 

(RNP) parameters. The RNP is specified by four parameters: accuracy, integrity, continuity and availability, with 

integrity being the parameter directly linked to safety. Integrity is a measure of the trust that can be placed in the 

correctness of the information provided by a navigation system. It includes the ability of the system to provide timely 

and valid warnings to users when it must not be used for the intended operation. In particular, a navigation system is 

required to deliver a an alert or warning of any malfunction as a result of a set alert limit being exceeded, to users within 

a specified time-to-alert. Integrity risk, also known as the probability of misleading information, is defined as the 

probability that the positioning error exceeds the alert limit and that the event is undetected. Integrity can be provided at 

system level through an independent network of monitoring stations and a dedicated integrity channel and 

autonomously at the sensor/receiver level (Feng et al. 2006). The former exploits augmentation systems, which relay 

integrity information to the users from Ground-Based Augmentation Systems (GBAS) or Space-Based Augmentation 

Systems (SBAS). Receiver or user level integrity monitoring is accomplished by Receiver Autonomous Integrity 

Monitoring (RAIM) and its variations.  

 RAIM is based on statistical consistency checks using redundant measurements. It involves two tests; the first 

determines if the conditions exist to execute a RAIM calculation, i.e. RAIM availability. If RAIM is available, the 

second test detects the presence of a failure. Literature on RAIM algorithms is dominated by statistics on failure 

detection by least squares or parity methods, with the threshold determined by using a constant probability of false alert, 

PFA (Brown 1996). The test for RAIM availability is formulated by projecting the Minimum Detectable Bias (MDB) to 

the position domain to realize a Protection Level (PL), which is compared with the Alert Limit (AL). The MDB is 

determined by the threshold of the failure detection test and the probability of missed detection (PMD). It is this 

threshold which is the key factor that links the two tests and plays an important role in a trade-off analysis between 

integrity risk and continuity risk. Fig. 1 shows the general RAIM architecture.  

 The decision threshold is chosen on the basis of statistical characteristics of the test statistic and is dependent 

either on PFA or PMD. The most common test statistic used in RAIM is the Sum of the Squared Errors (SSE) from the 

computed residual estimation errors. These errors are assumed to be normally distributed, and the corresponding 

probabilities PFA and PMD are assumed to follow a Chi-squared and noncentral Chi-Squared distribution respectively 

(Ober 2003). Whilst the normality assumption simplifies the calculations, there is evidence that in reality the residual 

error distributions exhibit heavier tails than predicted by the Gaussian model (DeCleene 2000; Walter et al. 2002). 

Therefore, the conventional RAIM algorithm fails to efficiently compute the decision threshold as both the chi-square 
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and noncentral chi-square distributions are invalid. In these situations, a better characterization of the tails of the 

residual distributions is required. This, in turn, requires consideration of robust statistical theory applied to the modeling 

of the tails of distributions.  

 Section 2 briefly reviews RAIM algorithms. This is followed in Section 3 by a discussion of the Gaussian 

assumption. Section 4 introduces Extreme Value Theory (EVT). Section 5 presents the data and statistical methodology 

used. The main results are given in Section 6. The implications of these results are discussed in Section 7, and 

conclusions drawn in Section 8. 

 

 

Fig. 1: General RAIM Architecture (adapted from Feng et al., 2006)   

 

2. RAIM ALGORITHMS 

The two main classes of RAIM algorithms are snapshot and filtering. The former uses only the current 

measurements while the latter uses both current and historical data, together with a priori assumptions on dynamics. 

The major drawback of filtering methods is their insensitivity to slowly growing errors (Bhatti, 2008). The snapshot 

scheme is the most widespread method for RAIM due to its faster response to sudden failures compared to the filtering 

scheme. It is the most commonly used method in basic stand-alone GNSS and has no requirement to make any 

questionable assumptions about how a system arrives at its current state.  

Snapshot RAIM algorithms include range comparison, least squares residuals, parity and Marginally 

Detectable Error (MDE) methods (Ochieng et al. 2002). These methods are equivalent, the major issues being the test 

statistics and decision thresholds, and computational complexity (Brown 1992). Extensions have been developed for 

integration of GPS with other sensors. 

 

Given the basic linearized GNSS standalone positioning model: 

1 4 4 1 1
true

nx nx x nxy G x                                                        (1) 

Where: 

 y is the difference between the pseudorange  measurement and the predicted parameter based on a nominal user 

position and clock bias; tt is a nx1 vector with n being the number of measurements, 

G is the observation or design matrix;  
truex is the vector of the unknown parameters; and 

 1 2[ .. ]Tn     is the measurement error vector caused by receiver 

noise, wave propagation, ephemeris etc. 
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The least squares solution for the estimation of x  is given by: 

T 1 Tˆ ( )x G G G y Ay                                                                    (2) 

The residuals can then be obtained as: 
T 1 Tˆ [I ( ) ]w y y G G G G S                                                  (3) 

where 
T 1 T( )A G G G  and 

T 1 TI ( )S G G G G   .                    

 

Then the SSE can be obtained from the residuals by: 

 SSwwSSE TT  2T
                                                            (4) 

The SSE is the basic observation in RAIM algorithms. It has a chi-square distribution with 4n degrees of freedom 

assuming that the measurement errors are independent and normally distribution with zero mean. Two variations of the 

SSE are used as test statistics (Brown1996).   

4

SSE
test statistic

n



                                                              (5) 

test statistic SSE                                                             (6) 

 

The two test statistics are equivalent except that expression (5) takes account of the need for redundancy by ensuring 

that there are at least five satellites visible. Expression (5) is the baseline RAIM algorithm used as the reference for the 

comparative assessments with the new algorithms developed in this paper.  

 

The probability of false alarm  FAP
 
and the probability of missed detection MDP  are (Brown, 1996): 

       

0(test statistic / )FAP P T H        (7) 

1(test statistic / )MDP P T H                    (8) 

 

The decision threshold (T) can be computed deterministically using the RNP parameters. The corresponding thresholds 

are thus: 
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where   2 2

HMAX 1 2
( )( 4) /

i i ii
i

SLOPE Max n  A A S  is the geometry factor representing the ratio of the horizontal 

position error to the test statistic used to project the MDE from the measurement domain to the position, jiΑ  denotes 

the 
thj  row and 

thi column element of the Α  matrix,  iiS denotes the 
thi  element of the diagonal matrix S  of (2), xAL 

is the alert limit, and f  ( 1f  ) is a conservative factor introduced due to the uncertainty in SLOPEHMAX. 

 
Ideally, both the PFA and PMD should be minimized, i.e. keep both continuity and integrity risks at a minimum. 

However, this is not possible as these risks work against each other, in the sense that when decreasing integrity risk for 

example, continuity risk increases and vice versa. This is because each risk is tightly linked to a different type of error 

of the hypothesis test. Thus the threshold should ideally be between the TFA and TMD. An extension to the baseline 

algorithm is the Weighted Least Squares RAIM (WLS-RAIM) technique  

 

3. THE GAUSSIAN ASSUMPTION: LIMITATIONS AND ALTERNATIVES 

The Gaussian error distribution assumption is used widely in navigation and only two parameters are needed to 

characterize the errors: mean and variance. The Central Limit Theorem (CLT), which has a powerful influence in the 

acceptance of the Gaussian distribution, states that the mean of a large number of independent random variables in this 

case the residual errors associated with different sources including ionosphere, troposphere and multipath, tends to a 

Gaussian distribution, regardless of their original distribution. This leads to various other common distributions e.g. 

Chi-Square, Fisher and Student, which were derived as functions of Gaussian variables. However, the use of theoretical 

distributions is limited by concerns about their tails, which characterize gross errors or blunders, i.e. infrequent but large 
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errors. Both the size and shape of the tails are important in risk estimation. For example, it has been shown that collision 

risk is heavily influenced by the values at the very edge of the tails (Brooker 2004). The issue with efficiently 

characterizing the tails stem from the fact that more data is required to make useful and confident statements about the 

error distributions. 

Many researchers have noted that the Gaussian model fails to efficiently characterize large errors that occur 

more frequently than predicted by the model for residual navigation errors (Parker 1972; Hsu 1979). Alternative 

probability distributions have been suggested to describe these residual errors, including exponential and double 

exponential (Laplace) (Anderson and Ellis 1971; Shively 2000). These are more pessimistic in the tails than the 

Gaussian model and therefore, provide a safer assumption. Such distributions characterize altimetry system errors and 

horizontal errors encountered in the navigation of aircraft (Moek et al. 2001). However, the lack of data makes it 

impossible to rigorously validate these models in practice and the data requirements to fully describe the probability 

distribution of residual navigation errors with a high degree of confidence is a major issue in navigation research. 

Therefore, instead of characterizing the error distribution itself, the navigation community has explored the provision of 

integrity by the method of overbounding. This consists of defining a distribution more conservative at the tails than the 

actual one, i.e. with more mass at the tails. The technique was first introduced by DeCleene (2000) and gave rise to 

numerous alternatives, including the Paired Overbounding and Excess Mass Functions Overbounding (Rife et al. 2004) 

among others.  However, while these models provide solutions to specific situations, none offers a credible universal 

alternative to the Gaussian model (Panagiotakopoulos 2009). 

 

4. THE GEV DISTRIBUTION 

In the CLT, the normal distribution is the limiting distribution of sample averages. The Extreme Value Theory 

(EVT) represents a parallel idea in which a class of extreme value distributions characterizes the possible distributions 

of sample maxima. The Fisher-Tippet theorem (Fisher and Tippet 1928) is analogous to the CLT and uses a tail index to 

unify the possible characterizations of the density function of an extreme value distribution. These functions represent 

three possibilities for the decay of the density function in the tail (Embrechts et al. 1997). The tail can decay (i) 

exponentially with all finite moments as in the standard cases of the normal, log normal, and gamma, (ii) by a power as 

in the stable Paretian, Cauchy and Student’s t distributions, and (iii) with a finite tail index. These three possibilities can 

be mapped onto different distributions, called Gumbel, Frechet and Weibull, which can be combined in a single 

functional form called the Generalized Extreme Value (GEV) distribution. The cumulative distribution function (CDF) 

of the GEV is given by: 

 
 

1

/

1

e

0, ,

0
x

x

eGEV x

e



 






  





 


  



 
  
  
  

  









      (11) 

 

The distribution function  , ,GEV x     is referred to as the GEV distribution with shape parameter P   , 

location parameter P   and scale parameter 0  . The case 0   is interpreted as 0  , resulting in the Gumbel-

type distribution which is thin-tailed as its tail rapidly thins out. The case 0   corresponds to the Weibull with no tail 

as after a certain point there are no extremes, and 0   to the Frechet distribution, fat tailed as its tail slowly thins out. 

The standard case is obtained for 0   and 1  . Intuitively, residual navigation errors should follow either a Gumbel 

or Frechet-type distributions. This is because the former does not have any upper or lower endpoints and is defined for 

the entire real line, and the latter has a heavy-tailed distribution. Although the Gumbel distribution is considered as thin-

tailed, it has a heavier tail than the Gaussian distribution. In the literature, the Gumbel distribution is commonly referred 

to as the ‘Extreme-Value (EV) distribution’, not to be confused with the GEV model. 

EVT provides a framework to study the behaviour of the tails of a distribution by using extreme observations 

to measure the density of the tail. This measure can then be extrapolated to parts of the distribution still to be observed 

in the empirical data. It can also be mapped onto distributions with specific tail behaviour.  In this way a theoretical 

process can be simulated that captures the extreme features of the empirical data and improves the accuracy of 

estimated probabilities of extraordinary events. The nature of extreme events is such that none or very little directly 

relevant data exist and therefore, the probability of an extreme event is evaluated by assembling disparate sources of 

relevant evidence, none of which are reliable in isolation.  

Though a statistical tool, EVT is currently the most robust approach for predicting the size of a rare event. Whilst there 

is always some doubt when extrapolating into unknown regions, EVT makes the best use of available data on extreme 

phenomena. These features have ensured the success of EVT for many applications including in hydrology for flood 

frequency analysis, finance, insurance, meteorology for wind strength and rainfall assessment, environmental analysis, 

earthquake risk assessment and many engineering areas including corrosion and fatigue prediction (Embrechts et al. 

1997).  
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The main advantage of the GEV model is that by using the three parameters shape, location and scale, many 

distributions can be described, including the Gaussian model. The additional shape parameter   also known as tail 

index, allows for the characterization of various tail decay characteristics. This is important in safety-of-life applications 

such as aviation, where the focus is on the mitigation of the effects of rare events that can have catastrophic 

consequences. Fig. 2 illustrates the versatility of the GEV. It can be seen that by varying the shape parameter   

different tails can be characterized. The green line represents a normal distribution with zero mean and standard 

deviation equal to 1, the common navigation assumption.  

 

 
Fig. 2: GEV Versatility with respect to   

 

The potential of EVT in aviation and GNSS applications lies in: 

• Accidents and incidents modeling: due to the lack of data from underreporting and the rare occurrence of these 

events, traditional statistical methods cannot adequately characterize them. Panagiotakopoulos et al. (2009) 

proposed the use of EVT to model accidents and incidents in aviation. 

• Navigation atmospheric errors: EVT has been used extensively in meteorology and modeling of extreme 

environmental conditions. Hence, the extreme behaviour of the troposphere and ionosphere could also be studied in 

the context of EVT. In this regard, Collins and Langley (1998) provided some insight into the modeling of the 

troposphere using EVT.  

• Residual navigation estimation error: the potential of applying EVT to characterize residual navigation errors has 

been recognized in the context of SBAS by both Ober (2003) and Azais et al. (2009).  

To date there has been no research in the application of EVT to characterize residual navigation errors for 

RAIM. Therefore, this paper is unique in developing a RAIM algorithm based on EVT.  

 

 

4.1 GEV-RAIM 

 

The application of the GEV into a RAIM method employs the same test statistic used in traditional RAIM, i.e. 

the SSE, but with a different threshold computed on the basis of the MDP and degrees of freedom. Since the GEV 

includes an additional shape parameter the threshold, TGEV, is determined as follows. 

 

  1/ ( 4), ,( /( )) / ( 4)
xMAXGEV n xAL f SLOPE MD

T inv PGEV n
  

    
 
             (12) 

 

It is noticeable that the Pbiasmax  parameter, i.e.  
max

/
xMAX

Pbias xAL f SLOPE   , is neither initially standardized by the 

standard deviation, , nor squared as when using the noncentral chi-square distribution. Instead  is directly used as 

standard deviation for the GEV and the Pbiasmax as the mean. Applying this threshold forms the basis of the optimized 

RAIM algorithm, herein called GEV-RAIM. 

5. STATISTICAL ANALYSIS  
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Analysis of the applicability of the GEV distribution to air-navigation was carried out using the methodology 

captured in Fig. 3. The Gaussian and Laplace distributions were also considered for modeling the data sets chosen as 

they are currently the models recommended to characterize the residual navigation errors. Table 1 presents the nine 

stations considered in this analysis, three in each latitude region to capture variations in ionospheric activity.  To capture 

tropospheric effects, the stations were chosen at different heights and longitudes. The dates chosen for the analysis are 

the Day of Year (DOY), 89, 90, 96, 97, 196, 197, 303 and 305 for each of the years 2001, 2003, 2005 and 2006.  These 

dates were chosen to study the impact of different atmospheric conditions, as the years 2001 and 2003 experienced high 

solar activity and ionospheric storm events, respectively. The residual data was generated at a sampling rate of three 

minutes to ensure an appreciable level of temporal de-correlation of measurements (ICAO, 2005). This resulted in a 

total of 15360 epochs processed for each station.  

 

Table 1: Stations Chosen for Analysis 

 

 

 
Fig. 3. Methodology for statistical analysis 

 

The main steps in the analysis process were: 

a) Residual Generation: the first step of the analysis was to generate the residuals from the data. This was done by 

first computing the position solution using the Least-Squares method given the pseudo-ranges and then comparing 

this to the known position for each of the stations. 

b) Descriptive Statistics: Eight statistics were computed to summarize the main features of the residuals generated; 

maximum, minimum, mean and median to capture the central tendency of the data; Standard Deviation (SD), 

variance (VAR) to capture the dispersion with respect to the mean; skewness and kurtosis to capture the symmetry 

and the heaviness of the tail respectively. Kurtosis is an important statistic as it is a measure of the outlier-prone 

nature of a distribution and indicates the potential of applying the GEV distribution to characterize residuals with 

heavier than Gaussian tails. The higher the kurtosis, the more of the variance that is due to infrequent extreme 

deviations, as opposed to frequent medium-size deviations. Excess kurtosis which equals simple kurtosis minus 3, 

provides an easier comparison between distributions according to their negative, nil or positive excess kurtosis. A 

low kurtosis distribution has a sharper peak and thinner tails, while a high kurtosis distribution has a more rounded 

peak and heavier tails.  

c) Distribution fitting: each of the distributions considered (Normal, Laplace, GEV) were fitted to the residual data by 

estimating their respective parameters. Maximum-likelihood estimation was used in all three cases.  

d) Graphical plots: each of the fits from the previous step were first assessed graphically using a histogram plot of the 

residual data overlaid by the three fits, quantile-quantile (qq) plots which plot the sample data order statistics 

Region IGS ID City Country 
Longitude 

(
O

E) 

Latitude 

(
O

N) 
Height (m) 

Equatorial 

KOUR 

MAS1 

MKEA 

Kourou 

Maspalomas 

Mauna Kea 

French 

Guyana 

Spain 

USA 

307.1940 

344.3667 

204.5437 

5.2522 

27.7637 

19.8014 

-25.5700 

197.3000 

3755.000 

Mid-latitudes 

PTBB 

NNOR 

OUS2 

Braunschweig 

New Norcia 

Dunedin 

Germany 

Australia 

New Zealand 

10.4597 

116.1927 

170.5109 

52.2962 

-31.0487 

-45.8695 

130.2000 

234.9840 

26.1000 

High-

latitudes 

FAIR  

KIRU 

HOFN 

Fairbanks  

Kiruna 

Hoefn 

USA  

Sweden 

Iceland 

212.5008 

20.9684 

344.8132 

64.9780 

67.8573 

64.2673 

319.0002 

319.1000 

82.5000 
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against the order statistics predicted by the fits and probability plots using the Empirical Distribution Function 

(EDF) of the data plotted against the CDF of each of the fits. 

e) Goodness-of-fit (GoF) Tests: these measures the compatibility of the residual sample with the distribution fits in a 

quantitative way. The GoF tests used were the Kolmogorov-Smirnov, Kuiper’s, Anderson and Darling, the Cramer-

von-Mises, and Watson (Stephens 1992).   

The tests described in e) above are generally used to verify the assumption that a certain distribution fits the 

data being considered with a certain significance level,  , which in turn is derived from the distribution itself. This 

means that each distribution will have different critical values for a certain level. A comprehensive account of these 

tests and their critical values is given in D'Agostino and Stephens (1986) for a number of parametric distributions, 

including the normal and extreme value. However, the critical values computed for each test highly depend on the 

parameters estimated for each distribution. In the case that F(x) is specified completely with known parameters, 

asymptotic distributions of goodness-of-fit statistics are known and critical points can be tabulated. However, in the 

general case when parameters are estimated from data, distributions of statistics have to be approximated. A relatively 

straightforward method to determine the critical points is to approximate sampling distributions of goodness-of-fit 

statistics by the bootstrap method. This approach selects subsets of the data considered and calculates the critical values 

of the test statistic corresponding to each distribution fit. The asymptotic validity of the bootstrap method for the above-

mentioned goodness-of-fit tests was established in Beran and Ducharme (1991).  

  

6. STATICAL ANALYSIS RESULTS 

6.1. Goodness-of-fit for Gaussian and Laplace distributions  

The statistical summaries are given in Tables 2 and 3 for all periods and for each year respectively. The 

statistics consists of the percentage of the residual data which skewness exceeds 0.5 (i.e. >SK0.5) indicating asymmetry 

and which have five different cases of Excess Kurtosis (EK), namely 0 0EK  , 0 1 1EK  , 2 3 2EK  , 2 3 3EK   

and 1 3EK   to capture tail behaviour.   

Table 2. Residual Data Set Statistical Summary Across all periods (%) 

Stations >SK0.5 EK0 EK1 EK2 EK3 EK4 

MAS1 98.96 0.00 0.00 0.52 2.08 97.40 

KOUR 86.63 6.42 9.03 6.60 2.43 75.52 

MKEA 81.77 9.37 11.83 10.04 3.72 65.03 

PTBB 86.46 2.78 14.24 7.99 3.13 71.88 

NNOR 95.83 0.52 0.52 1.56 1.56 95.83 

OUS2 89.78 5.06 8.04 4.91 2.08 79.91 

FAIR 85.94 0.63 3.75 0.63 3.13 91.88 

KIRU 88.62 2.75 6.47 10.12 6.32 74.33 

HOFN 88.89 8.51 16.67 24.13 22.92 27.78 

Average 89.21 4.00 7.84 7.39 5.26 75.51 

 

Table 3: Residual Data Set Statistical Summary per year for the equatorial stations (%) 

 2001 2003 2005 2006 

Residual >SK0.5 EK4 >SK0.5 EK4 >SK0.5 EK4 >SK0.5 EK4 

vxLS 100 100 100 100 100 100 87.5 75 

vyLS 100 100 100 100 100 100 100 100 

vzLS 100 100 100 87.5 100 100 100 100 

vxWLS 100 100 100 87.5 100 100 100 100 

vyWLS 100 100 100 100 100 100 87.5 100 

vzWLS 100 100 100 100 100 100 100 100 

 

On average, across all periods and stations, approximately 90% of the residual data are asymmetric, while 96% 

have heavy tails, with 88% with very heavy tails (i.e. with EK>2). Table 3 presents these non-Gaussian features, which 

are particularly acute for the equatorial stations and for the periods of high ionospheric activity, i.e. year 2001. For the 

periods of low ionospheric activity the residuals are better behaved with lighter tails except for the period of around 

October 2003.  

 

The following three cases of EK are used to analyses the goodness-of-fit of the Gaussian and Laplace 

distributions using the methodology outlined in section 5: EK0: station KOUR  for Day 89 of year 2005; EK3: station 

PTBB for Day 197 of year 2001; EK4: station PTBB for Day 305 of year 2003. 

 

1) Descriptive statistics and distribution parameters estimation tables 

The descriptive statistics for the horizontal residual error of each of the EK cases are given in Table 4. It should be 

noted that although the standard deviation increases with increasing EK, the relationship is not linear between the two 
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statistical parameters. For this reason, although the weighted least-squares position estimation gives a more accurate 

result than ordinary least-squares, it does not necessarily decrease the heaviness of the tails.  

 

Table 4: Residuals Descriptive Statistics (units m) 

 Residuals Descriptive Statistics 

EK Cases Maximum Minimum Mean Median  SD VAR Skew EK 

EK0 2.921 0.123 0.947 0.794 0.732 0.563 0.387 -0.809 

EK3 

EK4 

193.3 

512.2 

569.3 

544.7 

61.23 

3.059 

-26 

9.198 

144.9 

130 

20996 

16905 

-1.436 

-1.343 

2.143 

5.858 

 

 

2) Graphical Assessment 

Fig. 4 shows the graphical assessment of the distribution fits using the parameters estimated in the previous step. The 

Gaussian distribution being symmetric and with ‘normal’ tails has a skewness a  nd an EK close to 0. Thus, it should be 

expected that data samples with non-zero skewness and high EK are not effectively described by a Gaussian. In general, 

the higher the EK of a distribution, the longer its tails are and hence the less likely it is to be described by a Gaussian. 

Fig. 4 show that, as EK increases the performances of the fits degrade in characterizing the residual distributions.  

 

With respect to the overbounding technique, the PDF and CDF plots indicate that the Gaussian model with unity 

Standard Deviation (SD) and Laplace can perform this function for the Case EK0 but not for the higher EK cases. The 

Gaussian with twice the SD can provide an overbounding distribution for all cases, although from the quantile-quantile 

plots it can be concluded that as a model, it is not such a good fit as it does not efficiently follow the shape of the 

residual data. 

 

3) Rejection Tables from Bootstrapping 

The final step in assessing the goodness-of-fit is by applying the bootstrap algorithm and test statistics. The number of 

bootstrap samples was set to 10000. The percentages of the number of times each of the fits were rejected across all test 

statistics is given in Table 5. This table clearly complements the conclusions made from the graphical assessment that 

the performance of the distributions in describing the considered residual data sets is poorer for increasing EK case. It is 

clear that the higher the EK of the data samples, the more the distributions fail  to efficiently describe them. Although 

the distributions with heavier tails, i.e. Gaussian with 2 and Laplace are better fits for the EK3 and EK4 data sets than 

the Gaussian with zero mean and unity SD, they are respectively, still rejected 70% and 90% of the time. 

 

Table 5: Rejection Tables for Residuals: Summary across all statistics (%) 

  Gaussian Gaussian (2) Laplace 

EK0 25.30 44.19 38.85 

EK3 84.08 70.02 70.10 

EK4 98.25 96.38 93.99 
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Fig. 4: Goodness-of-fit for the Gaussian and Laplace distributions for the residuals for cases EK0, EK3 and EK4 

 

6.2. Impact on RAIM  

The RAIM algorithms described in section 2 were applied to the entire data sets of 9 stations and also to the 

three EK cases individually to study their performance. The parameters for Non Precision Approach were used, i.e. 
73.33 10FAP   , 0.001MDP  , with a measurement standard deviation of 12.5m, a mask angle of 7.7

0
, and f=0.95. 

Table 6 shows the results for the equatorial stations for each period for the horizontal component. Table 7 shows the 

results for the individual EK cases. The tables show the proportions of time when RAIM was not available (NA) and 

when missed detections (MD) and false alerts (FA) were experienced.  

Table 6: RAIM Performance for equatorial stations: Horizontal Component (%) 

 MAS1 KOUR MKEA 

 LS-RAIM WLS-RAIM LS-RAIM WLS-RAIM LS-RAIM WLS-RAIM 

 NA MD FA NA MD FA NA MD FA NA MD FA NA MD FA NA MD FA 

2001 31.72 9.52 6.39 21.50 8.12 7.23 18.71 11.23 0.00 12.54 9.65 4.56 31.46 13.26 19.25 12.55 10.63 3.78 

2003 41.40 12.46 10.82 24.60 8.32 8.55 34.76 9.83 4.23 13.64 8.51 7.52 23.73 11.47 13.14 13.44 9.54 5.36 

2005 27.44 11.63 10.61 23.54 9.16 10.60 47.42 8.24 8.33 15.42 7.23 8.24 31.99 12.53 5.48 13.66 10.49 4.57 

2006 35.86 10.78 13.35 22.10 9.49 11.24 27.97 9.46 0.00 25.61 7.47 6.54 32.36 10.64 4.23 13.57 9.48 4.55 

 

Table 7: RAIM Performance for EK Scenarios: Horizontal Component (%) 

 LS-RAIM WLS-RAIM 

 NA MD FA NA MD FA 

EK0 0.69 1.56 2.50 0.30 0.98 1.33 
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EK3 15.24 11.84 13.20 5.60 8.46 7.44 

EK4 24.50 19.36 22.30 11.20 12.48 8.40 

 

Tables 6 and 7 show the impact of the statistical characteristics of the residuals on the performance of RAIM, 

in particular for the equatorial stations. LS-RAIM is unavailable on average 32% of the time with 8% of the epochs 

processed resulting in a false alert and 11% in a missed detection, while for the WLS-RAIM the values are 17.7%, 6.9% 

and 9% respectively. Furthermore from Table 7, it can be seen that the unavailability, false alerts and missed detections 

of both the LS-RAIM and WLS-RAIM processes increase with increasing EK. 

 

6.3 Goodness-of-fit of GEV distribution 

 

1) Distribution parameters estimation 

The parameters for the GEV distribution are estimated using the Maximum Likelihood Estimation (MLE) 

technique. The Log-Likelihood (LL) function for the GEV distribution is given by: 
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Differentiating these functions with respect to  ,   and   , and equating them to 0, results in the simultaneous 

equations to be solved to estimate the parameters. Clearly, no explicit solution exists to these non-linear equations and 

thus numerical procedures or search algorithms are used such as the Newton-Raphson scheme (Prescott and Walden 

1980).The resulting MLEs for each parameter can be found in Stephens (1977) which give the equations to be solved. 

 

The parameters estimated for the GEV distribution for the three EK cases are shown in Table 8. These are the 

parameters associated with the horizontal residual errors. 

 

Table 8: Residuals GEV Distribution Parameter Estimates 

 GEV Distribution Estimates Confidence Intervals (95%) 

EK Cases ξ Σ Μ ξ Σ Μ 

EK0 -0.1003 0.6347 0.63 -0.1141; -0.0887         

 

0.6304; 0.6500         0.6167; 0.6546 

EK3 -0.5348 155.3354 -94.098 -0.5424; -0.5232     

 

152.0967; 157.0129    -96.6247; -92.1897 

EK4 -0.2619 152.999 -52.4472 -0.2719; -0.2501     150.2080; 154.7720     -54.9595; -48.4397 

 

The precision of the estimated parameters in Table 8 was verified by changing slightly the input variables and 

ensuring that the change does not impact the stability of the estimation process, i.e. that the parameters estimated remain 

the largely the same. This uncertainty sensitivity analysis confirmed that each of the small changes in the input data 

resulted in estimated parameters that remain within their respective 95% confidence intervals as shown in Table 8. 

Additionally, the 95% confidence intervals for each of the estimated parameters are stable and without significant 

variation, which adds to the evidence that for the datasets considered the MLE is an accurate and stable estimator. 

 

2) Graphical Assessment 

The Gaussian distribution has a skewness and an EK of near 0 and hence, it fails to characterize efficiently 

data samples with high EK. It is thus expected that distributions with high EK (i.e. with heavy tails) would be better 

characterized by the GEV, because it is a distribution specifically designed for this purpose.  Fig. 5 shows the 

performance of the GEV fit in characterizing the three EK cases. In all cases, the GEV closely follows the shape of the 

data considered and models it in a more accurate way than both the Gaussian and Laplace. Furthermore, the near-linear 

pattern of the q-q plot supports this conclusion. For the EK4 case, although the q-q plot is not as linear as in the other 

cases, it is closer to the actual data than the Gaussian and Laplace.  

 

3) Rejection Tables from Bootstrapping 

The results from the bootstrap algorithm are shown in Table 9, which presents the average number of times the 

GEV fit was rejected across all statistics in percentage. Comparing with the rejection tables of the traditional residual 
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distributions in Table 5, it can be seen that the GEV is a better fit by an order of magnitude, to the data sets considered. 

The GEV is rejected 3.2%, 3.8% and 4.7% of the time for the EK0, EK3 and EK4 cases respectively, against on average 

40%, 70% and 90% for the traditional models. The findings complement the previous graphical assessment in that the 

GEV is a better fit than the Gaussian and Laplace distributions in characterizing the data sets considered. From Table 9 

and Fig. 5, it is evident that GEV is a better fit than both the Gaussian and Laplace for these residual data sets. 

 

Table 9: GEV Rejection Tables for residual data sets: Percentage summary across all statistics 

EK Cases GEV 

EK0 3.19 

EK3 3.83 

EK4 4.72 
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Fig. 5: Graphical Assessment of the goodness-of-fit of the GEV for the residual data and Cases EK0, EK3 and EK4 

 

This section clearly demonstrates the potential of using the GEV distribution to model the residual navigation 

estimation errors that result from the typical least-squares positioning algorithm widely used in GNSS receivers. The 

findings imply that the GEV is a better fit to describe residuals than the Gaussian model. In the cases where the 

residuals are heavy-tailed and the Gaussian assumption fails to provide a good model, the GEV functional model 

provides a very good alternative and thus should be considered in the design of positioning and integrity algorithms. 

 

6.4 Performance of GEV-RAIM 

The data sets for the particular cases of EK were also used to study the performance of the GEV-RAIM 

algorithm. The results are shown in Table 10 for horizontal positioning. It can be seen that GEV-RAIM performs very 

well with no false alerts and, an order of magnitude less in RAIM unavailability, i.e. 0.08% on average across the EK 

cases and missed detections, 2% on average, compared to traditional RAIM algorithms. The corresponding figures for 

LS-RAIM are 13%, 11% and 13.5% respectively; and, 6%, 6% and 7% respectively for WLS-RAIM.  

 

Table 10: GEV-RAIM Performance for Data and EK Cases (%) 

 Horizontal Component 

 GEV-RAIM 

EK Cases NA MD FA 

EK0 0.00 0.34 0.00 

EK3 0.13 2.51 0.00 

EK4 0.12 2.86 0.00 

 

Furthermore, the GEV-RAIM is stable as the tail heaviness of the residual data set used for analysis increases 

compared to LS-RAIM and WLS-RAIM, whose performances degrade substantially from EK3 to EK4. This is 

expected, as GEV-RAIM incorporates an additional parameter compared to LS-RAIM and WLS-RAIM to characterize 

the tail heaviness of the residual data distribution, i.e. the tail index ξ. The tail index enables GEV-RAIM model to be 

more versatile and a better RAIM algorithm, particularly when applied to heavy tailed residual errors. Therefore, the 

use of the GEV distribution in the derivation of the optimized threshold in GEV-RAIM enables the threshold to be less 

pessimistic than the one derived in the traditional RAIM algorithms, which in turn results in a tighter PL and hence 

allows the GEV-RAIM to have a better performance in terms of unavailability, false alerts and missed detections.    

 

8. CONCLUSIONS  

The paper has characterized the tails of residual error distributions in navigation and challenged the assumption 

of normally distributed errors which is the ‘de facto’ model currently implemented in most navigation algorithms, such 

as in differential GPS, RAIM and SBAS. It has been shown that a good alternative to the Gaussian model, in these 

extreme though rare cases is the Generalized Extreme Value (GEV) distribution, which incorporates a shape parameter 

to represent different rates of tail decay. Although further tests are required, both the graphical assessment and 

goodness-of-fit tests show that the GEV is more powerful in characterizing the tails than the Gaussian model. In terms 

of integrity monitoring, it has been shown that GEV-RAIM provides a safety threshold that is less conservative than 

that derived from the official missed detection probability, while still within the bounds imposed by the false alert 

probability thereby not affecting availability. This offers a good trade-off between continuity and integrity risk for air-



 13 

navigation. Furthermore, the better statistical model should result, overall, in better position estimation quality. 

Therefore, it is proposed that the GEV model is used for the development of future integrity monitoring algorithms.  
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