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Abstract

Background: Predators can have profound impacts on the dynamics of their prey that depend on how predator
consumption is affected by prey density (the predator’s functional response). Consumption by a generalist predator is
expected to depend on the densities of all its major prey species (its multispecies functional response, or MSFR), but most
studies of generalists have focussed on their functional response to only one prey species.

Methodology and principal findings: Using Bayesian methods, we fit an MSFR to field data from an avian predator (the hen
harrier Circus cyaneus) feeding on three different prey species. We use a simple graphical approach to show that ignoring
the effects of alternative prey can give a misleading impression of the predator’s effect on the prey of interest. For example,
in our system, a ‘‘predator pit’’ for one prey species only occurs when the availability of other prey species is low.

Conclusions and significance: The Bayesian approach is effective in fitting the MSFR model to field data. It allows flexibility
in modelling over-dispersion, incorporates additional biological information into the parameter priors, and generates
estimates of uncertainty in the model’s predictions. These features of robustness and data efficiency make our approach
ideal for the study of long-lived predators, for which data may be sparse and management/conservation priorities pressing.

Citation: Smout S, Asseburg C, Matthiopoulos J, Fernández C, Redpath S, et al. (2010) The Functional Response of a Generalist Predator. PLoS ONE 5(5): e10761.
doi:10.1371/journal.pone.0010761

Editor: Frederick R. Adler, University of Utah, United States of America

Received January 12, 2010; Accepted April 29, 2010; Published May 27, 2010

Copyright: � 2010 Smout et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: Christian Asseburg and Sophie Smout were supported by studentships from the Scottish Higher Education Funding Council (http://www.sfc.ac.uk/)
and the Natural Environment Research Council (www.nerc.ac.uk) respectively. Carmen Fernandez was supported by a Nuffield Foundation grant (www.
nuffieldfoundation.org). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: scs10@st-andrews.ac.uk

{ Deceased

Introduction

There is a growing realisation that management which

considers only the dynamics of individual species is inadequate

for conserving biodiversity [1],[2]. This has led to calls for an

ecosystem-based approach to management [3] particularly in the

fields of fisheries [4], forestry [5] and wildlife management.

Attempts to develop suitable ecosystem models have struggled with

technical problems and lack of data [6], [7]. As a result, focus has

shifted towards the identification of relatively easily measured

metrics that reflect the overall status of ecosystems [8]. These

metrics are useful for monitoring the impacts of management but

provide little biological insight. Dynamic ecosystem models are

therefore still necessary if the potential effects of different

management options are to be evaluated. Quantitative descrip-

tions of the interactions between generalist predators and their

prey are a key component of these models [9].

Such quantitative descriptions of the trophic links in biological

communities are formulated mathematically using functional

response models. For example, Holling [10] proposed the following

equation for a system in which a predator preys on one type of

prey, whose abundance can be given in terms of biomass or

numbers and is denoted by q. The consumption rate (F) by a single

predator (biomass or items consumed per unit time) is

F~
aq

1zatq
ð1Þ

Here t is the time taken by the predator to handle one item of

prey. The parameter a represents the encounter rate between

predators and prey that might be observed at very low prey density

(i.e. the probability of a foraging predator encountering a prey item

in one unit of time, given that the predator is searching throughout

that time). Note that at these low prey densities, the predator does

not spend any significant time handling prey items. At high prey

density, the time spent by the predator in handling or consuming

prey limits its consumption rate to 1/t.

Note that if prey abundance is known only by index q, where q
is proportional to the ‘true’ abundance of prey then we can write

q~wN , then

F~
aq

1zatq
~

awN

1zawtN
~

bN

1zbtN
ð2Þ
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Here, the parameter b incorporates a proportionality constant and

can no longer be interpreted simply as an encounter rate.

This model can be further modified to allow for the possibility

that encounter rates may change with prey abundance e.g. if

predators are more likely to actively search for prey when that prey

is abundant, or if prey have a refuge [11]. In one model this

relationship is expressed as b~aNm{1 [12] [13] and we can then

write

F~
aNm

1zatNm
ð3Þ

Note here that when m = 1, encounter rate is independent of prey

density, a~b, and equation (3) is equivalent to equation (2). When

m....1, then encounter rate varies with prey density and a is a

parameter that relates encounter rate to Nm21. We refer to this as

‘the attack rate coefficient’, and this is distinct from the encounter

rate a used in equation (1).

Eq. (3) is a versatile expression which can be simplified to

correspond with several commonly-used FR equations [14]. If

m = 1 and t = 0, we obtain a linear (Type 1) FR ; if m = 1 and t.0,

we obtain a hyperbolic (Type 2) FR; and if m.1, the FR is

sigmoidal (Type 3). Therefore, this simple formulation can

potentially take into account biological complexity such as the

use of refuge areas by prey, which can reduce encounter rates

when prey density is low [15].

The form of the predator’s functional response (the value of m)

may have important implications for prey populations. When

m = 1 (i.e. for a classic Holling type 2 functional response model)

then at low densities of prey, the consumption rate F is

proportional to prey abundance N (with a being the constant of

proportionality). The per capita mortality rate for prey (or the

probability that one prey item is taken in unit time) decreases as

the prey become abundant because predators are fully ‘occupied’

in handling prey and cannot increase their consumption rate

beyond the asymptotic limit 1/t. Therefore if prey that is initially

abundant becomes scarce, while the population of predators

remains constant, then the predation pressure on the remaining

prey intensifies.

Where m....1, the predator-induced mortality has the potential

to create a ‘predator pit’ for prey populations. It is still true that

mortality of prey is reduced at high prey densities due to

asymptotic predator consumption rates, and also true that

predation pressure intensifies if abundant prey become scarce.

However, at low prey densities, attack rates also decrease. It is then

possible that prey mortality may be reduced at low prey density.

As a result, it may be possible for prey to exist at low density in a

‘predator pit’. If the population increases about this level,

predation pressure intensifies.

For a good explanation of these effects, including graphical

explanation, see [16].

These arguments are developed under the assumption that the

number of these specialist predators remains constant i.e. changes

in prey mortality result only from the effects of the predator’s

functional response. However, if predator numbers change with

prey density (i.e. if the predator shows a numerical response) then

mortality rates will be affected and the consequences of predation

for the prey population may be more complex [17].

Generalists consume more than one type of prey. We expect

that consumption of any given prey (say, prey type 1) will depend

on the availability of this and other prey in the system i.e. the

mortality rate for prey type 1 will be reduced if an alternative prey

type is present. Under the classic Holling functional response

model, this effect is considered to be an outcome of the time spent

by the predator in handling items of alternative prey which

reduces the available time for encounters with prey 1. In the

standard fomulations used in fishery models [12] the parameter a
is often interpreted in terms of ‘suitability’ or ‘preference’. If we

allow m....1 then preferences change with relative prey abundance

[18].

Fi~
aiNi

mi

1z
Pn

j~1

ajtjNj
mj

ð4Þ

Here, n is the number of prey species and all notation is now prey-

specific [18], [19].

Because a generalist predator is able to adapt its diet and exploit

different prey types, the dynamics of generalist predators are not

necessarily tightly coupled to those of any one of their prey [20]

and it is likely that the numerical response of predator populations

will, like the functional response, be driven by the availability of

more than one type of prey. Generalists may have dramatic effects

on prey populations: they may dampen or eliminate cyclical

interactions between specialist predators and their prey [21], hold

prey populations at low density in predator pits [22] [23], drive

rare species to extinction [24], [16], and help to prevent ecological

meltdown [25]. The occurrence of these effects depends on the

form of the predator’s functional and numerical responses [26].

To model the role of generalist predators in community

dynamics we need to describe their response to the abundance

of all their prey species. Consumption rates are modelled using

MSFRs [27]. However, there have been few attempts to fit

MSFRs to field data because of the technical difficulties involved

and because there is a widespread belief that no suitable data sets

are available [28]. Here, we show how one type of MSFR can be

fitted to field data on the consumption by a generalist predator (the

hen or northern harrier Circus cyaneus) of its three most important

prey species (the red grouse Lagopus lagopus scoticus, the meadow

pipit Anthus pratensis, and the field vole Microtus agrestis) at 11

different combinations of prey density [29]. The red grouse is an

economically important quarry in the UK, where hen harriers are

classified as endangered species but are illegally killed [30] because

of their perceived impact on grouse abundance [31].

Methods

The methods of data collection for our study are fully explained

in [32]. We summarise this information here to set the context for

our statistical analysis, and then go on to present the statistical

approach used to estimate the functional response parameters.

The Data
We consider populations of hen harriers that breed on UK

grouse moors. UK moorland is upland habitat, generally

characterised by wet acidic soils and heather (Calluna vulgaris).

Female hen harriers hunt over these areas throughout the year,

although males often winter elsewhere. Harriers return to their

breeding sites in spring and generally make their nests in tall

heather [33]. Adult birds can consume a wide variety of prey but

during the breeding season prey items delivered to nest for hen-

harrier chicks tend to be dominated by meadow pipits, voles and

red grouse chicks (adult grouse are rarely consumed during

summer).

The data for this study were collected between 1992 to 1996 on

6 study moors in Scotland, and with additional data from a subset

of sites in 1988. In total, 11 separate estimates of predation rates at

different combinations of prey density were obtained. The

Functional Response
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methods used to obtain estimates of both predation rates and prey

density are described briefly below. Details on the data collection

are given in [34], [35].

Harrier diet was recorded by observers watching from hides set

close to hen harrier nests over thousands of hours. The number

and type of prey brought to the nest by parent birds was noted.

Nests were observed during weeks 1 to 4 of the breeding season

during which time it is estimated that 89% of prey items could be

correctly identified [32]. Unidentified prey tended to be small and

quickly consumed.

Prey density for the three major prey species of the hen harriers

was estimated in each year. Red grouse chick density was

estimated by transect sampling using pointing dogs with brood

size and nest density estimated based on counts in June and July.

Meadow pipits were counted by visual observation using line

transect surveys. An index of field vole abundance was obtained

from the numbers of voles caught per 100 snap-trap nights.

Analysis
To provide a baseline for evaluating the implications of an

MSFR, we first fitted a generalised single species functional

response [13] to our data (equation (3)). Consumption of grouse by

harriers is treated as a function of grouse density alone, and the

presence of other prey in the system is ignored. F is the number of

grouse chicks brought to a harrier nest per hour by individual

parents, N is the density of grouse chicks in the area based on

grouse nest counts and brood sizes.

Eq. (3) was fitted to the data using computer-intensive Bayesian

methods (Monte Carlo Markov Chain –MCMC). We adopted this

approach for three reasons. First, it allowed us to use a plausible

sampling distribution for our response data, avoiding the need to

assume normality or use transformations. Because the data were

counts of predation events over fixed units of time and space,

consumption was initially modelled by a Poisson sampling

distribution around the fitted function. However, as is often the

case with data of this kind [14], the residuals of the Poisson model

were overdispersed. We therefore used a negative binomial

sampling distribution, which includes an additional parameter

for the degree of over-dispersion in the data [36]. Second, the

Bayesian approach enabled us to incorporate independent

information about the values for t, a and m in the form of prior

distributions (more details of these distributions are given below).

Third, the joint posterior distribution of the parameters could be

directly approximated from the MCMC draws. This flexible

approach to uncertainty has several advantages [37]. For example,

we avoided the need for the kind of 2-stage fitting process that has

previously been used to decide whether a functional response

should be considered sigmoidal [38], because we represent

uncertainty about the form of the functional response explicitly

by the posterior distribution of the parameter m.

We then fitted a multispecies extension of eq. (4) in which

consumption of any one prey type is a function of the availability

of all types of prey. As in the single-species case, we assumed no

observation error in the Nj and individual negative binomial

sampling distributions for the consumption rates Fj. The

correlation structure of the Fj follows from eq. (2).

The MSFR is a non-linear function that employs as many

response variables (the consumption of each prey species) as

explanatory variables (the availability of each prey species). Not

only does this impose apparently severe demands for data on prey

availability and consumption, but there are few standard statistical

techniques for fitting this kind of relationship. Those that are

available cannot satisfactorily account for parameter and model

uncertainty. However, Bayesian, computer-intensive methods

place few restrictions on model structure, allowing us to apply a

negative binomial sampling distribution to estimate the over-

dispersion in the data and thus quantify parameter uncertainty

rigorously and comprehensively for the multi-species case.

We used additional data and biological first principles to

provide prior distributions for model parameters in both the

single- and multi-species FR. For the ti we used a gamma prior

with prey-specific mean and variance derived from published data.

In our formulation of the FR, the attack rate on prey species i is

given by aiNi
mi{1. We used observational data on the attack rate

for grouse [29] to derive a joint prior for agrouse and mgrouse. Negative

values of m are meaningless, and values of m between 0 and 1

imply that at unchanged abundance of other prey species, attack

rate on one prey species can decrease with increasing density of

this prey, which is implausible. We therefore chose a shifted

gamma prior for m with minimum 1. The prior mean and variance

of all mi were set to 2 and 0.9 respectively, giving a 95th percentile

of 3.9. No prior knowledge was available for apipit and avole, so

various relatively uninformative priors were used to check for

robustness in the choice of prior. Results are shown for a gamma

prior with mean 1 and variance 0.99.

MCMC was implemented with a Random Walk Metropolis-

Hastings algorithm [39]. Variances of the proposal distributions

were adjusted to achieve acceptance rates between 15–30% for

each parameter. Plots of cumulative parameter means indicated

that 4,000,000 iterations were satisfactory for convergence. We

preceded these with a burn-in phase of 10,000 draws that did not

contribute to the posterior. The validity of assuming a negative

binomial sampling distribution for the consumption data was

checked by comparing cumulative left probabilities for each

datum, computed from its corresponding predictive distribution,

with the negative binomial distribution (QQ plot).

Results

Posterior point and interval parameter estimates for both the

single- and multi-species FRs are shown in Table 1. For the single

species FR (harriers preying on grouse only) the estimate of m was

1.09, implying a weakly sigmoidal FR. This is in contrast to the

results of earlier work [32] which used non-linear least squares

method and found support for a strongly sigmoidal FR. The

difference is mainly due to our use of a less restrictive sampling

distribution for the consumption data [40]. Also, the broad

marginal posterior distribution of the parameter tgrouse implies that

the data do not support a well-defined asymptotic consumption

rate for the single species FR. The mean estimate of tgrouse implies

an asymptotic consumption rate of approximately 3 items per hour

for grouse chicks. However, it should be noted that this

consumption rate is not predicted within the range of our

observed prey densities: it is, in effect, an extrapolation and would

only occur at levels of grouse density that are unrealistically high.

There was no overlap between the posterior credible intervals

for tgrouse and mgrouse obtained from the single-species FR and the

MSFR (see Table 1). The mean estimates of tgrouse, tpipit and tvole
respectively imply maximum consumption rates of 0.365, 0.597

and 0.431. Note that the handling time estimated for grouse under

this model is much higher than that estimated under the single-

species model, and consequently, the predicted maximum

consumption rate for harriers feeding solely on grouse is lower

(and probably more realistic). We also note that the handling times

for the three prey species under the multi-species model are fairly

similar to one another. This seems reasonable, given that any prey

item must be carried back to the nest by the parent birds to be fed

to the chicks no matter what its size.

Functional Response
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The multi-species model has estimates of m.1 for all prey

species, and the values of m also vary between prey species. This is

evidence that prey preferences are variable i.e. that switching

would be expected in this system. Because of this, and also because

our prey abundances are expressed as indices rather than absolute

values, we do not attempt to interpret the estimates of a directly in

terms of prey preference. Instead, we use the Bayesian framework

to illustrate the emergent properties of our functional response and

its implications for grouse. The grouse component of the MSFR

and its implications for harrier-induced grouse mortality at a range

of alternative prey densities are shown in Fig. 1, where an index of

mortality rate is calculated simply from F/N (i.e. the gradient of

the functional response curve). Although mgrouse&1 for the MSFR,

implying a sigmoidal response to this prey species, the conse-

quences of this are only obvious at low densities of voles and pipits

(Fig. 1a), when there is a sharp peak in harrier-induced grouse

mortality at low grouse density (Fig. 1d). At higher densities of

voles or pipits, the maximum grouse mortality caused by a pair of

harriers is around half of its corresponding value when alternative

prey are rare.

Discussion

The impact of a predator on prey population dynamics will

depend not only on the MSFR, but also on the predator’s

numerical response to changes in the density of all prey species

[17], [41]. Other mechanisms, such as prey behaviour, may also

contribute to the underlying dynamics of the prey population [42].

The possible implications of the MSFR for prey dynamics in a

simple system can be investigated graphically [43]. To illustrate

this, we plotted per capita grouse recruitment (in the absence of

predators), and per capita harrier-induced grouse mortality,

against grouse density (Fig. 2a). At grouse densities where these

curves intersect, removals due to predation are exactly compen-

sated by the production of new individuals through reproduction –

we then expect the prey population to remain constant and these

points are referred to as equilibrium grouse densities. The curves

indicate these, provided that densities of the predator and other

prey (voles and pipits) remain constant. ‘Stable equilibrium’ occurs

if predation pressure increases above, and decreases below. This

will tend to stabilise the prey population towards the equilibrium

point if transient external influences lead to short-term population

growth or shrinkage. ‘Unstable equilibrium’ is expected if

predation pressure decreases above, and increases below the

equilibrium point. In this case, small departures from equilibrium

(e.g. due to environmental fluctuations) would be expected to

produce dramatic declines or growth in the prey population.

For this illustration, we assumed that grouse density, in the

absence of predation, is determined by a simple logistic model.

The figure is characterised by one unstable equilibrium (labelled B

in Fig. 2a) and two stable equilibria (labelled A and C in Fig. 2a).

Equilibrium A is sometimes referred to as a ‘predator pit’. In our

system it only occurs at low densities of alternative prey. If the

density of alternative prey is increased, only the high grouse

density equilibrium (C) appears to be possible. However, the

uncertainty associated with the estimates of the MSFR implies that

there is a family of possible harrier-induced mortality curves

associated with each alternative prey density (Fig 2b). Some

members of this family give rise to three equilibria and some to

only one. By resampling from the posterior distributions for the

parameters of the MSFR, we found that there is 0.56 probability

that a predator pit exists when the density of alternative prey is

low, but this probability is reduced to 0.06 at intermediate

densities of alternative prey and to 0.04 at high densities. This

implies, for example, that active habitat management may almost

eliminate the existence of the predator pit equilibrium and thereby

contribute to more stable high-density grouse populations.

The true nature of the interaction between grouse, hen harriers

and alternative prey is likely to be more complex than this.

Importantly, while we have assumed that harrier density remains

constant, it is known that hen harriers show a multi-species

aggregative response (i.e. a numerical response) to all three prey

[32], [29]. It is known that the effect of predator numerical and

functional responses acting together is important in some systems

[44] and this should also be considered in the multi-species context

when populations of generalist predators are able to exploit a

variety of prey [44]. In the hen-harrier grouse system, the effect of

the multi-species aggregative response is to increase the number of

harriers when alternative prey is present at intermediate or high

densities, and the multi-species functional response then predicts

an increase in predation mortality on grouse chicks. The main

consequence is that, for intermediate-to-high levels of voles/pipits,

the system is likely to have only one stable grouse equilibrium,

which – depending on harrier density – may be close to, or below

the level observed in the absence of predators. This can be seen as

an example of apparent competition, because here the presence of

another prey species depresses population levels of grouse due to

an indirect effect mediated by a predator. Similar effects have been

observed in other mammal populations [45].

A full exploration of the consequences of combined numerical

and functional responses for the grouse hen-harrier system is

beyond the scope of this paper and requires considerable further

analysis that would need to take into account, for example, the

rather complex nature of grouse population dynamics [42]. There

is good empirical and theoretical evidence that density-dependent

population regulation in grouse gives rise to intrinsic population

cycles in the absence of predation [46]. The parameterisation of an

MSFR that takes account of all important predator prey

interactions is a key step towards modelling multi-species

population dynamics, improving our understanding of mecha-

Table 1. Parameter values.

Single-species
functional response

Multi-species
functional response

F~
aNm

1zatNm
Fi~

aiNi
mi

1z
Pn

j~1

aj tjNj
mj

agrouse 0.00164 (0.000614–0.00243) 0.000673 (0.000484,
0.00119)

avole - 3.78 (2.20, 5.45)

apipit - 1.904 (0.941, 3.16)

tgrouse 0.325 (0.0275–0.919) 2.74 (2.04, 3.46)

tvole - 2.32 (0.960, 3.40)

tpipit - 1.676 (1.39, 2.09)

mgrouse 1.09 (1.00–1.31) 2.51 (2.33, 2.69)

mvole - 1.14 (1.00, 1.44)

mpipit - 1.18 (1.02, 1.41)

Mean parameter estimates for the single species functional response (middle
column of table) and multi-species functional response (RHS column) fitted to the
hen-harrier data set. The parameters are a, the encounter parameter which relates
prey density to attack rate, t, the handling time (where 1/t gives the maximum
consumption rate), and m, the shape parameter (values of m...1 indicate that
switching occurs). 95% Bayesian credible intervals are shown in brackets.
Subscripts indicate the prey species for which each parameter was estimated.
doi:10.1371/journal.pone.0010761.t001
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nisms operating in this multi-species system and providing

parameter estimates that can be used to assist in the process of

fitting a full dynamical population model. This may be done by

‘fixing’ MSFR parameters within the dynamical model, thus

reducing the number of parameters that must be estimated from

time series of population counts [42], [41]. Alternatively, if the

entire population model is to be fitted to time-series data using

Bayesian methods, a previously fitted MSFR can be used to

provide informative priors for its parameters [37].

Our results show that using a single-species FR to model the

behaviour of a generalist predator could result in misleading

conclusions about the potential effects of that predator on its prey.

The fitted form of the single-species FR depends critically on the

densities of alternative prey on each occasion that the density and

consumption of the focal prey species were measured, and on the

assumptions that are made about error distribution. However, the

densities of alternative prey weight the generalist predator’s

estimated single-species FR in unpredictable and potentially

highly variable ways. These problems can be overcome by fitting

an MSFR, but it is important to have consumption data from a

diverse range of prey densities to avoid the need for extrapolation.

Where an MSFR is of interest for an ecological study, field data

are more appropriate than those collected in a laboratory situation

because of the difficulties involved in realistically replicating prey

availability in the laboratory [47]. Multispecies feeding data are

usually analysed for evidence of switching between alternative prey

[48], but the results of such analyses are hard to interpret

quantitatively. Fitting an MSFR requires no more data than an

analysis of switching or of frequency-dependent selection, but it

provides quantitative information on the predator’s behaviour that

can be used to predict its consumption over the entire range of

observed prey densities. Depending on the nature of available

data, it may be possible to use readily available software such as

WinBUGS [49] to fit a multi-species functional response [50].

Many different functional response models have been proposed

for both single and multi-species systems, and some of these

involve biological effects that we have not included in our

formulation [28]. For example, competition between predators

can be captured by using a measure of the ratio of prey to

predators, rather than some absolute measure of prey abundance

[51]. Such models have been found appropriate, for example, for

mammalian predators in a terrestrial system [52]. However there

is evidence to suggest that ratio dependence may not be important

in the hen-harrier grouse system [32], and we consider that our

formulation for the MSFR is a reasonable choice for our study: it

can reproduce all of the standard forms (Type 1, 2 and 3) for a

single species FR and does not generate any of the anomalous

dynamics shown by some other formulations [28]. It should be

Figure 1. Estimated consumption rate and mortality rate for grouse chicks, as a function of grouse density. Estimated mean
consumption is shown in the top row (a,b,c) and per capita mortality is shown in the bottom row (d,e,f), at various densities of alternative prey. Per
capita grouse chick mortality was calculated as (hourly consumption rate)/(grouse chick density). The grey shades represent the posterior probability
density at each point. In the left-hand column (a,d), both meadow pipits and field voles are at low densities (2 pipits counted per km of transect, and
0.1 voles caught per 100 trap nights, htn21) , whereas in the right-hand column (c,f), both pipits and voles are abundant (20 pipits.km21, 4
voles.htn21). The middle column (b,e) represents an intermediate case (9 pipits.km21; 1 vole.htn21).
doi:10.1371/journal.pone.0010761.g001
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noted that the fitting approach presented here can be used with

any functional form of MSFR, and Bayesian methodology can

potentially be extended further to assess the relative performance

of different functional forms, thus accounting for model uncer-

tainty [37].

Conclusions
Generalist predators have been implicated in a wide range of

conservation problems and other conflicts with humans [53]. An

understanding of their MSFR, and the uncertainties associated

with these responses, is essential for the sound management of

pests or endangered species. It is now clear that this can be

achieved with a relatively sparse data sets (eg [50]). The MSFR

also provides a much-needed link between models of individual

predator-prey interactions and ecosystem models.
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