
Generation and characterization of a recombinant
Rift Valley fever virus expressing a V5 epitope-
tagged RNA-dependent RNA polymerase

Benjamin Brennan, Ping Li and Richard M. Elliott

Correspondence

Richard M. Elliott

rme1@st-andrews.ac.uk

Received 27 July 2011

Accepted 2 September 2011

Biomedical Sciences Research Centre, University of St Andrews, North Haugh, St Andrews,
Fife KY16 9ST, UK

The viral RNA-dependent RNA polymerase (RdRp; L protein) of Rift Valley fever virus (RVFV;

family Bunyaviridae) is a 238 kDa protein that is crucial for the life cycle of the virus, as it catalyses

both transcription of viral mRNAs and replication of the tripartite genome. Despite its importance,

little is known about the intracellular distribution of the polymerase or its other roles during

infection, primarily because of lack of specific antibodies that recognize L protein. To begin to

address these questions we investigated whether the RVFV (MP12 strain) polymerase could

tolerate insertion of the V5 epitope, as has been previously demonstrated for the Bunyamwera

virus L protein. Insertion of the 14 aa epitope into the polymerase sequence at aa 1852 resulted

in a polymerase that retained functionality in a minigenome assay, and we were able to rescue

recombinant viruses that expressed the modified L protein by reverse genetics. The L protein

could be detected in infected cells by Western blotting with anti-V5 antibodies. Examination of

recombinant virus-infected cells by immunofluorescence revealed a punctate perinuclear or

cytoplasmic distribution of the polymerase that co-localized with the nucleocapsid protein. The

generation of RVFV expressing a tagged RdRp will allow detailed examination of the role of the

viral polymerase in the virus life cycle.

INTRODUCTION

Rift Valley fever virus (RVFV) is a mosquito-borne
pathogen of both livestock and humans that is found
primarily in sub-Saharan Africa and the Arabian Peninsula.
In ruminants, particularly sheep and cattle, RVFV disease is
characterized by fetal deformities, abortion and high rates
of mortality among young animals (Smithburn, 1949).
RVFV is predominantly transmitted by mosquitoes and the
virus has been isolated from more than 40 species in
nature, while under laboratory conditions many different
arthropods are capable of transmitting the virus (Turell
et al., 2008 and references therein). RVFV is a member of
the genus Phlebovirus in the family Bunyaviridae. The virus
contains a tripartite ssRNA genome comprising two
negative-sense segments and one ambisense segment
(Bouloy & Weber, 2010). The small (S) segment (approx.
1.7 kb) encodes the nucleocapsid (N) protein and a non-
structural protein (NSs) in an ambisense manner. The N
protein is translated from a subgenomic mRNA that is
transcribed from the genomic RNA, while NSs is translated
from a subgenomic mRNA that is transcribed from the
antigenomic (replicative-intermediate) RNA. The medium
(M) segment (approx. 3.8 kb) encodes four proteins in a
single ORF: the virion envelope glycoproteins Gn and Gc,
and two other proteins called NSm1 and NSm2 (Gerrard
et al., 2007; Won et al., 2006). The large (L) segment

(approx. 6.4 kb) encodes the viral RNA-dependent RNA
polymerase (RdRp or L protein). The RNA segments are
encapsidated by N protein to form ribonucleoprotein
(RNP) complexes, the functional templates for viral RNA
synthesis (Ortı́n & Parra, 2006).

The RVFV L protein is 2092 aa long (237.7 kDa) and
associates with the RNP to catalyse viral transcription and
replication (Lopez et al., 1995). Comparison of bunyavirus
L protein sequences with those of other RNA polymerases
enabled the definition of four amino acid motifs, called A
to D, that comprise the ‘polymerase module’ that is
conserved in all RNA polymerases (Delarue et al., 1990;
Poch et al., 1989). These are located in the middle of
the bunyavirus polymerase. Subsequently, a fifth motif
upstream of motif A, termed pre-motif A, was identified
and shown to be a feature of all RdRp, while a motif
downstream of motif D, termed E, was found to be
conserved in all segmented virus RdRp (Muller et al.,
1994). A further conserved region downstream of motif E
has been described that is specific for bunyavirus RdRp
(Aquino et al., 2003). Conserved motif C contains the
actual catalytic domain for nucleotide polymerization, and
for all segmented negative-sense RNA viruses this is
characterized by the conserved tripeptide sequence SDD
(Jin & Elliott, 1992). Bunyavirus mRNA synthesis is primed
by oligonucleotides cleaved from the 59 ends of host
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mRNAs in a process known as cap-snatching (Patterson
et al., 1984) and the N-terminal domain of bunyavirus L
proteins contains a conserved PD-(D/E)xK nuclease motif
(Reguera et al., 2010).

Through the use of transient transfection of cDNAs
expressing N-terminal or C-terminal externally tagged
RVFV L proteins, Zamoto-Niikura et al. (2009) reported
that L forms oligomers, and they also identified regions of
the protein responsible for both inter- and intramolecular
interactions. Furthermore, the importance of L oligomer-
ization for viral RNA synthesis was demonstrated in a
minigenome assay (Zamoto-Niikura et al., 2009).
However, these authors were unable to produce an
infectious virus expressing a tagged L protein.

Previously we utilized reverse-genetic technology (Bridgen
& Elliott, 1996; Lowen et al., 2004) to generate recombin-
ant Bunyamwera virus expressing L protein tagged
internally within the C-terminal domain with the 14 aa
V5 epitope derived from parainfluenza virus 5 (Shi &
Elliott, 2009; Southern et al., 1991). Here we demonstrate
that RVFV RdRp can also tolerate introduction of the
epitope into its C terminus and retain functionality in a
minigenome assay, and furthermore that infectious virus
expressing a tagged L protein can be produced. We provide
insight into the intracellular location of the L protein in
infected cells and describe its co-localization with the
nucleocapsid protein in the cytoplasm.

RESULTS

Generation of a V5-tagged RVFV RdRp

Comparison of the amino acid sequences of bunyavirus L
proteins from viruses in all five genera of the family
Bunyaviridae reveals little sequence similarity, apart from
the short motifs described above. In particular, there is no
obvious similarity between the C-terminal domain of
Bunyamwera virus L, where the V5 epitope was successfully
inserted, and the C-terminal end of RVFV L protein.
Therefore, we compared the amino acid sequences of three
phlebovirus L proteins (RVFV, Uukuniemi virus and
Toscana virus) and, along with bioinformatic predictions
of the RVFV L protein structure using criteria previously
described (Shi & Elliott, 2009), we identified three potential
insertion sites at aa 1750, 1794 and 1852. Accordingly, the
sequence encoding the V5 epitope was inserted into the L
segment cDNA, by using a PCR mutagenesis approach, in
pTM1- or pTVT7-based plasmids for viral protein
expression and genomic RNA expression, respectively
(Fig. 1).

The functionality of the recombinant L proteins was
assessed by using a minigenome assay comprising an S-
segment reporter RNA in which the coding sequence of the
NSs protein had been replaced with that of Renilla
luciferase (Ren). The construct pTVT7-GSdelNSs:Ren
contains anti-genomic sense cDNA to the modified S

segment under the control of the T7 promoter, and hence
the reporter gene would be in the negative-sense orienta-
tion in the T7-driven RNA transcript. Renilla luciferase
activity will only be detected if a functional viral
polymerase is present in the system to transcribe the
RNA and generate the appropriate subgenomic mRNA.
Our minigenome system is thus similar to those previously
reported for RVFV (Gauliard et al., 2006; Habjan et al.,
2009; Ikegami et al., 2005; Näslund et al., 2009; Zamoto-
Niikura et al., 2009).

The minigenome-encoding plasmid was transfected into
BSR-T7/5 cells along with plasmids expressing N protein
(pTM1-N) and either wild-type (wt) (pTM1-L) or mutant
(pTM1-L1V5 to pTM1-L3V5) polymerases. As shown in
Fig. 2(a), insertion of the V5-epitope tag at aa 1750 (L1V5)
or aa 1794 (L2V5) within the C terminus of the polymerase
abrogated activity in the minigenome assay. However, L
protein with the epitope inserted further towards the C
terminus of the protein at aa 1852 (L3V5) was still
functional, showing 24 % of the activity of the wt
polymerase. Varying the amounts of L-expressing plasmid
DNA transfected (from 50 ng to 2 mg) did not result in
detectable Renilla luciferase activity in pTM1-L1V5- or
pTM1-L2V5-transfected cells, while the luciferase activity
produced in wt L- or L3V5-transfected cells was maximal
with 100 ng of DNA (data not shown). None of the
insertions seemed to affect expression of the mutant
polymerases, as similar-sized bands were detected by
Western blotting with anti-V5 antibodies (Fig. 2b).

Effect of MP12 NSs protein on polymerase activity

Work by Ikegami et al. (2005) showed that expression of
the RVFV ZH501 strain NSs protein in a minigenome assay
enhanced RNA replication and transcription, as measured
by an increase in reporter gene activity. Therefore, in an
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Fig. 1. Schematic representation of the Rift Valley fever virus L
protein and V5-epitope insertion sites. The 14 aa V5 epitope
(GKPIPNPLLGLDST) was inserted into the L protein coding
sequence in both pTM1-L and pTVT7-GL by using PCR
mutagenesis at the sites indicated (m). The modified proteins
were designated L1V5–L3V5. The grey area represents the
putative endonuclease domain (Reguera et al., 2010) and the
diagonally shaded box the polymerase module defined by Muller
et al. (1994).
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attempt to improve the activity of the L3V5 polymerase in
our assay, varying amounts of the expression plasmid
pTM1-NSsMP12 (from 1 ng to 1 mg) were transfected into
BSR-T7/5 cells along with the other constructs, as
described above. In contrast to the data reported by
Ikegami et al. (2005), our results showed that increasing
the amount of NSs protein decreased the level of reporter
gene activity in cells expressing either wt or L3V5 mutant
polymerases. At the highest amount of co-transfected
pTM1-NSsMP12 (1 mg), Renilla luciferase was inhibited by
98 % and 91 % in wt L- or L3V5-transfected cells,
respectively (Fig. 3).

Rescue of recombinant RVFV expressing a V5-
tagged polymerase

The three pTVT7-based constructs expressing tagged L
proteins were then used in the reverse genetics system
(Billecocq et al., 2008; Brennan et al., 2011) to determine
whether viable viruses could be rescued. In agreement with
the results seen in the minigenome assay, no viruses with

RNA segments derived from the constructs pTVT7-GL1V5
or pTVT7-GL2V5 were recovered (data not shown).
However, a virus designated rMP12L3V5 was successfully
rescued by using the construct pTVT7-GL3V5. The passage
1 (p1) stock of this virus had a titre of 2.686107 p.f.u.
ml21 but showed a smaller plaque phenotype than that of
the parental virus, which was also generated by reverse
genetics and designated rMP12 (Fig. 4a). We were also able
to rescue a recombinant two-segmented genome virus,
designated r2segMP12L3V5, which expresses epitope-
tagged L protein. This is based on the recently described
two-segmented virus (r2segMP12) in which the NSs gene is
replaced by that of the glycoproteins, and consequently the
virus lacks an M segment (Brennan et al., 2011). Both
viruses expressed L protein, which was clearly detected by
Western blotting with anti-V5 antibodies (Fig. 4b).
r2segMP12L3V5 was severely attenuated with respect to
rMP12, r2segMP12 or rMP12L3V5, and produced extre-
mely small pinpoint plaques (Fig. 4c). Therefore, to
determine the titre of the virus, a focus-forming assay
was performed by using an anti-N antibody. A p1 stock of
r2segMP12L3V5 was generated and had a titre of 7.56105

focus-forming units ml21.
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Fig. 2. Activity of V5-tagged L protein in the minigenome assay. (a)
Luciferase activity. BSR-T7/5 cells were transfected with pTVT7-
GSdelNSs:Ren, pTM1-N and either wt pTM1-L or V5-tagged
variants. Renilla luciferase activity was measured 24 h post-
transfection. No L, Negative control without L cDNA (empty pTM1
vector used); wt L, pTM1-L; L1V5, pTM1-L1V5; L2V5, pTM1-
L2V5; L3V5, pTM1-L3V5. (b) Western blot analysis of transfected
BSR-T7/5 cells. Cell extracts were prepared in parallel with those
for the minigenome assay, and proteins fractionated on a 4–12 %
NuPage gel (Invitrogen). After transfer to a nylon membrane, the
blot was probed with an anti-V5 antibody to detect L protein.
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Fig. 3. Effect of MP12 NSs protein on polymerase activity in the
minigenome assay. BSR-T7/5 cells were transfected with pTVT7-
GSdelNSs:Ren, pTM1-N, either wt pTM1-L or pTM1-L3V5, and
the indicated amount of pTM1-NSsMP12. Renilla luciferase activity
was measured 24 h post-transfection. Black and white bars
represent experiments with wt L or L3V5 protein, respectively. No
L, Negative control without wt L cDNA (empty pTM1 vector used);
No NSs, positive control reaction.
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Growth properties of rMP12L3V5

The replication of the three-segmented genome tagged virus
was compared with rMP12 in BHK-21, Vero E6 and Aedes
albopictus C6/36 cells, each infected at an m.o.i. of 1 (Fig. 5).
At different times post-infection (p.i.) the tissue-culture
supernatants were harvested and virus titres determined by
plaque assay in BHK-21 cells. In all cell lines the replication
of the tagged virus, rMP12L3V5, was attenuated by 10- to
100-fold compared with that of rMP12. Peak titres of
2.956107 and 2.36108 p.f.u. ml21 in BHK-21 cells (Fig.
5a), 86106 and 16108 p.f.u. ml21 in Vero E6 cells (Fig. 5b),
and 1.56107 and 3.956108 p.f.u. ml21 in C6/36 cells (Fig.
5c) were recorded for rMP12L3V5 and rMP12, respectively.

The cell monolayers were also harvested to monitor the
expression of the N, NSs and L proteins by Western blotting.
In all cell lines infected with rMP12 or rMP12L3V5, N and
NSs expression was first detectable by 12 h p.i., except for
NSs in C6/36 cells, which was delayed until 20 h p.i. The
levels of N and NSs proteins synthesized in rMP12L3V5-
infected cells were less than those seen in rMP12-infected
cells, reflecting the reduced growth observed for the tagged
virus. The L protein was readily detected by the anti-V5
antibody in rMP12L3V5-infected cells: by 12 h p.i. in both
mammalian cell lines and by 20 h p.i. in C6/36 cells. The
overall accumulation of L protein was greatest in infected
BHK-21 cells (Fig. 5). In addition, rMP12L3V5 appeared
genetically stable, in that tagged L protein was detected by
Western blotting in cells infected with virus that had been
serially passaged three times.

Cellular localization of N protein and polymerase
during infection

The intracellular localization of the RVFV polymerase
was determined by immunofluorescence imaging. Cells

on coverslips were infected with rMP12L3V5 at an m.o.i.
of 1, fixed at 24 h p.i., and stained with anti-N and anti-
V5 antibodies. Both proteins were detected in the
cytoplasm of infected cells and showed an overall
punctate pattern of staining (Fig. 6), with some areas
of intense staining in the perinuclear region. These may
represent the viral factories, as reported for Bunyamwera
virus (Salanueva et al., 2003). There was a high degree of
co-localization of the two immunofluorescent signals,
which is indicative of interaction between L and N
proteins. No obvious co-localization of L with the Golgi
marker protein GM130 was apparent when infected cells
were co-stained with anti-V5 and anti-GM130 antibodies
(data not shown).

DISCUSSION

The RdRp of negative-sense RNA viruses plays a crucial
role in the virus life cycle, including replication of the viral
genome and transcription of viral mRNAs (Ortı́n & Parra,
2006). As with other bunyaviruses, detailed study of the
RVFV L protein has been impeded by the lack of antibodies
that can detect the authentic L protein in infected cells by
techniques such as Western blotting or immunofluores-
cence. In addition, the lack of marked shut-off of host cell
protein synthesis during RVFV infection renders visualiza-
tion of the polymerase in infected cell lysates extremely
difficult. Previously, we showed that lack of monospecific
antibodies could be overcome by inserting the V5 epitope,
against which high-affinity antibodies are available, into
the Bunyamwera virus L protein, thus allowing convenient
detection of the protein in infected cells (Shi & Elliott,
2009). Here, we investigated whether a virus in a different
genus of the family Bunyaviridae could also be modified by
introduction of the same tag.
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Fig. 4. Characterization of recombinant viruses.
(a) Comparison of plaque sizes of rMP12 and
rMP12L3V5 on BHK-21 cells. Cell monolayers
were fixed at 96 h p.i. with 4 % paraformalde-
hyde and stained with Giemsa solution. (b)
Western blot analysis of S and L segment-
encoded proteins from rMP12L3V5- and
r2segMP12L3V5-infected cells. Cell extracts
were fractionated on 4–12 % NuPage gels and
blots were probed with anti-V5, anti-N, anti-
NSs and anti-tubulin antibodies as indicated.
(c) Comparison of plaque sizes of r2segMP12
and r2segMP12L3V5 on BHK-21 cells. Cell
monolayers were fixed at 96 h p.i. with 4 %
paraformaldehyde and stained with Giemsa
solution. Immunostaining, with anti-N antibody,
of viral foci produced by r2segMP12L3V5 on
BHK-21 cells is shown on the right.
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Little is known about the domain structure of bunyavirus
polymerases, and overall the L proteins of viruses in
different genera show only limited regions of amino acid
identity. Muller et al. (1994) described a region in the
centre of the RVFV L protein, aa 918–1193, to contain the
polymerase module composed of six motifs, Pre-A and A–
E. These motifs are conserved across both bunyaviruses
and arenaviruses, and mutation of certain conserved

residues in these motifs in the Bunyamwera virus L protein
was shown to abolish polymerase activity (Jin & Elliott,
1992). A motif downstream of E was reported as being
conserved among bunyaviruses, though no function can
yet be ascribed to it (Aquino et al., 2003). An ovarian
tumour protease domain is found at the N terminus of
Crimean–Congo hemorrhagic fever virus L protein (Honig
et al., 2004; Kinsella et al., 2004) and appears to be a unique
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Fig. 5. Growth properties of recombinant
viruses. Cells were infected with rMP12 or
rMP12L3V5 (m.o.i. of 1). Western blot analysis
of viral proteins and corresponding growth
curves from infected BHK-21 (a), Vero E6 (b)
and C6/36 (c) cells are shown. Cell extracts
were prepared at the time points indicated,
proteins were fractionated on 4–12 % NuPage
gels and blots were probed with anti-N, anti-
NSs, anti-V5 to detect L, and anti-tubulin
antibodies, as indicated. Viral growth-curve
samples were titrated by plaque assay on
BHK-21 cells.
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Fig. 6. Intracellular localization of viral N and V5-tagged L proteins in rMP12L3V5-infected cells. BSR-T7/5 cells were infected
with rMP12L3V5 (m.o.i. of 1) and at 24 h p.i. cells were fixed with 4 % paraformaldehyde and co-stained with anti-N and anti-V5
antibodies, while nuclei were stained with DAPI. Cells were examined with a Zeiss LSM confocal microscope.
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feature of the L proteins of nairoviruses, which are
substantially larger than the L proteins of other bunya-
viruses. More recently, a region at the very N terminus
(aa 1–180) of the La Crosse virus polymerase was shown to
have a metal binding and divalent cation-dependent
nuclease activity analogous to that of influenza virus
endonuclease (Reguera et al., 2010). The endonuclease
domain of the influenza virus polymerase is responsible for
mediating the cap-snatching mechanism utilized to attach
cellular 59 cap structures to viral mRNAs (Plotch et al.,
1981). Reguera et al. (2010) reported that other bunya-
virus polymerases, including that of RVFV, contain this
endonuclease domain. The C-terminal domains of bunya-
virus L proteins are substantially more variable in
sequence, and our accumulated experience suggests that
the C-terminal domain is a suitable target for manipulation
to insert foreign epitopes while maintaining polymerase
function. In addition, Bergeron et al. (2010) introduced the
V5-epitope at the N terminus of the Crimean–Congo
hemorrhagic fever virus L protein and showed that the
modified L protein retained polymerase activity in a
minireplicon assay.

Insertion of the V5 epitope at aa 1750 (L1V5), 1794 (L2V5)
and 1852 (L3V5) within the RVFV L protein did not
appear to disrupt the expression or stability of the protein,
but only L3V5 retained polymerase activity (Fig. 2). The
loss of polymerase activity by L1V5 and L2V5 suggests
disruption of a functional domain, or that insertion of the
V5 epitope into the C terminus could have affected the
ability of the protein to interact both inter- and intra-
molecularly with the N or C termini of (other) L proteins,
as described by Zamoto-Niikura et al. (2009); indeed, these
authors showed that oligomerization of L was required for
efficient polymerase activity.

The L3V5 polymerase showed 24 % of the activity of wt in
the minigenome assay. To try to improve this activity, the
viral NSs protein was co-expressed in the system, as
Ikegami et al. (2005) had reported that the NSs protein of
the virulent RVFV strain ZH501 enhanced reporter-gene
expression in an analogous minigenome assay. However,
results from our experiment demonstrated that the
transfection of MP12 NSs protein actually dramatically
inhibited the activity of both wt and mutant polymerases,
with 1 mg of co-transfected NSs-expressing plasmid
reducing reporter-gene activity by .90 % (Fig. 3). These
results are in accord with previous reports that the NSs
proteins of Bunyamwera and La Crosse orthobunyaviruses
also inhibit viral RNA synthesis in a minigenome system
(Blakqori et al., 2003; Weber et al., 2001). The difference
between our results and those of Ikegami and colleagues
may reflect differences in the experimental details, such as
types of cells used for the assay or the way in which T7
polymerase is expressed; this requires further investigation.

We were able to rescue a recombinant virus expressing V5
epitope-tagged L protein, based on the L3V5 construct.
Comparison of the growth kinetics of the tagged virus

revealed that its replication was modestly attenuated in the
mammalian and insect cell lines tested, and the virus
produced a smaller plaque phenotype than that of the
parental rMP12 virus (Fig. 4). We also produced a two-
segmented genome version of the L-tagged virus, based on
our recent creation of a virus, r2segMP12, which expresses
the viral glycoproteins from the NSs locus in the S segment.
This virus thus lacks the M segment but is genetically stable
(Brennan et al., 2011). r2segMP12 is attenuated compared
with its three-segmented genome parent and forms small
plaques; insertion of the V5 epitope into the L protein of
r2segMP12 further attenuated it, and the virus produced
pinpoint sized plaques. Additional characterization of this
recombinant virus is ongoing.

By using immunofluorescence analysis, we showed that the
L protein had a punctate cytoplasmic distribution in
infected cells (Fig. 6). At 24 h p.i., large foci of co-localizing
N and L proteins were detected in the perinuclear region,
which we suggest represent late-stage RVFV replication
complexes, similar to those seen with other bunyaviruses
such as Bunyamwera virus (Fontana et al., 2008; Shi &
Elliott, 2009), Tula hantavirus (Kukkonen et al., 2004) and
Crimean–Congo hemorrhagic fever nairovirus (Bergeron
et al., 2010). The recombinant RVFV will allow further
detailed investigation of L protein synthesis, distribution
and interactions by using a variety of experimental
techniques. In addition, it will be of interest to determine
whether the epitope is immunogenic in an infected animal,
as this could lead to ways of tagging live-attenuated vaccine
strains of RVFV to differentiate vaccinated animals from
those that have been naturally infected.

METHODS

Cells. Vero E6 cells were grown in Dulbecco’s modified Eagle’s

medium supplemented with 10 % FCS. BSR-T7/5 cells (Buchholz

et al., 1999), which stably express T7 RNA polymerase, were provided

by K. K. Conzelmann (Max-von-Pettenkofer Institut, Munich,

Germany) and were grown in Glasgow minimal essential medium

(GMEM) supplemented with 10 % FCS and 1 mg G418 ml21. BHK-

21 cells were grown in GMEM supplemented with 10 % tryptose

phosphate broth (TPB) and 10 % newborn calf serum (NCS). All

mammalian cell lines were grown at 37 uC in a 5 % CO2 atmosphere

unless otherwise stated. The A. albopictus-derived cell line C6/36

(Igarashi, 1978) was maintained in Leibovitz’s L-15 medium

supplemented with 10 % FCS and 8 % TPB. These cells were

incubated at 28 uC in the absence of CO2.

Antibody production. The coding sequences for RVFV MP12 N or

NSs proteins were amplified from plasmid pTVT7-GS and cloned

into pDEST14 (Invitrogen) with an N-terminal hexahistidine (6-His)

tag sequence and a tobacco etch virus (TEV) protease site (for

removal of the 6-His tag) to generate plasmids p14RVFN and

p14RVFNSs respectively. Proteins were expressed in Escherichia coli

BL-21 CodonPlus cells (Stratagene) following induction with IPTG

(1 mM final concentration) at 20 uC for 16 h with shaking.

Recombinant proteins were purified by binding to Ni–NTA resin,

eluted with 200 mM imidazole, 0.3 M NaCl, 0.1 M Tris/HCl pH 8.0,

and concentrated into PBS (pH 7.3) containing 5 % glycerol by using

Vivaspin columns (10 000 MW Cut-off; Sartorius). Purified proteins

V5-epitope tagged RVFV
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were used to generate polyclonal rabbit antisera commercially

(Eurogentec).

Plasmids. Plasmids for the recovery of RVFV have been described

previously (Billecocq et al., 2008) and were provided by A. Billecocq

and M. Bouloy, Pasteur Institute, Paris, France. pTM1-L, pTM1-N

and pTM1-NSsMP12 contain the RVFV strain MP12 L, N and NSs

ORFs under the control of the T7 promoter and encephalomyocard-

itis virus internal ribosome entry site sequence. pTVT7-GS, pTVT7-

GM and pTVT7-GL contain full-length cDNAs to the RVFV strain

MP12 antigenome segments flanked by T7 promoter and hepatitis

delta ribozyme sequences. pTVT7-GS was modified to replace the NSs

coding sequence with a sequence for three restriction enzyme sites,

PmlI, KpnI and SpeI. For this, an outward PCR product was generated

comprising nt 819 of the NSs coding sequence to nt 18 of the virus 39

UTR, thereby excising the NSs coding sequence. The PCR product

incorporated KpnI and SpeI sites at its 39 end and KpnI and PmlI sites

at its 59 end. It was digested with KpnI and self-ligated to create

plasmid pTVT7-GSdelNSs-KpnI. The coding sequence for Renilla

luciferase was amplified by PCR from phRL-CMV (Promega) to

contain SpeI and PmlI restriction enzyme sites, and directionally

cloned into appropriately digested pTVT7-GSdelNSs:KpnI to generate

pTVT7-GSdelNSs:Ren. pTM1-FF-Luc expresses Photinus (firefly)

luciferase and was used as a transfection control (Weber et al., 2002).

The coding sequence for the V5 epitope (GKPIPNPLLGLDST;

Southern et al., 1991) was inserted into various sites within the

MP12 L protein-encoding region in both pTVT7-GL and pTM1-L, as

shown in Fig. 1, by using a PCR mutagenesis approach (Shi & Elliott,

2009). Six V5-tagged MP12 L protein mutants were constructed, three

originating from pTVT7-GL (designated pTVT7-GL1V5 to pTVT7-

GL3V5) and three based on pTM1-L (pTM1-L1V5 to pTM1-L3V5).

All constructs were verified by nucleotide sequencing to ensure that

no other mutations had occurred during the cloning process. Details

of molecular cloning, primers and PCRs are available upon request.

RVFV reporter segment assay. Briefly, BSR-T7/5 cells were

transfected with pTM1-N (0.5 mg) and pTM1-L (0.5 mg), or one of

the mutant L protein cDNAs cloned into the pTM1 vector (0.5 mg),

together with the reporter plasmid, pTVT7-GSdelNSs:Ren (1.0 mg)

and pTM1-FF-Luc (0.05 mg) as a transfection control. At 24 h post-

transfection, Renilla and firefly luciferase activities were measured by

using a Dual-Luciferase Assay kit (Promega) according to the

manufacturer’s protocol.

Generation of recombinant viruses from cDNA. Recombinant

RVFV was generated by transfecting 76105 BSR-T7/5 cells with

expression plasmids pTM1-L (0.5 mg) and pTM1-N (0.5 mg) to

deliver the N and L proteins, together with 1 mg of each pTVT7-based

plasmid expressing the viral genomic segments as appropriate, using

3 ml Lipofectamine 2000 (Invitrogen) (mg DNA)21. After 5–7 days,

when extensive cytopathic effects were observed, the virus-containing

supernatants were collected and stored at 280 uC. Stocks of

recombinant viruses were grown in BHK-21 cells at 33 uC by

infecting them at an m.o.i. of 0.01 and harvesting the culture medium

at 72 h p.i. All experiments with infectious virus were conducted

under containment level 3 conditions.

Virus growth curves. BHK-21, Vero E6 or A. albopictus C6/36 cells

were infected with each virus at an m.o.i. of 1. One hour p.i., the

inoculum was removed and the cells washed with PBS to remove

unattached viruses. At the indicated time points, the supernatant fluid

was collected and virus titrated by plaque assay on BHK-21 cells.

Virus titration by plaque assay or immunostaining. BHK-21 cells

were infected with serial dilutions of virus and incubated under an

overlay consisting of GMEM supplemented with 2 % NCS and 0.6 %

Avicel (FMC BioPolymer) (Matrosovich et al., 2006) at 37 uC for

4 days. Cell monolayers were fixed with 4 % paraformaldehyde and

plaques were visualized by Giemsa staining. For immunostaining,

after fixation the cell monolayer was permeabilized with 0.1 % Triton
X-100 in PBS, saturated in blocking buffer (PBS containing 2 % FCS)

before staining with anti-N antibodies, followed by HRP-conjugated

secondary antibody. To visualize the foci, TrueBlue peroxidase

substrate (InSight Biotechnology) was applied to the monolayer until

foci were detected.

Western blotting. Mammalian and insect cells were infected as

described above. At various time points after infection cell lysates
were prepared, and equal amounts of cell extract were separated on a

4–12 % SDS-PAGE gel (Invitrogen). Proteins were transferred to a

Hybond-C Extra membrane (Amersham), and the membrane was

blocked in saturation buffer for 1 h (PBS containing 5 % non-fat

dried milk powder and 0.1 % Tween 20). The membrane was reacted

with rabbit anti-N and anti-NSs polyclonal antibodies, and mouse

anti-V5 (Serotec) and anti-tubulin (Sigma) mAbs. This was followed

by incubation with either HRP-conjugated anti-rabbit (Cell Signaling

Technology) or anti-mouse (Sigma) antibodies. Visualization of
detected proteins was achieved by using SuperSignal WestPico

chemiluminescent substrate (Pierce).

Indirect immunofluorescent staining. BSR-T7/5 cells were grown

on glass coverslips (13 mm diameter), infected with recombinant

viruses and fixed at 24 h p.i. with 4 % paraformaldehyde in PBS. After

permeabilization with 0.1 % Triton X-100 in PBS, the cells were

reacted with specific primary antibodies, followed by secondary
antibody conjugates. Localization of the fluorescently labelled

proteins was examined at various times p.i. by using a Zeiss LSM

confocal microscope.
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Näslund, J., Lagerqvist, N., Habjan, M., Lundkvist, A., Evander, M.,
Ahlm, C., Weber, F. & Bucht, G. (2009). Vaccination with virus-like
particles protects mice from lethal infection of Rift Valley fever virus.
Virology 385, 409–415.

Ortı́n, J. & Parra, F. (2006). Structure and function of RNA
replication. Annu Rev Microbiol 60, 305–326.

Patterson, J. L., Holloway, B. & Kolakofsky, D. (1984). La Crosse
virions contain a primer-stimulated RNA polymerase and a
methylated cap-dependent endonuclease. J Virol 52, 215–222.

Plotch, S. J., Bouloy, M., Ulmanen, I. & Krug, R. M. (1981). A unique
cap(m7GpppXm)-dependent influenza virion endonuclease cleaves
capped RNAs to generate the primers that initiate viral RNA
transcription. Cell 23, 847–858.

Poch, O., Sauvaget, I., Delarue, M. & Tordo, N. (1989). Identification
of four conserved motifs among the RNA-dependent polymerase
encoding elements. EMBO J 8, 3867–3874.

Reguera, J., Weber, F. & Cusack, S. (2010). Bunyaviridae RNA
polymerases (L-protein) have an N-terminal, influenza-like endo-
nuclease domain, essential for viral cap-dependent transcription.
PLoS Pathog 6, e1001101.

Salanueva, I. J., Novoa, R. R., Cabezas, P., Lopez-Iglesias, C.,
Carrascosa, J. L., Elliott, R. M. & Risco, C. (2003). Polymorphism and
structural maturation of bunyamwera virus in Golgi and post-Golgi
compartments. J Virol 77, 1368–1381.

Shi, X. & Elliott, R. M. (2009). Generation and analysis of recombinant
Bunyamwera orthobunyaviruses expressing V5 epitope-tagged L
proteins. J Gen Virol 90, 297–306.

Smithburn, K. C. (1949). Rift Valley fever: the neurotropic adaptation
of the virus and the experimental use of this modified virus as a
vaccine. Br J Exp Pathol 30, 1–16.

Southern, J. A., Young, D. F., Heaney, F., Baumgärtner, W. K. &
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