View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by St Andrews Research Repository

Instances and Connectors: Issues for a Second
Generation Process Language

B.C. Warboys!, D. Balasubramaniam?, R.M. Greenwood!, G.N.C. Kirby?,
K. Mayes', R. Morrison?, and D. Munro?

! Informatics Process Group (IPG) Department of Computer Science
University of Manchester, Oxford Road, Manchester, M13 9PL, UK
{brian,markg,ken}@cs.man.ac.uk
2 School of Mathematical and Computational Sciences
University of St Andrews, North Haugh, St Andrews, Fife, KY16 9SS, UK

{dharini,graham,ron,dave}@dcs.st-and.ac.uk

Abstract. Over the past decade a variety of process languages have
been defined, used and evaluated. It is now possible to consider sec-
ond generation languages based on this experience [1, 3,4]. Rather than
develop a second generation wish list this position paper explores two
issues: instances and connectors. Instances relate to the relationship be-
tween a process model as a description and the, possibly multiple, enact-
ing instances which are created from it. Connectors refers to the issue of
concurrency control and achieving a higher level of abstraction in how
parts of a model interact. We believe that these issues are key to de-
veloping systems which can effectively support business processes, and
that they have not received sufficient attention within the process mod-
elling community. Through exploring these issues we also illustrate our
approach to designing a second generation process language.’

1 Background

Over the past 8 years the Informatics Process Group at Manchester has devel-
oped a number of enactable process models using ICL’s ProcessWise Integrator
(PWI) [2] as our support technology, more recently linked with a Web interface
in our ProcessWeb system [16, 6].

In parallel the research group has undertaken considerable work on develop-
ing a process modelling method which places process models at a pivotal postion
between the business process and the IT systems providing appropriate support.
Key to this is a clear mapping between models which can be discussed and veri-
fied with people in the business, and models which are used by a support system
8]

In our industrial case studies, the feedback has been that both descriptive
models which allow people to discuss a process, and enactable models which
support the people as they are doing the process, are valuable. However, the

! This work is supported by UK EPSRC grants GR/1.34433 and GR/L32699


https://core.ac.uk/display/9821385?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 B.C. Warboys et al.

cost of developing an enactable model is seen as prohibitive, chiefly because of
the “low level” coding skills involved. Better process languages are needed for
process support systems to realise their potential.

2 Model Instances

One of the reasons for modelling and supporting a process is often the number of
instances of that process with which the business deals. For example an insurance
company may have one process instance for each insurance application being
considered, one process instance for every insurance policy currently in force.
However, the choice of a process instance is not trivial: alternatives include one
process which deals with batches of applications, or one process per insured
customer which deals with all their policies.

Process model instances are not completely independent. The normal sit-
uation is that people will be involved in more than one process and need an
interface which allows them to switch between them. As processes often last for
some time, people frequently wish to switch between understanding what the
process is and actively playing their part within it. For them the relationship
between a process instance and its description is important for the whole dura-
tion of the process. This “reflexive practice”, thinking about the process while
doing it, naturally leads to a desire to evolve the process as the details of the
real world situation become clear.

It is also common to want a “higher-level” process which can receive feed-
back from others. Continuing the insurance company example there might be
a requirement for a process which receives data from individual applications to
track the company’s overall exposure in specific sectors. Finally, process model
instances are not independent because a business needs to learn from the experi-
ence of the past and present instances to improve the performance of future ones.
It is therefore natural to see the process description, used to create instances, as
itself being the output of a “meta-process”.

3 Connectors

In modelling business processes, our emphasis is on the collaboration and coor-
dination of people and the IT systems which they use. (This involves communi-
cation between users, between users and tools, and between tools.) In general,
first generation process languages offer good abstractions for activity but not for
communication. Pratten [7] has termed this the “wire syndrome”, based on the
observation that hardware designers also have good abstractions for functional
blocks but not for the wires which connect them. A typical effect of this is a
model which makes business executives worry about how their internal postal
system works rather helping them to focus on the major issues.

The choice of appropriate connectors is key to achieving abstract models of
interaction which enable people to effectively design and reason about processes.
One of the major discontinuities between our user-centred models and enactable



Instances and Connectors 3

ones is that an abstract interaction such as “insurance expert and manager agree
the price” must be implemented in terms of a complex set of possible message
sequences. Understanding how these implement the required collaborative pro-
tocol between the parties involved can be very tricky. This makes the model hard
to understand as it obscures the core process. It also makes the model hard to
change, and hard to break into potentially reusable parts.

The term “connectors” comes from work in software architecture [11]. It is
now widely recognised that an effective architecture needs to deal as much with
connectors as the components being connected. This enables the coordination
and interaction aspects of the architecture to be separated from the compu-
tational ones [10]. This separation of computation and coordination is also a
promising way of achieving reuse and composability within process models. Al-
ternative approaches to providing explicit support for collaboration, such as
COO [5], concentrate on activities: do activities need to be serialized, what is
the appropriate visibility for intermediate results.

4 Old and New Process Languages

The ProcessWise Integrator PML (PWI PML) was designed during the IPSE 2.5
[15] project and has changed little since 1989. In PWI PML a process is repre-
sented as set of role instances connected by interactions. Each role instance is
a separate thread of control with its own local data, and set of actions (activ-
ities). The role instances communicate through interactions, which are typed,
asynchronous, buffered channels. Interactions are also used for user and tool
communication through specialised “user agent” and “tool agent” roles.

There is a pre-defined action “StartRole” which creates a role instance from
its class name and a set of class definitions. A role instance can be provided
with some initialisation parameters, including references to interactions which
enables it to communicate with other roles. It is quite common for a PWI PML
program to have a main or setup role whose function is to create the appropriate
network of role instances and interactions.

A set of class definitions exist as a type within the language and this is used
to provide an incremental compilation facility, where PWI PML code as a string
is compiled in the context of an existing set of class definitions. It is possible to
extract a class definition as a string but this is a rudimentary interface added
for diagnostic purposes.

PWI PML interactions provide a basic facility for sending typed messages
between roles. Since references to interactions are included in the types which can
be communicated, it is possible to develop systems where there is a dynamic set
of connections between role instances. Hovever, if the interactions are supporting
a higher-level communication between role instances, such as a long transaction,
then the details of this are embedded in the roles and difficult to separate from
the other computation involved. Our experience is that it is not unusual for
almost half the PWI PML code for a model to be dealing with general concurrecy
issues rather than the specifics of the process involved.



4 B.C. Warboys et al.

Recently Sutton and Osterweil have been working on a second generation
process language [14], based on their extensive experience using APPL/A. They
identify a number of issues which they believe are key to second generation pro-
cess languages: semantic richness, ease of use, appropriate abstractions, process
composability, visualisation, and multiple paradigms. In their language JIL, the
process step is proposed as a key abstaction. One of the key features of steps is
that they can have a factored description enabling different modelling styles to
be freely combined.

JIL is a language designed with software process modelling in mind, in con-
trast to our emphasis on business processes in general. The issue of relating a
process to its instances is not given any particular emphasis, although there are
some suggestions about process visualisation. Within the step abstraction, there
is a facility for concurrent sub-steps, and [13] details various means for speci-
fying parallel control flow. However the emphasis is on detecting and avoiding
unwanted interference between parallel activities, rather than supporting inter-
action between them.

5 A Promising Approach to Model Instances

The importance of model descriptions and instances tends to suggest a reflex-
ive language. One in which a process instance (process as code) can refer to
its own description (process as data), and where additional description (data)
can be incorporated in an existing instance (code). In addition, we may want
library facilities of both types: model descriptions which can be incorporated
in other models as they are instantiated, instances which provide part of the
appropriate environment for a new process. The language must also enable us
to descripe meta-processes which themselves instantiate, monitor and change
process instances, and meta processes which update the libraries.

Hyper-programming [9] is a programming style associated with persistent
programming systems. In persistent programming systems both source and ob-
ject code can exist as persistent objects. In a normal program, when the pro-
grammer wishes to refer to some existing object, which could be code or data,
a textual description which describes how to locate the required object is used.
In a persistent programming system the object is often already available at the
time when the program is composed. In these situations hyper-programming al-
lows a persistent link to the object rather than a textual description to be used.
By analogy with hyper-text, this style of programming containing both text and
links to objects is called a hyper-program.

In [9] hyper-programming is applied in the context of a software development
environment, to link versioned source and object code together. As the links are
persistent, real rather than intended configurations can be discovered; developers
can browse the store and understand the current situation. We propose to use
the same approach to link process descriptions and instances and so support
“reflexive practice”.



Instances and Connectors 5

A natural progression is that some processes will not be completely described
ab-initio, part of the process will initially exist as a description which is trans-
formed and instantiated as the process progresses. This could be particularly
significant for processes, including meta-processes, which last for a long time
and cannot be predicted with any degree of certainty.

6 Getting to grips with connectors

With connectors we want to abstract above the level of message passing. In [7]
the key concept is one of shared behaviour. This indicates that two or more
concurrent elements interact, that is they depend on each other in some way,
without attempting to give the details of how this is achieved. One way of making
this concrete is to represent such shared behaviour as shared data along with
an agreed protocol for accessing it. This includes basic message passing as a
degenerate case; one party writes to the shared message and then the other
reads it.

Communicating Actions Control System (CACS) [12] is an abstract opera-
tional model for specifying flexible concurrency control schemes. Its goal is to
allow computations to control the coherence of their operations on shared data
in an understandable and flexible manner. In a CACS environment computa-
tions which share data are annotated with markers which specify how the data
sharing is to be controlled. The represents the starting point for our approach
to the support for concurrency and collaboration in a second generation pro-
cess language. The hope is that this will lead to significant reuse of concurrency
schemes across different models. The lack of this type of reuse, in practice, was
one disappointing aspect of our experience with existing PMLs.

7 Conclusions

Our view is that businesses should not view an enactable process model simply
as a way of achieving process conformance. Process models, including enactable
ones, should be valued assets which help a business to learn about its current
situation and give careful consideration to its future improvement.

Our approach is to have a small core language augmented with packages.
A hyper-programming package which provides support for the linking of model
descriptions and instances is one key package. A cooperation control package,
based on CACS, is another. This small core plus packages approach is designed
for flexibility, and we expect to have support in the system architecture for
incorporating different packages. This approach reflects how much less we know
about what will make a successful process language than we did 10 years ago.

References

1. V. Ambriola, R. Conradi, and A. Fuggetta.: Assessing Process-Centered Soft-
ware Engineering Environments. ACM Transactions on Software Engineering and
Methodology, 6(3):283-328, July (1997).



6

10.

11.

12.

13.

14.

15.

16.

B.C. Warboys et al.

R.F. Bruynooghe, R.M. Greenwood, I. Robertson, J. Sa, R.A. Snowdon, and B.C.
Warboys.: PADM: Towards a total process modelling system. In A. Finklestein,
J. Kramer, and B. Nuseibeh, editors, Software Process Modelling and Technology,
pages 293-334. Research Studies Press, (1994).

B. Curtis, M.I. Kellner, and J. Over.: Process modelling. Communications of the
ACM, 35(9):75-90, September (1992).

. A. Finklestein, J. Kramer, and B. Nuseibeh, editors.: Software Process Modelling

and Technology. Research Studies Press, (1994).

C. Godart and D. Dietrich.: Stepwise specification of interactive processes in COO.
In Wilhelm Schifer, editor, Software Process Technology - Proceedings of the 4%
European Workshop, pages 220-239, Noordwijkerhout, Netherlands, April (1995).
Springer-Verlag. Lecture Notes in Computer Science 913.

R.M. Greenwood and B.C. Warboys.: ProcessWeb - Process Support for the World
Wide Web. In Carlo Montangero, editor, Software Process Technology - Proceed-
ings of the 5" European Workshop, pages 82-85, Nancy, France, October (1996).
Springer-Verlag. Lecture Notes in Computer Science 1149.

P. Henderson and G.D. Pratten.. POSD - A notation for presenting complex
systems of processes. In Proceedings of the 1st IEEE International Confer-
ence on Engineering Complez Computer Systems, (1995). URL http://www.ecs.-
soton.ac.uk/ ph/Papers.htm.

P. Kawalek.: A Method for Designing the Software Support of Coordination. PhD
thesis, University of Manchester, December (1996).

R. Morrison, R.C.H. Connor, Q.I. Cutts, V.S. Dunstan, and G.N.C. Kirby.: Ex-
ploiting Persistent Linkage in Software Engineering Environment. The Computer
Journal, 38:1-16, (1995).

D.E. Perry.: Directions in process Technology - an architectural perspective. Inter-
national Workshop on Research Directions in Process Technology, Nancy, France,
(1997).

M. Shaw and D. Garlan.: Software Architecture: perspectives on an emerging dis-
cipline. Prentice-Hall, (1996).

D. Stemple and R. Morrison.: Specifying Flexible Concurrency Control Schemes:
An Abstract Operational Approach. In Proceedings of 15" Australian Computer
Science Conference, pages 873-891, Hobart, Tasmania, (1992).

S.M. Sutton Jr. and L.J. Osterweil.: Programming Parallel Workflows in JIL.
University of Massachusetts, April (1997).

S.M. Sutton Jr. and L.J. Osterweil.: The Design of a Next-Generation Process
Language. Technical Report CMPSCI Technical Report 96-30, University of Mas-
sachusetts, (1997). in Proceeding of the Fifth ACM SIGSOFT Symposium on the
Foundations of Software Engineering, Zurich (LNCS 1301).

B.C. Warboys.: The IPSE 2.5 project: Process modelling as the basis for a support
environment. In Proceedings of the First International Conference on Software
Development, Environments and Factories, Berlin, (1989). Pitman Publishing.

B. Yeomans.: Enhancing the World Wide Web. student project report, (1996).



	Title
	Abstract
	1 Background
	2 Model Instances
	3 Connectors
	4 Old and New Process Languages
	5 A Promising Approach to Model Instances
	6 Getting to grips with connectors
	7 Conclusions
	References

