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Abstract: Phospholipase A1 (PLA1) is an enzyme that hydrolyzes phospholipids and 

produces 2-acyl-lysophospholipids and fatty acids. This lipolytic activity is conserved in a 

wide range of organisms but is carried out by a diverse set of PLA1 enzymes. Where their 

function is known, PLA1s have been shown to act as digestive enzymes, possess central 

roles in membrane maintenance and remodeling, or regulate important cellular mechanisms 

by the production of various lysophospholipid mediators, such as lysophosphatidylserine 

and lysophosphatidic acid, which in turn have multiple biological functions. 
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1. Introduction 

 

Phospholipases form a diverse class of enzymes optimized to hydrolyze phospholipid (PL) 

substrates at specific ester bonds. Phospholipases vary considerably in structure and function, and as 

such they are assembled as a group solely on the basis that they are lipolytic enzymes involved  

in PL metabolism. Two general sets of phospholipases exist, the acyl hydrolases and the 

phosphodiesterases; and the enzymes within each set are classified according to the cleavage of the 

ester bond for which they are specific (Figure 1). Phospholipase A1 (PLA1), phospholipase A2 (PLA2), 
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phospholipase B (PLB), and lysophospholipase A1/2 (LysoPLA1/2) constitute the acyl hydrolases, 

whereas the phosphodiesterases are represented by phospholipase C (PLC) and phospholipase D (PLD). 

Phospholipases exist in almost every type of cell analyzed for their presence and most cells contain 

a multitude of them. For a given PL ester bond, there can be a variety of subtypes of a phospholipase 

that are specific for it that can either exist as secreted, membrane associated, or in cytoplasmic form. 

They may also require cofactors for activity, depending on the isoforms. The functions of 

phospholipases, where known, are as varied as their cellular and tissue localization and properties. 

Nonetheless, three general functions can be ascribed to the physiologic relevance of phospholipases: 

(1) they can serve as digestive enzymes, e.g., PLA are ubiquitous in snake and vespid venoms; (2) they 

can play an important role in membrane maintenance and remodeling, i.e., fatty acid (FA) chains  

of PLs can be cleaved and exchanged by an acyl hydrolase and an acyltransferase, respectively;  

and (3) they can regulate important cellular mechanisms, e.g., creation of bioactive lipid molecules 

used in signal transduction. These three areas of function can be a rather simplistic view accepting 

that, for example, maintaining acyl composition of membranous PLs can be considered quite an 

important regulatory function for the cell, even though the reason that cellular membranes require a 

heterogeneous mixture of PL fatty acids is still not fully understood [1]. These three themes will be 

explored in more detail in subsequent sections. 

Among the different sorts of phospholipases, the most studied and well understood are PLA2, PLC, 

and PLD, all of which play proven important roles in the creation of bioactive lipid molecules. 

Although this review will focus on PLA1, a brief overview of the other phospholipases and their 

biological significance will also be given to gain perspective. 

Figure 1. Ester Bond Specificity of the Phospholipases. PLA1, PLA2, and PLC catalyze the 

hydrolysis of the ester bond emanating from the sn-1(1), sn-2 (2), and sn-3 (3) carbon, 

respectively. PLD hydrolyzes the other phosphodiester bond. PLB cleaves both the sn-1 

and sn-2 ester bonds. * = LysoPLA can either be specific for the sn-1 or sn-2 bond, or both, 

when one or the other acyl chain is missing. R1 and R2, (CH2)nCH3; R3, various headgroups. 

 

1.1. Phospholipase A1  

 

PLA1 (EC 3.1.1.32) catalyzes the hydrolysis of FAs exclusively at the sn-1 position of PLs. A free 

fatty acid (FFA) and a lysophospholipid (lysoPL) are the products of a PLA1 reaction (Figure 2). This 
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class of phospholipase is not well understood, and no crystal structures exist for any true PLA1 [2,3]. 

The assignment of a function for any PLA1 from any organism has yet to be firmly established. 

Historically, the biological role of this acyl hydrolase was often defined by its anticipated participation 

in the Lands Cycle, which is a deacylation-reacylation cycle that PLs are suspected to undergo in order 

to remodel their acyl chains to preserve a homeostatic molecular species composition of PLs in 

membrane bi-layers [4]. However, only one PLA1 has ever been directly implicated in a Lands  

Cycle [5], though this cycle has repeatedly been shown to occur at the sn-2 position via the action of 

PLA2, and studies continue to observe the phenomenon [6–10]. The assignment of a similar function 

for PLA1, though potentially valid, cannot be decuded based on experimental data. Understanding of 

these enzymes is limited, though some progress has been made over the past 20 years [11]. 

What is intriguing is the observation that despite a theoretical role in the Lands Cycle, none of the 

PLA1 cloned and characterized have been linked to membrane turnover and remodeling roles. On the 

contrary, there is some evidence to suggest that some PLA1 enzymes are virulence factors [12] or act to 

generate bioactive lysoPL molecules. For example, lysoPL mediators such as lysophosphatidic  

acid (lysoPA) [13] are second messenger signaling components in pathways that vary in complexity 

and evolutionary conservation, and they have been implicated in numerous processes such as 

proliferation, protein transport, differentiation, invasion, and morphogenesis [14]. By activating 

specific G-protein coupled lysoPL receptors, they are now viewed as key factors in cell-to-cell 

communication [15]. The synthesis and regulation of the formation of lysoPLs are not fully 

understood, a reason why PLA1 is an important enzyme to study as it could be involved in their formation. 

The FA product from a PLA1 reaction also has bioactive potential. This has been shown in plants, 

where a PLA1 regulates jasmonic acid biosynthesis. Also, it has been postulated for decades that sn-2 

arachidonic acid (AA) cleavage from PLs may sometimes be mediated by concerted sequential 

PLA1/LysoPLA2 activities [16–24]. No cloned PLA1 has been implicated in this alternative route, and 

therefore it remains circumstantial with regards to the in vitro studies, which provide the most indirect 

evidence [16,22,23]. 

 

1.2. The Other Acyl Hydrolases: Phospholipase A2, B, and Lysophospholipase 

 

PLA2 (EC 3.1.1.4) mediates acyl ester hydrolysis at the sn-2 position of PLs. PLA2 are quite well 

conserved across taxa, and they consist of a broad range of enzymes that segregate into one of eleven 

groups within the superfamily [25]. Numerous PLA2 can contribute to lysoPL signaling events [26] 

and can even down-regulate the bioactive lysoPL platelet activating factor (PAF) with the sn-2  

acetate-specific cleavage of PAF by PAF acetyl hydrolase (PAF-AH) [27]. However, PLA2 is most 

noted for its role in initiating the AA cascade (Figure 2) [28]. The sn-2 reacylation step of the Lands 

Cycle appears to be quite specific for AA in a number of cells [29]. Once liberated by a cytoplasmic 

PLA2, AA is converted into over 150 known eicosanoids, including prostaglandins, leukotrienes, and 

thromboxanes, all powerful local hormones that act as mediators in many important processes such as 

inflammation in the higher eukaryotes [30]. Numerous crystal structures exist in this class of enzymes 

whose active mechanism either utilizes a catalytic histidine in a so-called dyad or a catalytic serine in 

either a dyad or a triad [25,27,31]. 
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Figure 2. Regulatory Processes Linked to PL Metabolism. The phospholipases known to 

produce bioactive lipid molecules are shown in blue, and their second messenger 

metabolites, or their signal-transduced responses, are boxed. Other enzymes utilized in PL 

and FA metabolism are in red. DAG, diacylglycerol; IP3, inositol(1,4,5)phosphate; PKC, 

protein kinase C; AA, arachidonic acid; LO, lipoxygenase; COX 1,2, cyclooxygenase 1 

and 2; PG, prostaglandin; FFA, free fatty acid; CoA, coenzyme A; PLC, phospholipase C; 

cPLA2, cytoplasmic phospholipase A2, PLD, phospholipase D; PA-PLA1, phosphatidic 

acid phospholipase A1; PLA1, phospholipase A1, LysoPLA1, lysophospholipase A;  

ACS, acyl-CoA synthetase; PA, glycerophosphatidic acid; PC, phosphatidylcholine; PI, 

phosphatidylinositol. * = theoretical pathway based on indirect in vitro evidence. 

 

 

PLB is able to hydrolyze both the sn-1 and sn-2 FAs of PLs (Figure 1). Glycosylation is a  

common feature of PLBs, such as the one from Penicillium notatum, which contains numerous  

asparagines-linked carbohydrates and possess phospholipase and subsequent lysophospholipase 

activity [32]. The distinction between PLB and LysoPLA can, rightly so, often be muddled since most 

PLBs possess lysophospholipase activity [33]. On the other hand, some PLB enzymes have been 

erroneously annotated. For example, a case in which a purified hamster heart cytosol enzyme clearly 
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displayed both sn-1 and sn-2 hydrolysis has been referred to as a PLA [34]. Also, the first so-called 

PLA1 to be purified, cloned, and crystallized was the outer-membrane phospholipase A (OMPLA) 

from E. coli and other bacteria [35–37], but it has been known for a long time that it can cleave at both 

positions sn-1 and sn-2 of diacyl- or lysoPLs and thus should be considered a phospholipase B [2,24]. 

LysoPLA (EC 3.1.1.5) detoxifies detergent-like lysoPL intermediates in PL metabolism by 

removing the remaining acyl chain from the lysoPL (Figure 1). This class of enzymes is also not well 

characterized. LysoPLA could also be important in the regulation of the amount of bioactive lysoPLs 

used in receptor-mediated or other signaling mechanisms [38]. Some LysoPLA can function equally 

well as either a LysoPLA1 or a LysoPLA2 [17]. Other LysoPLA can deacylate specific species of 

lysoPL, like those with AA esterfied to the sn-2 position, for example [18,39]. Such in vitro specificity 

has helped to fuel the theory that the AA cascade could be initiated by the combined actions of a PLA1 

and a LysoPLA2. 

 

1.3. The Phosphodiesterases: Phospholipase C and D 

 

PLC or PI-PLC (EC 3.1.4.11) is mostly known for catalyzing the cleavage of the phosphorylated 

membrane lipid PI to produce, for example, the intracellular second messengers sn-1,2-diacylglycerol [23] 

and inositol (1,4,5)-trisphosphate (Figure 2). The phosphoinositides are a critically important class of 

PLs which have been extensively researched, along with the mechanisms by which they are 

metabolized by PLC [40]. PLC-mediated phosphoinositide production is a key regulating component 

of ion channels and transporters,
 
and controllers of vesicular trafficking and the transport of

 
lipids 

between intracellular membranes [41]. Other types of PLC include a secreted form in bacteria that 

prefers PC (E.C. 3.1.4.3), and a GPI-PLC form found in various organisms that specifically recognises 

non-inositol-acylated glycosylphosphatidylinositol anchors. 

PLD (EC 3.1.4.4) hydrolyzes the sn-3 phosphodiester bond of mostly PC to generate a choline 

molecule and PA. PLD has also been studied in detail due to its link with the production of PA, an 

intracellular lipid messenger implicated in almost every conceivable aspect of intracellular membrane 

transport [42]. PLD is also a potential regulator of lyso-PA formation, whose biosynthetic formation is 

unclear, but could involve both PLD and PLA1 [43]. The mode of action and structural characteristics 

of the various isoforms of PLD are well characterized [42,44]. 

 

2. Classification of Phospholipase A1 

 

Over one hundred years ago accumulation of FFAs was observed upon incubation of pancreatic 

juice with phosphatidylcholine (PC), and the existence of enzymes responsible for the release of these 

acids was accordingly proposed. Snake venoms were also found to possess PL-hydrolyzing enzymes 

when in 1903 cobra venom was found to alter PC into products, which could cause red blood cell 

hemolysis. These products were later determined to be a PC molecule that was missing a FA, and they 

were thus termed lysophosphatidylcholine (lyso-PC). Only in the early 1960’s however was the 

positional specificity of FA cleavage of snake venom determined to be the sn-2 position of the glycerol 

backbone of PLs [44]. Early on, therefore, the study of PLA activity focused on PLA2 activity, as it has 

remained to this day. Nevertheless, phospholipases of type A were linked to those enzymes cleaving 
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FAs from PLs, and the designation A1 and A2 was employed to signify the acyl hydrolysis from either 

the sn-1 or sn-2 position of the glycerol moiety, respectively [45]. It wasn’t long before intracellular 

PLA activities were beginning to be discovered in numerous organisms and tissues, thus opening the 

way for the possibility that these enzymes were more than just digestive catalysts. 

PLA1 specifically hydrolyzes sn-1 acyl esters from PLs producing FFAs and lysoPLs (Figure 2). 

However, many PLA1 enzymes exhibit some, usually much lower, LysoPLA activity and neutral 

lipase activity (i.e., hydrolyzing diacylglycerol or triacylglycerol), yet still preferring the sn-1 cleavage 

site. Enzymes having high PLA1 relative to LysoPLA and neutral lipase activity are thus considered 

true PLA1 enzymes, and they can only be designated as such by empirical determination after some 

level of purification or, more preferably, by cloning and characterization of the recombinant enzyme. 

The vast amount of results from early studies involving the detection of PLA activity from crude tissue 

or subcellular fractions were flawed due to the inability to precisely determine what enzyme activities 

are present and how to differentiate particular enzyme activities. Competing and/or downstream 

enzyme activities on lipid substrates can mask the activity of the enzyme being tested. 

PLA1 enzymes have not been formally classified into groups, as have the other major 

phospholipases. The major obstacle is the lack of available sequence due to only a relatively small 

proportion of PLA1 enzymes having been cloned thus far (Table 1). The only invariable feature of 

PLA1 seems to be a lipase consensus motif in the peptide sequence, which follows the amino acid 

residue pattern [LIV]-{KG}-[LIVFY]-[LIVMST]-G-[HYWV]-S-{YAG}-G-[GSTAC], inside of 

which resides a common GXSXG motif, containing the catalytic serine of the active site, as part of a 

catalytic triad. 

PLA1 has been considered as a descendent of neutral lipases, and several PLA1 sequences show 

substantial sequence similarity to the well characterized pancreatic, hepatic, and endothelial  

lipases [43,46,47]. Other PLA1 sequences show no similarity to lipase sequences beyond their lipase 

consensus pattern, nor do they show similarity to other PLA1 sequences. Furthermore, eukaryotic 

lipases possess two domains whereas prokaryotic lipases only contain one, in which there is little if 

any conservation in sequence (compare alignments in [48–51]. 
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Table 1. The Phospholipase A1 Family 
1
. 

Classification Organism  Name 
2
 Location Cellular 

Localization 

~ Size (kDa) Substrate 

Specificity 

Catalytic 

Properties 

Reference 

Eukarya          

Animali: Bos taurus □ PA-PLA1 Testis, Brain Cytosolic 98 PA SXSXG catalytic 

serine3 

[52,53] 

 Mus musculus □ p125 Ubiquitous Cytosolic 111 nd4 GXSXG motif [54] 

 Homo sapiens □ KIAA0725p Ubiquitous Cytosolic 81 PA, PE GXSXG catalytic 

serine3 

[55] 

 Homo sapiens ● mPA-PLA1α Various tissues Secreted 58 PA Catalytic triad5 [43,56] 

  ● mPA-PLA1β Reproductive tissues Mem-Ass 58 PA Catalytic triad5 [43,56] 

   PLRP2      [50] 

 Rattus 

norvegicus 

● PS-PLA1 Platelets+various  Secreted 55 PS, lysoPS Catalytic triad5 [46,48,57] 

 Dolichovespula 

maculate 

● Dol m I Venom sac Secreted 34 nd
4
 Catalytic triad

5
 [47] 

 Vespula spp. ● Ves v I Venom sac Secreted 34 nd4 Catalytic triad 5 [58–60] 

  ● Ves m I Venom sac Secreted 34 nd4 Catalytic triad 5 [58–60] 

 Caenorhabditis 

Elegans 

 IPLA-1  ER 87 PI Catalytic triad 5 [5] 

Plantae: Arabidopsis 

thaliana 

 DAD1 Anthers Chloroplast 45 PC6 GXSXG motif [61] 

   AtLCAT3 nd4 Microsomes 46 PC, PE, PA  SXSXG-catalytic 

triad3 

[62,63] 

Fungi: Aspergillus 

oryzae 

 AoPLA1 n/a4 Secreted 36 nd4 GXSXG motif [64] 

 Thermomyces 

lanuginosus 

  n/a4 nd4  PC  [65] 

Protozoa: Trypanosoma 

brucei 

 TbPLA1 n/a4 Cytosolic 34 PC GXSXG catalytic 

serine 3 

[49,66] 
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Table 1. Cont. 

Prokarya          

Bacteria: Serratia spp. ♦ PhlA n/a Secreted 34 nd4 GXSXG motif [67,68] 

  ♦ PlaA n/a Secreted 34 nd4 GXSXG motif [69] 

 Yersinia 

enterocolitica 

♦ YplA n/a Secreted 34 nd4 GXSXG motif [70] 

1 Only those PLA1 which have been cloned and reported in the literature have been included; 2 Homologues are represented with the same symbol. 

Abbreviations are: PA-PLA1,phosphatidic acid-preferring PLA1; mPA-PLA1, membrane-associated phosphatidic acid-selective PLA1; PS-PLA1; 

phosphatidylserine-specific PLA1; DAD1, defective in anther dehiscence 1; AtLCAT3, Arabidopsis thaliana lecithin:cholesterol acyltransferases; SGR2, 

shoot gravitropism 2; PhlA, Serratia liquefaciens PLA1; PlaA, Serratia spp. MK1 PLA1; YplA, Yersinia enterocolitica; 3 Empirically deduced; 4 nd = not 

determined, n/a = not applicable; 5 Deduced by similarity with its lipase homologues known to utilize a histidine, an aspartic Acid, and a GXSXG serine in a 

catalytic triad; 6. The only substrate tested. 
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3. Mammalian Phospholipase A1 

 

A large number of crude protein preparations from mammalian cell and tissue homogenates were 

enriched for PLA1 activity in the 1970’s and 1980’s, but many of these reports describe PLA1 activity 

of uncertain origin. A good example of this is the characterization of a ―phospholipase A1‖ from the 

plasma of rat liver that was found to hydrolyze triacylglycerols, diacylglycerols, and 

monoacylglycerols, in addition to PLs [71]. This ―phospholipase A1‖ was located on the surface of 

endothelial cells and was shown to play a role in high density lipoprotein metabolism, and two papers 

were published characterizing its ―phospholipase A1‖ activity. Interestingly, relatively recently a new 

member of the lipase family was cloned from endothelial cells and a recombinant form was shown to 

possess PLA1 activity [72]. Endothelial lipase most likely accounts for the majority of the PLA1 and 

lipase activities previously reported from enriched rat liver endothelial cell fractions. 

It us now generally accepted that mammals have six extracellular and three intracellular PLA1 

enzymes [50]. The extracellular PLA1s consist of phosphatidylserine (PS)-specific PLA1 (PS-PLA1), 

membrane-associated phosphatidic acid (PA)-selective PLA1s (mPA-PLA1α and mPA-PLA1β), these 

PLA1s may have physiological roles as they produce the lysophospholipids, lyso-PS and lyso-PA known 

to be lipid mediators with multiple biological functions. The other three extracellular enzymes are 

either involved in high-density-lipoprotein catabolism of triacylglycerol, hepatic lipase (HL) and 

endothelial lipase (EL), or digestion of dietary lipids, pancreatic lipase-related protein (PLRP)-2. These 

three enzymes belong to the lipase gene family showing triacylglycerol-hydrolyzing activity as well as 

PLA1 activity. The intracellular PLA1s, KIAA0725p and p125, are conserved in a wide range of 

organisms and have been implicated in vesicular transport. 

 

3.1. Bovine Brain PLA1  

 

One of the first phospholipases of the type A1 to be purified by column chromatography was from 

bovine brain [21]. The enzyme was isolated from the soluble fraction and eluted at a molecular mass 

of 365 kDa from a Sephacryl S-300HR column. Lipases are known for their interfacial activation 

properties, and the 365 kDa molecular weight obtained could reflect the enzyme’s molecular weight 

upon association with buffer detergent micelles, or it could represent the enzyme in tetramer form. 

Bovine brain PLA1 migrated as two bands of 112 kDa and 95 kDa by SDS-PAGE. The purified 

enzyme was shown to be resistant to metal chelators, PMSF, and DFP, but it was inactivated by ZnCl2 

and enhanced by Ca
2+

, Mg
2+

 and Sr
2+

. The enzyme exhibited broad substrate specificity in mixed 

micelles made with CHAPS, but the highest specific activity, 23.8 μmol/min/mg, was exhibited 

against PE(16:0/20:4), and LysoPLA1 activity was also observed. A subsequent study showed that PC 

and PI could also be catalyzed at a high rate by bovine brain PLA1 but only in the presence of other 

PLs like PS, PE, and PA [73]. This same group reported the first chromatographic purification of a 

LysoPLA2 that showed selectivity towards deacylating arachidonate from lyso-PC(−/20:4) [39]. In 

addition to its LysoPLA2 activity, this enzyme also showed PLA2 activity, but at a slower rate. Bovine 

brain LysoPLA2 was isolated from the soluble fraction and is an approximately 95 kDa polypeptide. 

Moreover, it became clear that prior sn-1 deacylation of PC(16:0/24:0) by bovine brain PLA1 greatly 

increased the rate of arachidonate deacylation by brain LysoPLA2. These results suggested that in 
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bovine brain AA might possibly be generated by sequential PLA1/LysoPLA2 action, yet this has never 

been shown in vivo. Even more, the physiological substrates for these two enzymes have never been 

determined so it is impossible to know whether arachidonoyl-substituted PC or PE are in fact 

hydrolyzed by these enzymes. Unfortunately, not knowing the in vivo physiological substrates is a 

recurring theme in PLA1 studies. It is also important to note that the genes encoding these two PLA 

activities have not been determined. 

 

3.2. Bovine Testis PA-PLA 

 

The phosphatidic acid-preferring phospholipase A1 (PA-PLA1) from bovine testis is well studied. 

The initial identification of PA-PLA1 was from Mono Q fractions of high-speed supernatants from 

bovine testis, and to a lesser extent in bovine brain [53]. The enzyme displayed preference for PA in 

TX-100 detergent mixed micelles, and it also displayed a relatively small amount of LysoPLA1 

activity. At the time of its identification, PA was just beginning to be recognized as a second 

messenger that could affect a number of cellular processes. The production and, particularly, the 

attenuation of signaling PA can be mediated by multiple phospholipases that regulate the timing, 

location, amount, and various molecular species of PA [74]. A 14,000-fold purification of native  

PA-PLA1 was achieved and evidence was provided that the enzyme was a homotetramer of  

110 kDa subunits [75]. When the enzyme was examined under the same conditions as the bovine brain 

PLA1 previously reported (i.e., 3–5 mM MgCl2) [21], the results showed that PE(16:0/24:0) became 

the preferred substrate. When MgCl2 was removed, PA-PLA1 preference for GPA was restored. It is 

thus possible that the bovine testis PA-PLA1 and the bovine brain PLA1 are one and the same enzyme. 

Further studies eventually led to the cloning of bovine testis PA-PLA1, which was encoded by an 

875 amino acid protein with a predicted molecular mass of 97.6 kDa [52]. A ~2000 fold increase in 

PA-PLA1 activity was observed when the protein was expressed in COS1 cells. A lipase-like 

consensus sequence was identified and the active site serine residue within a SXSXG motif was 

experimentally established as being essential for PA-PLA1 activity in the COS1 expression system. 

Apart from containing a lipase-like consensus motif, the PA-PLA1 sequence differed from other 

lipases and phospholipases. Homologues were identified in the genomes of Caenorhabditis elegans, 

yeast, Drosophila, and in human and mouse. A homologue involved in shoot gravitropism has also 

been identified in A. thaliana [63]. Splice variants were proposed to possibly exist after three cDNAs 

were found that contained a 123-base deletion, and it was put forth that if splice variants had different 

substrate specificities, then the seeming discrepancy between the bovine brain and testis substrate 

specificities may be explained in this manner. A complex array of conditions were created to examine 

properties of purified PA-PLA1 [75] using an interface composed of unilamellar lipid mixed micelles [76]. 

In the end, catalytic preference for PA(16:0/18:1) was reported to be observed when the unilamellar 

micelles contained (i) a low relative amount of PC; (ii) high relative amounts of PE, PS, and 

cholesterol; (iii) DAG; (iv) PE(18:0/20:4) instead of PE(16:0/18:1); and (v) 10 mol % PA  

per 100 mol % total phosphoglycerides. The study also showed that PA-PLA1 could bind to 

membranes composed of anionic phosphoglycerides and could be stabilized by these membranes in the 

presence of albumin.  
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Other experiments with PA-PLA1 provided information about the effects of phosphorylation and 

dephosphorylation on the behavior of the enzyme [77]. The first splice variant, PA-PLA1α, was 

recombinantly expressed in Sf9 cells and purified, though a homogeneous fraction of enzyme was not 

shown. The recombinant protein was shown by mass spectrometry to be phosphorylated by protein 

kinase CK2, with which it also formed complexes, and by extracellular signal-regulated kinase 2. They 

also showed that protein phosphatase 2A could dephosphorylate some of the phosphoryl 

modifications, which led them to raise the possibility that the native counterparts of these enzymes 

could coordinately regulate the phosphorylation state of PA-PLA1 in vivo. The physiological 

significance of PA-PLA1 still remains to debatably [50], because it is most highly expressed in testis it 

has been suggested that PA-PLA1 could be involved in PA signaling during spermiogenesis [74,76]. 

3.3. p125 and KIAA0725p 

 

Budding vesicles mediate transport of proteins between intracellular compartments. One of the 

components of ER to Golgi COPII-coated vesicles of the secretory pathway is the Sec23p-Sec24p 

complex. In a study, that attempted to affinity isolate and identify new Sec23p-interacting proteins a 

novel protein, p125 (111 kDa), was identified. The predicted peptide sequence of p125 was 

homologous to bovine PA-PLA1 [54]. In addition, the N-terminal region of p125 contains a proline-rich 

region that was shown to be the functional region of the enzyme in its association with Sec23p. 

Detection of low levels of recombinant p125 expression showed co-localization with β-COP and 

ERGIC53, an ER-Golgi intermediate compartment marker. In contrast, detection of high levels of 

p125 over-expression revealed p125 dispersed throughout the cells, not only in membranes, but also in 

the cytosol, causing disorganization of the ER-Golgi intermediate compartments. ERGIC-53 also 

showed a dispersed staining pattern in these cells, and a second type of staining showed that the Golgi 

itself was dispersed. p125 was also shown to co-localize with p115 and GM130 proteins [78], both of 

which play a role in vesicle tethering to Golgi membranes [79]. Depletion of p125 by RNAi suggested 

that p125 is needed for the proper organization and distribution of ER exit sites; however, p125-depleted 

cells maintained regular rates of protein transport from the ER [80]. Despite these detailed studies, no 

examination of stereo-specific enzyme activity was undertaken, so p125 may indeed not even  

be a PLA1. 

However, another protein, KIAA0725p, has also been identified as a homologue of both bovine 

PA-PLA1 and p125 [55]. KIAA0725p is ubiquitously expressed in mammalian cells and is 

predominantly localized in the cytoplasm. Consistent with its bovine PA-PLA1 homologue, 

KIAA0725p preferentially cleaves the sn-1 ester linkage of PA; however, in the absence of detergent it 

also hydrolyzed PE. PA specificity was determined using homogenates of KIAA0725p-expressing 

cells, and homogenates with the GXSXG seryl residue mutated to alanine showed no PLA1 activity. 

Like p125, results showed that over-expression of KIAA0725p in cultured cells provoked dispersion of 

ERGIC53 and β-COP; but, unlike p125, over-expression also caused dispersion of p115 and GM130. This 

morphological phenotype was not due to PLA1 activity because over-expression of the lipase-inactive 

mutant caused the same phenotype. However, over-expression of KIAA0725p, but not its lipase-inactive 

mutant, also caused aggregation of the ER, which was thus determined to be dependent on PLA1 

activity. The authors proposed that KIAA0725p may promote fusion of ER membranes by changing 
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cone-shaped PA to inverted-cone shaped lyso-PA, which has been suggested to promote fusion pore 

formation, the last step of membrane fusion [81]. Recently it has been shown that the isoform iPLA(1) 

g is a novel membrane transport factor that mediates a membrane transport pathway between the ER 

and the Golgi that is distinct from the previously characterized COPI- and Rab6-dependent pathways [82]. 

 

3.4. PS-PLA1 

 

A novel PLA1 secreted from rat platelets was the first PLA1 discovered which preferentially cleaves 

FAs from PS [46]. The predicted peptide sequence from the cloned cDNA of PS-PLA1 was found to 

show significant sequence homology to hepatic lipase, lipoprotein lipase, pancreatic lipase, and 

endothelial lipase, but the enzyme does not possess appreciable neutral lipase activity. The  

enzyme was partially purified by sequential column chromatography from the culture medium of 

thrombin-activated platelets, and from medium of insect Sf9 cells expressing recombinant PS-PLA1 in 

a baculovirus system. The resulting enzyme was shown to be a 50–55 kDa protein that was equally 

active towards PS and lyso-PS. PS-PLA1 is also believed to be a glycoprotein. Due to its sequence 

similarity with lipases, the primary PS-PLA1 peptide sequence reveals that is has a β-9 loop  

and a lid domain; but PS-PLA1 has shorter versions of each [46], which could explain why 

diisopropylphosphofluoridate (DFP) inhibits this enzyme, if the truncated lid domain ineffectively 

covers the active site serine. A subsequent study revealed that PS-PLA1 might be the synthetic route in 

the production of bioactive lyso-PS since it was shown that it has the ability to efficiently stimulate 

histamine release from rat peritoneal mast cells, especially when in the presence of apoptotic Jurkat 

cells [83]. In this system, 2-acyl-1-lysoPS was released from apoptotic cells exposed to PS-PLA1 and it 

was proposed that PS-PLA1 may play an in vivo role in hydrolyzing PS exposed on plasma membranes 

of apoptotic, dead, and cytokine-stimulated cells, as a means to transduce mast cell activation mediated 

by 2-acyl-1-lysoPS. PS-PLA1ΔC, a splice variant of the human version of PS-PLA1, shows poor 

catalytic activity towards PS and the other diacylPLs but is able to deacylate lyso-PS effectively and is 

therefore a LysoPLA [84]. PS-PLA1ΔC possesses a truncated C-terminal region; therefore peptides on 

the complete C-terminal domain of PS-PLA1 are thought to play a role in substrate recognition. In a 

very recent study PS-PLA1 expression in human THP-1-derived macrophages, responsible for the 

immune responses to allograft rejection, are activated via TLR4. This activation can be inhibited by 

corticosteroids, which are used at high dosages to suppress chronic allograft rejection [57]. 

 

3.5. mPA-PLA1 

 

A sequence similarity search of the PS-PLA1 detected another PLA1 enzyme which was 

homologous to neutral lipases, that of membrane-associated phosphatidic acid-selective 

phospholipase A1 alpha and beta (mPA-PLA1α/β) [43,56]. Both recombinant forms show PA-specific 

substrate specificity. Attempts to purify the recombinant membrane proteins from Sf9 cells failed but 

medium from mPA-PLA1α-expressing cells was shown to activate a lyso-PA receptor family member, 

LPA3/EDG7. Medium from cells expressing an active site serine mutant failed to induce a receptor 

response. These results indicated that cells expressing recombinant mPA-PLA1α were able to produce 

and release bioactive lyso-PA. When expressed in HeLa cells mPA-PLA1α was recovered from the 
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cell supernatant whereas mPA-PLA1β was still membrane associated [56]. A set of elegant 

experiments also showed that mPA-PLA1α/β acted after and in concert with both endogenous and 

exogenous PLD to form lyso-PA. This report thus suggests a possible in vivo metabolic pathway for 

lyso-PA production involving the sequential action of a PLD and mPA-PLA1α/β. Thus, both  

PS-PLA1 and mPA-PLA1α/β thus have evolved from lipases to specialize in producing bioactive  

lyso-PL mediators [5]. 

 

3.6. Guinea-Pig Heart Microsomal PLA1 

 

It has been reported that microsomes from guinea-pig heart possess PLA1 activity on PE and PC, 

and that sn-1 cleavage could be influenced by the sn-2 FA since more efficient hydrolysis was 

observed when the sn-2 FA was polyunsaturated [85]. The enzyme(s) responsible for PLA1 activity 

from guinea-pig heart microsomes have not been identified and purified to any extent other than into 

subcellular fractions, but a few studies are worth mentioning since they are devoted to possible 

regulatory mechanisms of PLA1 activity in this tissue, and very few other studies exist that begin to 

explain how some PLA1 activity could be controlled. No PLA1-activating agonists are known, so a 

possibility that PLA1 could be receptor activated by G-proteins was investigated by measuring the 

response of PLA1 activity towards guanine nucleotides, which can activate G-proteins. PLA1 activity 

towards PC(16:0/18:2) was partially inhibited by guanosine 5'-[γ-thio]triphosphate (GTP[S]), but not by 

GTP, guanosine 5'-[γ-thio]diphosphate (GDP[S]), GDP, ATP or adenine 5'-[γ-thio]diphosphate 

(ATP[S]) [86]. On the other hand, PLA1 activity on PE(16:0/18:2) was stimulated by GTP[S] but not 

GDP[S] or ATP[S] [86]. PE(16:0/18:2) hydrolysis by guinea-pig heart microsomes was also shown to 

be stimulated 40–60% by isoprenaline. It has still yet to be shown in vivo if PLA1 activity in guinea-pig 

heart microsomes is activated by the binding of isoprenaline to adrenergic receptors and mediated via 

activation of G-proteins. Without either the purification or cloning of the enzymes responsible for this 

activity in guinea-pig heart microsomes, it is unlikely that any resolution of the issue will be made. It 

is worth recalling, however, that a ubiquitously expressed mammalian PA-PLA1 homologue, p125, is 

localized to the ER and interacts with Sec23p, which acts as a GTPase-activating protein that plays a 

role in uncoating budding vesicles [87]. Whether these PLA1 activities are due to the same or different 

enzymes is unknown, but it does stress the importance of how substrate specificity is analyzed in vitro, 

and the caution with which to interpret such data. To confuse the situation even further, guinea-pig 

heart microsomes were also shown to possess a LysoPLA2 that could hydrolyze lyso-PC(−/18:2 or 

20:4) more efficiently than lyso-PC(−/18:1 or 16:0) [18].This result lent some support to the standing 

possibility that arachidonic and linoleic acids could be released by LysoPLA2 acting in concert  

with a PLA1.  

 

4. Other PLA1  

 

PLA1 is a ubiquitous enzyme found in nearly every cell where it has been sought, and this includes 

metazoan and protozoan parasites, and snake venoms. 
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4.1. Caenorhabditis elegans PLA1 

 

The Caenorhabditis elegans, IPLA-1 and ACL-10 have phospholipase A1 and acyltransferase 

activity respectively,
 
both of which recognize the sn-1 position of their PI substrate [88]. The PI  

sn-1 fatty acid remodeling by sequential deacylation and reacylation, which resulted in stearic  

acid as the major fatty acid at the sn-1 position, has been proposed to be crucial for asymmetric  

division [5]. 

 

4.2. Venom PLA1 

 

The cDNA of one allergen component of Dolichovespula maculate (white-faced hornet) venom has 

been cloned and shown to encode a PLA1 (Dol m I) with weak lipase activity [47]. In fact, at the time 

of the study, the derived peptide sequence of Dol m I had no homology to other PLA1 genes because it 

was similar to mammalian lipases. Now, not only is Dol m I 40% identical to pancreatic, hepatic, 

lipoprotein, and endothelial lipase, but it also shows homology with PS-PLA1 [46] and mPA-PLA1 [43]. 

Characterization of the 34–37 kDa enzyme has not been undertaken presumably due to a priority 

interest in understanding its immunochemical properties as it relates to its contribution to allergenicity. 

Along these same lines, two homologues of Dol m I have been cloned from Vespula spp. (yellow 

jacket) (Ves v I and Ves m I) which show 67% sequence identity with the white-faced hornet  

PLA1 [58,59], and recent success in recombinant expression of PLA1 (Ves v I) from the yellow jacket 

will allow a more detailed understanding of the molecular and allergological mechanisms of insect 

venoms, providing a valuable tool for diagnostic and therapeutic approaches in hymenoptera venom 

allergy [60].  

 

4.3. Trypanosoma brucei PLA1  

 

The PLA1/LysoPLA theorized coordinated route towards the release of unsaturated FAs, (e.g., 

arachidonic acid (AA)), has been supported by in vitro studies using homogenates from the kinetoplastid 

protozoan parasite Trypanosoma brucei, the infective agent of African sleeping sickness [23]. These 

studies observed robust and optimal activity at pH 6.0–8.5 and a requirement of sn-1 acyl cleavage 

prior to the release of AA from sn-1-palmitoyl-sn-2-arachidonoyl-sn-glycero-3-phosphatidylcholine 

[PC (16:0/20:4)] [89–91]. The liberated unsaturated FAs such as AA from lipids in T. brucei have 

been implicated in regulating calcium mobilization [92,93], and as a precursor for prostaglandin 

biosynthesis [94]. 

Two recent detailed studies describe the cloning and characterization of the cytosolic T. brucei 

PLA1. TbPLA1 is unique from other eukaryotic PLA1 because it is phylogenetically related to bacterial 

secreted PLA1 [49,66]. TbPLA1 was most likely acquired by a prokaryotic-to-eukaryotic horizontal 

gene transfer event of a PLA1 from Sodalis glossinidius, a bacterial endosymbiont of the insect vector 

of the protozoan parasite, the tsetse fly. These studies employed both in vitro and in vivo analytical 

techniques to establish that PC is the preferred substrate. The TbPLA1 homozygous null mutants 

constitute the only PLA1 double knockouts from any organism and helped to established that the  
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enzyme functions in vivo to synthesize lyso-PC metabolites containing long-chain mostly 

polyunsaturated and highly unsaturated fatty acids. 

 

4.4. Trypanosoma cruzi PLA1  

 

One report described the existence of PLA1 activity in Trypanosoma cruzi, the etiologic agent of 

Chagas disease [95]. When trypomastigote and amastigote suspensions were radiolabeled with oleic 

acid and lysed, the radiolabeled PC content decreased over time. In addition, when PC(16:0/18:1) was 

incubated with epimastigote homogenates at pH 4.7, lyso-PC(−/18:1) was produced, suggesting sn-1 

hydrolytic specificity. T. cruzi PLA1 was partially purified (1900-fold by specific activity) from 

epimastigote homogenate supernatants and a protein band of 38 kDa could be seen by SDS-PAGE, 

and size exclusion chromatography suggested PLA1 activity eluted with an apparent molecular mass of 

40 kDa. T. cruzi PLA1 seems to be a glycoprotein due to its binding to ConA-Sepharose, possesses no 

divalent cation requirements, and is released from the cell by digitonin together with lysosomal 

markers. The physiological role played by lysosomal T. cruzi PLA1 has not been determined, though 

the authors suggest that the FA and lyso-PL products could have a possible role in pathogenesis of  

the disease. 

 

5. Plant Phospholipase A1 

 

Evidence for the existence of PLA1 in plant cells wasn’t forthcoming until relatively recently when 

the tonoplasts of Acer pseudoplatanus were shown to be able to hydrolyze sn-2-radiolabeled PC into 

radiolabeled PA and radiolabeled lyso-PC, revealing PLD and PLA1 activities, respectively [96]. Since 

then, only a few genes encoding PLA1 have been discovered. 

 

5.1. DAD1 

 

Among the plant hormones jasmonic acid is considered a multifunctional growth and stress  

regulator [97], and it is structurally similar to ―animal‖ eicosanoids. Jasmonic acid is an oxylipin 

signaling molecule and a derivative of linolenic acid (C18:3). Jasmonate has been shown to regulate or 

co-regulate a variety of processes in plants, such as responses to biotic and abiotic stresses, tendril 

coiling, fruit ripening, and the developmental maturation of stamens and pollen in Arabidopsis. The 

enzymes involved in the jasmonic acid biosynthetic pathway have been elucidated, but the last one 

discovered, a phospholipase A1 called Defective in Anther Dehiscence 1 (DAD1), was one of the most 

important because it is the enzyme responsible for the initial release of C18:3 from cellular lipids [61]. 

Starting from an Arabidopsis thaliana DAD1 mutant, the WT DAD1 gene was isolated and found to 

encode a chloroplastic 45 kDa PLA1 lipolytic enzyme. A rescued phenotype was attained by either 

complementing the mutant with WT DAD1 or after supplying exogenous jasmonic acid. The DAD1 

protein sequence showed some apparent similarities with fungal lipases, it possessed a consensus 

GHSLG motif, and eleven homologous proteins were identified in Arabidopsis alone. A maltose 

binding-DAD1 fusion protein lacking 72 amino acid residues (an N-terminal transit peptide) was 

recombinantly expressed and used to examine lipase activity. PC was the only PL tested, and the 
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activity on it was more than 80% greater than on TAG, which suggested that the C18:3 precursor for 

jasmonic acid biosynthesis is stored in cellular PLs. DAD1 is thought to be of prime importance for 

the regulation of jasmonic acid levels. A PLA1 from Capsicum annuum (hot pepper) showed a 

considerable degree of overall sequence identity to Arabidopsis [98]. 

 

5.2. AtLCAT3 

 

In a search for A. thaliana sterol acyltransferases, one of the four enzymes found to be homologous 

to lecithin (PC): Cholesterol acyltransferases was determined to possess PLA1 activity [62,63]. 

AtLCAT3 (Arabidopsis thaliana lecithin:cholesterol acyltransferase 3) heterologous expression in 

yeast resulted in the PC, PS, and PE content to be half as much as those species in control yeast, while 

lyso-PC, lyso-PE and FFA were strongly increased. There was also a higher TAG content in the cells 

expressing AtLCAT3. AtLCAT3 fractionated with yeast microsomes, which subsequently shown to be 

able to hydrolyze various PL species, including lyso-PC and PA. However, neither acyltransferase 

activity nor TAG activity was observed with yeast microsomes expressing the enzyme. The analogous 

serine, histidine and aspartic acid residues that are part of the conserved catalytic triad of Homo 

sapiens LCAT were shown to be essential for activity of AtLCAT3. The physiological role of 

AtLCAT3 is as yet unknown. 

 

6. Bacterial PLA1 

 

The discovery of prokaryotic versions of PLA1 enzymes have up to now been confined to only one 

subclass of bacteria, the proteobacteria [68]. PLA1 from Serratia liquefaciens (PhlA) was identified as 

one of a number of proteins that are excreted to the outside environment. The impetus for studying 

PhlA was to use S. liquefaciens as a model organism to study the genetic basis for secreting proteins 

across both the periplasmic and outer membranes in gram-negative bacteria. As a result, very little 

biochemical information regarding PhlA is known. In fact, phospholipase activities of this enzyme 

were only examined against egg yolk PC imbedded in agar plates in which transparent halos were 

observed after the addition of cells expressing the enzymes. The presence of a halo around the colony 

indicated secreted phospholipase A activity, but did not discern between sn-1 and sn-2 specificity. 

PhlA encodes a 34 kDa polypeptide that has an N-terminal signal peptide. Immediately downstream 

from the PhlA gene is PhlB, which encodes a protein of 24 kDa. 

The bacterial exoenzyme PhlA was shown to have growth-phase-dependent expression and 

secretion, where a very low rate of PhlA production was measured during exponential growth, and a 

burst of expression and secretion was observed during stationary phase. In another report it was shown 

that PhlA expression is regulated at the level of transcription initiation, and they present sequence data 

of two dual promoters upstream of PhlA that regulate expression differentially during anaerobic 

conditions or growth-phase [99]. A subsequent study revealed that PhlA secreted from in E. coli was 

dependent on an intact flhD gene, the regulator of the flagellar/chomotaxis opero [67,100]. Mutant flhD 

strains of E. coli do not secrete recombinant PhlA, which accumulates inside the cell. Interestingly, the 

PLA1 activity of accumulated PhlA is attenuated by PhlB, which forms an enzymatically inactive 

complex with PhlA, thus neutralizing possibly lethal intracellular phospholipase activity. 
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A homologue (74% identity) of PhlA was identified in Yersinia enterocolitica (YplA) [70]. The 

YplA sequence revealed two ORFs in tandem like that of the PhlA and PhlB, but the YplB accessory 

protein was less similar to PhlB. Again, the phospholipase A activity was confirmed by testing on 

lecithin plates only. An insertion mutant of YplA was created and used in a mouse model to show that 

secreted YplA could play a role as a virulence factor in the pathogenesis of infection with  

Y. enterocolitica. Neither PhlA nor YplA are homologous to bacterial lipases. 

 

7. PLA1 in Biotechnology 

 

LysoPLs are commonly used as surfactants in food technology and cosmetics [101], and as 

components of liposomes used in drug delivery [102]. Lyso-PLs are currently produced commercially 

via their chemical synthesis [103] or via the action of extracts from porcine pancreas, which contains a 

PLA2. Viable alternative processes produce lyso-PLs enzymatically and with greater efficiency are 

being investigated, recently reviewed in [104]. 

Phospholipases are useful tools in analytical PL analysis. Though there are a number of sources of 

PLA2 commercially available at various levels of purification, no PLA1 in any form is commercially 

available, mainly due to the difficulty in producing and purifying the enzyme, especially on an 

industrial scale. The ciliated protozoan Tetrahymena thermophila has been studied as a potential 

natural source for PLA1 [105], which is secreted from this organism. However, high levels of PLA1 are 

undoubtedly best obtained through recombinant expression techniques. Since purified PLA1 is 

expected to have broad industrial applications, a number of PLA1 genes from a variety of 

microorganisms have been cloned and attempted to be expressed and purified to fulfill this need, but 

they have not been characterized.  

Serratia spp. MK1 PLA1 (PlaA), a homologue of PhlA and YplA, has been isolated from Serratia 

spp. MK1 in Korean soil and cloned and expressed in E. coli [69]. Though the enzyme is secreted 

naturally, over-expression resulted in accumulation of recombinant enzyme inside the cell, and  

co-expression of its accessory protein, PlaS, was essential for cell viability and high expression levels. 

The histidine affinity tag on the recombinant protein was used in a one-step purification of the enzyme, 

which yielded under the best conditions 2.2 mg/L, the purity level was neither reported nor shown. 

Also, PLA1 in organisms adapted to lower temperatures have recently been found [106]. 

The genomic DNA and cDNA encoding a 269 amino acid PLA1 protein from Aspergillus oryzae 

have also been cloned [64]. The peptide sequence of the PLA1 showed 47% identity with that of 

mono- and diacylglycerol lipase from another fungus, Penicillium camembertii. A. oryzae PLA1 is a 

secretary enzyme and it was recombinantly expressed in the yeast Saccharomyces cerevisiae and 

purified from the extracellular broth at a level of 3.9 mg/L. Under a complex array of conditions, this 

expression was optimized to produce approximately 2 g/L on an industrial scale fermentor [107]. 

However, the enzyme was only partially purified from the culture broth by ion exchange 

chromatography and the yield was calculated based on its specific activity. Recently a PLA1 from 

Thermomyces lanuginosus expressed in Aspergillus has been commercialized as a lectinase [65].  
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8. Perspective 

 

Phospholipases A1 are enzymes that hydrolyze phospholipids at the sn-1 fatty acids from 

phospholipids and produces 2-acyl-lysophospholipids. This PLA1 activity is conserved in a wide range 

of organisms, but is carried out by a diverse range of enzymes. 

Despite PLA1 activities being detected in many tissues and cell lines, only a limited number of 

PLAs have been cloned and their activity and substrates identified and characterized, and even fewer 

have been studied that their function is known.  

PLA1s have been shown to have a diverse range of cellular functions including, digestive enzymes, 

central roles in membrane maintenance and remodeling via the Lands cycle of important phospholipids 

or glycolipids such as glycosylphosphatidylinositols. It is now emerging that they also regulate and 

facilitate the production of various lysophospholipid mediators, such as lysophosphatidylserine and 

lysophosphatidic acid, which in turn have multiple important biological functions. 

Thus, phospholipases A1 are an emerging class of enzyme that play important roles in the cellular 

functions including those of various diseases and pathogens that affect human health. 
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