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Abstract
Background: IPS-1/MAVS/VISA/Cardif is an adaptor protein that plays a crucial role in the
induction of interferons in response to viral infection. In the initial stage of the intracellular antiviral
response two RNA helicases, retinoic acid inducible gene-I (RIG-I) and melanoma differentiation-
association gene 5 (MDA5), are independently able to bind viral RNA in the cytoplasm. The 62 kDa
protein IPS-1/MAVS/VISA/Cardif contains an N-terminal caspase activation and recruitment
(CARD) domain that associates with the CARD regions of RIG-I and MDA5, ultimately leading to
the induction of type I interferons. As a first step towards understanding the molecular basis of this
important adaptor protein we have undertaken structural studies of the IPS-1 MAVS/VISA/Cardif
CARD region.

Results: The crystal structure of human IPS-1/MAVS/VISA/Cardif CARD has been determined to
2.1Å resolution. The protein was expressed and crystallized as a maltose-binding protein (MBP)
fusion protein. The MBP and IPS-1 components each form a distinct domain within the structure.
IPS-1/MAVS/VISA/Cardif CARD adopts a characteristic six-helix bundle with a Greek-key topology
and, in common with a number of other known CARD structures, contains two major polar
surfaces on opposite sides of the molecule. One face has a surface-exposed, disordered tryptophan
residue that may explain the poor solubility of untagged expression constructs.

Conclusion: The IPS-1/MAVS/VISA/Cardif CARD domain adopts the classic CARD fold with an
asymmetric surface charge distribution that is typical of CARD domains involved in homotypic
protein-protein interactions. The location of the two polar areas on IPS-1/MAVS/VISA/Cardif
CARD suggest possible types of associations that this domain makes with the two CARD domains
of MDA5 or RIG-I. The N-terminal CARD domains of RIG-I and MDA5 share greatest sequence
similarity with IPS-1/MAVS/VISA/Cardif CARD and this has allowed modelling of their structures.
These models show a very different charge profile for the equivalent surfaces compared to IPS-1/
MAVS/VISA/Cardif CARD.

Background
In the cells of higher eukaryotes, recognition of virally-
derived RNA intermediates produced during replication
activates signalling cascades that trigger the production of

interferons (IFNs) and other cytokines, which in turn
mediate innate immunity and modulate subsequent
adaptive immunity [1,2]. The innate immune system uti-
lizes pattern-recognition receptors (PRRs) to detect con-
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served molecular patterns on certain types of molecule
that are not produced by the host but are characterisitic of
invading microorganisms [3]. There are two categories of
PRRs involved in the induction of type I IFNs: Toll-like
receptor (TLRs) and RIG-I-like receptors (RLRs). The
transmembrane-anchored TLR family members, present
on cell surfaces or in endosomes, bind extracellular viral
components [4]. In contrast, the initial detection of intra-
cellular viral nucleic acids occurs via a TLR-independent
pathway in which two RNA helicases, retinoic acid induc-
ible gene-I (RIG-I) and melanoma differentiation-associa-
tion gene 5 (MDA5), are able to sense viral RNA in the
cytoplasm [5,6].

RIG-I and MDA5 are functionally-related cytosolic pro-
teins that each contain two N-terminal caspase activation
and recruitment (CARD) domains and a DExD/H-box
RNA helicase domain. These RLRs are activated by differ-
ent types of RNA molecules produced as by-products of
virus replication, such as double stranded RNA or
uncapped RNA bearing 5' triphosphates, which are not
found in uninfected cells [7-9]. The C-termini of RIG-I
and MDA5 function as regulatory repressor domains,
deletion of which results in constitutive signalling to the
IFN-β promoter [10]. Upon binding of dsRNA (or other
ligands) to the helicase domain, RIG-I and MDA5 are pre-
sumed to undergo structural alteration and multimeriza-
tion, thereby unmasking the CARDs and enabling them to
recruit downstream signal transducer proteins. The tan-
dem N-terminal CARD domains of RIG-I or MDA5 are
able to act as dominant activators: overexpression of
either of these tandem domains results in the induction of
IFN production without viral infection [5,6,11]. RIG-I and
MDA5 signalling results in the activation of IKKε and TBK-
1, two serine/threonine kinases that phosphorylate IRF3
and IRF7 [12-14]. Upon phosphorylation, IRF3 and IRF7
translocate to the nucleus and subsequently induce IFN-α
and IFN-β gene transcription [15].

The adaptor protein that acts as an intermediate between
RIG-I/MDA5 detection of viral RNA and downstream acti-
vation events was discovered by four groups in 2005 and
given four different names: IPS-1 (IFN-β promoter stimu-
lator protein 1) [16], MAVS (mitochondrial antiviral sig-
nalling protein) [17], VISA (virus-induced signalling
adaptor) [18] and Cardif (CARD adaptor inducing IFN-β)
[19]. IPS-1 (as it will be referred to from hereon) is a 62
kDa protein containing an N-terminal CARD domain, a
proline-rich region and a transmembrane domain that
targets it to the outer mitochondrial membrane [17].
Overexpression of IPS-1 activates the IFN-α, IFN-β and
NF-κB promoters, requiring interactions of the kinases
TBK1 and IKKε with IPS-1 for the activation of these pro-
moters [16,20]. The proline rich region interacts with a
number of signalling molecules including TRAF6, TRAF2

[18], RIP1, FADD [16] and TRAF3 [21], suggesting that
IPS-1 plays a role in TLR3-mediated pathways in addition
to TLR-independent, RIG-I/MDA5-mediated signalling
[18]. It has also been demonstrated that both the IPS-1
CARD and C-terminal mitochondrial membrane-target-
ing domains of IPS-1 are essential for IFN-β induction
[17]. IPS-1 has been identified as a target for the NS3/4A
protease of hepatitis C virus (HCV), which cleaves IPS-1
from the mitochondrial membrane and abolishes its abil-
ity to signal to the IFN-β promoter [19].

The CARD domain of IPS-1 interacts with the N-terminal
regions of RIG-I or MDA5 most probably through homo-
typic CARD-CARD associations [16], and both CARD
domains of RIG-I are required for the interaction with IPS-
1 CARD [18]. In the case of MDA5, it has been shown that
dihydroxyacetone kinase (DAK) binds to the CARD
domains of MDA5, suggesting that DAK acts as a negative
regulator of MDA5 that is released upon a conformational
change induced by viral RNA binding, allowing the MDA5
CARD domains to bind to IPS-1 CARD [22]. In the case of
RIG-I, it has been shown that the second CARD region can
be ubiquitinated, and that the level of ubiquitination cor-
relates with the signal transduction activity of RIG-I, and
may facilitate its interaction with IPS-1 [23]. Other pro-
teins are known to bind to IPS-1 CARD to regulate signal-
ling, as it has been shown that the Atg5-Atg12 conjugate,
a key regulator of the autophagic process, interacts with
IPS-1 CARD and the CARD domains of RIG-I thereby
blocking interferon production [24].

CARDs are members of the death domain (DD) super-
family, which also includes the death domain, death
effector domain and pyrin domain subfamilies [25].
Members of the DD superfamily play a critical role in the
assembly of oligomeric signalling complexes in apoptotic
and inflammatory processes. In the intrinsic apoptosis
pathway for example, release of cytochrome c from the
mitochondria into the cytoplasm induces Apaf-1 to recruit
caspase-9 via a CARD-CARD interaction [26]. As a first
step towards understanding the structural basis of the
mode of action of IPS-1, we report the crystal structure of
the human IPS-1 CARD domain to a resolution of 2.1Å.
The IPS-1 CARD domain shares homology with the first
CARD domains of MDA5 and RIG-I (25% and 20%
sequence identity respectively), which allows homology
modelling of these related CARDs that, together with the
second CARD domains, are known to interact with IPS-1
CARD.

Results and Discussion
Structure overview
The crystal structure of an engineered chimera (MBP-
CARD), in which human IPS-1 CARD is fused to the C-ter-
minus of MBP, was solved to 2.1Å resolution. IPS-1 CARD
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was crystallized as an MBP fusion construct as untagged
IPS-1 CARD exhibited poor solubility and stability. Crys-
tallization required a short linker region between MBP
and IPS-1 CARD, as has been successful in a number of
other chimeric fusion protein structures, for example an
MBP-homeobox domain chimera (pdb code 1mh4) [27],
an MBP-Argonaute2 PAZ domain chimera (1r6z) [28] and
an MBP-Nedd8-activating enzyme E1 subunit chimera
(2nvu) [29].

The asymmetric unit contains one molecule of MBP-
CARD comprising residues 2–366 of MBP, a 3 amino acid
linker (sequence NSA), and residues 1 to 93 of human
IPS-1, but with a mutation from Pro to Ala at position 2
introduced during the cloning. The MBP and IPS-1 CARD
components of the fusion protein form two distinct
domains (Fig. 1A). The 3 amino acid linker forms a helix
that connects the final helix of MBP to the first helix of
IPS-1 CARD.

IPS1-CARD exhibits the characteristic topology of the DD
superfamily, comprising six tightly packed α-helices
arranged in a Greek-key motif (Fig. 1B,C,D). Helix 1, often
severely kinked in CARD structures, is divided into two
smaller helices: H1a, from residues 4 to 14 and H1b,
which is a short 310 helix encompassing residues 16 to 19.
Helix 2 extends from residues 24 to 30, the last three resi-
dues of which also form a 310 helix. The remaining four
helices comprise residues 36 to 49 (H3), residues 51 to 64
(H4), residues 66 to 77 (H5) and residues 80 to 90 (H6).
The loops between the helices are well defined.

Comparison with other CARD structures
Several other CARD structures have been determined to
date: NMR structures are available for RAIDD CARD [30],
NOD1 CARD [31] and ICEBERG CARD [32]. Crystal
structures of CED-4 CARD [33], NOD1 CARD [34] Apaf-
1 CARD [35] and a complex of Apaf-1 CARD with procas-
pase-9 CARD [36] have been solved. All of these CARDs
belong to proteins involved in apoptotic pathways.

The superposition of representative CARD structures with
IPS-1 CARD is shown in Fig. 2. The closest structural
homologues are Apaf-1 (pdb code 2 ygs, rmsd of 1.79Å for
81 Cα atoms), the prodomain of procaspase-9 (3 ygs,
rmsd of 2.38Å for 85 Cα atoms) and several monomers of
the oligomeric death domain complex (2 of 5, ~2.5Å for
~80 Cα atoms). There are two main differences in second-
ary structure that separate IPS-1 CARD from these CARDs.
Helix 2 in IPS-1 CARD is truncated relative to the other
known CARDs, a feature which is accompanied by a short-
ening of the loop interconnecting H2 and H3. By contrast,
H3 is about 6 residues longer in IPS-1 CARD relative to
the other CARD structures with H3 and H4 connected by
only a single glycine residue.

Surface characteristics
The surface of human IPS-1 contains two highly charged
patches (Fig. 1E,F,G). Helices H1a, H3 and H4 form a flat
surface that is largely positively charged due to Lys7,
Lys10, Arg14, Arg37, Arg41, His57, Arg64 and Arg65. On
the opposite side of the molecule, a negatively charged
patch covers the surfaces helices H2 and H6 and their pre-
ceding loops. Residues contributing to this acidic region
are Asp23, Glu26, Glu80, Asp83, Asp86 and Glu87.

The sequence alignment of IPS-1 CARDs from a number
of species is shown in Fig. 3. The positions of residues con-
tributing to the charged patches are indicated. In the neg-
atively charged patch, residues Glu26 and Glu80 are
conserved, Asp86 is always an Asp or Glu, Glu87 is always
a Glu or Gln, whereas Asp23 and Asp83 are not conserved.
Residues Lys7, Arg41, Arg64 and Arg65, present in the
positively charged patch, are conserved across the IPS-1
family, and although Arg14 is not conserved, the preced-
ing residue is an arginine in all other species.

Interestingly, the structure possesses a largely conserved
surface tryptophan residue, Trp56 (leucine in horse) that
interrupts the positive patch. This residue is disordered in
the human IPS-1 CARD structure, the major conformer
(60% occupancy) has its whole face exposed to solvent
and stacks against Phe16, which is either Phe or His in
other IPS-1 CARDs. In the other conformer (40% occu-
pancy) the tryptophan side chain is fully exposed which in
turn exposes Phe16 face-on to solvent. Also contributing
to this hydrophobic patch is Tyr9, largely conserved across
the IPS-1 CARDs, except for horse where it is a phenyla-
lanine.

Modelling MDA5/RIG-I CARD domains
The annotations in the protein sequence databases relat-
ing to the boundaries of the CARD domains are not
always an accurate reflection of the true boundaries. For
example, the IPS-1 CARD domain is indicated as running
from residue 10 to 77, whereas the crystal structure clearly
shows that it runs from 1 to 93. Using the consensus sec-
ondary structure prediction within PHYRE [37], the first
and second CARD domains of human MDA5 are likely to
encompass residues 7 to 97 and 110 to 198, respectively,
assuming a similar six-helical bundle topology. Similarly,
the two human RIG-I CARD domains are likely to span
residues 1 to 87 and 92 to 186. The first CARD domains
of human MDA5 (MDA5CARD1) and RIG-I
(RIGICARD1) share greater amino sequence identity,
25% and 22% respectively, to IPS-1 CARD than to any
other CARD domain of known structure, for example
MDA5CARD1 shares 15% identity with Apaf-1 CARD.
Several hydrophobic amino acids are conserved across the
IPS-1, RIG-I and MDA5 CARD domains (marked with a *
or # in Fig. 4), and form part of the hydrophobic core of
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the IPS-1 CARD structure, which puts constraints on the
relative orientations of the helices H2, H4 and H5. Models
of MDA5CARD1 and RIGICARD1 were therefore con-
structed using homology modelling. Relative to IPS-1
CARD, MDA5CARD1 has two extra residues in the loop

connecting H1b and H2, and three extra residues, includ-
ing a tryptophan, in the loop between H4 and H5 (Fig. 4).
It was assumed that MDA5CARD1 contained a kink
between H1a and H1b as seen in IPS-1 CARD and all
other CARD structures, even though secondary structure

Structure of the human IPS-1 CARD domainFigure 1
Structure of the human IPS-1 CARD domain. (A) Structure of the MBP-CARD fusion structure with maltotetraose 
bound in the MBP binding site. (B,C,D) orthogonal views of the IPS-1 CARD domain colored from blue at the N-terminus to 
red at the C-terminus with Trp56 highlighted. (E,F,G) surface representations colored by electrostatic potential in the same 
orientations as the images above.
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prediction suggested a continuous helix. RIGICARD1 is
predicted to be similar to MDA5CARD1 except for a
longer H3, a shorter H4–H5 loop and a much shorter H6.

The MDA5CARD1 model suggests that H1b is a 6 or 7-res-
idue long α-helix, in contrast to the four amino acid 310
helix seen in IPS-1 CARD. The surface of the
MDA5CARD1 model shows that this helix is highly posi-
tively charged, containing residues Arg19, Arg21 and
Lys23 (conserved across all species). This together with
Arg84 and Arg85 at the end of H5 and Arg93 on H6 (also
conserved across all MDA5s), create a highly-positively
charged region on the surface of MDA5CARD1 (Fig. 4).
The remainder of the molecule carries a mixed charged
profile with a mainly overall negative charge due to acidic
residues conserved across all species at positions 9, 29, 33,
41, 44, 60 and 67. The surface views of MDA5CARD1 in
Fig. 4 are in the same orientations as the IPS-1 CARD in
Fig. 1 and illustrate the very different charge profiles of the
two molecules. The RIGICARD1 model suggests a very dif-
ferent charge profile to MDA5CARD1 (Fig. 4), in particu-
lar the surface is predominantly negatively-charged in the
regions of H3 due to residues Glu34 and Glu35, con-
served across all RIG-Is, and H4, H5 and H6 due to resi-
dues Glu63, Glu67, Asp 75 and Glu 87, conserved across
all RIG-Is.

The sequence identity between the first CARD domains of
human MDA5 and human RIG-I is 23%, and between the
second CARD domains is 20%. The identity between the
two CARD domains of MDA5 is 22% and between the
two RIG-I CARD domains is 19%. As shown in Fig. 4,
there is no obvious conservation of charged residues
between the helicase CARD domains. Helices 3, 4 and 5
are predicted to be of similar length, with a conserved gly-
cine between H4 and H5, but the extent of H1, H2 and H6
appear highly variable. The variability of the second
CARD domains of MDA5/RIG-I precluded their model-
ling in this study. It has been shown that the second
CARD domain of RIG-I can be ubiquitinated at several
lysines (indicated in Figure 4), and that in particular ubiq-
uitination at Lys172 in human RIG-I may facilitate its
interaction with IPS-1 CARD [23], although Lys172 is not
conserved across species, and is a glutamine in rat and
mouse RIG-I.

CARD-CARD associations
The crystal structure of the caspase-recruitment domain of
Apaf-1 in complex with the prodomain of procaspase-9 is
the only CARD-CARD complex structure determined to
date [36]. Complex formation is mediated by electrostatic
interactions between a negatively-charged convex region
on Apaf-1 CARD (involving helices H2 and H3) and a

Stereo diagram of superposed CARD domainsFigure 2
Stereo diagram of superposed CARD domains. IPS-1 CARD (magenta), Apaf-1 CARD (green), the prodomain of pro-
caspase-9 CARD (cyan) and chain K of the oligomeric death domain complex (red).
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positively-charged concave surface on procaspase-9
(involving helices H1a, H1b and H4), which are rein-
forced by van der Waals and H-bond interactions. The oli-
gomeric PIDDosome complex revealed an assembly of 12
death domains that form a set of DD interactions classi-
fied into three types [38,39]. A type I interaction involves
residues in H1 and H4 of the first DD interacting with res-
idues of H2 and H3 of the second DD, with both polar
and hydrophobic interactions at the interface. The Apaf-1
CARD:procaspase-9 CARD interaction is an example of a
type I association. A type II interaction involves H4 and
the H4–H5 loop of the first DD interacting with the H5–
H6 loop and H6 helix of the second DD, with the interac-
tion mainly involving charged residues. A type III interac-
tion involves residues in H3 of the first DD interacting
with residues near the H1–H2 and H3–H4 loops of the
second DD, with the interaction being a mixture of polar,
charged and hydrophobic [39].

Assuming that the CARD-CARD associations of IPS-1 with
MDA5/RIG-I conform to one of the three types described
above, then the basic face of IPS-1 CARD with the hydro-
phobic patch involving Trp56 and Tyr9 may associate via
a type I interaction with the H2 and H3 regions of one of
the CARD domains of the helicases. Similarly, the nega-
tively-charged region of IPS-1 CARD involving H6 and its
preceding loop may associate via a type II interaction with

the H4 and H5 regions of the other helicase CARD
domain.

Conclusion
The crystal structure of the CARD domain of IPS-1 has
been determined to 2.1Å resolution as part of a fusion
construct with maltose-binding protein that allowed solu-
bilization and crystallization. The structure is that of a typ-
ical member of the death domain superfamily,
comprising a six-helix bundle with a Greek-key motif
topology. The surface charge distribution, conserved
across IPS-1 from a variety of mammalian species, shows
an asymmetric distribution typical of CARD domains
with positive and negative areas on opposite sides of the
protein that are probably involved in electrostatically-
driven homotypic CARD-CARD interactions. One unu-
sual feature that probably explains the lack of solubility of
non-tagged IPS-1 CARD is a disordered tryptophan
(Trp56) that exposes its whole face in the centre of the flat,
positively-charged surface of the protein involving helices
H1, H3 and H4. This tryptophan is conserved in most spe-
cies, suggesting that one CARD-CARD association made
by IPS-1 involves a Type I interaction with helices H2 and
H3 of one of the helicase CARD domains.

Homology modelling of the first CARD domains of
MDA5 and RIG-I based on the structure of IPS-1 CARD

Sequence alignment of IPS-1 CARDs from mammalian speciesFigure 3
Sequence alignment of IPS-1 CARDs from mammalian species. Blue triangles indicate basic residues contributing to 
positive surface regions. Red triangles indicate residues contributing to the negative patch (open triangles are non-conserved, 
closed triangles are conserved).
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Sequence alignment of human IPS-1 CARD domain with human MDA5 and human RIG-I CARD domainsFigure 4
Sequence alignment of human IPS-1 CARD domain with human MDA5 and human RIG-I CARD domains. The 
experimentally determined helices of IPS-1 CARD, and the predicted helical regions of the other CARDs are highlighted in 
green. Conserved hydrophobic core residues are indicated by *, and totally conserved residues by #. The blue and red trian-
gles indicate the positive and negative residues, respectively, that are conserved across all species for the respective CARD 
domain. Lysines of RIG-I that can be ubiquitinated by TRIM25 E3 ubiquitin ligase are labelled 'Ub'. Below are three orthogonal 
views of homology models of the first CARD domains of MDA5 and RIG-I, colored by electrostatic surface potential. The 
views are equivalent for those shown for IPS-1 CARD in Figure 1.



BMC Structural Biology 2008, 8:11 http://www.biomedcentral.com/1472-6807/8/11
suggests that they have a completely different surface
charge profile compared to IPS-1 CARD, and in compari-
son with each other. Alignment of the CARD domains of
MDA5 and RIG-I, together with secondary structure pre-
diction and location of conserved residues suggests that
although the dual CARD domains of RIG-I and MDA5
interact with the IPS-1 CARD domain, they may do so in
quite different ways that may, of course, also involve the
peptide linking the two CARD domains. In the case of
RIG-I, the interaction may also involve ubiquitin at
Lys172 in some species. This apparent variability in
CARD-CARD interactions between the helicases and IPS-
1 suggests a differential signalling mechanism for the two
helicases. A detailed understanding of this recognition
will only come with the elucidation of the complex of IPS-
1 CARD with the CARD domains of both helicases.

Methods
Cloning and expression
The human IPS-1 CARD gene fragment was amplified
from vector DNA by PCR. Primers were designed to incor-
porate an NcoI site at the 5' site and an EcoRI site following
the termination codon. The fragment was cloned initially
into a modified MBP-fusion vector with an N-terminal
six-histidine tag and a TEV cleavage site upstream of the
initiation codon of the IPS-1 gene. The NcoI site intro-
duced a mutation at residue 2 in the IPS-1 CARD sequence
from proline to alanine. The expressed fusion product
therefore comprised N-terminally His-tagged MBP, a 21-
amino acid linker including a TEV cleavage site and resi-
dues 1 to 93 of IPS1. Attempts to crystallize the protein
either after cleavage from MBP or as a fusion with MBP
were unsuccessful. A modified form of the MBP-IPS-1
CARD construct was therefore produced using reported
methods [40], in which the flexible 21 residue linker con-
taining the TEV cleavage site between MBP and IPS-1
CARD was reduced to just 3 amino acids.

The fusion protein was expressed in E. coli Rosetta
(DE3)cells (Novagen). An overnight culture was used to
inoculate 1L of Luria-Bertani medium supplemented with
ampicillin. Cells were grown at 37°C to an OD600 of 0.6,
at which point a final concentration of 0.4 mM isopropyl-
β-D-thiogalactopyranoside (IPTG) was added to induce
expression of the recombinant fusion product. After a fur-
ther 16 h growth at 20°C cells were harvested by centrifu-
gation.

Purification and crystallization
Cell pellets were resuspended and sonicated in 20 mM
TrisHCl pH8.5, 100 mM NaCl, 5 µg ml-1 DNaseI, EDTA-
free protease inhibitor cocktail (Roche). MBP-CARD was
purified from clarified cell lysate by nickel column and
amylose column purification using standard protocols.
Pure protein was dialysed into 20 mM TrisHCl pH 8.5,

100 mM NaCl, 10 mM maltose and concentrated to 10
mg ml-1 for crystal trials.

Sitting drop vapour diffusion crystal trials were carried out
at 293 K using a nano-drop crystallization robot (Carte-
sian HoneyBee, Genomic Solutions) as part of the Hamil-
ton-Thermo Rhombix system. An initial hit was obtained
in condition 90 (2.2 M ammonium sulphate, 20% glyc-
erol) of the NeXtal Ammonium Sulphate screen (Qiagen).
Optimised crystals, which took approximately two weeks
to appear, were grown in drops containing 1 µl of 12 mg
ml-1 protein and 1 µl of reservoir solution (2 M ammo-
nium sulphate, 24% (v/v) glycerol).

X-ray data collection and refinement
Crystals, which already contained sufficient glycerol for
cryoprotection, were flash frozen in a nitrogen stream. A
2.1Å dataset was collected on beam-line ID14-2, ESRF,
Grenoble. Crystals belonged to space group P41/3212 with
unit cell dimensions a = b = 99.3Å, c = 163.2Å, α = β = γ =
90°. The data were processed using MOSFLM [41] and
scaled with the program SCALA in the CCP4 suite [42].
The structure was determined by molecular replacement
with the program PHASER [43] using the known structure
of MBP as phasing model (PDB accession number 1anf
[44]). One molecule of MBP was found in the asymmetric
unit for space group P41212 and the remaining IPS-1
CARD portion of the structure was traced by ARP/wARP
[45]. Refinement in Refmac5 [46] and model building
using COOT [47] yielded a model with an Rcryst of 0.18
and an Rfree of 0.22. During refinement, difference elec-
tron density in the oligosaccharide binding site of MBP
clearly indicated the presence of four glycopyranoside
rings and was therefore modelled as maltotetraose, the
presence of which may be attributable to impurities in the
maltose used to elute the protein from the amylose col-
umn. The mode of binding of maltotetraose to MBP is
similar to that seen in previous structures [44,48]. Five
electron density peaks, which were significantly higher
than those of water molecules and coordinated to at least
one basic residue, were assigned as sulphate ions as the
crystals were grown in 2 M ammonium sulphate. TLS
refinement [49] was performed in Refmac5 with 10 TLS
groups, as defined by the TLSMD server [50]. Data collec-
tion and refinement statistics are given in Table 1.

Model quality was assessed by both PROCHECK [51] and
MolProbity [52]. Ramachandran statistics indicate that
93.5% of the residues are located in the most favoured
regions of the plot with the remaining 6.5% present in
additional allowed regions. Coordinates have been
deposited in the Protein Data Bank under accession code
xxxx.
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Homology modelling
The target (MDA5CARD1, RIGICARD1) and template
(IPS-1 CARD) sequences were aligned and submitted to
the program MODELLER [53] along with the IPS-1 CARD
template structure. The model giving the lowest value of
the MODELLER objective function was further refined
using the loopmodel function in MODELLER and evalu-
ated by calculating the DOPE (Discrete Optimized Protein
Energy) score.

List of abbreviations
CARD: caspase activation and recruitment domain. RIG-I:
retinoic acid inducible gene-I. MDA5: melanoma differen-
tiation-association gene 5.
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Table 1: X-ray data collection and refinement statistics. 
Numbers in parentheses refer to the highest resolution shell.

Space group P41212
Unit cell edges (Å) a = b = 99.3, c = 163.2
X-ray source, wavelength (Å) ID14-2, 0.934
Resolution range 32.6-2.1Å
No. of unique observations 48, 262
Completeness (%) 99.8 (99.9)
Redundancy 7.1 (7.2)
Rmerge 0.072 (0.364)
<I/σI> 16.1 (4.4)
Refinement
No. of reflections work/test 45,853/2,404
No. of protein atoms 3,665
No. of ligand atoms 45
No. of waters 202
Average B-factors (Å 2) protein/waters 21/34
Rcryst 0.181
Rfree 0.220
r.m.s.d. bond distance (Å) 0.017
r.m.s.d bond angle (°) 1.5

Rmerge = ∑hkl ∑i|Ihkl,i - �Ihkl�|∑hkl�Ihkl� Rcryst and Rfree = (Σ||Fo| - |Fc||)/(Σ|Fo|)
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