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L O C A T I O N - B A S E D  S E R V I C E S

L ocation is a core concept in most 
pervasive computing systems. 
Beyond simple uses such as pin-
pointing an individual’s position 
or identifying a region’s occupants, 

location is a key index for richer querying of an 
individual’s or environment’s context.

Although at first glance a simple concept, lo-
cation information’s representation has many 
forms and subtleties, each suited to particu-
lar application classes.1 To provide application 

developers with easy access 
to location information, we 
must support different posi-
tioning systems with varying 
data formats as well as fusion 
algorithms to estimate posi-
tion from multiple readings. 
We also need a data access ap-
proach that hides this complex-
ity and heterogeneity from the 
developer. This problem has no 

general solution, necessitating specific frame-
works for working with specific kinds of data.

To meet the needs of location-based applica-
tions, we’ve developed lightweight space and 
sensing models and a set of extensible compo-
nents that support customization and emerging 

technologies. The space model supports a range 
of geometric and relative-spatial-positioning 
descriptions found in the literature. The sens-
ing model abstracts over various types of posi-
tioning systems and incorporates the capture of 
uncertainty, serving as a foundation on which 
developers can apply sensor-fusion techniques. 
Our programming framework, LOC8, sits atop 
the space and sensing models, providing a rich 
API for querying location data and exploring its 
many representations.

Requirements
A location model should support location data 
representations from different positioning tech-
nologies and extensible metadata descriptions. 
Many well-known systems can report an enti-
ty’s coordinate or symbolic position, from GPS 
and Active Badge to more recent systems such 
as Ubisense and the fingerprint-based position-
ing system.2 Beyond these are less conventional 
and less expensive methods of reporting an en-
tity’s location. For example, a Bluetooth spot-
ter, which can detect the presence of mobile 
phones, PDAs, and laptops, might position a de-
vice within 10 meters of a known point. We can 
use this information to infer the device owner’s 
position.

Using a location model supporting a range of expressive representations 
for spaces, spatial relationships, and positioning systems, the authors 
created LOC8, a programming framework for exploring location data’s 
multifaceted representations and uses.
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Environments frequently contain 
multiple positioning systems, so trans-
lating readings into a common language 
of location-centric primitives is impor-
tant. Because no positioning technol-
ogy claims to provide perfect accuracy, 
this language must also provide quality 
measures to support sensor-fusion tech-
niques for uncertain data. Quantifying 
uncertainty associated with positioning 
systems has proved a hot topic in recent 
years.3,4

A space model provides a set of prim-
itives that allow descriptions of regions 
of space and the relationships between 
them. Such primitives must support the 
mapping of positioning systems’ differ-
ent data formats while being expressive 
enough to support common application 
queries.

Christian Becker and Frank Durr 
divide these queries into four catego-
ries: positioning, range, nearest neigh-
bor (spatial relation), and navigation.5 
These queries have led to more complex 
uses of location. Such higher-level que-
ries require flexible conversion between 
different location representations—for 
example,

•	 building a relative spatial relation-
ship between two mobile entities, or

•	 translating a track of an entity’s 
physical positions to a summary of 
its movement pattern or to its speed 
and heading.6

Increasingly, researchers don’t treat 
location information as independent 
but rather as tightly bound to user ac-
tivity, intention, and interaction. The 
extension of semantics in location is 
a popular research topic, underpin-
ning many potential context-aware 
applications.1

Realizing the Space Model
To represent our space model,7 we chose 
the Web Ontology Language (OWL) 
because of its high-quality tool support  
and the applicability of reasoners and 
rules to help identify relationships be-
tween points and regions. At the heart 

of our ontology are the SymbolicRepre-
sentation, GeometricRegion, and RelativeLoca-
tion classes, which model the human-
friendly names and geometric extents of 
regions (such as rooms and buildings) 
and their physical relationships to other 
parts of the model.

Coordinates have an associated co-
ordinate reference system (CRS), which 
can be a global standard or locally de-
fined to simplify a region’s spatial rep-
resentation. For example, if an appli-
cation is bound to a single building, it 
makes more sense to define a local coor-
dinate system than to use the WGS 84 

coordinate system. Translations from 
one CRS to another are described by an 
origin point and a rotation matrix. The 
origin is the displacement of the new 
CRS relative to its reference CRS, and 
the rotation matrix describes changes 
to rotation of the x-, y-, and z-axes. We 
used Chianghao Jiang and Peter Steen-
kiste’s model8 to convert coordinates 
from one CRS to another. Geometric 
regions consist of one or more 2D or 
3D geometric shapes, each defined by a 
set of coordinates; symbolic represen-
tations take the form of an individual 
associated with a descriptive label.

Developers must assign each space 
a granularity (the granularity property), 
whose possible values, such as coordi-
nate, room, and city, are defined in the 
model and are customizable. This al-
lows flexibility in that developers can 
redefine granularities to suit different 
applications. The querying process uses 
granularities to request an entity’s loca-
tion at a particular resolution.

Our model supports four spatial re-
lationships: containment, adjacency, 
connectedness, and overlap. Contain-
ment, adjacency, and overlap are what 
their names suggest. Connectedness is 

a particular case of adjacency, in which 
an entity can pass from a space to its 
adjacent space. The relationship might 
specify a third location, such as an exit 
or elevator, that enables the transition. 
Connectedness is a rich relationship, 
implying both the passage’s direction 
and the notion of an accessible (rather 
than a straight-line) distance between 
the related locations.

We also provide two types of relative 
representation: center and compass.7 
In the center representation, a target 
location is a geometric area, such as 
a circle or a cuboid, whose center is 

a coordinate—or a reference loca-
tion’s center point—and whose edge 
or diameter length is twice a speci-
fied distance. The compass represen-
tation involves building a CRS whose 
origin is a coordinate—or a reference 
location’s center point—and whose 
rotation matrix follows the standard 
compass directions. In this CRS, the 
target location’s description contains 
a distance to its origin; the horizontal 
angle to the target location, measured 
clockwise from north; and the angle 
of elevation from the horizontal plane.

For some maps, specifying a set of 
symbolic regions and their spatial re-
lationships will suffice. Maps that de-
fine region geometry let reasoners infer 
some symbolic relationships, such as 
containment and adjacency, and esti-
mate missing geometry. 

Realizing the Sensing Model
The sensing model maps the reported 
positions of entities—for example, 
a person, locatable tag, or wireless  
device—to points and regions in our 
space model. (For an overview of the 
high-level ontologies we use to describe 
our applications, see “Ontonym: A 

A space model provides a set of primitives 	

that allow descriptions of regions of space 	

and the relationships between them. 
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Collection of Upper Ontologies for De-
veloping Pervasive Systems.”9) Again, 
the essential part of this process is cap-
turing metadata associated with the 
sensing process.

We adopt a standard approach to rep-
resenting the sensed data’s characteris-
tics and imperfections by using a quality 
matrix, which satisfies the sensing mod-
el’s uncertainty measure requirement. 

The quality matrix consists of granu-
larity, frequency, coverage, and a list of 
accuracy and precision pairs.10 Granu-
larity is the smallest spatial element per-
ceivable. Frequency is the sample rate—
how often a sensor generates readings. 
The sensor manufacturers’ technical 
specifications determine these proper-
ties’ values. Coverage is the extent of 
space in which an entity’s position can 
be sensed; the accuracy and precision 
pairs, which might be multiply defined, 
describe the probability that an entity’s 
true position is within a given distance 
of the reported value. For example, with 
our Ubisense installation in University 
College Dublin’s Complex and Adap-
tive Systems Laboratory (CASL) build-
ing, we achieve 70 percent accuracy 
with two meters’ precision. Although 
our general quality matrix works with 
most positioning sensors, it isn’t defini-
tive, and we encourage its extension.

All data that a sensor adds to the 
model references the sensor’s quality 
matrix. Figure 1 describes the granular-
ity, frequency, coverage, and precision- 
accuracy pairs associated with our 
Ubisense sensor; Figure 2 describes a 
sample reading. Both figures use No-
tation 3 (www.w3.org/DesignIssues/ 
Notation3), a compact Resource De-
scription Framework (RDF) syntax.

The about property relates the reading 
to a particular entity, and the observedBy 
property relates the reading to the sen-
sor that provided it. The value property 
indicates the position at which the sen-
sor located the entity—in this case, a 
3D coordinate. Finally, the temporal-
Dimension property specifies the time 
span over which developers should re-
gard the reading’s value as reflecting the 
entity’s true position.  

Developers can easily add a position-
ing system to the model, which requires 
only that they define its metamodel and 
write a software adapter to transform 
sensor-reported positions to our model. 
Optionally, if the positioning system re-
ports coordinates, developers can spec-
ify the necessary information to trans-
late points from its CRS to another CRS.

example:CASLUbisense
  a sensor:Sensor ;
  sensor:coverage map:3f , map:4f ;
  sensor:frequency [...] ;
  sensor:granularity map:coordinateGranularity ;
  sensor:precisionAccuracy
    [ a sensor:PrecisionAccuracy ;
      sensor:accuracy “0.7” ;
      sensor:precision
        [ a muo:QualityValue ;
          muo:measuredIn ucum:meter ;
          muo:numericalValue “2”
        ]
    ];
  sensor:precisionAccuracy [...] 
  sensor:rateOfChange [...] .

example:reading
  a sensor:Observation ;
  sensor:about ubitag:010131789 ;
  sensor:observedAt [...] ;
  sensor:temporalDimension [...] ;
  sensor:observedBy example:CASLUbisense ;
  sensor:value
    [ a location:Coordinate ;
      location:referenceCoordinateSystem
        example:ubisenseCoordinateSystem ;
      location:x “1.15” ;
      location:y “3.67” ;
      location:z “21.35”
    ].

Figure 1. An abridged description of University College Dublin’s Complex and 
Adaptive Systems Laboratory (CASL) Ubisense sensor and its metadata. The sensor 
covers the third and fourth floors of the CASL building, and is accurate to within two 
meters of a Ubitag’s true position 70 percent of the time. Distance descriptions use 
the Measurement Units Ontology (MUO), giving a basis for transforming between 
different representations.

Figure 2. An abridged reading produced by the CASL Ubisense sensor described 
in Figure 1. A Ubitag is related to a 3D coordinate position within the Ubisense 
coordinate system. The observation time and the source of the reading are also 
indicated.



JANUARY–MARCH 2010	 PERVASIVE computing� 31

Using the  
Programming Framework
On the basis of Jeffrey Hightower and 
his colleagues’ Location Stack architec-
ture11 (see the “Related Work in Loca-
tion Modeling” sidebar), we developed 
the LOC8 framework in Java to sup-

port querying of the space and sensing 
models we constructed. Figure 3 shows 
LOC8’s architecture. The sensing layer 
reports positioning data as coordi-
nates, symbolic locations, or relative 
positions; the abstraction layer converts 
raw sensor data into the OWL repre-

sentation. As part of this process, the 
abstraction layer can query the context 
and space models to find the correct 
references for resources representing 
particular regions, people, or locat-
able objects. The context, sensing, and 
space models provide standard APIs for  

Nexus is an early open platform providing a foundation that 

makes developing location-aware applications easier.1 The Nexus 

platform’s core is a common augmented-world model that sup-

ports representation of the location of static real-world entities, 

such as buildings or trains, and virtual entities with which the 

real world is augmented, such as virtual billboards. Its query lan-

guage, Augmented World Query Language (AWQL), supports 

basic spatial queries including inside, overlaps, includes, excludes, and 

closest. In LOC8 (see the main article), we use a loosely coupled 

modeling technique that treats location information indepen-

dently from other forms of context. This lets us treat all locatable 

objects in the same way, irrespective of their property structure, 

real or virtual status, and use by applications.

The Location Stack is a successful software engineering model 

that structures location-aware services components into a lay-

ered system architecture with robust separation of concerns.2,3 

Our model is based on the Location Stack but differs in four main 

respects. First, the Location Stack’s measurements layer reports 

data from sensors at a lower level than we support, including 

distance, angle, and proximity. We decided to deal only with 

observations at the position level—for example, coordinate and 

symbolic—because most technologies tend to perform this cal-

culation/abstraction in the sensing system.

Second, we cleanly separate the space model from the sensing 

model, letting us treat the data in each independently. For ex-

ample, the sensing model’s implementation decides the length 

of time to retain readings. In contrast, the space model remains 

relatively static, but the LOC8 framework applies reasoning to its 

contents to infer additional spatial relationships from available 

geometric data.

Third, we’ve taken a cross-layered approach to LOC8’s design, 

recognizing that context and space information can play a role 

before and during the point of fusion. In contrast, the Location 

Stack introduces contextual fusion only in its highest layers.

Fourth, the Location Stack architecture includes an arrange-

ments layer, which uses information about the current probabi-

listic location estimates of multiple objects to identify relation-

ships between them, such as proximity or formation. This form 

of querying isn’t part of our framework’s core but is an extension 

that developers could build.

The Aura project’s space model combines hierarchical and co-

ordinate space models.4 Its interface extends traditional database 

SQL queries with spatial queries on the PostgreSQL database 

system, which improves performance and increases flexibility for 

location-aware applications. This location model supports flex-

ible conversion between different coordinate systems. We’ve ex-

tended this idea in our location model. Although we don’t con-

sider our implementation’s performance in the main article, we 

support the queries the Aura model identifies and extend them 

to support other forms, such as relative positioning.

Finally, MiddleWhere is a distributed middleware infrastructure 

for location that separates applications from location-sensing 

technologies.5 Similar to LOC8, it can add sensing technologies 

dynamically and transparently from an application perspective. 

However, the two approaches differ in uncertainty management. 

MiddleWhere provides Bayes-based probabilistic reasoning to 

fuse multiple sensor readings, whereas we focus on the generic 

representation of different sensor data and its quality. We expose 

this through the programming framework, providing an inter-

face to accommodate different sensor-fusion approaches.
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querying their contents. The fusion 
layer uses these APIs to calculate prob-
abilities for an entity’s position and pro-
vides a set of calls to invoke this func-
tionality. Finally, the model’s top layer 
supports application querying, provid-
ing modules for each of the four query 
categories.

Positioning Queries
The most common query is for locat-
ing an entity within a space model using 
available positioning data. LOC8 sup-
ports this through its positioning-query 
module. We can configure the query us-
ing six parameters:

•	 entity specifies the entity’s identifier.
•	 finestGranularity and coarsestGranularity 

constrain the result’s granularity 
(for example, coordinate, cubicle, or 
building).

•	 precision  specifies a proximate distance 
the querying application requires, 
which affects the confidence value 
calculation.

•	 startTime and endTime specify the tempo-
ral interval of interest.

The position query’s expanded inter-
face is as follows:

1.	 List<PositionResult> locate(Entity entity,
2.		  Granularity finestGranularity,
3.		  Granularity coarsestGranularity,
4.		  Distance requiredPrecision,  
		  DateTime startTime,
5.		  DateTime endTime);

The API provides more compact 
variants using parameters’ default val-
ues; for example, the time parameter 
defaults to the current time. Consider 
the following code for the positioning 
query, “Where is Bob?”:

1.	 Entity bob = sensorModel.getEntity(ENTITY_ 
	 URI + “Bob”);
2.	 List<PositionResult> results = positionQuery. 
	 locate(bob);
3.	 for (PositionResult result : results) {
4.		  if (result.getLocation(). 
		  hasSymbolicRepresentation()) {
5.			   System.out.printf(“%s - %s\n”,
6.			   result.getLocation(). 
			   asSymbolicRepresentation(),
7.			   result.getConfidence());
8.		  }
9.	 }

In this code, we use the query API to 
obtain a list of candidates for Bob’s 
current position (lines 1 and 2). We 
then check whether each result has 

an associated symbolic representation 
(line 4). If so, we print that representa-
tion’s name to the console, along with 
its associated confidence value (lines 5 
through 7). 

If the environment contains multiple 
positioning systems, we apply sensor 
fusion within the locate() method. This 
is a three-step procedure (see Figure 4):

	 1.	Get all observations that satisfy 
the query’s input requirements, 
including entity, time span, gran-
ularity, and precision. Transform 
them into to a triple consisting of 
the reading’s starting time, a posi-
tion ordered from finest granular-
ity to required granularity, and a 
confidence value that’s the sensor’s 
accuracy at the query’s required 
precision.

	 2.	Pass the triples to the sensor-fusion 
method fuse(). Developers can ap-
ply customized sensor-fusion tech-
niques to fuse(). We’ve implemented 
a simple fuzzy-based fuse() that or-
ganizes the collected readings in a 
tree structure according to their 
granularity and that uses fuzzy 
logic to update and integrate the 
confidences on this location data.

	 3.	Order the results according to their 

Query layer

Fusion layer

Space
model

Context
model

Sensing model

Abstraction

Sensing

PositionQuery.locate()

Positioning system 1

Positioning system 2

Positioning system n
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this method with other 
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i, loc 1

i, cnf 1) ...
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j, loc 2

j, cnf 2) ...

... (t n
k, loc n

k, cnf n) ...

Figure 3. LOC8’s architecture. Sensors 
provide raw data, which is translated 
to our model and mapped to entity 
and space descriptions. An interface for 
performing sensor fusion is exposed, 
while the top layer of the framework 
provides application developers with an 
API for common query types.

Figure 4. Sensor fusion in the positioning-query module. All entity observations 
that satisfy a query’s constraints are collected and passed to the fuse() method. 
Developers can implement customized fuse() methods to integrate the readings’ 
confidence levels and resolve an entity’s position.
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granularity of location, confidence, 
and time.

If we’re interested in Bob’s coordi-
nate position rather than the symbolic 
name associated with his position, we 
must address two issues:

•	 how to translate results into a target 
coordinate system, and

•	 how to deal with situations in which 
a symbolic location has no explicit 
geometry.

To address the first issue, we translate 
the coordinate system using the ap-
proach described earlier. For the second 
issue, we estimate geometry by assum-
ing a space’s boundary is the composite 
of all its subspaces. If no such informa-
tion is available, we approximate by in-
heriting the geometry of a space’s super
space. Clearly, this process’s success 
depends on the amount of geometric 
information available and might not be 
suitable for all applications. So, devel-
opers can use hasExplicitGeometricRegion() and 
estimateGeometricRegion() at their discretion.

The following code illustrates the 
task of plotting Bob’s position on a 
map:

1.	 Entity bob = sensorModel.getEntity(ENTITY_ 
	 URI + “Bob”);
2.	 PositionResult result = positionQuery. 
	 locateMax(bob);
3.	 Coordinate centerPoint = result.getLocation()
4.		  .asGeometricRegion().centerPoint();
5.		  Coordinate translatedPoint = CoordinateUtils
6.		  .convert(centerPoint, mapCRS);
7.	 map.plot(bob, translatedPoint);

We calculate Bob’s position as we did 
in the previous example, this time us-
ing locateMax() to return only the result 
with the highest confidence at the finest 
granularity (lines 1 and 2). Assuming 
Bob’s location has an associated geo-
metric region, we use his position as 
that region’s center point (lines 3 and 
4), transform it to the map’s coordinate 
system (lines 5 and 6), and call the ap-
plication plot method (line 7).

Range Queries
Essentially the inverse of a position 
query, a range query identifies all en-
tities in a location that match certain 
criteria. There are four input param-
eters: space, the region whose contents 
we’re interested in; startTime and endTime, 
the time span we’re interested in; and 
entityType, the entity class to locate. Each 
result consists of a reference to a located 
entity and a confidence value represent-
ing the likelihood that the entity is in 
the location at the given time. The in-
terface for the range query is as follows:

1.	 List<RangeResult> in(Space space,  
	 Class entityType,
2.		  DateTime startTime, DateTime endTime);

As with position queries, this method 
has several variants. The query defaults 
to returning all locatable entities cur-
rently in the specified location if the 
querier omits time and entity type 
parameters.

To compute a result for a range 
query, we first query the entity model 
for the entities matching the specified 
type. We then use positioning queries 
to locate each entity. Finally, we check 

whether each positioning query’s result 
matches, or is a subspace of, the speci-
fied location. 

We code the range question, “Who 
is in the CASL building?” as follows:

1.	 Space casl = spaceModel.getSpace(MAP_URI +  
	 “CASL”);
2.	 List<RangeResult> results = rangeQuery. 
	 in(casl,Person.class);
3.	 for (RangeResult result : results) {
4.		  System.out.printf(“%s - %s\n”,
5.		  result.getEntity(),
6.		  result.getConfidence());
7.	 }

We first obtain a reference to the space, 
which we use to execute a query to find 
all people in the region (lines 1 and 2). 
An iterator over the results prints the 
set of entities along with the confidence 
in each result (lines 3 through 7).

Spatial-Relation Queries
The spatial-relation module provides a 
set of methods for applications in which 
relations between locations are impor-
tant. The API’s most basic method, re-
lationship(), accepts two locations as pa-
rameters and checks for containment, 
adjacency, overlap, and connectedness. 
Containment, adjacency, and overlap 
relationships are either expressed di-
rectly in the model or calculated in pre-
processing at runtime by comparing the 
geometric regions’ boundaries. Map 
designers must explicitly express con-
nectedness. If none of these relation-
ships exist between the spaces, the next 
step is to calculate the compass relative 
position between the two locations. If 
the locations don’t share a common 
CRS and can’t be translated to a com-
mon CRS, the query is unanswerable.

We use several variants of the closest() 
method to find proximate entities. Its 

input parameters follow the same pat-
tern as the previous queries, with the 
space parameter providing an outer 
boundary for the search. We then cal-
culate the results’ positions relative to 
the target entity and order them from 
closest to farthest. The method signa-
ture is as follows:

1.	 List<ProximityResult> closest(Entity entity,
2.		  Space boundary, Class entityType,
3.		  DateTime startTime, DateTime endTime);

Consider a spatial-relation query in 
which we want to find the shop nearest 

Essentially the inverse of a position query,	

a range query identifies all entities	

in a location that match certain criteria.
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Bob. To represent the answer symboli-
cally or as a coordinate, we use the ap-
proaches we just described. However, 
the final representation we identify is 
a relative position—for instance, 100 

meters northwest. We achieve this by 
computing the distance and bearing be-
tween the points:

1.	 Entity bob = sensorModel.getEntity(ENTITY_ 
	 URI + “Bob”);
2.	 Space campus = spaceModel.getSpace(MAP_ 
	 URI + “UCD”);
3.	 List<ProximityResult> results = relationQuery
4.		  .closest(bob, campus, Shop.class);
5.	 for (ProximityResult result : results) {
6.		  CompassLocation rel = result.getLocation()
7.		  .asCompassRelative(bob);
8.		  System.out.printf(“%s relative to %s:  
		  (%d %d)\n”,
9.		  bob, result.getEntity(), rel.getDistance(),
10.	 rel.getHorizontalAngle());
11.	}

We look up the objects for Bob and 
for the University College Dublin cam-
pus, which we use to limit the search 
space (lines 1 and 2). We then execute 
the query, limiting the search to entities 
that are shops (lines 3 and 4). The result 
is an ordered list of shops, from closest 
to farthest away. We iterate through the 
results, displaying the distance and hor-
izontal angle between Bob and the tar-
get shop for each (lines 5 through 11).

Navigation Queries
The navigation-query module sup-
ports pathfinding between the mod-
el’s different regions using a selection 
of path() methods that takes two pa-
rameters—source and destination—which 
can be locations or entities. Methods 
that accept entities as parameters first 
calculate the entities’ positions using 

the position-query module before pro-
ceeding in the same manner as if the 
developers had passed a location. The 
basic pathfinding algorithm works as 
follows:

	 1.	Check whether the source and des-
tination locations are the same.

	 2.	If the locations are the same, return 
the answer.

	 3.	If the locations aren’t the same, 
recursively call the pathfinding al-
gorithm using each location con-
nected to the source location as the 
new source, keeping track of paths 
to avoid cycles.

The algorithm has two versions—
one that terminates after finding a path 
and another that searches all paths. 
This algorithm’s current implementa-
tion is suited only for evaluating paths 
through small space models. Consid-
ering source and destination locations 
with different granularities—for ex-
ample, from Bob’s desk to the coffee 
area—increases the complexity. Im-
proving this approach is a possible area 
of future research.

The navigation-query module can 
also calculate the distance between two 
locations. It determines the point-to-
point Euclidian distance by first evalu-
ating each location’s center point. If the 
connection relationship metadata pro-
vides the accessible distance, it can also 
calculate the path-accessible distance.

Extending the previous example, the 
following code calculates the path be-
tween Bob and the nearest shop:

1.	 Path path = navigationQuery.path(bob,  
	 nearestShop)
2.	 for (Step step : path.steps()) {
3.		  System.out.printf(“from %s to %s (%d)\n”,
4.		  step.getSource(),

5.		  step.getDestination(),
6.		  step.pathDistance());
7.	 }

After the query executes (line 1), we 
iterate through each step in the path, 
printing out the details and the path-
accessible distance for each (lines 2 
through 7).

Combination Queries
Constructing more sophisticated que-
ries that use the core queries we just 
described can simplify application de-
velopment. Consider a scenario from 
the Cooperative Object Detection and 
Ranging (Codar) system demonstra-
tion12 in which two cars are heading 
for a collision (see Figure 5). We want 
to construct a service that predicts po-
tential collisions and calculates their 
time and location. Here’s an outline of 
a simple implementation of this service:

1.	 PositionResult locA = positionQuery. 
	 locateMax(carA);
2.	 PositionResult locB = positionQuery. 
	 locateMax(carB);
3.	 CompassLocation rel = locB. 
	 asCompassRelative(locA);
4.	 …
5.	 Double degree = rel.getHorizontalAngle();
6.	 if ((velocity(carB)/velocity(carA))
7.		  == Math.abs(Math.tan(degree))) {
8.		  Double collisionTime = rel.getDistance()
9.			   / relativeVelocity(carB, carA);
10.	 ...
11.	}

Treating car A as a base location, we 
can deduce car B’s position relative to 
A using our relative-positioning que-
ries (lines 1 through 3). We can then 
calculate the rate at which the cars are 
approaching using the distance mea-
sure between them over a set of time 
instances (not shown). We estimate the 
time when the distances between the 
two cars will reach zero using B’s ve-
locity relative to A (lines 5 through 9).

Semantic Queries
We can also extend the query model 

We can also extend the query model 	

by integrating additional context 	

into the query process. 
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by integrating additional context into 
the query process. Consider building a 
query to report whether a person is at 
home. We achieve this using the follow-
ing code:

1.	 public boolean atHome(Entity person) {
2.		  boolean result = false;
3.		  Property residesIn = ResourceFactory
4.			   .createProperty(“http://example.com/ 
			   residesIn”);
5.		  PositionResult locA = positionQuery. 
		  locateMax(person);
6.		  if(person.hasProperty(residesIn, result. 
		  getLocation()) {
7.			   result = true;
8.		  }
9.		  for(Space space: result.getLocation(). 
		  containedBy()) {
10.			   if(person.hasProperty(residesIn, space)) {
11.				   result = true;
12			  }
13.	 }
14.	 return result;
15.  }

After we obtain a reference to the 
residesIn property (defined externally) 
(lines 2 and 3), we use the positioning-
query module to find the entity’s posi-
tion (lines 3 and 4). We then check to 
see whether this location, or any loca-
tion that contains it, is associated with 
the person by the residesIn property (lines 
6 through 12). Finally, the result is re-
turned (line 14).

Discussion
We developed core space and sensing 
models from our original requirements 
set and constructed a rich query model 
to support common application uses 
of location. Consequently, most per-
vasive computing systems that need to 

model or work with location can use 
LOC8.

Engineering Effort
LOC8 provides developers a well- 
structured, simplified approach for 
working with what’s essentially highly 
enriched sensor data. This requires 
engineering effort in terms of con-
structing a space map, integrating a 
new positioning system, and designing 
applications.

For the early adopter, using OWL 
involves a significant learning curve; 
an editing tool such as Protégé13 can 
ease the process. The language has 
several complexities, and its serial-
izations are visually unappealing and 
can be difficult to work with. To ease 
map construction, designers can apply 
translations to our model to existing 
map-drawing tools’ output format. 
Although we developed only a simple 
prototype of this feature using Archi
CAD, it demonstrates that designers 
can construct maps without getting 
their hands dirty. This also opens up 
the possibility of deriving maps di-
rectly from professional architectural 
drawings.

Mapping positioning systems to the 
sensing model also falls to early adopt-
ers, and is essentially free to other de-
velopers. Beyond interfacing directly 
with each positioning system—a re-
quirement for creating a stand-alone 
application—developers must use 
OWL to describe the sensor, its CRS, 

and its readings. This incurs a one-time 
cost for each positioning system.

Subsequent application developers 
will rarely use OWL—perhaps only 
when tagging locatable entities or de-
fining a local CRS if an existing one 
doesn’t suit. Most cases won’t require 
either of these steps. The framework 
provides a fully featured API for tra-
versing the space model, and the built-
in query modules support the execution 
of the core query types to meet most 
applications’ needs, as Christian Becker 
and Frank Durr identified.5

Flexibility and Extensibility
The space model’s loose coupling with 
other aspects of the model and develop-
ment process has clear benefits. Mod-
elers needn’t be concerned with how 
the application reads, interprets, or ac-
cesses the model, so they’re less likely 
to take shortcuts in the mapping pro-
cess. Using the established Measure-
ment Units Ontology (MUO; http://idi. 
fundacionctic.org/muo) to represent 
units of measurement mitigates po-
tential encoding bias from the model-
ing process, and the choice of OWL 
means that the space model is natu-
rally distributed. Developers can parti-
tion the responsibility for creating the 
model and integrate the results. This 
implies straightforward evolution of 
space models over time. In most cases, 
the developer needs to build the space 
model only once for any particular 
region. Once this initial cost is out of 
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Figure 5. A dynamic-location example: 
car collision prediction. We repeatedly 
evaluate the relative position of car B 
to car A over time to calculate the rate 
at which the cars are approaching. We 
can predict the estimated collision time 
using their relative velocity.
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the way, sharing the model across all  
applications requires zero effort.

Expressiveness
Because location has many meanings,1 
our model’s expressiveness is key to let-
ting location-aware services leverage 
its subtleties. Because our framework 
already supports positioning, range, 
spatial-relation, and navigation que-
ries, developers don’t need much code 
to perform them. Developers can de-
rive more complex location-based sce-
narios by combining these queries or 
incorporating additional semantics, 
as the car-collision prevention and  
residential-query scenarios show.

Consistency Checking
We check the consistency of developer-

declared spatial relationships when the 
maps are loaded. As we mentioned ear-
lier, we also use our ontological engines 
to infer spatial relationships, which we 
use to validate and complement the de-
clared relationships.

Future Improvements
We intend to further improve and refine 
our approach. Currently, our imple-
mentation supports only the modeling 
of Cartesian CRSs, although the addi-
tion of polar CRSs is straightforward. 
We also don’t yet support the modeling 
of elliptical CRSs. The exception to this 
is WGS 84, which, because of its ubiq-
uity (through GPS), we implemented di-
rectly into the Java model. Performing 
an accurate mapping from a Cartesian 
CRS to an elliptical one using the rota-

tion matrix and offset technique is im-
possible. To overcome this, we assume 
that over short distances we can treat 
WGS 84 as a linear system, which lets 
us perform the conversion. However, 
the greater the distance from the origin, 
the greater the error introduced.

Our sensing model assumes that a 
particular CRS’s axes share the same 
unit of measurement, which isn’t al-
ways true. We also model the sensor-
provided precision levels as a single 
value, which is another simplification. 
Depending on factors affecting the in-
stallation, as we’ve found from evalu-
ating our Ubisense installation, dif-
ferent precision levels are available on 
each axis. We could go even further 
and model precision at different points 
in the sensing system’s coverage area, 
but we remain unconvinced that the 
benefits would outweigh the added 
complexity.

T he key to supporting appli-
cation developers who work 
with location is by separat-
ing the concerns of map-

ping space, working with positioning 
systems, and querying data. Our goal 
in developing LOC8 was to construct 
a framework that glued these three ele-
ments together. Application developers 
don’t need an understanding of sensor 
system operation and can model spaces 
without concern for how the data will 
later be accessed.

We’re focused on optimizing the core 
query modules’ implementation and 
evaluating their performance. Beyond 
this, we intend to further explore the 
semantic queries to investigate the inte-
gration of additional context types into 
the querying process.

Our space and sensing ontologies 
are available

 
under an open source li-

cense to promote our model’s adoption 
and practical use by other research-
ers and developers in the community 
(http://ontonym.org). We plan to re-
lease the query framework code in the 
near future.
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