
28	 PERVASIVE computing� Published by the IEEE CS n 1536-1268/10/$26.00 © 2010 IEEE

L O C A T I O N - B A S E D S E R V I C E S

L ocation is a core concept in most
pervasive computing systems.
Beyond simple uses such as pin-
pointing an individual’s position
or identifying a region’s occupants,

location is a key index for richer querying of an
individual’s or environment’s context.

Although at first glance a simple concept, lo-
cation information’s representation has many
forms and subtleties, each suited to particu-
lar application classes.1 To provide application

developers with easy access
to location information, we
must support different posi-
tioning systems with varying
data formats as well as fusion
algorithms to estimate posi-
tion from multiple readings.
We also need a data access ap-
proach that hides this complex-
ity and heterogeneity from the
developer. This problem has no

general solution, necessitating specific frame-
works for working with specific kinds of data.

To meet the needs of location-based applica-
tions, we’ve developed lightweight space and
sensing models and a set of extensible compo-
nents that support customization and emerging

technologies. The space model supports a range
of geometric and relative-spatial-positioning
descriptions found in the literature. The sens-
ing model abstracts over various types of posi-
tioning systems and incorporates the capture of
uncertainty, serving as a foundation on which
developers can apply sensor-fusion techniques.
Our programming framework, LOC8, sits atop
the space and sensing models, providing a rich
API for querying location data and exploring its
many representations.

Requirements
A location model should support location data
representations from different positioning tech-
nologies and extensible metadata descriptions.
Many well-known systems can report an enti-
ty’s coordinate or symbolic position, from GPS
and Active Badge to more recent systems such
as Ubisense and the fingerprint-based position-
ing system.2 Beyond these are less conventional
and less expensive methods of reporting an en-
tity’s location. For example, a Bluetooth spot-
ter, which can detect the presence of mobile
phones, PDAs, and laptops, might position a de-
vice within 10 meters of a known point. We can
use this information to infer the device owner’s
position.

Using a location model supporting a range of expressive representations
for spaces, spatial relationships, and positioning systems, the authors
created LOC8, a programming framework for exploring location data’s
multifaceted representations and uses.

Graeme Stevenson
and Juan Ye
University College Dublin

Simon Dobson
University of St. Andrews

Paddy Nixon
University College Dublin

LOC8: A Location
Model and Extensible
Framework for
Programming
with Location

JANUARY–MARCH 2010	 PERVASIVE computing� 29

Environments frequently contain
multiple positioning systems, so trans-
lating readings into a common language
of location-centric primitives is impor-
tant. Because no positioning technol-
ogy claims to provide perfect accuracy,
this language must also provide quality
measures to support sensor-fusion tech-
niques for uncertain data. Quantifying
uncertainty associated with positioning
systems has proved a hot topic in recent
years.3,4

A space model provides a set of prim-
itives that allow descriptions of regions
of space and the relationships between
them. Such primitives must support the
mapping of positioning systems’ differ-
ent data formats while being expressive
enough to support common application
queries.

Christian Becker and Frank Durr
divide these queries into four catego-
ries: positioning, range, nearest neigh-
bor (spatial relation), and navigation.5
These queries have led to more complex
uses of location. Such higher-level que-
ries require flexible conversion between
different location representations—for
example,

•	 building a relative spatial relation-
ship between two mobile entities, or

•	 translating a track of an entity’s
physical positions to a summary of
its movement pattern or to its speed
and heading.6

Increasingly, researchers don’t treat
location information as independent
but rather as tightly bound to user ac-
tivity, intention, and interaction. The
extension of semantics in location is
a popular research topic, underpin-
ning many potential context-aware
applications.1

Realizing the Space Model
To represent our space model,7 we chose
the Web Ontology Language (OWL)
because of its high-quality tool support
and the applicability of reasoners and
rules to help identify relationships be-
tween points and regions. At the heart

of our ontology are the SymbolicRepre-
sentation, GeometricRegion, and RelativeLoca-
tion classes, which model the human-
friendly names and geometric extents of
regions (such as rooms and buildings)
and their physical relationships to other
parts of the model.

Coordinates have an associated co-
ordinate reference system (CRS), which
can be a global standard or locally de-
fined to simplify a region’s spatial rep-
resentation. For example, if an appli-
cation is bound to a single building, it
makes more sense to define a local coor-
dinate system than to use the WGS 84

coordinate system. Translations from
one CRS to another are described by an
origin point and a rotation matrix. The
origin is the displacement of the new
CRS relative to its reference CRS, and
the rotation matrix describes changes
to rotation of the x-, y-, and z-axes. We
used Chianghao Jiang and Peter Steen-
kiste’s model8 to convert coordinates
from one CRS to another. Geometric
regions consist of one or more 2D or
3D geometric shapes, each defined by a
set of coordinates; symbolic represen-
tations take the form of an individual
associated with a descriptive label.

Developers must assign each space
a granularity (the granularity property),
whose possible values, such as coordi-
nate, room, and city, are defined in the
model and are customizable. This al-
lows flexibility in that developers can
redefine granularities to suit different
applications. The querying process uses
granularities to request an entity’s loca-
tion at a particular resolution.

Our model supports four spatial re-
lationships: containment, adjacency,
connectedness, and overlap. Contain-
ment, adjacency, and overlap are what
their names suggest. Connectedness is

a particular case of adjacency, in which
an entity can pass from a space to its
adjacent space. The relationship might
specify a third location, such as an exit
or elevator, that enables the transition.
Connectedness is a rich relationship,
implying both the passage’s direction
and the notion of an accessible (rather
than a straight-line) distance between
the related locations.

We also provide two types of relative
representation: center and compass.7
In the center representation, a target
location is a geometric area, such as
a circle or a cuboid, whose center is

a coordinate—or a reference loca-
tion’s center point—and whose edge
or diameter length is twice a speci-
fied distance. The compass represen-
tation involves building a CRS whose
origin is a coordinate—or a reference
location’s center point—and whose
rotation matrix follows the standard
compass directions. In this CRS, the
target location’s description contains
a distance to its origin; the horizontal
angle to the target location, measured
clockwise from north; and the angle
of elevation from the horizontal plane.

For some maps, specifying a set of
symbolic regions and their spatial re-
lationships will suffice. Maps that de-
fine region geometry let reasoners infer
some symbolic relationships, such as
containment and adjacency, and esti-
mate missing geometry.

Realizing the Sensing Model
The sensing model maps the reported
positions of entities—for example,
a person, locatable tag, or wireless
device—to points and regions in our
space model. (For an overview of the
high-level ontologies we use to describe
our applications, see “Ontonym: A

A space model provides a set of primitives 	

that allow descriptions of regions of space 	

and the relationships between them.

30	 PERVASIVE computing� www.computer.org/pervasive

LOCATION-BASED SERVICES

Collection of Upper Ontologies for De-
veloping Pervasive Systems.”9) Again,
the essential part of this process is cap-
turing metadata associated with the
sensing process.

We adopt a standard approach to rep-
resenting the sensed data’s characteris-
tics and imperfections by using a quality
matrix, which satisfies the sensing mod-
el’s uncertainty measure requirement.

The quality matrix consists of granu-
larity, frequency, coverage, and a list of
accuracy and precision pairs.10 Granu-
larity is the smallest spatial element per-
ceivable. Frequency is the sample rate—
how often a sensor generates readings.
The sensor manufacturers’ technical
specifications determine these proper-
ties’ values. Coverage is the extent of
space in which an entity’s position can
be sensed; the accuracy and precision
pairs, which might be multiply defined,
describe the probability that an entity’s
true position is within a given distance
of the reported value. For example, with
our Ubisense installation in University
College Dublin’s Complex and Adap-
tive Systems Laboratory (CASL) build-
ing, we achieve 70 percent accuracy
with two meters’ precision. Although
our general quality matrix works with
most positioning sensors, it isn’t defini-
tive, and we encourage its extension.

All data that a sensor adds to the
model references the sensor’s quality
matrix. Figure 1 describes the granular-
ity, frequency, coverage, and precision-
accuracy pairs associated with our
Ubisense sensor; Figure 2 describes a
sample reading. Both figures use No-
tation 3 (www.w3.org/DesignIssues/
Notation3), a compact Resource De-
scription Framework (RDF) syntax.

The about property relates the reading
to a particular entity, and the observedBy
property relates the reading to the sen-
sor that provided it. The value property
indicates the position at which the sen-
sor located the entity—in this case, a
3D coordinate. Finally, the temporal-
Dimension property specifies the time
span over which developers should re-
gard the reading’s value as reflecting the
entity’s true position.

Developers can easily add a position-
ing system to the model, which requires
only that they define its metamodel and
write a software adapter to transform
sensor-reported positions to our model.
Optionally, if the positioning system re-
ports coordinates, developers can spec-
ify the necessary information to trans-
late points from its CRS to another CRS.

example:CASLUbisense
 a sensor:Sensor ;
 sensor:coverage map:3f , map:4f ;
 sensor:frequency [...] ;
 sensor:granularity map:coordinateGranularity ;
 sensor:precisionAccuracy
 [a sensor:PrecisionAccuracy ;
 sensor:accuracy “0.7” ;
 sensor:precision
 [a muo:QualityValue ;
 muo:measuredIn ucum:meter ;
 muo:numericalValue “2”
]
];
 sensor:precisionAccuracy [...]
 sensor:rateOfChange [...] .

example:reading
 a sensor:Observation ;
 sensor:about ubitag:010131789 ;
 sensor:observedAt [...] ;
 sensor:temporalDimension [...] ;
 sensor:observedBy example:CASLUbisense ;
 sensor:value
 [a location:Coordinate ;
 location:referenceCoordinateSystem
 example:ubisenseCoordinateSystem ;
 location:x “1.15” ;
 location:y “3.67” ;
 location:z “21.35”
].

Figure 1. An abridged description of University College Dublin’s Complex and
Adaptive Systems Laboratory (CASL) Ubisense sensor and its metadata. The sensor
covers the third and fourth floors of the CASL building, and is accurate to within two
meters of a Ubitag’s true position 70 percent of the time. Distance descriptions use
the Measurement Units Ontology (MUO), giving a basis for transforming between
different representations.

Figure 2. An abridged reading produced by the CASL Ubisense sensor described
in Figure 1. A Ubitag is related to a 3D coordinate position within the Ubisense
coordinate system. The observation time and the source of the reading are also
indicated.

JANUARY–MARCH 2010	 PERVASIVE computing� 31

Using the
Programming Framework
On the basis of Jeffrey Hightower and
his colleagues’ Location Stack architec-
ture11 (see the “Related Work in Loca-
tion Modeling” sidebar), we developed
the LOC8 framework in Java to sup-

port querying of the space and sensing
models we constructed. Figure 3 shows
LOC8’s architecture. The sensing layer
reports positioning data as coordi-
nates, symbolic locations, or relative
positions; the abstraction layer converts
raw sensor data into the OWL repre-

sentation. As part of this process, the
abstraction layer can query the context
and space models to find the correct
references for resources representing
particular regions, people, or locat-
able objects. The context, sensing, and
space models provide standard APIs for

Nexus is an early open platform providing a foundation that

makes developing location-aware applications easier.1 The Nexus

platform’s core is a common augmented-world model that sup-

ports representation of the location of static real-world entities,

such as buildings or trains, and virtual entities with which the

real world is augmented, such as virtual billboards. Its query lan-

guage, Augmented World Query Language (AWQL), supports

basic spatial queries including inside, overlaps, includes, excludes, and

closest. In LOC8 (see the main article), we use a loosely coupled

modeling technique that treats location information indepen-

dently from other forms of context. This lets us treat all locatable

objects in the same way, irrespective of their property structure,

real or virtual status, and use by applications.

The Location Stack is a successful software engineering model

that structures location-aware services components into a lay-

ered system architecture with robust separation of concerns.2,3

Our model is based on the Location Stack but differs in four main

respects. First, the Location Stack’s measurements layer reports

data from sensors at a lower level than we support, including

distance, angle, and proximity. We decided to deal only with

observations at the position level—for example, coordinate and

symbolic—because most technologies tend to perform this cal-

culation/abstraction in the sensing system.

Second, we cleanly separate the space model from the sensing

model, letting us treat the data in each independently. For ex-

ample, the sensing model’s implementation decides the length

of time to retain readings. In contrast, the space model remains

relatively static, but the LOC8 framework applies reasoning to its

contents to infer additional spatial relationships from available

geometric data.

Third, we’ve taken a cross-layered approach to LOC8’s design,

recognizing that context and space information can play a role

before and during the point of fusion. In contrast, the Location

Stack introduces contextual fusion only in its highest layers.

Fourth, the Location Stack architecture includes an arrange-

ments layer, which uses information about the current probabi-

listic location estimates of multiple objects to identify relation-

ships between them, such as proximity or formation. This form

of querying isn’t part of our framework’s core but is an extension

that developers could build.

The Aura project’s space model combines hierarchical and co-

ordinate space models.4 Its interface extends traditional database

SQL queries with spatial queries on the PostgreSQL database

system, which improves performance and increases flexibility for

location-aware applications. This location model supports flex-

ible conversion between different coordinate systems. We’ve ex-

tended this idea in our location model. Although we don’t con-

sider our implementation’s performance in the main article, we

support the queries the Aura model identifies and extend them

to support other forms, such as relative positioning.

Finally, MiddleWhere is a distributed middleware infrastructure

for location that separates applications from location-sensing

technologies.5 Similar to LOC8, it can add sensing technologies

dynamically and transparently from an application perspective.

However, the two approaches differ in uncertainty management.

MiddleWhere provides Bayes-based probabilistic reasoning to

fuse multiple sensor readings, whereas we focus on the generic

representation of different sensor data and its quality. We expose

this through the programming framework, providing an inter-

face to accommodate different sensor-fusion approaches.

REFERENCES

	 1.	 F. Hohl et al., “Next Century Challenges: Nexus—an Open Global In-
frastructure for Spatial-Aware Applications,” Proc. 5th Ann. ACM/IEEE
Int’l Conf. Mobile Computing and Networking (MobiCom 99), ACM
Press, 1999, pp. 249–255.

	 2.	 J. Hightower, B. Brumitt, and G. Borriello, “The Location Stack: A
Layered Model for Location in Ubiquitous Computing,” Proc. 4th
Workshop Mobile Computing Systems and Applications (WMCSA 02),
IEEE CS Press, 2002, pp. 22–28.

	 3.	 A. LaMarca et al., “Delivering Real-World Ubiquitous Location Sys-
tems,” Comm. ACM, vol. 48, no. 3, pp. 36–41.

	 4.	 C. Jiang and P. Steenkiste, “A Hybrid Location Model with a Comput-
able Location Identifier for Ubiquitous Computing,” Proc. 4th Int’l
Conf. Ubiquitous Computing (UbiComp 02), LNCS 2498, Springer,
2002, pp. 246–263.

	 5.	 A. Ranganathan et al., “MiddleWhere: A Middleware for Location
Awareness in Ubiquitous Computing Applications,” Proc. 5th ACM/
IFIP/Usenix Int’l Conf. Middleware, Springer, 2004, pp. 397–416.

Related Work in Location Modeling

32	 PERVASIVE computing� www.computer.org/pervasive

LOCATION-BASED SERVICES

querying their contents. The fusion
layer uses these APIs to calculate prob-
abilities for an entity’s position and pro-
vides a set of calls to invoke this func-
tionality. Finally, the model’s top layer
supports application querying, provid-
ing modules for each of the four query
categories.

Positioning Queries
The most common query is for locat-
ing an entity within a space model using
available positioning data. LOC8 sup-
ports this through its positioning-query
module. We can configure the query us-
ing six parameters:

•	 entity specifies the entity’s identifier.
•	 finestGranularity and coarsestGranularity

constrain the result’s granularity
(for example, coordinate, cubicle, or
building).

•	 precision specifies a proximate distance
the querying application requires,
which affects the confidence value
calculation.

•	 startTime and endTime specify the tempo-
ral interval of interest.

The position query’s expanded inter-
face is as follows:

1.	 List<PositionResult> locate(Entity entity,
2.		 Granularity finestGranularity,
3.		 Granularity coarsestGranularity,
4.		 Distance requiredPrecision,
		 DateTime startTime,
5.		 DateTime endTime);

The API provides more compact
variants using parameters’ default val-
ues; for example, the time parameter
defaults to the current time. Consider
the following code for the positioning
query, “Where is Bob?”:

1.	 Entity bob = sensorModel.getEntity(ENTITY_
	 URI + “Bob”);
2.	 List<PositionResult> results = positionQuery.
	 locate(bob);
3.	 for (PositionResult result : results) {
4.		 if (result.getLocation().
		 hasSymbolicRepresentation()) {
5.			 System.out.printf(“%s - %s\n”,
6.			 result.getLocation().
			 asSymbolicRepresentation(),
7.			 result.getConfidence());
8.		 }
9.	 }

In this code, we use the query API to
obtain a list of candidates for Bob’s
current position (lines 1 and 2). We
then check whether each result has

an associated symbolic representation
(line 4). If so, we print that representa-
tion’s name to the console, along with
its associated confidence value (lines 5
through 7).

If the environment contains multiple
positioning systems, we apply sensor
fusion within the locate() method. This
is a three-step procedure (see Figure 4):

	 1.	Get all observations that satisfy
the query’s input requirements,
including entity, time span, gran-
ularity, and precision. Transform
them into to a triple consisting of
the reading’s starting time, a posi-
tion ordered from finest granular-
ity to required granularity, and a
confidence value that’s the sensor’s
accuracy at the query’s required
precision.

	 2.	Pass the triples to the sensor-fusion
method fuse(). Developers can ap-
ply customized sensor-fusion tech-
niques to fuse(). We’ve implemented
a simple fuzzy-based fuse() that or-
ganizes the collected readings in a
tree structure according to their
granularity and that uses fuzzy
logic to update and integrate the
confidences on this location data.

	 3.	Order the results according to their

Query layer

Fusion layer

Space
model

Context
model

Sensing model

Abstraction

Sensing

PositionQuery.locate()

Positioning system 1

Positioning system 2

Positioning system n

fuse()

Collect readings Pass to fuse() method

Developers can override
this method with other

sensor-fusion techniques

Collect result

……

... (t 1
i, loc 1

i, cnf 1) ...

... (t 2
j, loc 2

j, cnf 2) ...

... (t n
k, loc n

k, cnf n) ...

Figure 3. LOC8’s architecture. Sensors
provide raw data, which is translated
to our model and mapped to entity
and space descriptions. An interface for
performing sensor fusion is exposed,
while the top layer of the framework
provides application developers with an
API for common query types.

Figure 4. Sensor fusion in the positioning-query module. All entity observations
that satisfy a query’s constraints are collected and passed to the fuse() method.
Developers can implement customized fuse() methods to integrate the readings’
confidence levels and resolve an entity’s position.

JANUARY–MARCH 2010	 PERVASIVE computing� 33

granularity of location, confidence,
and time.

If we’re interested in Bob’s coordi-
nate position rather than the symbolic
name associated with his position, we
must address two issues:

•	 how to translate results into a target
coordinate system, and

•	 how to deal with situations in which
a symbolic location has no explicit
geometry.

To address the first issue, we translate
the coordinate system using the ap-
proach described earlier. For the second
issue, we estimate geometry by assum-
ing a space’s boundary is the composite
of all its subspaces. If no such informa-
tion is available, we approximate by in-
heriting the geometry of a space’s super
space. Clearly, this process’s success
depends on the amount of geometric
information available and might not be
suitable for all applications. So, devel-
opers can use hasExplicitGeometricRegion() and
estimateGeometricRegion() at their discretion.

The following code illustrates the
task of plotting Bob’s position on a
map:

1.	 Entity bob = sensorModel.getEntity(ENTITY_
	 URI + “Bob”);
2.	 PositionResult result = positionQuery.
	 locateMax(bob);
3.	 Coordinate centerPoint = result.getLocation()
4.		 .asGeometricRegion().centerPoint();
5.		 Coordinate translatedPoint = CoordinateUtils
6.		 .convert(centerPoint, mapCRS);
7.	 map.plot(bob, translatedPoint);

We calculate Bob’s position as we did
in the previous example, this time us-
ing locateMax() to return only the result
with the highest confidence at the finest
granularity (lines 1 and 2). Assuming
Bob’s location has an associated geo-
metric region, we use his position as
that region’s center point (lines 3 and
4), transform it to the map’s coordinate
system (lines 5 and 6), and call the ap-
plication plot method (line 7).

Range Queries
Essentially the inverse of a position
query, a range query identifies all en-
tities in a location that match certain
criteria. There are four input param-
eters: space, the region whose contents
we’re interested in; startTime and endTime,
the time span we’re interested in; and
entityType, the entity class to locate. Each
result consists of a reference to a located
entity and a confidence value represent-
ing the likelihood that the entity is in
the location at the given time. The in-
terface for the range query is as follows:

1.	 List<RangeResult> in(Space space,
	 Class entityType,
2.		 DateTime startTime, DateTime endTime);

As with position queries, this method
has several variants. The query defaults
to returning all locatable entities cur-
rently in the specified location if the
querier omits time and entity type
parameters.

To compute a result for a range
query, we first query the entity model
for the entities matching the specified
type. We then use positioning queries
to locate each entity. Finally, we check

whether each positioning query’s result
matches, or is a subspace of, the speci-
fied location.

We code the range question, “Who
is in the CASL building?” as follows:

1.	 Space casl = spaceModel.getSpace(MAP_URI +
	 “CASL”);
2.	 List<RangeResult> results = rangeQuery.
	 in(casl,Person.class);
3.	 for (RangeResult result : results) {
4.		 System.out.printf(“%s - %s\n”,
5.		 result.getEntity(),
6.		 result.getConfidence());
7.	 }

We first obtain a reference to the space,
which we use to execute a query to find
all people in the region (lines 1 and 2).
An iterator over the results prints the
set of entities along with the confidence
in each result (lines 3 through 7).

Spatial-Relation Queries
The spatial-relation module provides a
set of methods for applications in which
relations between locations are impor-
tant. The API’s most basic method, re-
lationship(), accepts two locations as pa-
rameters and checks for containment,
adjacency, overlap, and connectedness.
Containment, adjacency, and overlap
relationships are either expressed di-
rectly in the model or calculated in pre-
processing at runtime by comparing the
geometric regions’ boundaries. Map
designers must explicitly express con-
nectedness. If none of these relation-
ships exist between the spaces, the next
step is to calculate the compass relative
position between the two locations. If
the locations don’t share a common
CRS and can’t be translated to a com-
mon CRS, the query is unanswerable.

We use several variants of the closest()
method to find proximate entities. Its

input parameters follow the same pat-
tern as the previous queries, with the
space parameter providing an outer
boundary for the search. We then cal-
culate the results’ positions relative to
the target entity and order them from
closest to farthest. The method signa-
ture is as follows:

1.	 List<ProximityResult> closest(Entity entity,
2.		 Space boundary, Class entityType,
3.		 DateTime startTime, DateTime endTime);

Consider a spatial-relation query in
which we want to find the shop nearest

Essentially the inverse of a position query,	

a range query identifies all entities	

in a location that match certain criteria.

34	 PERVASIVE computing� www.computer.org/pervasive

LOCATION-BASED SERVICES

Bob. To represent the answer symboli-
cally or as a coordinate, we use the ap-
proaches we just described. However,
the final representation we identify is
a relative position—for instance, 100

meters northwest. We achieve this by
computing the distance and bearing be-
tween the points:

1.	 Entity bob = sensorModel.getEntity(ENTITY_
	 URI + “Bob”);
2.	 Space campus = spaceModel.getSpace(MAP_
	 URI + “UCD”);
3.	 List<ProximityResult> results = relationQuery
4.		 .closest(bob, campus, Shop.class);
5.	 for (ProximityResult result : results) {
6.		 CompassLocation rel = result.getLocation()
7.		 .asCompassRelative(bob);
8.		 System.out.printf(“%s relative to %s:
		 (%d %d)\n”,
9.		 bob, result.getEntity(), rel.getDistance(),
10.	 rel.getHorizontalAngle());
11.	}

We look up the objects for Bob and
for the University College Dublin cam-
pus, which we use to limit the search
space (lines 1 and 2). We then execute
the query, limiting the search to entities
that are shops (lines 3 and 4). The result
is an ordered list of shops, from closest
to farthest away. We iterate through the
results, displaying the distance and hor-
izontal angle between Bob and the tar-
get shop for each (lines 5 through 11).

Navigation Queries
The navigation-query module sup-
ports pathfinding between the mod-
el’s different regions using a selection
of path() methods that takes two pa-
rameters—source and destination—which
can be locations or entities. Methods
that accept entities as parameters first
calculate the entities’ positions using

the position-query module before pro-
ceeding in the same manner as if the
developers had passed a location. The
basic pathfinding algorithm works as
follows:

	 1.	Check whether the source and des-
tination locations are the same.

	 2.	If the locations are the same, return
the answer.

	 3.	If the locations aren’t the same,
recursively call the pathfinding al-
gorithm using each location con-
nected to the source location as the
new source, keeping track of paths
to avoid cycles.

The algorithm has two versions—
one that terminates after finding a path
and another that searches all paths.
This algorithm’s current implementa-
tion is suited only for evaluating paths
through small space models. Consid-
ering source and destination locations
with different granularities—for ex-
ample, from Bob’s desk to the coffee
area—increases the complexity. Im-
proving this approach is a possible area
of future research.

The navigation-query module can
also calculate the distance between two
locations. It determines the point-to-
point Euclidian distance by first evalu-
ating each location’s center point. If the
connection relationship metadata pro-
vides the accessible distance, it can also
calculate the path-accessible distance.

Extending the previous example, the
following code calculates the path be-
tween Bob and the nearest shop:

1.	 Path path = navigationQuery.path(bob,
	 nearestShop)
2.	 for (Step step : path.steps()) {
3.		 System.out.printf(“from %s to %s (%d)\n”,
4.		 step.getSource(),

5.		 step.getDestination(),
6.		 step.pathDistance());
7.	 }

After the query executes (line 1), we
iterate through each step in the path,
printing out the details and the path-
accessible distance for each (lines 2
through 7).

Combination Queries
Constructing more sophisticated que-
ries that use the core queries we just
described can simplify application de-
velopment. Consider a scenario from
the Cooperative Object Detection and
Ranging (Codar) system demonstra-
tion12 in which two cars are heading
for a collision (see Figure 5). We want
to construct a service that predicts po-
tential collisions and calculates their
time and location. Here’s an outline of
a simple implementation of this service:

1.	 PositionResult locA = positionQuery.
	 locateMax(carA);
2.	 PositionResult locB = positionQuery.
	 locateMax(carB);
3.	 CompassLocation rel = locB.
	 asCompassRelative(locA);
4.	 …
5.	 Double degree = rel.getHorizontalAngle();
6.	 if ((velocity(carB)/velocity(carA))
7.		 == Math.abs(Math.tan(degree))) {
8.		 Double collisionTime = rel.getDistance()
9.			 / relativeVelocity(carB, carA);
10.	 ...
11.	}

Treating car A as a base location, we
can deduce car B’s position relative to
A using our relative-positioning que-
ries (lines 1 through 3). We can then
calculate the rate at which the cars are
approaching using the distance mea-
sure between them over a set of time
instances (not shown). We estimate the
time when the distances between the
two cars will reach zero using B’s ve-
locity relative to A (lines 5 through 9).

Semantic Queries
We can also extend the query model

We can also extend the query model 	

by integrating additional context 	

into the query process.

JANUARY–MARCH 2010	 PERVASIVE computing� 35

by integrating additional context into
the query process. Consider building a
query to report whether a person is at
home. We achieve this using the follow-
ing code:

1.	 public boolean atHome(Entity person) {
2.		 boolean result = false;
3.		 Property residesIn = ResourceFactory
4.			 .createProperty(“http://example.com/
			 residesIn”);
5.		 PositionResult locA = positionQuery.
		 locateMax(person);
6.		 if(person.hasProperty(residesIn, result.
		 getLocation()) {
7.			 result = true;
8.		 }
9.		 for(Space space: result.getLocation().
		 containedBy()) {
10.			 if(person.hasProperty(residesIn, space)) {
11.				 result = true;
12			 }
13.	 }
14.	 return result;
15. }

After we obtain a reference to the
residesIn property (defined externally)
(lines 2 and 3), we use the positioning-
query module to find the entity’s posi-
tion (lines 3 and 4). We then check to
see whether this location, or any loca-
tion that contains it, is associated with
the person by the residesIn property (lines
6 through 12). Finally, the result is re-
turned (line 14).

Discussion
We developed core space and sensing
models from our original requirements
set and constructed a rich query model
to support common application uses
of location. Consequently, most per-
vasive computing systems that need to

model or work with location can use
LOC8.

Engineering Effort
LOC8 provides developers a well-
structured, simplified approach for
working with what’s essentially highly
enriched sensor data. This requires
engineering effort in terms of con-
structing a space map, integrating a
new positioning system, and designing
applications.

For the early adopter, using OWL
involves a significant learning curve;
an editing tool such as Protégé13 can
ease the process. The language has
several complexities, and its serial-
izations are visually unappealing and
can be difficult to work with. To ease
map construction, designers can apply
translations to our model to existing
map-drawing tools’ output format.
Although we developed only a simple
prototype of this feature using Archi
CAD, it demonstrates that designers
can construct maps without getting
their hands dirty. This also opens up
the possibility of deriving maps di-
rectly from professional architectural
drawings.

Mapping positioning systems to the
sensing model also falls to early adopt-
ers, and is essentially free to other de-
velopers. Beyond interfacing directly
with each positioning system—a re-
quirement for creating a stand-alone
application—developers must use
OWL to describe the sensor, its CRS,

and its readings. This incurs a one-time
cost for each positioning system.

Subsequent application developers
will rarely use OWL—perhaps only
when tagging locatable entities or de-
fining a local CRS if an existing one
doesn’t suit. Most cases won’t require
either of these steps. The framework
provides a fully featured API for tra-
versing the space model, and the built-
in query modules support the execution
of the core query types to meet most
applications’ needs, as Christian Becker
and Frank Durr identified.5

Flexibility and Extensibility
The space model’s loose coupling with
other aspects of the model and develop-
ment process has clear benefits. Mod-
elers needn’t be concerned with how
the application reads, interprets, or ac-
cesses the model, so they’re less likely
to take shortcuts in the mapping pro-
cess. Using the established Measure-
ment Units Ontology (MUO; http://idi.
fundacionctic.org/muo) to represent
units of measurement mitigates po-
tential encoding bias from the model-
ing process, and the choice of OWL
means that the space model is natu-
rally distributed. Developers can parti-
tion the responsibility for creating the
model and integrate the results. This
implies straightforward evolution of
space models over time. In most cases,
the developer needs to build the space
model only once for any particular
region. Once this initial cost is out of

A

B

α

South (y)

East (x)
Collision

point

Relative distance d(A, B)

X

A

Real-world car collision scenario Building relative spatial relationship

B

Figure 5. A dynamic-location example:
car collision prediction. We repeatedly
evaluate the relative position of car B
to car A over time to calculate the rate
at which the cars are approaching. We
can predict the estimated collision time
using their relative velocity.

36	 PERVASIVE computing� www.computer.org/pervasive

LOCATION-BASED SERVICES

the way, sharing the model across all
applications requires zero effort.

Expressiveness
Because location has many meanings,1
our model’s expressiveness is key to let-
ting location-aware services leverage
its subtleties. Because our framework
already supports positioning, range,
spatial-relation, and navigation que-
ries, developers don’t need much code
to perform them. Developers can de-
rive more complex location-based sce-
narios by combining these queries or
incorporating additional semantics,
as the car-collision prevention and
residential-query scenarios show.

Consistency Checking
We check the consistency of developer-

declared spatial relationships when the
maps are loaded. As we mentioned ear-
lier, we also use our ontological engines
to infer spatial relationships, which we
use to validate and complement the de-
clared relationships.

Future Improvements
We intend to further improve and refine
our approach. Currently, our imple-
mentation supports only the modeling
of Cartesian CRSs, although the addi-
tion of polar CRSs is straightforward.
We also don’t yet support the modeling
of elliptical CRSs. The exception to this
is WGS 84, which, because of its ubiq-
uity (through GPS), we implemented di-
rectly into the Java model. Performing
an accurate mapping from a Cartesian
CRS to an elliptical one using the rota-

tion matrix and offset technique is im-
possible. To overcome this, we assume
that over short distances we can treat
WGS 84 as a linear system, which lets
us perform the conversion. However,
the greater the distance from the origin,
the greater the error introduced.

Our sensing model assumes that a
particular CRS’s axes share the same
unit of measurement, which isn’t al-
ways true. We also model the sensor-
provided precision levels as a single
value, which is another simplification.
Depending on factors affecting the in-
stallation, as we’ve found from evalu-
ating our Ubisense installation, dif-
ferent precision levels are available on
each axis. We could go even further
and model precision at different points
in the sensing system’s coverage area,
but we remain unconvinced that the
benefits would outweigh the added
complexity.

T he key to supporting appli-
cation developers who work
with location is by separat-
ing the concerns of map-

ping space, working with positioning
systems, and querying data. Our goal
in developing LOC8 was to construct
a framework that glued these three ele-
ments together. Application developers
don’t need an understanding of sensor
system operation and can model spaces
without concern for how the data will
later be accessed.

We’re focused on optimizing the core
query modules’ implementation and
evaluating their performance. Beyond
this, we intend to further explore the
semantic queries to investigate the inte-
gration of additional context types into
the querying process.

Our space and sensing ontologies
are available

under an open source li-

cense to promote our model’s adoption
and practical use by other research-
ers and developers in the community
(http://ontonym.org). We plan to re-
lease the query framework code in the
near future.

the AUTHORS
Graeme Stevenson is a PhD candidate at University College Dublin. His re-
search interests include programming languages, middleware for smart spaces,
and the Semantic Web. Stevenson has an MPhil in computer science from the
University of Strathclyde. Contact him at graeme.stevenson@ucd.ie.

Juan Ye is a postdoctoral researcher at the University College Dublin Clarity
research center. Her research interests are pervasive and ubiquitous computing
and wireless sensor networks, specializing in ontology, context modeling and
reasoning, and uncertainty-resolving techniques. Ye has a PhD in computer sci-
ence from University College Dublin. Contact her at juan.ye@ucd.ie.

Simon Dobson is a professor of computer science at the University of St.
Andrews. His research centers on adaptive pervasive computing and novel
programming techniques, addressing both theory and practice. Dobson has
a DPhil in computer science from the University of York. He’s a member of the
BCS, the IEEE, and the ACM. Contact him at sd@cs.st-andrews.ac.uk.

Paddy Nixon is the Science Foundation Ireland research professor in distrib-
uted systems at University College Dublin and a principal investigator at Clar-
ity. His research interests include pervasive and autonomic computing, with
emphasis on infrastructure aspects of context-adaptive systems. He’s an IBM
faculty fellow and director of the TRIL (Technology Research for Independent
Living) Centre. Nixon has a PhD in computer science from the University of
Sheffield. Contact him at paddy.nixon@ucd.ie.

JANUARY–MARCH 2010	 PERVASIVE computing� 37

ACKNOWLEDGMENTS
Science Foundation Ireland partially supported
this work under grant 07/CE/I1147, “Clarity, the
Centre for Sensor Web Technologies.”

REFERENCES
	 1.	 S. Dobson, “Leveraging the Subtleties

of Location,” Proc. Smart Objects and
Ambient Intelligence Conf. (sOc-EUSAI
05), ACM Press, 2005, pp. 189–193.

	 2.	 T. King, T. Haenselmann, and W. Effels-
berg, “Deployment, Calibration, and
Measurement Factors for Position Errors
in 802.11-Based Indoor Positioning Sys-
tems,” Proc. Int’l Workshop Location
and Context Awareness (LoCA), LNCS
4718, Springer, 2007, pp. 17–34.

	 3.	 W.T. Niu and J. Kay, “Location Conflict
Resolution with an Ontology,” Proc. 6th
Int’l Conf. Pervasive Computing, LNCS
5013, Springer, 2008, pp. 162–179.

	 4.	 A. Ranganathan et al., “MiddleWhere:
A Middleware for Location Awareness
in Ubiquitous Computing Applications,”
Proc. 5th ACM/IFIP/Usenix Int’l Conf.

Middleware, Springer, 2004, pp. 397–
416.

	 5.	 C. Becker and F. Durr, “On Location
Models for Ubiquitous Computing,” Per-
sonal and Ubiquitous Computing, vol. 9,
no. 1, pp. 20–31.

	 6.	 G. Ananthanarayanan et al., “Startrack:
A Framework for Enabling Track-Based
Applications,” Proc. 7th Int’l Conf.
Mobile Systems, Applications, and Ser-
vices (MobiSys 09), ACM Press, 2009, pp.
207–220.

	 7.	 J. Ye et al., “A Unified Semantics Space
Model,” Location and Context Aware-
ness, LCNS 4718, Springer, 2007, pp.
103–120.

	 8.	 C. Jiang and P. Steenkiste, “A Hybrid
Location Model with a Computable
Location Identifier for Ubiquitous Com-
puting,” Proc. 4th Int’l Conf. Ubiquitous
Computing (UbiComp 02), LNCS 2498,
Springer, 2002, pp. 246–263.

	 9.	G. Stevenson et al., “Ontonym: A Collec-
tion of Upper Ontologies for Developing
Pervasive Systems,” Proc. 1st Workshop

Context, Information, and Ontolo-
gies (CIAO 09), ACM Press, 2009,
article no. 9.

	10.	 G. Judd and P. Steenkiste, “Providing
Contextual Information to Pervasive
Computing Applications,” Proc. 1st Int’l
Conf. Pervasive Computing and Com-
munications (Percom 03), IEEE CS Press,
2003, pp. 133–142.

	11.	 J. Hightower, B. Brumitt, and G. Bor-
riello, “The Location Stack: A Layered
Model for Location in Ubiquitous Com-
puting,” Proc. 4th Workshop Mobile
Computing Systems and Applications
(WMCSA 02), IEEE CS Press, 2002, pp.
22–28.

	12.	M. Kranz et al., “Codar Viewer—a V2V
Communication Awareness Display,”
Pervasive 2008, Advances in Pervasive
Computing, Late-Breaking Results, vol.
236, Austrian Computer Society, 2008,
pp. 79–82.

	13.	 N.F. Noy et al., “Creating Semantic Web
Contents with Protégé-2000,” IEEE
Intelligent Systems, vol. 16, no. 2, 2001,
pp. 60–71.

IEEE Computer Graphics and Applications bridges the theory and practice of computer graphics.
From speci
 c algorithms to full system implementations, CG&A offers a unique combination
of peer-reviewed feature articles and informal departments. CG&A is indispensable reading
for people working at the leading edge of computer graphics technology and its applications
in everything from business to the arts.

AAA&&GGCC
Visit us at www.computer.org/cga

