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ANN-based approach for the estimation aquifer pollutant

source behaviour
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ABSTRACT
The problem of identifying an unknown pollution source in polluted aquifers, based on known

contaminant concentrations measurement, is part of the broader group of issues, called inverse

problems. This paper investigates the feasibility of solving the groundwater pollution inverse problem

by using artificial neural networks (ANNs). The approach consists first in training an ANN to solve the

direct problem, where the pollutant concentration in a set of monitoring wells is calculated for a

known pollutant source. Successively, the trained ANN is frozen and it is used to solve the inverse

problem, where the pollutant source is calculated which corresponds to a set of concentrations in

the monitoring wells. The approach has been applied for a real case which deals with the

contamination of the Rhine aquifer by carbon tetrachloride (CCl4) due to a tanker accident. The

obtained results are compared with the solution obtained with a different approach retrieved from

literature. The results show the suitability of ANNs-based methods for solving inverse non-linear

problems.
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INTRODUCTION
Groundwater is an important source for the production of

drinking water. Consequently, the protection of ground-

water resources quality appears of extreme importance for

life support systems. Nevertheless, groundwater is exposed

to man-made pollution that might prevent its use for

drinking as well as for other domestic, industrial and

agricultural purposes. When groundwater is polluted, the

restoration of quality and removal of pollutants is a very

slow, hence long, and sometimes practically impossible task.

In the field of groundwater resources contaminations, it

should be highlighted that in some cases pollution might

result from contaminations whose origins differ in time

and place from the point where the contaminations were wit-

nessed. To tackle such situations, it is necessary to develop

specific techniques for identifying the behaviour of unknown

contaminant sources from both spatial and temporal points
of view. Getting to know the initial conditions of pollution is

consistent with the implementation of the European Union

Directive 2004/35/EC. This Directive, based on the ‘polluter-

pays’ principle, concerns the environmental liability in

relation to the prevention and compensation of environmental

damages. The application of the Directive 2004/35/EC

requires the development of novel methodologies, such as

that proposed in this work, for the identification of

unknown pollution sources in contaminated aquifers.

The problem of identifying an unknown pollution source

in contaminated aquifers, based on known contaminant

concentrations measurement, is part of the wide group of

issues called inverse problems. During the last decade, sev-

eral studies have been dedicated to the development of

different methods for solving inverse problems, however

works using artificial neural networks (ANNs) are less
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popular. Among these latest, in Zio (), an ANN is

trained to identify the value of the dispersion coefficient in

a simple analytic contaminant transport model, in Fanni

et al. (), an ANN is used to locate a pollutant source,

in Rajanayaka et al. (2002), a hybrid approach based on a

combination of two types of ANN models is applied to esti-

mate hydrogeological parameters, in Scintu (2004), ANNs

are trained to predict the coordinates of the pollutant

source and the time the pollution occurred, in Singh &

Datta (), ANN is used to identify unknown pollution

sources with partially missing concentration observation

data, in Foddis et al. (), ANNs are used for locating

the source of a contamination event in time and space.

In this work, an ANN-based inverse problem solving

method is presented for the identification of unknown con-

taminant sources and their characteristics. Compared to the

state of art, the originality of the developed method lies in

the approach used for solving the inverse problem, which

consists of inverting the ANN model instead of solving the

equations that described the physical system. In particular,

different ANNs are trained to associate the pollution

source features with the contaminant concentration

measurements acquired in the monitoring wells. After this

phase, the trained ANN is inverted by fixing the measure-

ments at the wells and determining the corresponding

pollutant source. This approach might be used for defining

contaminant punctual sources to face groundwater quality

problems. In particular, location and fluxes over time can

be defined. The procedure described in this paper has

been validated during a real case which tackles an actual

contamination which occurred in the Rhine aquifer

(France) (Vigouroux et al. ).
Figure 1 | MLP structure.
METHOD DESCRIPTION

Multi-layer perceptron network model

An ANN is a distributed, adaptive, generally non-linear

learning machine, built from many different artificial neur-

ons (AN) that interact with each other through weighted

connections. The ANN is symbolized like a graph where

patterns are represented in terms of numerical values

attached to the ANs, the nodes of the graph. In particular,

multi-layer perceptron (MLP) ANNs are logically arranged

in two or more layers (Figure 1), and the numerical data con-

ceptually flow forward from the input to the output layers.

This is the structure of ANN used to model the system

under study.

Such a neural model is trained by using a set of input–

output pairs of patterns. These patterns are created by

means of a flux and transport contaminant modelling soft-

ware, which calculates both the source of contaminant

and the set of measurements in the monitoring wells.

These data are converted into patterns which represent the

input and the output of the ANN, respectively. Thanks to

the weighted links, the ANN associate an output pattern

to any input pattern. The training procedure consists of

adapting the weights so that the ANN performs a desired

association between the input and output patterns of a

given training set of examples. In this work, the desired

output values (target) represent the measured values so

that the trained ANN is able to associate a given source of

pollutant with the corresponding measurements in the

monitoring wells. The Levenberg–Marquardt algorithm has

been used to train the ANN.
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The trained MLP realizes a relationship between input

and output patterns described by the following algebraic

equations system:

Input layer
Hidden layer
Output layer

W
1
� xþ b1 ¼ y

h ¼ σ (y)
W

2
� hþ b2 ¼ u

8<
: (1)

where (see Figure 1): x is the input of the network, W
1
is the

weights matrix of the input layer, b1 is the bias vector of the

input layer, y and h are the input and the output of the

hidden layer, respectively, σ(�) is the hidden neurons logistic

activation function, u is the output of the network, W
2
is the

weights matrix of the output layer, and b2 is the bias vector

of the output layer.

Solving the system Equations (1) for the input x, given an

assigned value of the output u, means solving an inverse pro-

blem of determining the characteristics of the pollutant

source. In the following two sections, the adopted methods

to extract features from data and to solve the system (1) are

described.

Feature extraction

Data which describe groundwater flow and contaminant

transport are characterized by huge volume and strong

redundancy of information, so that in general it is possible

and also mandatory to pre-process the data by reducing

the volume without a meaningful loss of information. This

operation is referred to as feature extraction and it allows

condensing the information contained in the original data

into a strongly reduced dimension of data. Feature extrac-

tion techniques have been chosen in compliance with two

important requirements. At first, a high rate of compression

of the information has to be ensured in order to guarantee a

significant correspondence between the back transformed

data and the original values. Secondly, the procedure can

be easily backward applied to allow the reconstruction of

the initial data set with the least possible error.

The adopted feature extraction procedure consists of: (1)

calculating the two-dimensional discrete fast Fourier trans-

form (2D-FFT) for constructing both the input and output

matrices; (2) reducing the matrices by a fixed threshold of

energy content; (3) reducing the matrix size by means of

the principal component analysis (PCA) method.
The training set is constituted by input/output matrices

pairs, calculated by a simulator, where the former one

reports the time evolution of pollutant source at four differ-

ent depths, while the latter one is the time evolution of

measured pollutant concentration in correspondence of

monitoring wells. Therefore, the former matrix has four

rows, while the latter one has as many rows as the number

of monitoring wells. The number of columns is equal to

the number of time samples. Both input and output matrices

have to be converted into a pattern, and this pair of patterns

will represent a specific case or example. By performing a

suitable number of simulations, we finally obtain an input

and an output matrix having the same number of columns,

each one corresponding to an example.

The feature extraction procedure is first performed on

the two matrices which, respectively, describe source and

monitoring wells for each example. The two-dimensional

Fourier Transform (Mersereau & Dudgeon  Q) of the two

matrices is calculated, switching to the frequency domain.

Here, each element represents a spectral component of the

signal, whose relevance in the signal is measured by its

amplitude. Therefore we can define a preliminary threshold

of amplitude in order to eliminate the components which

are less relevant. The selected components have to be the

same for all the examples, therefore all the components

which overcome the threshold in at least one example will

be kept. The same set of components will have to be kept

for any future example. For each example, the selected com-

ponents of both input and output matrices are rearranged in

two column vectors, therefore at the end of this stage we

have two matrices, input and output, respectively, for the

entire training set, and for both, the number of columns is

equal to the number of examples. The dimension of these

two matrices can be further reduced, taking into account

the redundancy of information due to the correlation existing

among rows of the same matrix. The most efficient way to

linearly eliminate such redundancy is the PCA (Henebry &

Rieck  Q). This analysis consists of rotating the reference

axis in such a way that the variance of points distribution

along some axis (principal) is maximum, so that the residual

variance along the remaining axis can be neglected. The

quantity of information which is lost with the neglected

axis can be easily estimated, and in the real cases the PCA

allows strong reduction of the dimension of patterns with
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very little loss of information. The dropped matrices are the

input and output matrices that will be used to train the ANN.

The training of the ANN is performed by using the Leven-

berg–Marquardt algorithm. The quality of the training

affects the reliability of the successive inversion of the

ANN, therefore all the standard expedients have to be

adopted to guarantee suitable approximation level and the

generalization capability of the trained ANN.

Inversion procedure

Once the training of the MLP ANN is completed it is used to

solve the inverse problem by exploiting the MLP inversion

method described in Fanni & Montisci () and Carcangiu

et al. (). It consists of determining the input pattern

which corresponds to a given output pattern, which in our

case means identifying the unknown pollution source on

the basis of a set of measurements acquired in the monitoring

wells. As in any identification problem, it is fundamental to

guarantee the uniqueness of the solution. This implies that

the two linear equations systems in (1) have to be determined

or over-determined, then the number of input neurons has to

be less or equal to the number of hidden neurons, and this

one has to be less or equal to the number of output neurons.

Secondly, for the same reason, the first and the second con-

nections weights matrices W
2
and W

1
have to be full-rank.

The parameter that can affect such features of the ANN is,

generally speaking, the approximation degree of the rep-

resentation of both input and output data. This means that

by increasing the precision used to describe the input and

output data, we could find out that the weights matrices

are not full-rank. For this reason a trial and error procedure

should be adopted in order to seek the best approximation

level which guarantees the invertibility of the MLP ANN.

Inverting the MLP ANN means solving the system (1),

for the unknowns h, y and x, while the output u is fixed. If

the constraints on the rank of W
1
and W

2
are fulfilled,

solving the system (1) is quite simple as the three unknown

patterns h, y and x can be determined one after the other

univocally.

On the basis of the third equation in (1), starting from

the output u, the vector h can be determined. To guarantee

the uniqueness of the solution, the number of rows (number

of output neurons) must be higher than the number of
columns (number of hidden neurons). In this case, the

equations system results are over-determined and the

uniqueness is ensured by assuming the solution which corre-

sponds to the minimummean squared error. Such a solution

can be found by solving the following modified equations

system, which has a squared coefficients matrix.

WT
2
W

2
h ¼ WT

2
(u� b2) (2)

where the mark T represents the transposition operator. If

the number of hidden neurons is equal to the number of

output neurons, the weights matrix is squared, and the

solution corresponding to the minimum sum squared error

can be directly calculated as:

h ¼ W�1
2

� (u� b2) (3)

The second equation in (1) states a bi-univocal relation-

ship between y and h, therefore the vector y is:

y ¼ σ�1(h) (4)

Finally, provided that the matrix W
1
is full rank, the

input pattern x can be calculated as:

x ¼ WT
1
�W

1

� ��1
�WT

1
(y� b1) (5)

Also in this case, if the number of input neurons is equal

to the number of hidden neurons, the system can be solved

by directly inverting the matrix W
1
.

The pattern x describes the unknown source of pollu-

tant. To generate the time evolution of the source, the

transforms that have been applied for the feature extraction

have to be back applied to the obtained pattern x.
APPLICATION OF THE METHOD TO A CASE STUDY

The performance of the proposed methodology has been

evaluated by defining the behaviour in time and space of

the Alsatian aquifer unknown pollution source.
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General description of the Upper Rhine Graben and

Alsatian aquifer

The Alsatian aquifer is located in the southern part of the

Upper Rhine valley. The Upper Rhine Graben is a segment

of the European Cenozoic rift system that developed in the

north-western forelands of the Alps. It extends over 300 km

from Basel (Switzerland) in the south to Frankfurt

(Germany) in the north, with an average width of approxi-

mately 40 km. As shown in Figure 2 it is flanked in the

south by the Vosges and Black Forest (Schwarzwald) moun-

tains, to the west and the east, respectively (Bertrand et al.

).

The Alsatian aquifer surface is over 3,000 km2 and con-

tains a volume of alluvial about 250 billion m3. It represents

one of the largest fresh water reserves in Europe. The
Figure 2 | The Rhine Valley and the Alsatian aquifer.
groundwater reservoir contains about 50 billion m3 of

water, with an annual renewal of 1.3 billion m3. This large

aquifer is of vital importance since it supplies 75% of the

drinking water requirements, 50% of the industrial water

needs and 90% of the irrigation water needs in Alsace.

The Alsatian part of the Rhine aquifer has a surface length

of 160 km and a maximum width of 20 km (Hamond ;

Bertrand et al. ).

Alsatian aquifer is an extensive alluvial aquifer with a

layered structure composed of a random superposition of

different alluviums (clay, sand fine to rough, gravels,

coarse etc.). This permeable alluvial has a thickness of a

few meters at the Vosgean edge, and 150–200 m in the

centre of the Rhine plain (Hamond ).

The groundwater reservoir is part of a complex hydro-

system which includes frequent exchanges between the

rivers and the aquifer which vary with the seasons and it

is highly exposed to contamination from rivers (Stengera

& Willingerb ).
History of the pollution by CCl4 in the aquifer

In 1970, a tanker truck containing carbon tetrachloride

(CCl4) property of a Dutch company overturned in the

north of Benfeld (a small town located about 35 km south

of Strasbourg). According to a note from Service Géologi-

qued’Alsace-Lorraine of 21st December 1971 about

4,000 litres of CCl4 were spread in the area of the accident,

infiltrating into the ground or disappearing by evaporation

(Hamond ). In 1991, the analyses carried out by

Bureaude Recherche Géologique et Minière showed abnor-

mal quantities of CCl4 in the supplies of drinking water

(about 60 μg/L). These quantities exceeded the safe limits

recommended by the World Health Organization (2 μg/L).

This high level of CCl4 concentration has caused a serious

problem in the region by contaminating the main sources

of drinking water in the Alsace Region (France) (Aswed

).

The exact amount of chemical infiltrated in the subsoil is

unknown, as is the behaviour of the pollution source along

the time. The assessment of such characteristics constitutes

the main issue for the individuation and remediation of the

accident effects and it is the objective of this study.
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ANN to study the Alsatian aquifer

The behaviour of the Alsatian aquifer unknown contami-

nant source is determined based on the contaminant

concentration measured in the monitoring wells dislocated

in the study area.

In a first phase, the ANN was trained to solve the direct

problem by using a set of patterns created by means of a flux

and transport contaminant modelling software, where the

patterns describe both the source of contaminant and the

set of measurements in the monitoring wells,. The data set

of pattern has been constructed through a coherent

number of hydrogeological scenarios, based on a 3D

model of the domain developed by Aswed (). The

input patterns were made of the pollution source features

in terms of the injection rates in the four hydrogeological

layers. The output patterns were contaminant concentration

observation data at 45 monitoring wells. Sources and moni-

toring wells are related by a bi-univocal relationship,

meaning that any specific profile of monitoring wells corre-

sponds to one specific contaminant source behaviour.

In a second phase, the trained network was inverted in

order to identify the source of contaminant corresponding to

a set of data measured in correspondence of monitoring

wells.

Groundwater flow and contaminant transport

numerical model

The CCl4 Alsatian aquifer pollution has been the subject of

several studies (Vigouroux et al. ; Beyou 1999; Aswed

). The 3D flux and contaminant transport numerical

model used for constructing the patterns was calibrated

using measured data of CCl4 concentration that were col-

lected over 12 years (1992–2004) and simulations were

performed from 1970 to 2024.

The patterns have been simulated using the non-com-

mercial numerical software Transport or RadioActiver

Elements in the Subsurface (TRACES) that combines the

mixed-hybrid finite elements and discontinuous finite

elements to solve the hydrodynamic state and mass transfer

in the porous media (Hoteit & Ackerer ). The contami-

nated zone is enclosed within a 3D domain of 6 km width,

20 km length, and about 110 m depth. This aquifer domain
is discretized using a 3D triangular prismatic grid with

25,388 nodes and 45,460 elements. According to the esti-

mated geometry of the cross sections (the landfill site was

divided into eight zones by soil type) the domain is discre-

tized into 10 layers. The contaminant source is locate in

the first four layers (the thicknesses of the layers are, respect-

ively, 16 m, 4 m, 5 m, and 5 m from top to the bottom). The

volume of contaminated aquifer is about 230–1,300 m3. The

surface of contaminant infiltration is about 7–37 m2 (Aswed

).

Using TRACES, various states of pollution sources have

been constructed adjusting the source characteristics in

terms of injection rates over the vertical section. One hun-

dred and four examples were constructed with the same

duration of activity of about 31 years (11,520 days) and

were located in the same positions in the domain (accident

site in Benfeld). So for each of the 104 sources, a different

evolution of the contaminant concentration in the time for

the four layers in the numerical domain has been con-

sidered. The total time of simulation is about 54 years

(20,000 days).
ANN pattern construction: elaboration and features

extraction

The examples patterns obtained with TRACES consist of

208 matrices of contaminant concentrations:

• 104 matrices corresponding to the pollution sources fea-

tures. These had dimensions [11,520 × 4]; 11,520

represents the time (days) and 4 represents the layers in

the source location;

• 104 matrices corresponding to contaminant concen-

tration in monitoring wells. These had dimensions of

[4,000 × 45]; 4,000 represents the time (one value each 5

days) and 45 are the monitoring wells in the domain.

The 104 input matrices and the 104 output matrices

have been reorganized to form two matrices which describe

the whole training set: one for the input and one for the

output.

The two groups of 104 input and output matrices were

considered separately (Figure 3).

For the first step, the 2D-FFT has been calculated for

each matrix, using Matlab. For each case we obtained two
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vectors: one for the input that has the dimension of 46,084

elements and one for the output that has the dimension of

15,774 elements. Vectors, corresponding to the different

cases, have been joined to form a matrix where each

column corresponds to one example, so at the end of this

step the dimensions of the two matrices are [46,084 × 104]

for the input matrix and [15,774 × 104] for the output

matrix, respectively.

In the second step, from each of these matrices the neg-

ligible components have been removed. A component is

considered negligible if is its amplitude does not overcome

a prefixed threshold in any of the example. The value of

the threshold is determined by seeking a crossover between

the level of approximation of the acquired data and the

dimension of the input and output matrices. For applying

the PCA, the number of remaining values is pushed to

have a number of rows less or equal to the number of the

examples. As a result of this second step, the input matrix

had the dimension [99 × 104] and the output matrix had

the dimension [100 × 104].

In the third step, the PCA transform has been applied to

further reduce the volume of data. The degree of com-

pression that can be obtained depends on the fraction of

information, evaluated as variance of the distribution that

could be lost. Such a fraction has been determined by

means of a trial and error procedure which provided a

value of 2 × 10–3 for the input and 10–7 for the output. Con-

sequently, the input matrix had dimension [11 × 104] and the

output matrix dimension [36 × 104].
ANN training and inversion

One 11-11-36 MLP has been trained with the Levenberg–

Marquardt algorithm by presenting the pairs of input

(pollution sources scenarios) and target patterns (contami-

nant concentration for the 45 monitoring wells). Special

attention has been paid to train the ANN in such a way

that it is able to generalize the information contained in

the training set. To this end, during the training phase, the

error was evaluated even in the validation set, and the train-

ing was interrupted as soon as the error in the validation set

started to rise (cross validation stop criterion). A third set

(test set) of examples has been put aside in order to check

on a totally independent set the generalization capability

of the trained ANN. The 104 examples have been so subdi-

vided: 74 in the training set, 19 in the validation set and 11

in the test set.

Once the training phase was completed, the trained net-

work was inverted to identify the contaminant source. To

this end, an output pattern was generated on the basis of

the contaminant concentrations measured in the 45 moni-

toring wells and the procedure described above, under the

section Inversion procedure, has been applied. In the pre-

sent case, the number of hidden neurons is lower than the

number of output neurons, so the system is over-determined.

By applying Equation (2), the solution corresponding to the

minimum sum squared error for the vector h was found. The

second equation in (1) states a bi-univocal relation between

y and h, then the constant term of the third equation in (1)
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was determined. Finally, by solving this equation for x, the

solution of the inverse problem was determined.
RESULTS AND DISCUSSION

On the basis of the known contaminant concentration data

in monitoring wells, the pollution sources injection rates in

the cross section were identified. To evaluate the perform-

ance of the method, the re-constructed pollution source

reported in Aswed () was assumed as source of the

simulation and the corresponding value of the wells data

were calculated with the simulator. The four diagrams in

Figure 4 show the comparison between the behaviour by
Figure 4 | Simulated (dashed black) and the inverted (continued grey) source trend at layer 1
Aswed (blue) and the diagram obtained by inverting the

ANN (green) for the four layers. The constant concentration

at the early period could indicate that in the early stage of

the process an accumulation in the surface layer continued

to release contaminant at a constant rate for 10 years.

As can be noted, the calculated behaviour of the source

satisfactorily fits the trend reported in Aswed (). The

approximation is better in the deeper layers (layer 4)

where the concentration is higher due to the deposition of

the contaminant during the time. The ripple and the bound-

ary peaks do not correspond to a real behaviour of the

source, but they are a consequence of the cut of frequencies

performed in the feature extraction procedure. Standard

signal filtering procedures, like Kalman filters, could be
(16 m), layer 2 (20 m), layer 3 (25 m) and layer 4 (30 m), respectively (Foddis 2011).
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applied in order to improve the appearance of the signal,

both filtering the ripple and automatically cutting the

peaks by fixing a bound of the profile derivative. Neverthe-

less, this kind of post-processing of the results appears to

be useless for an expert assessment.
CONCLUSION

This work mainly focuses on an ANN-based methodology

for solving the inverse problem in aquifer pollution. A cru-

cial aspect of the procedure is represented by the training

of the ANN, which has to guarantee a satisfactory approxi-

mation of the physical system, but at the same time it has

to fulfil several requirements in terms of number of neurons

and rank of the connections weights matrices. The trained

ANN is analytically inverted to solve the inverse problem,

which consists of determining the profile of the pollutant

source on the basis of a set of measures in monitoring

wells. This procedure has been tested on a real case: an acci-

dent, which took place in the North-East of France in 1970,

gave rise to a contamination by CCl4 in the Alsatian aquifer.

Various numerical model scenarios of the CCl4 contami-

nation in Alsatian aquifer have been generated to train the

ANN to solve the direct problem of associating the pollution

source characteristics with the measures acquired in the

monitoring wells. The inverse problem is solved by fixing

the output pattern and analytically calculating the corre-

sponding input. Finally, the obtained results are compared

with the pollution source behaviour re-constructed with

another method retrieved from the literature. The obtained

results show the suitability of the method, which can pro-

vide simple and reasonable solutions to various problems

in hydrogeology, especially for this kind of non-linear

problems.
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