
FOREWORD

The attached paper is now an interesting historical curiosity, but little more than that. It repre-
sents an experiment in carrying out realtime programming in a high-level language (Algol68), in
user space, using the ‘conceptual multiplexer’ facility in the GEORGE 3/4 operating systems. In
this era realtime programming would often have been done in assembler so we felt a great sense
of liberation in having all the expressive power of Algol68 available to us. However, we knew
that our application would not be portable, not so much because Algol68 could not be ported (it
could, and it was) but because the underlying GEORGE operating system was solidly locked to
ICL 1900 series hardware.

Very shortly after this paper was presented a tidal wave called “UNIX” spread over the academic
computer science community. It was immediately obvious that the C language (though lacking
some of Algol 68’s expressiveness) would be a powerful system implementation language. The
fact that the UNIX kernel was small, and programmed in C, and that the UNIX system calls were
designed to allow processes in user mode to provide ‘system’ functionality (via close communi-
cation with the kernel) all came together to make multi-threading and multi-tasking relatively
straightforward to implement. Moreover, provided UNIX itself survived as an operating system
and proved capable of being ported to various hardware platforms (and over the past 30 years this
has certainly occurred !) then real-time processes communicating with a UNIX kernel could also,
themselves, become portable.

The program attached as Appendix 1 could be transliterated to C with little difficulty and could
be used to drive multiple VDUs on a multiplexer (not that there are many ‘dumb’ VDUs or multi-
plexers around any more). The program text itself is interesting in several respects: the ‘triple ref’
technique is used to allow a single pointer to traverse a list and to effect insertions and deletions
from that list. This technique can be transliterated to any language such as C, or C++, which dis-
tinguishes between different levels of reference and which allows access to intermediate levels of
referencing via casts. Sadly, languages such as Basic, Pascal and Java do not qualify … More-
over, it is startling to see, in a non-functional language, the ability to provide functional argu-
ments to procedures as written-out denotations of the required function (with no need to give a
name to the function if this is not needed). Connoisseurs of program languages may well find
other interesting snippets.

The attached paper was presented at a conference on “Applications of Algol 68” held at the Uni-
versity of Liverpool in 1975. This was in an era well before PDF, Word and Desktop Publishing,
so only typewritten abstracts of papers were circulated at the time. Lack of resources for typeset-
ting the various accepted papers meant that a formal Proceedings was never published.

COLOPHON

The rebuild of this final draft started with scanning in to Readiris Pro 9 OCR software from the
original typescript. The recognition accuracy on the main paper was very good but relapsed into
being abysmal for the program and sample output in the Appendices (which were a photocopy of
faded output from a badly-adjusted lineprinter). UNIX troff was used to set up the correct type-
face (Courier) and to get the line and page breaks as accurate as possible. Line diagrams within
the paper were re-set using the pic pre-processor for troff .

The time taken to re-set this paper was 6 hours, the great majority of which was spent in ‘rescu-
ing’ the program in the Appendix.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Nottingham ePrints

https://core.ac.uk/display/98138?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Development of a Real Time System in Algol 68.

K. C. Mander and D. F. Brailsford

Department of Mathematics

University of Nottingham

Nottingham NG7 2RD

For various reasons, many Algol 68 compilers do not directly

implement the parallel processing operations defined in the Revised

Algol 68 Report. It is still possible however, to perform parallel

processing, multitasking and simulation provided that the implemen-

tation permits the creation of a master routine for the coordination

and initiation of processes under its control. The package described

here is intended for real time applications and runs in conjunction

with the Algol 68R system; it extends and develops the original

Algol 68RT package, which was designed for use with multiplexers at

the Royal Radar Establishment, Malvern. The facilities provided, in

addition to the synchronising operations, include an interface to an

ICL Communications Processor enabling the abstract processes to be

realised as the interaction of several teletypes or visual display

units with a real time program providing a useful service.

Introduction

The real time system to be described was conceived as a conve-

nient interface between the Algol 68R system developed at the Royal

Radar Establishment, Malvern and the ICL 7900 Series Communications

processors [l]. We would like to acknowledge the assistance of RRE

in the provision of certain basic software which, by way of intro-

duction, will now be briefly described. The software consists of a

special loader to load program segments in a specific order together

with a small segment which enables Algol 68R procedures to be exe-

cuted in parallel, each with its own separate run-time stack area

and which also allows control to transfer between procedures at

user-specified points; this transfer is called coordination. The

software is designed on the multi-tasking primitives proposed by

Dijkstra [2].

2

Briefly,

{ SIGNAL s; }

up(s) Adds 1 to s and coordinates.

down(s) If s=O, the coordinator suspends the

procedure, with the result that some

other procedure must run instead. The

suspension is cancelled as

soon as up(s) is obeyed anywhere.

If s>0, the procedure remains unsuspended

and 1 is subtracted from s the moment

it continues. A coordination takes place,

however, and may cause continuation to be

postponed.

The procedures up and down are an extension of the Dijkstra V

and P operations and the procedure ’launch next call’, for example

launch next call; process1

establishes the next procedure call (i.e. process1) as an indepen-

dent procedure to be run in parallel with others so launched. These

procedures are referred to as processes and form the basic program-

ming unit of the RRE software.

The ICL 7900 Series Communications Processors provide a multi-

access service to ICL computers and the main concern in the develop-

ment of a real time system in Algol 68 was the provision of a ser-

vice for ICL 7071 teletypes and 7181 visual display units (vdus)

other than that provided by ICL’s Driver system. On a 1900 Series

machine a typical configuration might be …

1906A 7903

teletypes/vdus

Figure 1

3

… with the whole of the 7900 processor available for the real time

program to use. In practice this will provide far more devices than

the average user would require and would also prevent the unwanted

devices being used to provide any standard online service that the

operating system may support. In the George 3/4 system, however,

there is a facility for enabling a subset of the devices to be con-

nected up to an in-core program providing some kind of specialist

online service. The remaining devices on the communications proces-

sor continue to give the standard George 3 online service (MOP). It

is the ‘CONCEPTUAL’ command which is used to associate a given name,

for example, ‘TERMINI’ with a particular subset of the devices. The

user can then make use of this subset without interfering with the

rest of the service. Each device is associated with the conceptual

by the ‘ATTACH’ command and the program is associated with the con-

ceptual by the ‘ONLINE’ command within its job control. Thus

schematically we have

User

Prog

Geo. 3

Op. Sys.

1906 7903

’ONLINE *CC1,CLTERMINI’ ’ATTACH TERMINI,:MYUSER’

lines defined

by ’termini’

Figure 2

To each device attached there corresponds a distinct process

within the user program which controls the transput to the device.

Output to the devices is handled directly by the process concerned

but input has to be handled by a separate process since the 7900

processor is a message buffering processor and there can be no

4

guarantee of the order in which the messages arrive from it.

P1 P2 P3 P4

User Program

7903 D2

D1

D3

P1

P2

P3

Associated with

Figure 3

Having described the constraints introduced by the operating

system we can describe the interface between the 7900 processor and

the Algol 68R system.

There are few visible differences between the transput to file-

store files and the transput to interactive devices. This is because

most of the interface is hidden from the user; for example

outf(channel, tl, "hello")

would output the message "hello" on some device (’channel’ is an

appropriate CHARPUT variable). The actual transput is achieved by

trapping the event of taking a newline and instead of making a

transfer to a filestore file the transput is directed to the 7900

processor. Input is analogous to output, the program extract

INT i,j; inf(channel,$l3d,2d$,(i,j))

would serve to input i and j from a device. The call of newline is

usually placed at the end of output formats and the beginning of

input formats.

Unfortunately under the Algol 68R system formats are not re-

entrant, that is to say that no two processes are allowed to execute

the same format simultaneously. It is necessary, therefore, that

each process expecting to use a format at the same time as some

other process, should take its own copy. This can be done by having

some global declaration of the format,

5

for example,

FORMAT global = $la, 2(2d), l 4(4a) $

and taking a copy within each process, for example,

FORMAT copy; copyformat(global,copy)

We are now able to construct device independent procedures for par-

allel execution. Such procedures will depend critically on transput

being directed to the correct device and by declaring each procedure

to have two REF CHARPUT parameters we can ensure that the correct

transput is achieved. For example,

PROC myproc = (REF CHARPUT input,output)VOID:

BEGIN ... END

Within these procedures transput proceeds in the normal way. The

following routine, for example, outputs the squares of input num-

bers.

PROC square = (REF CHARPUT input,output)VOID:

BEGIN

FORMAT fin,foutl,fout2;

copyformat($ l3v.3d $,fin);

copyformat($ tl $,foutl);

copyformat($ "the square of " 3v.3d, " is "

6sv.6d l $,fout2);

WHILE

REAL r;

outf(output,foutl,

"type a number in the form xxx.xxx");

inf(input,fin,r);

outf(output,fout2,(r,r*r));

r < 999.0

DO SKIP

END

We are now able to associate procedures with devices. Each

device has a unique identifier number, assigned to it by the operat-

ing system and denoting one of the lines of the conceptual multi-

plexer; devices are referred to by this number and it is supplied as

the first parameter to the call of a procedure ’start iden’, tbe

second parameter being the procedure which is to be run on the

device. As many devices can be started as have been previously

defined and they are scanned for input by a procedure corresponding

to the P4 of Figure 3.

6

If the attached device is a vdu there is an extensive range of

routines which can be used to provide lineprinter and backing store

copies of the screen as well as facilities for clearing and racking

up the screen. It is also possible to output strings of protected

characters, that is, characters which cannot be overwritten by input

from the vdu keyboard. Much use can be made of this facility for

data collection purposes as will be seen later.

Throughout the testing of a program it could be inconvenient to

attach devices and run in real time when, especially in the early

stages of development, the program may contain some errors. It is

possible, therefore, by setting the appropriate switch, to take mes-

sages from a filestore file instead of the communications processor,

thereby obviating the need for real time. Similarly output for the

processor is sent to a file. Records within the input file have to

be in a format acceptable to the program i.e. as if they came from

the processor and a small segment is provided to add the appropriate

red-tape to messages. A typical record might be

0002@005HELLO

Identifier

Record contains data

Number of chars
in the data

Data

With the exception of this internal transput, the program

behaves in exactly the same way as it would if run in real time,

without incurring the overheads and inconvenience which real time

testing introduces. This approach has been used to develop a small

illustrative application for this conference.

The application is a simple hotel reservation system. We have a

small hotel with assorted double and single rooms most of which have

bathrooms. We have two receptionists, one at the hotel and the sec-

ond at some (possibly remote) other site. Each receptionist has a

vdu into which the following commands may be input

ENQ LISTALL

CANCEL LISTFREE

DAY LISTTAKEN

STOP

Depending on the command typed, different frames can be dis-

played on the screen and input requested. For example

7

DAY 15 sets the current day to 15. This also causes

the removal of all old bookings i.e. those

ookings which were only up to day 14 or

efore

ENQ Causes the following frame to be output to

the vdu

NUMBER OF SINGLE ROOMS ()

NUMBER OF DOUBLE ROOMS ()

BATHROOMSWITH EACH ROOM? () Y = YES

FROM DAY () TO DAY ()

Items of data can then be input by either

receptionist on behalf of a client in the

spaces provided

NUMBER OF SINGLE ROOMS (00)

NUMBER OF DOUBLE ROOMS (01)

BATHROOMSWITH EACH ROOM? (N) Y = YES

FROM DAY (21) TO DAY (24)

LISTALL lists the bookings for each room, for example

ROOM S/D BATH BEDS OCCUPANCY FROM DAY 2

1 DOUBLE WITH 0 1 V FROM DAY 2 TO 30

2 SINGLE WITHOUT 1 0 V FROM DAY 4 TO 8

T FROM DAY 9 TO 11

The program is written as one might write any other program with

the addition of special transput procedure calls and the following

calls which set up the individual processes.

define configuration(2,1);

vdu ((1, 2)) ;

start configuration;

start iden(l,receptionist);

start iden(2,receptionist);

scan configuration

8

The last three calls are of greatest interest, the two calls of

’start iden’ create two processes each obeying the procedure ’recep-

tionist’ i.e. two separate areas of the run-time stack are set

apart as work space for the procedures and certain information (for

example the contents of registers, stack pointers etc.) is kept to

enable the process to be restarted should control pass from it. The

task of the procedure ’scan configuration’ is to read messages from

the communications processor; the messages read are of two types

(i) those of a supervisory nature i.e. containing information

about the physical state of the system (for example, a

device being inoperable) and

(ii)those containing data for the various processes within the

program. Most messages are of the latter type and are passed

to the appropriate process. ’Scan configuration’ continues

reading until both calls of the procedure receptionist have

terminated (by both receptionists typing STOP).

A copy of the complete program follows at the end of this paper

together with part of the hard copy output produced by the program.

The great advantage of the system is the ability to program real

time applications in a high-level language; Algol 68 permits a free-

dom of expression which is impossible in an assembly language. This

is, however, coupled with the penalty of a larger program and a

slightly slower speed of execution. On a smaller computer (for exam-

ple, one with less than 128K of core store) the program size may be

of great importance and possible future developments include the

provision of a system of overlays and the option of making one pro-

cess control more than one device, hopefully reducing the overall

size of the program.

We estimate that if the application presented were rewritten

using ICL Driver with overlays it would occupy about 17K of core

store (that being the size of the largest overlay) and would have

taken 50 man-days to write; this compares with 30K and only 10 man-

days in Algol 68.

9

References

1. ICL Data Communications and Interrogation Manual. ICL number

4328.

E. W. DIJKSTRA : Cooperating Sequential Processes In ’Programming

Languages’ edited by F. Genuys.

Acknowledgements

The authors would like to acknowledge the assistance of the

Cripps Computing Centre at the University of Nottingham and Dr. D.P.

Jenkins and Dr. A.J. Fox of the Roya1 Radar Establishment Malvern in

the preparation of this paper. Support from the Science Research

Council for K.C. Mander is also gratefully acknowledged.

10

APPENDIX 1—PROGRAM LISTING

HOTEL ’WITH’ RTMATHSEG, VDUBASICSEG, ’FROM’ RTLIB

’BEGIN’

’MODE’ ’DATE’ = ’STRUCT’ (’INT’ FROM, TO),

’ENTRY’ = ’STRUCT’ (’INT’ NUMBER, FROM, TO),

’ROOM’ = ’STRUCT’ (’BOOL’ SINGLE, BATH, ’INT’ SBEDS, DBEDS,

’REF’ ’BOOKING’ B),

’BOOKING’ = ’STRUCT’ (’BOOL’ PENDING, TAKEN, ’DATES’ DATE,

’REF’ ’BOOKING’ NEXT);

’REF’ ’BOOKING’ NOTBOOKED = ’NIL’;

’INT’ NROOMS;

INF (STANDIN, $2D$, NROOMS);

[1:NROOMS] ’ROOM’ ROOMS;

FORMAT(STANDIN,$1B,B,D,D$);

’FOR’ I ’TO’ NROOMS ’DO’

’BEGIN’

’REF’ ’ROOM’ R = ROOMS[I];

IN (STANDIN,

(SINGLE, ’OF’ R, BATH ’OF’ R, SBEDS ’OF’ R, DBEDS ’OF’ R));

B ’OF’ R := NOTBOOKED

’END’

’MODE’ ’ENQUIRY’ = ’STRUCT’ (’INT’SING, DOUB, ’BOOL’ BATH);

’INT’ DAY := 1, LASTDAY := 30;

’FORMAT’ COMMANDLIST = $LC("ENQ", "LISTFREE", "LISTALL",

"LISTTAKEN", "CANCEL", "DAY", "STOP", ""$,

ROOMLIST = $1K 3V,2X B("SINGLE", "DOUBLE"), 2X

B("WITH", "WITHOUT"), 22K 2(2X 2V)$,

BOOKINGLIST = $ 35K A, 2X "FROM" 2X 3V, " TO " 3VL $,

F1 = $2L10KT50K $,

F2 = $ 3X T 2L $,

F3 = $ L2D,2D,A,2D,2D $,

F4 = $ 2L 10K "ROOM NUMBER " 3SV, " IS AVAILABLE FROM "

3SV, " TO "3SV2L10K "SATISFACTORY ? "$,

F5 = $2L 10K T 3X$,

F6 = $ LA $,

F7 = $2(2D)$,

F8 = $ 2L T 2L $,

F9 = $L "ROOM"2X"S/D"4X"BATH"25K"BEDS"35K

"OCCUPANCY FROM DAY "3SVL$,

F10 = $L3SV " OUT OF ", 3SV " ROOMS AVAILABLE"L$,

F11 = $ 10K T X $,

F12 = $ 2X T 2X $,

F13 = $1K N(35)" " SAL$;

11

’PROC’ LISTROOMS = (’PROC’(’REF’ ’BOOKING’) ’BOOL’ PB,

’REF’ ’CHARPUT’ OUTC):

’BEGIN’

’C’ LISTS THE ROOMS WITH PROPERTIES

SPECIFIED BY PB

’C’

’FORMAT’ RL, BL, HL, G1;

COPYFORMAT(ROOMLIST,RL); COPYFORMAT(BOOKINGLIST,BL);

COPYFORMAT(F9,HL); COPYFORMAT(F13,G1);

STARTSCREEN(OUTC); OUTF(OUTC,HL,DAY);

’FOR’ I ’TO’ NROOMS ’DO’

’BEGIN’

’REF’’ROOM’ R = ROOMS[I]; ’REF’ ’BOOKING’ RB := B ’OF’ R;

OUTF(OUTC,

CLEARFORMAT(RL),

(I,SINGLE’OF’R,BATH’OF’R

SBEDS’OF’R,DBEDS’OF’R));

’IF’ RB ’IS’ NOTBOOKED

’THEN’ OUTF(OUTC, CLEARFORMAT(BL),

("V",DAY,LASTDAY))

’ELSE’

’WHILE’ RB ’ISNT’ NOTBOOKED ’DO’

’BEGIN’

’IF’PB(RB)

’THEN’ OUTF(OUTC,CLEARFORMAT(BL),

(’IF’ PENDING’OF’RB

’THEN’ "P"

’ELSF’ TAKEN’OF’RB

’THEN’ "T"

’ELSE’ "V"

’FI’,

FROM’OF’DATE’OF’RB,TO’OF’DATE ’OF’ RB))

’ELSE’ OUTF(OUTC,G1," ")

’FI’

RB := NEXT ’OF’ RB

’END’

’FI’;

(I=NROOMS’/’2

| ’C’ PRINT THE SCREEN ON LINEPRINTER

AND CLEAR SCREEN

’C’

PRINTSCREEN(CURRENTVDU(OUTC));

12

STARTSCREEN(OUTC);

OUTF(OUTC,HL,DAY)

)

’END’;

PRINTSCREEN(CURRENTVDU(OUTC))

’END’;

’PROC’ INTTOCHARS = (’REF’’VDU’ ME,’INT’ I, LINE, COL, NUMBER):

’BEGIN’ ’INT’ COPY := I;

’FOR’ J ’FROM’ COL ’BY’ -1 ’TO’ COL-NUMBER+1 ’DO’

(SCREEN ’OF’ ME)[LINE,J] := ’REPR’ (COPY’/:=’10)

’END’;

’PROC’ FRAME1 = (’REF’ ’CHARPUT’ INC, OUTC, ’REF’ ’ENQUIRY’ ENQ,

’REF’ ’ENTRY’ ENT):

’BEGIN’

’C’ DISPLAYS THE FIRST "ENQUIRY" FRAME

’C’

’REF’ ’VDU’ ME = CURRENTVDU(OUTC);

’CHAR’ C; ’FORMAT’ G1, G2, G3, G4, G5;

COPYFORMAT(F1,G1);

COPYFORMAT(F2,G2);

COPYFORMAT(F3,G3);

COPYFORMAT(F11,G4);

COPYFORMAT(F12,G5);

STARTSCREEN(OUTC);

OUTF(OUTC,G1,"NUMBER OF SINGLE ROOMS");

’C’ SPECIFY A PLACE ON THE SCREEN FOR INPUT

’C’

INPUT FIELD(OUTC, PB, 2, ’FALSE);

OUTF(OUTC,G1,"NUMBER OF DOUBLE ROOMS");

INPUT FIELD(OUTC, PB, 2, ’FALSE);

OUTF(OUTC,G1,"BATHROOMS WITH EACH ROOM?");

INPUT FIELD(OUTC, PB, 1, ’FALSE);

OUTF(OUTC, G2, "Y = YES");

OUTF(OUTC, G4, "FROM DAY");

INPUT FIELD(OUTC, PB, 2, ’FALSE);

OUTF(OUTC, G5, "TO");

INPUT FIELD(OUTC, PB, 2, ’FALSE);

’C’ POSITION CURSOR TO START OF SCREEN

’C’

SETCURSOR(OUTC,0, 0);

INF(INC, G3,

(SING ’OF’ ENQ, DOUB ’OF’ ENQ, C,

FROM ’OF’ ENT, TO ’OF’ ENT));

13

INTTOCHARS(ME, SING ’OF’ ENQ,3,53,2);

INTTOCHARS(ME, DOUB ’OF’ ENQ,4,53,2);

INTTOCHARS(ME, FROM ’OF’ ENT,6,22,2);

INTTOCHARS(ME, TO ’OF’ ENT,6,34,2);

BATH ’OF’ ENQ := C=Y; (SCREEN ’OF’ ME)[3,52]:=C;

PRINTSCREEN(ME)

’END’

’PROC’ FRAME2 = (’REF’’CHARPUT’ INC, OUTC, ’REF’ ’DATES’ D,

’REF’ ’ENTRY’ E) ’BOOL’:

’BEGIN’

’C’ DISPLAYS THE SECOND "ENQUIRY" FRAME

’C’

’CHAR’ C; ’FORMAT’ G1, G2, G3, G4; ’BOOL’ B;

’REF’ ’VDU’ ME = CURRENTVDU(OUTC);

COPYFORMAT(F4,G1);

COPYFORMAT(F5,G2);

COPYFORMAT(F8,G3);

COPYFORMAT(F6,G4);

STARTSCREEN(OUTC);

OUTF(OUTC,G1,E);

INPUT FIELD(OUTC, PB, 1, "FALSE");

OUTF(OUTC,G2,"IF ""Y"" INSERT DATES");

INPUT FIELD(OUTC, PB, 2, "FALSE");

SETCURSOR(OUTC,0,0);

INF(INC,G3,C); (SCREEN ’OF’ ME)[4,28]:=C;

(B := C = "Y"

! INF(INC,G4, D)

INTTOCHARS(ME,FROM’OF’D, 5,35,2);

INTTOCHARS(ME, TO ’OF’D, 5,45,2);

FROM ’OF’ E := FROM ’OF’ D; TO ’OF’ E := TO ’OF’ D;

PRINTSCREEN(ME)

);

B

’END’

14

’PROC’ GARBAGE COLLECT = ’VOID’:

’BEGIN’

’C’ DELETE ALL OLD BOOKINGS

’C’

’FOR’ I ’TO’ NROOMS ’DO’

’BEGIN’ ’REF’ ’REF’ ’BOOKING’ RB = B ’OF’ ROOMS[I];

’IF’ (RB ’ISNT’ NOTBOOKED

! DAY > TO ’OF’ DATE ’OF’ RB

! ’FALSE’

)

’THEN’ RB := NEXT ’OF’ RB

’FI’

’END’

’END’;

’PROC’ BOOKROOM = (’REF’ ’ENTRY’ ENT, ’BOOL’ BOOK,

’REF’ ’CHARPUT’ OUTC):

’BEGIN’

’C’ CONFIRMS BOOKING

TRACER USES "TRIPLE REF" TECHNIQUE AND IS USED TO LOCATE

THE CORRECT BOOKING IN THE CHAIN

’C’

’FORMAT’ ERROR; COPYFORMAT(F8,ERROR);

’BOOL’ NOTMATCHED := ’TRUE’;

’REF’ ’REF’ ’BOOKING’ TRACER := B ’OF’ ROOMS[NUMBER ’OF’ ENT];

’WHILE’

(TRACER ’ISNT’ NOTBOOKED

! NOTMATCHED := FROM ’OF’ DATE ’OF’ TRACER # FROM ’OF’ ENT

! ’FALSE’

)

’DO’ TRACER := NEXT ’OF’ TRACER;

’IF’ (TRACER ’IS’ NOTBOOKED)

’OR’ NOTMATCHED

’THEN’ OUTF(OUTC,ERROR,"BOOKING NOT FOUND")

’ELSF’ BOOK

’THEN’ TAKEN ’OF’ TRACER := ’TRUE’;

PENDING ’OF’ TRACER := ’FALSE’

DATE ’OF’ TRACER := (FROM ’OF’ ENT, TO ’OF’ ENT)

’ELSE’ ’REF’ ’REF’ ’BOOKING’ ’VAL’ TRACER := NEXT ’OF’ TRACER

’FI’

’END’

15

’PROC’ CANCEL ROOM = (’REF’ ’CHARPUT’ INC, OUTC):

’BEGIN’

’ENTRY’ ENT; ’FORMAT’ G1, G2, G3;

COPYFORMAT(F11,G1);

COPYFORMAT(F12,G2);

COPYFORMAT(F6,G3);

OUTF(OUTC, G1, "ROOM NUMBER 2);

INPUT FIELD(OUTC, PB, 2, ’FALSE’);

OUTF(OUTC, G3, " FROM ");

INPUT FIELD(OUTC, PB, 2, ’FALSE’);

SET CURSOR(OUTC, 0, 0);

NEWLINE(INC); INF(INC,G3,(NUMBER ’OF’ ENT, FROM ’OF’ENT));

BOOKROOM(ENT, ’FALSE’, OUTC)

’END’;

’PROC’ SEEKROOM = (’PROC’ (’REF’ ROOM) ’BOOL’ PB) ’INT’:

’BEGIN’

’C’ SEARCHES FOR A ROOM WITH PROPERTIES

SPECIFIED BY PB

’C’

’BOOL’ STOP := ’FALSE’; ’INT’ RESULT := 0;

’FOR’ I ’TO’ NROOMS ’WHILE’ ’NOT’ STOP ’DO’

’BEGIN’

’IF’ STOP := PB(ROOMS[I])

’THEN’ RESULT := I

’FI’

’END’;

RESULT

’END’;

16

’PROC’ ROOMFREE = (’REF’ ’ROOM’ R, ’REF’ ’ENTRY’ ENT) ’BOOL’:

’BEGIN’

’C’ SEARCHES FOR A VACANCY IN A PARTICULAR ROOMS BOOKINGS

’C’

’REF’ ’REF’ ’BOOKING’ TRACER := B ’OF’ R;

’BOOL’ OK := TRACER ’IS’ NOTBOOKED; ’BOOL’ B:= OK;

’WHILE’

’IF’ ’NOT’ OK

’THEN’ TRACER ’ISNT’ NOTBOOKED

’ELSE’ (’REF’ ’REF’ ’BOOKING’ ’VAL’ TRACER) :=

’BOOKING’ :=

(’TRUE’, ’FALSE’, (FROM ’OF’ ENT,

(B ’OF’ R ’IS’ NOTBOOKED ! LASTDAY | TO ’OF’ ENT)),

TRACER);

ENT := (0, FROM ’OF’ ENT,

(B ! LASTDAY ! FROM ’OF’ DATE ’OF’ TRACER));

’FALSE’

’FI’

’DO’ ’BEGIN’

OK := TO ’OF’ DATE ’OF’ TRACER < FROM ’OF’ ENT ’AND’

’IF’ B := NEXT ’OF’ TRACER ’IS’ NOTBOOKED

’THEN’ ’TRUE’

’ELSE’ FROM ’OF’ DATE ’OF’ NEXT ’OF’ TRACER > TO ’OF’ ENT

’FI’;

TRACER := NEXT ’OF’ TRACER

’END’;

OK

’END’;

’PROC’ FINDROOM = (’REF’ ’ENTRY’ ENT, ’BOOL’ BATH, SINGLE) ’INT’:

’BEGIN’

’C’ SEARCHES FOR A ROOM OF A PARTICULAR TYPE

IF ONE IS NOT FOUND THE CONDITIONS BECOME

PROGESSIVELY LESS STRINGENT

’C’

’INT’ RESULT := 0;

’IF’ (RESULT := SEEKROOM ((’REF’ ’ROOM’ R) ’BOOL’:

’BEGIN’

(SINGLE ’OF’ R = SINGLE) ’AND’

(BATH ’OF’ R = BATH) ’AND’

ROOMFREE(R,ENT)

’END’)) = 0

’THEN’

17

’IF’ (RESULT := SEEKROOM((’REF’ ’ROOM’ R) ’BOOL’:

’BEGIN’

(SINGLE ’OF’ R = SINGLE) ’AND’

ROOMFREE(R, ENT)

’END’)) = 0

’THEN’ RESULT := SEEKROOM (’REF’ ’ROOM’ R) ’BOOL’:

’BEGIN’

ROOMFREE(R, ENT)

’END’)

’FI’

’FI’

RESULT

’END’

’PROC’ PROCESSENQ = (’ENQUIRY’ ENQ, ’REF’ ’BOOL’ OK,

’REF’ ’ENTRY’ ENT,

’REF’ ’CHARPUT’ INC. OUTC):

’BEGIN’

’INT’ U = SING ’OF’ ENQ + DOUB ’OF’ ENQ; ’INT’ VALID ENTRIES := 0;

[1:U] ’ENTRY’ ENTRIES;

’FORMAT’ G1; COPYFORMAT(F10, G1);

’TO’ SING ’OF’ ENQ ’DO’

’BEGIN’

’INT’ I = FINDROOM(ENT, BATH ’OF’ ENQ, ’TRUE’);

(I>0

! ENTRIES[VALIDENTRIES ’PLUS’ 1] :=

(I, FROM ’OF’ ENT, TO ’OF’ ENT)

)

’END’

OUTF(OUTC, G1, (VALIDENTRIES, U));

’FOR’ I ’TO’ VALIDENTRIES ’DO’

’BEGIN’

’REF’ ’ENTRY’ E = ENTRIES[I];

’DATES’ DA := (FROM ’OF’ E, TO ’OF’ E);

BOOKROOM(E, FRAME2(INC,OUTC,DA,E), OUTC)

’END’

’END’;

18

’PROC’ RECEPTIONIST = (’REF’ ’CHARPUT’ INC, OUTC):

’BEGIN’ ’FORMAT’ ROOM, ERROR;

’C’ THIS IS THE PROCEDURE TO BE LAUNCHED AS A

SEPARATE PROCESS

’C’

COPYFORMAT(F8,ERROR); COPYFORMAT(COMMANDLIST, COMM);

’INT’ DUMMY; ’ENQUIRY’ ENQ; ’BOOL’ OK;

’ENTRY’ ENT; ’DATES’ DA;

’WHILE’

STRATSCREEN(OUTC);

INF(INC, COMM, DUMMY);

’CASE’ DUMMY

’IN’

FRAME1(INC, OUTC, ENQ, ENT);

PROCESSENQ(ENQ, OK, ENT, INC, OUTC),

LISTROOMS((’REF’ ’BOOKING’ B) ’BOOL’:

(’NOT’ (PENDING ’OF’ B ’OR’ TAKEN ’OF’ B)),

OUTC),

LISTROOMS((’REF’ ’BOOKING’ B) ’BOOL’: (’TRUE’),OUTC),

LISTROOMS((’REF’ ’BOOKING’ B) ’BOOL’: (TAKEN ’OF’ B), OUTC),

CANCEL ROOM(INC, OUTC),

INF(INC, $2D$, DAY);

GARBAGE COLLECT,

’SKIP’

’OUT’

OUTF(OUTC, ERROR, "REQUEST NOT RECOGNISED")

’ESAC’;

DUMMY # 7

’DO’ ’SKIP’

’END’

CANCEL ABANDON;

19

’C’ DEFINE 2 DEVICES ON CHANNEL 0 ... ’C’

DEFINE CONFIGURATION(2,0);

’C’ ... BOTH ARE VDUS ’C’

VDU((1,2));

’C’ START THE WHOLE SYSTEM ... ’C’

STARTCONFIGURATION;

’C’ ... AND EACH DEVICE. ’C’

STARTIDEN(1, RECEPTIONIST);

STARTIDEN(2, RECEPTIONIST);

’C’ SCAN FOR INPUT FROM THE DEVICES ’C’

SCAN CONFIGURATION

’END’

’FINISH’

20

APPENDIX 2—SAMPLE OUTPUT

TERMINAL NUMBER 1 DATE: 02/04/75 TIME: 15.56.37

NUMBER OF SINGLE ROOMS (00)

NUMBER OF DOUBLE ROOMS (01)

BATHROOMS WITH EACH ROOM? (N) Y = YES

FROM DAY (21) TO (24)

21

TERMINAL NUMBER 1 DATE: 02/04/75 TIME: 15.56.37

ROOM NUMBER 2 IS AVAILABLE FROM 21 TO 30

SATISFACTORY ? (Y)

IF "Y" INSERT DATES (21) TO (24)

22

TERMINAL NUMBER 1 DATE: 02/04/75 TIME: 15.57.26

ROOM S/D BATH BEDS OCCUPANCY FROM DAY 10

1 DOUBLE WITH 0 1 T FROM 12 TO 15

2 DOUBLE WITHOUT 0 1 T FROM 21 TO 24

P FROM 25 TO 28

3 SINGLE WITH 1 0 T FROM 3 TO 10

4 SINGLE WITH 1 0 T FROM 3 TO 12

5 SINGLE WITH 1 0 T FROM 9 TO 11

23

TERMINAL NUMBER 1 DATE: 02/04/75 TIME: 15.57.27

ROOM S/D BATH BEDS OCCUPANCY FROM DAY 10

6 SINGLE WITH 1 0 V FROM 10 TO 30

7 SINGLE WITH 1 0 V FROM 10 TO 30

8 SINGLE WITH 1 0 V FROM 10 TO 30

9 SINGLE WITH 1 0 V FROM 10 TO 30

10 SINGLE WITH 1 0 V FROM 10 TO 30

24

