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Abstract

The standard renormalization procedure consists in introducing a
cut-off and then trying to remove it by some limiting procedure. In
the paper [?] a new renormalization technique was introduced based
on the idea of renormalizing a closed set of commutation relations and
then finding a nontrivial representation for them. In the paper [?] it
was proved that, in the case of quadratic fields the new renormal-
ization procedure leads to quadratic field operator which is gamma
distributed in the quadratic vacuum (as one would intuitively expect
from the ”square” of a white noise) and to Meixner or Pascal dis-
tributed Poisson fields. It is natural to ask if the same result can
be obtained with the usual cut-off and take-limit procedure. In the
present paper we prove that the answer to this question is negative.
More precisely, we show that, independently of the choice of the cut-
off (cf. section 7), if a quadratic field admits a limit in the sense of
mixed moments, then this limit will be Gaussian distributed in the
vacuum and consequently the associated Poisson fields will have a
Poisson distribution.

1 Introduction

The problem of defining renormalized powers of quantum fields has
motivated several investigations [?, ?]. The Wilson expansion and
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the Zimmermann product were developed for this purpose. From the
point of view of rigorous mathematical results we mention the paper
[?] where it is proved that the square of the usual time zero, scalar,
Fock, Klein-Gordon field on Rd, cannot correspond to a self-adjoint
operator acting on the same Fock space of the field unless d = 1.

The proof of Segal’s result exploits the canonical commutation
relations (CCR) to prove that, if such a self-adjoint operator would
exist, then the associated 1–parameter unitary group should induce
a 1-parameter automorphism group of the Weyl algebra which, by
construction, should be inner. On the other hand, the explicit form
of this 1-parameter automorphism group shows that it is the second
quantization of a 1-parameter family of operators acting on L2(Rd).
This allows, using the explicit form of the spectral function of the
Klein-Gordon field [(m+k2)−1/2], to prove that only in the case d = 1
the conditions of Shale’s theorem on the unitary implementability of
automorphisms of the Weyl algebra [?] can be satisfied.

On the other hand Segal’s result does not exclude the possibility
of a coherent definition of the renormalized square of a Fock boson
field in a Hilbert space different from the Fock space where the field
itself acts.

The natural idea of using a Bogolyubov transformation to diago-
nalize a quadratic expression in the field was analyzed in [?] where it
was shown that the set of parameters for which such a Bogolyubov
transformation exists does not include the critical value 2 which is
precisely the one, corresponding to the square of field (classical white
noise) one was trying to define.

In 1999 Accardi, Lu and Volovich [?] proposed a different approach
to the definition of the renormalized square of a Boson Fock field on
Rd (d-dimensional white noise), based on the following idea: instead
of renormalizing the action of the hypothetical “square of the field” on
the Fock space of the 1–st powers of the field, they renormalized the
commutation relations of the second powers of the field and proved
constructively that a Fock representation for them exists.

This result gave rise to a rather impetuous development [?], [?],
[?], [?], [?], [?], [?] from which it emerged that the realizations of the
RSWN are representations of the current algebra over sl(2;Rd) and
that, just like the vacuum expectations of linear combinations of the
first order fields produce the usual Gaussian and Poisson distributions,
the vacuum expectations of linear combinations of second order fields
produce exactly all the remaining three family of distributions in the
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Meixner classes (i.e. Pascal, gamma and Meixner).
It is worth emphasizing that, from a result of P. Sniady [?], it

follows that even in dimension 1 the renormalized square of white noise
in the sense of [?] cannot live on the same Fock space of the usual first
order field. This proves that, even in dimension 1, the renormalization
procedure of Accardi, Lu, Volovich leads to field operators different
from those constructed by Segal.

In view of all these developments a natural question is to ask wether
the renormalized square of white noise (RSWN) can be obtained with
a procedure nearer to the usual approaches to renormalization theory
(see, for example, [?]), namely:

(i) introducing a cut-off

(ii) possibly compensating in some way divergent quantities

(iii) using a limit procedure to eliminate the cut-off

In the present paper we prove that the answer to the above question
is negative. More precisely, we prove that, for a large class of natural
cut-off functions, if the cut-off can be removed by a converging limiting
procedure then the limit field is necessarily gaussian.

Our starting point is the family of quadratic expressions in the
field operators, which can be symbolically written in the form :

H =

∫
Rd
dp
(
ω(p)(a2

p + (a+
p )2) + ν(p)a+

p ap
)

(1)

where a+
p and ap are Bose creation and annihilation operators in the

Fock representation. Since ap is an operator–valued distribution and
the multiplication of distributions is not uniquely defined, one has to
specify a framework to give a meaning to expressions like (??) and,
as already mentioned before, several procedures have been proposed
in the literature in order to achieve this goal.

A natural way of dealing with the multiplication of distributions
is a regularization. The naive idea is to replace ap by an expression of
the form

ap,ε =

∫
Rd
dk δε(k)ap+k

where δε is a delta–sequence, that is a sequence of smooth functions
such that ∀f ∈ S(Rd)

lim
ε→0

∫
Rd
dk δε(k)f(k) = f(0)
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Since ap,ε is a well-defined operator for a wide class of test functions
δε, one can replace ap by ap,ε in (??), and take the limit ε → 0 in
some sense to be specified. However this naive procedure leads to the
divergence of the commutator [a2

p,ε, (a
+
k,ε)

2] in the limit ε → 0 hence
to the necessit of a renormalization procedure. The usual renormal-
ization procedure consists in defining a regularized ap,ε through the
prescription:

ap,ε = εA
∫
Rd
dpδε(p)ap

and, in analogy with the classical central limit theorems, we prove (cf.
Lemma (5) below) that the only way to obtain a limit which is not
identically zero or infinity is to choose A = d/2. Then we prove the
main result of the present paper, namely: independently of the special
form of the delta–sequence δε(p) the expressions in ap,ε converge, in
sense of distribution mixed moments (correlators), to the standard
Bose Fock creation and annihilation operators.

The plan of the present paper is the following. In Section (2) we
introduce the basic notations and the smeared quadratic fields. The
structure of the associated Lie algebra is introduced in Section (3). In
Section (4) we introduce a particular regularization and study its main
properties. The Gaussianity of the limit of the Lie algebra of smeared
quadratic fields, with respect to this regularization, is established in
Sections (5) and (6). This means that, in the limit ε→ 0, the squares
of the quadratic Bose operators converge, in the sense of correlators,
to a Bose Fock field.

Finally in Section (7) we prove the robustnsess of our main result,
i.e. the Gaussianity of the limit, with respect to the choice of the
regularization of the δ–function within a quite general class which
includes the special choice introduced in Section (4).

2 Smeared quadratic fields

We use the following notations: S(Rd) denotes the Schwartz space,
S ′(Rd) - the space of Schwartz distributions (see, for example, [?]);
〈·, ·〉 denotes the scalar product either in the Bose Fock space, or in
any N–particle subspaces HNB (see Definition ?? below), in particular,
if φ, ψ ∈ L2(Rd), 〈φ, ψ〉 =

∫
dk φ(k)ψ(k).

All indices k, p are d–dimensional and, when the domain of inte-
gration is not specified in an integral, this is understood to be Rd.
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Definition 1 A Boson Fock field on Rd is a field ak, a+
k′ together with

an expectation value 〈〉 such that

〈a+
k ak′〉 = 0

〈aε1k1 . . . a
εn
kn
〉 = 0, if n is odd,

〈aε1k1 . . . a
εn
k2n
〉 =

∑
All pair partitions (li,ri) of aε1k1 . . . a

εn
k2n

〈aεl1kl1a
εr1
kr1
〉 . . . 〈aεlnklna

εrn
krn
〉

where aε means a+ or a.

Remark. The boson Fock property is equivalent to the condition (see
[?], 2.11):

〈eit(A
+
φ+Aφ)〉 = e

1
2
t2〈φ,φ〉

Boson Fock fields are realized on Boson Fock spaces.

Definition 2 The Bose Fock space over L2(Rd) is

FB(L2(Rd)) :=
∞⊕
n=0

HnB

where HnB is the space of symmetric square integrable functions of n
arguments, that is, complex-valued function vn(x1, . . . xn) ∈ HNB if and
only if ∫

dx1 . . . dxn |vn(x1, . . . xn)|2 <∞

and for any 1 ≤ i < j ≤ n

vn(x1, . . . , xi, . . . , xj , . . . , xn) = vn(x1, . . . , xj , . . . , xi, . . . , xn)

Any vector V from the Bose Fock space can be represented as

V = (v0, v1(x1), v2(x1, x2), . . . , vn(x1, x2, . . . , xn), . . . )

The scalar product of two vectors V , W is given by:

〈V,W 〉 =
∞∑
n=0

〈vn, wn〉

where the scalar product in HnB is

〈vn, wn〉 =

∫
dx1 . . . dxn vn(x1, . . . , xn)wn(x1, . . . , xn)

The vector ψ0 = (1, 0, 0, . . . ) is called the vacuum vector. Vectors
with vn = 0, except for at most one n, are called number or n-particle
vectors.
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Definition 3 Consider an n-particle vector:

Vn = (0, 0, . . . , 0, vn(x1, x2, . . . , xn), 0 . . . )

The Bose creation operator a+(f) is defined by its action on Vn:

a+(f)Vn = Un+1

where Un+1 is the (n+ 1)–particle vector given by

un+1(x1, x2, . . . xn+1) =
√
n
n+1∑
i=1

f(xi)vn(x1, . . . , xi−1, xi+1, . . . xn+1)

The action of the Bose annihilation operator a(f) is defined by

a(f)ψ0 = 0

a(f)Vn = Wn−1 ; if n ≥ 1

where Wn−1 is the (n− 1)–particle vector given by

wn−1(x1, x2, . . . xn+1) =
√
n− 1

n∑
i=1

∫
dxi f(xi)vn(x1, x2, . . . xn)

We extend the definition of a and a+ to all finite linear combinations
of number vectors by linearity.

We use the following notation:

a(f) =

∫
akf(k)dk ; a+(f) =

∫
a+
k f(k)dk

a+
k and ak are called the Bose creation and annihilation operator-

valued distributions. When no confusion is possible, the pair a+
k , ak

is simply called a “Bose Fock field”.

It is easy to check that a(f) and a+(g) satisfy the following commuta-
tion relations which define the CCR (or Heisenberg) Lie algebra over
S(Rd):

[a(f), a+(g)] = 〈f, g〉

or, in distributions notation:

[ap, a
+
k ] = δ(p− k)
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Definition 4 For f, g, h ∈ L2(Rd) define the smeared quadratic fields
by:

B+
f :=

∫
f(k1, k2)a+

k1
a+
k2
dk1dk2

B−g :=

∫
g(p1, p2)ap1ap2dp1dp2

where the test functions are supposed to be symmetric

f(k1, k2) = f(k2, k1) ; g(p1, p2) = g(p2, p1)

Nh :=

∫
h(k1, k2)a+

k1
ak2dk1dk2

notice that h is not supposed to be symmetric.

3 The quadratic Lie algebra

Definition 5 For f, g, h ∈ L2(Rd) define:

(f � g)(p1, p2) :=

∫
dk f(p1, k)g(k, p2)

Tr f :=

∫
dk f(k, k)

Lemma 1 The smeared quadratic fields satisfy the following commu-
tation relations:

[B−g , B
+
f ] = 4Nf�ḡ + 2 Tr(ḡ � f) (2)

[Nh, B
+
f ] = 2B+

h�f (3)

[Nh, B
−
f ] = −2B−h�ḡ (4)

[Nf , Ng] = Nf�g−g�f = N[f,g]� (5)

[B+
f , B

+
g ] = [B−f , B

−
g ] = 0 (6)

Remark. The above result shows that the quadratic fields form a
closed Lie algebra, called the quadratic Lie algebra. Notice the analogy
between this Lie algebra and the Lie algebra of the renormalized square
of white noise [?]: the only difference between the two is that here the
pointwise multiplication among test functions is replaced by the �-
product which is not commutative.
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Proof. We have:

[B−g , B
+
f ] =

∫
dk1dk2dp1dp2ḡ(k1, k2)f(p1, p2)[ak1ak2 , a

+
k1
a+
k2

]

Moreover

[ak1ak2 , a
+
p1a

+
p2 ] = [ak1ak2 , a

+
p1 ]a+

p2 + a+
p1 [ak1ak2 , a

+
p2 ]

= ak1 [ak2 , a
+
p1 ]a+

p2 + [ak1 , a
+
p1 ]ak2a

+
p2 + a+

p1ak1 [ak2 , a
+
p2 ] + a+

p1 [ak1 , a
+
p2 ]ak2

= ak1a
+
p2δ(k2−p1)+δ(k1−p1)ak2a

+
p2+a+

p1ak1δ(k2−p2)+a+
p1ak2δ(k1−p2)

= a+
p2ak1δ(k2−p1)+a+

p2ak2δ(k1−p1)+a+
p1ak1δ(k2−p2)+a+

p1ak2δ(k1−p2)+

+δ(k1 − p2)δ(k2 − p1) + δ(k1 − p1)δ(k2 − p2)

After evaluation of the δ-function the integrands of the terms with a
single δ-function are

ḡ(k1, k2)f(p2, p1)a+
p2ak1

ḡ(k1, k2)f(k1, p2)a+
p2ak2

ḡ(k1, k2)f(p1, k2)a+
p1ak1

ḡ(k1, k2)f(p1, k1)a+
p1ak2

and, using the symmetry of f , g they become

ḡ(k1, k2)f(k2, p2)a+
p2ak1 (7)

ḡ(k2, k1)f(k1, p2)a+
p2ak2 (8)

ḡ(k1, k2)f(k2, p1)a+
p1ak1 (9)

ḡ(k2, k1)f(k1, p1)a+
p1ak2 (10)

Changing variables in (??): k1 → k2; k2 → k1 we obtain

ḡ(k1, k2)f(k2, p2)a+
p2ak1

with a similar change of variables in (??): k2 → p1; p1 → p2 we obtain

ḡ(k1, k2)f(k2, p2)a+
p2ak1

Similarly in (??) changing variables:

k1 → p1 , k2 → p2 ; k2 → k1
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we obtain
ḡ(k1, k2)f(k2, p2)a+

p2ak1

and this gives:

4

∫
dp2dk1 a

+
p2ak1

∫
dk2 ḡ(k1, k2)f(k2, p2) = 4

∫
dp2dk1 a

+
p2ak1(f�ḡ)(k1, p2) = 4Nḡ�f

The integrands of the terms with two δ-functions are

g(k1, k2)f(k2, k1) ; g(k1, k2)f(k1, k2)

and this gives the second term in the right hand side of (??):

2

∫
dk1dk2 ḡ(k1, k2)f(k2, k1) = 2 Tr ḡ � f

To prove (??) notice that

[Nh, B
+
f ] =

∫
dk1dk2

∫
dp1dp2h(k1, k2)f(p1, p2)[a+

k1
ak2 , a

+
p1a

+
p2 ]

Now

[a+
k1
ak2 , a

+
p1a

+
p2 ] = [a+

k1
ak2 , a

+
p1 ]a+

p2 + a+
p1 [a+

k1
ak2 , a

+
p2 ] =

= a+
k1

[ak2 , a
+
p1 ]a+

p2 + a+
p1a

+
k1

[ak2 , a
+
p2 ] =

= a+
k2
a+
p2δ(k2 − p1) + a+

p1a
+
k1
δ(k2 − p2)

The two corresponding integrands are

h(k1, k2)f(k2, p2)a+
k1
a+
p2

h(k1, k2)f(p1, k2)a+
p1a

+
k1

= h(k1, k2)f(k2, p1) + a+
p1a

+
k1

changing variables in the second term: p1 → k1, k1 → p2 one obtains

h(k1, k2)f(k2, p2)a+
k1
a+
p2

and the sum of the two integrands becomes

2h(k1, k2)f(k2, p2)a+
k1
a+
p2

Integrating one obtains:

2

∫
dk1dp2 a

+
k1
a+
p2

∫
dk2 h(k1, k2)f(k2, p2) = 2

∫
dk1dp2 a

+
k1
a+
p2(h�f)(k1, p2) = 2B+

h�f
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Similarly, one can get (??).
Finally,

[Nf , Ng] =

∫
dk1dk2

∫
dp1dp2f(k1, k2)g(p1, p2)[a+

k1
ak2 , a

+
p1ap2 ]

Since

[a+
k1
ak2 , a

+
p1ap2 ] = [a+

k1
ak2 , a

+
p1 ]ap2+a+

p1 [a+
k1
ak2 , ap2 ] = a+

k1
[ak2 , a

+
p1 ]ap2+a+

p1 [a+
k1
, ap2 ]ak2 =

= δ(k2 − p1)a+
k1
ap2 − δ(p2 − k1)a+

p1ak2

it follows that

[Nf , Ng] =

=

∫
dk1dp2a

+
k1
ap2

∫
f(k1, k2)g(k2, p2)dk2−

∫
dp1dk2a

+
p1ak2

∫
g(p1, k1)f(k1, k2)dk1 =

= Nf�g −Ng�f (11)

and this proves (??). Eq. (??) is obvious.

4 A particular regularization of the δ-

function and some of its properties

Lemma 2 Define, for ε 6= 0

δε(x) :=
1

πd/2εd
e−

x2

ε2 ; x ∈ Rd (12)

where x2 = x2
1 + · · ·+ x2

d. Then as ε→ 0 δε(x)→ δ(x) in S ′(Rd).

Proof. For any ϕ ∈ S(Rd),∫
δε(x)ϕ(x) dx =

∫
1

πd/2εd
e−

x2

ε2 ϕ(x)dx =
1

πd/2

∫
e−y

2
ϕ(εy)dy

Here we denote εy := (εy1, . . . , εyd). As ε→ 0 this converges to

ϕ(0)

πd/2

∫
e−y

2
dy = ϕ(0)

where we used the identity∫
e−y

2
dy = πd/2
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Lemma 3 Let δε(x) be as in (??). Then

δε(x)2 =
1

(2π)d/2εd
δ ε√

2
(x)

Proof .

δε(x)2 =
1

πdε2d
e−

2x2

ε2 =

=
1

πd/2(ε/
√

2)d · πd/2 · (
√

2ε)d
e
− x2

(ε/
√
2)2 =

1

(2π)d/2εd
δ ε√

2
(x) (13)

Lemma 4 For any m ≥ 1, f ∈ S(Rm)

lim
ε→0

εd
∫
dx1 . . . dxm f(x1, . . . , xm)δε(x1−x2)δε(x2−x3) . . . δε(xm−x1) =

=
1

(2π)(m−1)d/2

∫
Rd
f(x, x, . . . , x)dx (14)

Proof. With the change of variables:

εy1 = (x2 − x1), . . . , εym−1 = (xm − xm−1)

one has:

I(ε) = εd
∫
Rd
dx1 . . . dxm f(x1, . . . , xm)δε(x1−x2)δε(x2−x3) . . . δε(xm−x1) =

=
1

πmd/2

∫
dx1dy1 . . . dym−1 f(x1, x1+εy1 . . . , x1+εy1+· · ·+εym−1)×

× e−y21−y22−···−y2m−1−(y1+···+ym−1)2

By dominated convergence and computing the gaussian integral, (??)
follows.

5 The CCR algebra as diagonal limit

of the quadratic algebra

Definition 6 For f ∈ L2(R2d), define:

fε(p1, p2) = f(p1, p2)δε(p1 − p2) (15)
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Definition 7 We fix an embedding S : S(Rd) → L2(R2d) with the
following properties: if f = S(φ), then

f(p, p) = φ(p) (16)

and ∃µ > 0, such that f is smooth in the µ-neighborhood of the di-
agonal: p1 = p2. For φ ∈ S(Rd), f = S(φ) and fε given by (??),
define:

B+
φ,ε = cεd/2B+

fε

B−φ,ε = cεd/2B−fε

Nφ,ε = Nfε

where c = 2(d/4−1/2)πd/4.
Notice that different embeddings for different functions are allowed.

Definition 8 Consider a . The operator A is said to be a weak limit,
on the number vectors, of the sequence of operators An if, for any pair
of number vectors V1, V2, one has:

lim
n→∞

〈V1, AnV2〉 = 〈V1, AV2〉

In this case we write:
w.lim
n→∞

An = A

The following theorem proves that in the limit, as ε→ 0, the quadratic
Lie algebra becomes the usual CCR Lie algebra over L2(Rd).

Theorem 1 Suppose φ, ψ ∈ S(Rd). Then

w.lim
ε→0

[B−φ,ε, B
+
ψ,ε] = 〈φ, ψ〉 (17)

w.lim
ε→0

[B+
φ,ε, Nψ,ε] = 0 (18)

w.lim
ε→0

[B−φ,ε, Nψ,ε] = 0 (19)

Moreover these limits don’t depend on the embeddings S1, S2.

Proof. Denote f = S1(φ), g = S2(ψ). Let us prove (??). From
Definition ?? we deduce:

[B−φ,ε, B
+
ψ,ε] = c2εd[B−fε , B

+
gε ] (20)
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Using Lemma ?? we have

c2εd[B−fε , B
+
gε ] = 4c2εdNfε�gε + 2c2εd Tr fε � gε

Denote T2 := 2c2εd Tr fε � gε. We have

T2 = 2c2εd
∫
dk1dk2f(k1, k2)g(k1, k2) (δε(k1 − k2))2

Using Lemma ?? and dominated convergence we obtain:

T2 =
2c2

(2π)d/2

∫
dk1dk2f(k1, k2)g(k1, k2)δε/

√
2(k1 − k2)

Note, that 2c2

(2π)d/2
= 1. Since f and g are smooth in some neighborhood

of the line k1 − k2 = 0, we can use Lemma ??. We obtain:

lim
ε→0

2c2εdTrfε � gε = lim
ε→0

T2 =

=

∫
dk f(k, k)g(k, k) =

∫
dk φ(k)ψ(k) = 〈φ, ψ〉 (21)

Denote T1 := 4c2εdNfε�gε . We have:

T1 := 4c2εd
∫
dp1dp2 a

+
p1ap2

∫
dk f(p1, k)g(k, p2)δε(p1 − k)δε(k − p2)

We claim that w.lim
ε→0

T1 = 0. Intuitively, our claim is motivated by the

fact that, as ε→ 0, δε(p)→ δ(p) therefore one expects that:

T1 ∼ 4c2εd
∫
dp1dp2dka

+
p1ap2f(p1, k)g(k, p2)δ(p1 − k)δ(k − p2) =

= 4c2εd
∫
dka+

k f(k, k)g(k, k) = 4c2εdN(f(·, ·)g(·, ·))→ 0

We will prove that this is indeed the case. Consider two number
vectors V1, V2 ∈ FB(L2(Rd)) of the form

V1 = (0, 0, . . . , 0, v1(q1, q2, . . . , qN ), 0, . . . ) (22)

V2 = (0, 0, . . . , 0, v2(q1, q2, . . . , qM ), 0, . . . )

where vi are smooth functions. If N 6= M , then 〈V1, T1V2〉 = 0.
Otherwise,

〈V1, T1V2〉 = N
N∑

i,j=1

∫
dx1 . . . dxN−1dξdη v1(x1, . . . , xj−1, ξ, xj , . . . xN−1)×
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×v2(x1, . . . , xi−1, η, xi, . . . xN−1)Fε(ξ, η) (23)

where

Fε(ξ, η) = 4c2εd
∫
dk f(ξ, k)g(k, η)δε(ξ − k)δε(k − η)

Integrating over x1, . . . xN−1, we obtain:

1

εd
〈V1, T1V2〉 =

N∑
i,j=1

∫
dξdη uij(ξ, η)Fε(ξ, η)

where uij(ξ, η) are smooth functions. Using Lemma ??, we have:

lim
ε→0

1

εd
〈V1, T1V2〉 =

N∑
i,j=1

∫
dk uij(k, k)f(k, k)g(k, k) <∞

Thus, we conclude that

lim
ε→0
〈V1, T1V2〉 = 0

Hence,
w.lim
ε→0

T1 = 0 (24)

Combining (??), (??), and (??), we obtain:

w.lim
ε→0

(
[B−φ,ε, B

+
ψ,ε]
)

= 〈φ, ψ〉

Which is (??).
Let us prove (??). By Def. ??

[Nφ,ε, B
+
ψ,ε] = cεd/2[Nfε , B

+
gε ]

Using Lemma ?? we have:

cεd/2[Nfε , B
+
gε ] = 2cεd/2B+

fε�gε =: T3 (25)

Let us choose any vectors V1, V2 of the form (??) with smooth v1 and
v2. We have:

〈V1, T3V2〉 = 2cεd/2δN,M+2

M∑
i,j=1

∫
dx1 . . . dxMdξdη ×

×v1(x1, . . . , xi−1, ξ, xi . . . , xj−1, η, xj , . . . , xM )v2(x1, . . . xM )Gε(ξ, η)
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where

Gε =

∫
dkf(ξ, k)g(k, η)δε(ξ − k)δε(k − η)

Integrating over x1, . . . xM we have:

1

εd/2
〈V1, T3V2〉 = δN,M+2

M∑
i,j=1

∫
dξdη uij(ξ, η)Gε(ξ, η) ,

where uij are smooth functions. Applying Lemma ?? we have:

1

εd/2
〈V1, T3V2〉 = δN,M+2

M∑
i,j=1

∫
dk uij(k, k)f(k, k)g(k, k) <∞

Therefore, we conclude that

lim
ε→0
〈V1, T3V2〉 = 0

Eq. (??) can be proved similarly.

6 The diagonal limit of the quadratic

fields

Definition 9 We say that a monomial V in B+,B−, and N is in
normal form, if

V = B+
f1
. . . B+

fk
Ng1 . . . NgmB

−
h1
. . . B−hn

A polynomial P is said to be in normal form if each of its monomials
is in normal form.

Lemma 5 Let V (ε) be a monomial in B+,B−, and N of the form:

V (ε) = Xn
φn,ε . . . X

2
φ2,εX

1
φ1,ε

where Xi denotes either B+, or B−, or N , Xφi,ε = XSi(φi)ε, φi ∈
S(Rd). Then, independently on the embeddings Si,

lim
ε→0
〈ψ0, V (ε)ψ0〉 <∞ (26)

Moreover, replacing the product of the Xi
φi,ε

by Xi
Si,1(φi,1)ε�···�Si,ni (φi,ni )ε

the statement remains true.

15



Proof. One can bring a monomial in B+,B−, and N to the nor-
mally ordered form by applying the commutation relations (??-??).

Let us track the behavior of the coefficient functions during this
process. In the beginning, one has n coefficient functions S(φ1)ε, . . . , S(φn)ε.

Now consider a monomial Y = Y m
fm
. . . Y 2

f2
Y 1
f1

, where Y i denotes

either B+, or B−, or N . Suppose we are going to apply the commu-
tation relations to exchange Y i and Y i−1. If Y i and Y i−1 are B− and
B+, then we have:

Y = Z1 + Z2 + Z3

If Y i and Y i−1 are B− and N , or N and B+, then we have:

Y = Z1 + Z2

where in Z1 the coefficient functions change their order:

Z1 = Y m
fm . . . Y

i−1
fi−1

Y i
fi
. . . Y 2

f2Y
1
f1

in Z2 the coefficient functions are “coupled” by the �-multiplication:

Z2 = εzY m
fm . . .Wfi−1�fi . . . Y

2
f2Y

1
f1

where z is either d , or 0, W denotes either B+, or B−, or N (W and
z depend on Y i and Y i−1).

In Z3 the coefficient functions are ”traced out”:

Z3 = εd Tr(fi � fi−1)Y m
fm . . . Y

2
f2Y

1
f1

From this discussion we conclude that after a sequence of com-
mutations a monomial is transformed into a finite sum of monomials.
Each monomial term of the result contains all the functions of the
original monomial. These test function functions may be combined
by �-multiplication. Such �-product may be either the coefficient of
an operator, or a factor under the trace. Moreover, each trace factor
is accompanied by an εd factor. Finally, an extra εn factor, n ≥ 0,
can be present in some monomials.

If V (N) is a monomial in normal form and without constant term,
then 〈ψ0, V

(N)ψ0〉 = 0. Therefore, only the constant terms survive.
The most general form of a constant term is a finite product of the
following traces:

εd+z Tr(Si1(φi1)ε � Si2(φi2)ε � · · · � Sir(φir)ε) (27)
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where z ≥ 0. Let us prove that Eq. (??) converges as ε→ 0. Indeed,
denote fk = Sik(φik). From Lemma ?? one has:

lim
ε→0

εd+z

∫
dk1 . . . dkrf1(k1, k2) . . . fr(kr, k1)δε(k1−k2) . . . δε(kr−k1) =

= π−rd/2
∫
dkf1(k, k)f2(k, k) . . . fr(k, k) lim

ε→0
εz =

= π−rd/2
∫
dkφi1(k)φi2(k) . . . φir(k) lim

ε→0
εz <∞

Thus, the vacuum expectation is equal to a finite sum of the form:

〈ψ0, V (ε)ψ0〉 =

i0∑
i=1

Zi(ε)

where each term Zi is a finite product:

Zi(ε) =

ni∏
j=1

Zi,j(ε)

and the Zi,j(ε) are of the form (??). We proved that lim
ε→0

Zi,j(ε) <∞
therefore

lim
ε→0
〈ψ0, V (ε)ψ0〉 =

i0∑
i=1

ni∏
j=1

lim
ε→0

Zi,j(ε) <∞

It is easy to check that if one replacesXi
φi,ε

byXi
Si,1(φi,1)ε�···�Si,ni (φi,ni )ε

,

then the proof is still correct.

Definition 10 Consider a monomial in B+ and B−: Suppose the
number of B+ and B− operators is equal to n. A pair partition of this
monomial is a sequence of n pairs:

{(l1, r1), (l2, r2), . . . , (ln, rn)}

such that

1. The set {l1, r1, l2, r2, . . . , ln, rn} is a permutation of the set {1, 2, . . . , 2n}.
2. For any i the li-th operator from the right is a B− and the ri-th

operator from the right is a B+.

3. For any 1 ≤ i ≤ n li > ri.

4. For any 1 ≤ i < j ≤ n, ri < rj

17



Example: a pair partition of the monomial B−B−B+B−B+B+:

Theorem 2 Consider the vacuum expectation of the monomial

〈ψ0, V (ε)ψ0〉 := 〈ψ0, X
n
φn,ε . . . X

2
φ2,εX

1
φ1,εψ0〉

Then, independently of the embeddings,

1. If one of the X’s is N , then 〈ψ0, V (ε)ψ0〉 → 0 as ε→ 0. More-
over, one can replace Xi

φi,ε
by Xi

Si,1(φi,1)ε�···�Si,ni (φi,ni )ε
and this

statement is still valid.

2. If the number of B+ and B− in V is not the same, then 〈ψ0, V (ε)ψ0〉 →
0 as ε→ 0.

3. If the number of B+ and B− in V is the same, then one has an
analogue of the Wick theorem.

lim
ε→0
〈ψ0, V (ε)ψ0〉 =

∑
All pairings (li,ri) of V

∏
i

〈φln , φrn〉 (28)

Proof. Let us prove the first statement. Suppose that one or more
of the X’s is N . Let us choose the rightmost N . We have

〈ψ0, V (ε)ψ0〉 = 〈ψ0, . . . Nφi,εB
±
φi−1,ε

. . . B±φ1,εφ0〉

Using Lemma ?? we have:

〈ψ0, V (ε)ψ0〉 = 〈ψ0, . . . B
±
φi−1,ε

. . . B±φ1,εNφi,εφ0〉+

+

i−1∑
j=1

〈ψ0, . . . B
±
φi−1,ε

. . . (±2c2εd/2B±Si(φi)ε�Sj(φj)ε) . . . B
±
φ1,ε

φ0〉 (29)
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Since N kills vacuum, the first term is always 0. Using Lemma ?? we
find that the second term 〈ψ0, T2(ε)ψ0〉 satisfies

lim
ε→0

ε−d/2〈ψ0, T2(ε)ψ0〉 = const

Hence, 〈ψ0, T2(ε)ψ0〉 → 0 as ε → 0. Using Lemma ?? it is easy to
check that if one replaces Xi

φi,ε
by Xi

Si,1(φi,1)ε�···�Si,ni (φi,ni )ε
, then the

proof of Statement 1 is still correct.
The second statement is almost trivial. The number of creation

and annihilation operators should be equal to obtain a non-zero vac-
uum expectation.

Let us prove the third statement. Note, that

[B−φ,ε, B
+
ψ,ε] = 2 TrS(φ)ε � S(ψ)ε + 4NS(φ)ε�S(ψ)ε

But from Statement 1) of this Theorem it follows that any vacuum
expectation of a monomial with at least one N tends to 0 as ε → 0.
Therefore, we can bring V to normal order using the effective relation

[B−φ,ε, B
+
ψ,ε] = 2 TrS(φ)ε � S(ψ)ε (30)

and the vacuum expectation will be the same.
But (??) is the commutation relation between first order Bose

creation and annihilation operators, and applying Wick’s theorem we
have

lim
ε→0
〈ψ0, V (ε)ψ0〉 = lim

ε→0

∑
All pairings (li,ri) of V

∏
i

TrS(φln)ε � S(φrn)ε

and in the limit we get (??).
Corollary 1. (From Theorem ??) In the sense of correlators, the

fields B+
φ,ε, B

−
φ,ε converges to the Boson Fock field a+(φ), a(φ), and

the field Nφ,ε converges to 0.

B−φ,ε → a(φ), B+
φ,ε → a+(φ)

Proof. This follows immediately from the the definition of the
convergence in the sense of correlators (cf. Definition 3.1.1 of [?])
and the proof of statement 3) of the Theorem ??. �

Now consider the following monomial in B+, B−, a+ and a:

W (ε) = a(φ4)B−φ3,εB
+
φ2,ε

a+(φ1) (31)
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We have:

〈ψ0,W (ε)ψ0〉 = 〈ψ0, a(φ4)
[
B−φ3,ε, B

+
φ2,ε

]
a+(φ1)ψ0〉+

+ 〈ψ0, a(φ4)B+
φ2,ε

B−φ3,εa
+(φ1)ψ0〉

Using Theorem ?? we find the limit of the first term:

lim
ε→0
〈ψ0, a(φ4)

[
B−φ3,ε, B

+
φ2,ε

]
a+(φ1)ψ0〉 =

= 〈φ2, φ3〉〈ψ0, a
+(φ4)a(φ1)ψ0〉 = 〈φ2, φ3〉〈φ1, φ4〉

Since 〈ψ0, ak1a
+
k2
a+
k3
ak4ak5a

+
k6
ψ0〉 = 0, the second term is equal to 0.

Therefore, we conclude that

lim
ε→0
〈ψ0,W (ε)ψ0〉 = 〈φ2, φ3〉〈φ1, φ4〉

Therefore, one can’t evaluate lim
ε→0
〈ψ0,W (ε)ψ0〉 by substituting a+(φ)

for B+
φ,ε and a(φ) for B−φ,ε in W (ε) and removing the limit, because

〈ψ0, aφ4aφ3a
+
φ2
a+
φ1
ψ0〉 = 〈φ2, φ3〉〈φ1, φ4〉+ 〈φ2, φ4〉〈φ1, φ3〉

In this sense we say that as ε → 0 B±φ,ε converges to the Boson
Fock field, defined in a new Hilbert space

7 Independence on regularization.

The goal of the present section is to show that

• The result of Theorem ?? doesn’t depend on the δ-function reg-
ularization (??).

• The renormalization factor εd/2 in Def. ?? is uniquely deter-
mined.

Definition 11 We call a sequence of functions ωε(x), 0 < ε < ε0,
reasonable if

ωε(x) = εA−dΩ
(x
ε

)
where Ω ∈ S(Rd) is such that∫

Ω(x)dx = 1
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Remark. One can see, that if A = 0 then ωε is a delta-sequence
in Rd.

Lemma 6 Suppose ωε(x) is a reasonable sequence and

0 6= lim
ε→0

∫
ω2
ε(x)dx <∞ (32)

in the sense that the limit exists and the inequalities hold. Then,
A = d

2 .

Proof. We have:∫
ω2
ε(x1, . . . xd)dx1 . . . dxd =

=

∫
ε2A−2dΩ2

(x1

ε
, . . .

xd
ε

)
dx1 . . . dxd =

= εd+(2A−2d)

∫
Ω2
(x1

ε
, . . .

xd
ε

)
d
(x1

ε

)
. . . d

(xd
ε

)
=

= ε2A−d
∫

Ω2 (ξ1, . . . , ξd) dξ1 . . . dξd (33)

Since Ω ∈ S(Rd) the integral exists and not equal to zero. (Otherwise,
Ω(x) = 0 almost everywhere, and

∫
Ω(x) dx = 0). Hence the limit in

(??) always exists and the only possibility for it to be 6= 0, ∞ is that
A = d

2 . �
Now suppose that instead of Def. ?? we define:

B+
φ,ε := B+

S(φ)(p1,p2)ωε(p1−p2) (34)

B−φ,ε := B−S(φ)(p1,p2)ωε(p1−p2) (35)

where ωε(x) is a reasonable sequence. We require that lim
ε→0

[
B−φ,ε, B

+
ψ,ε

]
exists and is 6= 0, ∞. Then, repeating the proof of Theorem ?? we
find that the scalar part of the commutator is equal to

T2 :=

∫
dp1dp2f(p1, p2)g(p1, p2)ω2

ε(p1 − p2)

Choosing f and g such that f(p1, p2) = f0(p1 +p2), g(p1, p2) = g0(p1 +
p2) in some neighborhood of the diagonal, we find that a necessary
condition for the convergence is:∫

ω2
ε(p)dp <∞
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From Lemma ?? we know that A = d
2 . Therefore

ωε(x) = εd/2
1

εd
Ω
(x
ε

)
=

1

εd/2
Ω
(x
ε

)
Now we are going to prove that T1, the number part of the correlator,
tends to 0 as ε → 0. Again, repeating the proof of Theorem ??, we
find that for any number vectors V1, V2

〈V1, T1V2〉 =
N∑

i,j=1

∫
dξdη uij(ξ, ε)Fε(ξ, η)

where

Fε(ξ, η) =

∫
dkf(ξ, k)g(k, η)ωε(ξ − k)ωε(k − η)

Changing variables, we have:

〈V1, T1V2〉 =
N∑

i,j=1

∫
dxdydz ωε(x)ωε(y)uij(x, y, z)

Note that δε(x) = 1
εd

Ω
(
x
ε

)
is a delta-sequence. Therefore, ωε(x) =

εd/2δε(x) and for any f ∈ S ′(Rd) we have:

lim
ε→0

∫
ωε(x)f(x) dx = lim

ε→0
εd/2

∫
δε(x)f(x) dx = lim

ε→0
εd/2f(0) = 0

Therefore, lim
ε→0
〈V1, T1V2〉 = 0.

We summarize this result as a theorem:

Theorem 3 Suppose B+ and B− are given by (??, ??), where ωε is
a reasonable sequence and

lim
ε→0

[
B−φ,ε, B

+
ψ,ε

]
converges. Then, this limit is a scalar and the renormalization con-
stant must be A = d/2.

8 Conclusions

We have defined regularized and renormalized quadratic fields that
tend to be localized near the diagonal (Def. ??). We have proved
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that, when the regularization tends to become sharp, these fields tend
to a boson Fock field (Corollary 1 of Theorem ??). We have also
proved that our result doesn’t depend on the choice of the regular-
ization within a rather wide class of delta-sequences, and that the
renormalization constant is uniquely determined (Theorem ??).
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